APPROXIMATION OF THE DIRICHLET PROBLEM ON A HALF
SPACE

BY

DAVID G. SCHAEFFER

Massachusetts Institute of Technology, Cambridge, Mass., USA (1)

There have been two general methods used most frequently to study the convergence
of finite difference 'approxixﬁations of elliptic boundary value i)robléms——-most results in
this area are based on an application of either the maximum principle or a variational
principle. Tn this paper we attempt to develop a third approach to this problem. Our
philoso‘phy‘is to imitate as closely as possible the methods that have been developed to
handle the differential equation itself. Of course the first sfep in this program is to study
boundary value problems on a half space. Here we consider approximations of the Dirich-
let pfoblem on a half space H for an elliptic differential operator of arbitrary (even) order;
we do not assume that 0H is aligned with respect to the grid of the difference equation.
For a certain class of difference schemes we give a necessary and sufficient condition for
the convergence of the approximation. This condition, which involves only the symbols
of the operators in the equation and not the operators themselves, is completely analogous
to the so-called “covering copdition” imposed on the boundary conditions of elliptic dif-
ferential equations. (See for example [4], p. 125]. The accuracy of the difference schemes
considered here is too limited for them to be inipoxjt_ant' computationally, but we hope that
our methods may serve as a first step towards a general theory for difference equations,
not requiring: anintermediate variational formulation and without the limitations as-

sociated ‘with the maximtm prineciple.

§ 1. Formulation of the results

Suppose P(D) is an elliptic differential operator on R”, homogeneous of order 2m,

with constant real coefficients. Consider an approximation to P(D)‘by,a, difference operator

0, (D)= h‘z’"j Zz ¢; exp (th{j, D))= h‘z"‘jzz ¢T,; (a finite sum)
eZin eZn
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where D= —4(8/éx) and T, is the translation 7T, ¢(x) =¢(x +y). We shall assume that @,(£),
the symbol of the difference operator, is real; thus c_;=¢;. We shall say that @,(D) is
elliptic it @,(&) >0 for £ER™~ 2nh~1 Z” and that @,(D) is consistent with P(D) if

lim @, (§)=P(§)
h->0

for every £€R™ The symbol Q,(£) is a multiply periodic function on R with period 25/h;
when convenient we shall regard @, (&) as a function on the torus T”.
We study the Dirichlet problem

k
{(PD)+Du=F in H, (56—) u=f" on 9H for k=0,1...,m—1, {1.1)

where H ={x€R" (x, N) >0}, N being a unit vector in B*. If A>0, then for any F € S(H),
the Schwartz space, and for a,ny FF ES(OH), (1.1) has a ﬁniqne solution « € §(H) —see for
example [4]. Now @,(D) is a non-local operator, and for x nea,f 0H the domain of depend-
ence of @,(D)v(x) will include points of R™ ~ H. Therefore in approximating (1.1) by a dif-

ference equation, we modify the main equation
(Qu(D)+A)v=TF (1.2)
near the boundary. Choose j,€Z" such that

¢, *+0 and (Gy, N> =max {4, N>:¢;+0}; (1.3)

let @={j,, V) and let S={x€R™ 0 <(x, Ny <a}. We suppose that in the boundary layer

h8 we are given a difference operator with constant coefficients

g (D)= 2> bT,, (afinite sum) (1.4)
jeZn

and a family of linear maps u,: @3 ' S(0H)—LA(hS). As our approximation of (1.1), we
impose (1.2) for <z, N) >ah; and we supplement this equation by the boundary condition

gu(D)v = palf] in AS,

where f=(f%, ..., f"?)} is a m-tuple formed from the boundary data of (1.1). Perhaps
the simplest example of such a scheme is based on using the first m terms of a Taylor series
to approximate u near 0H: let q,(D) =1 and let

m—1 tic

wlfl @+ tN)= 2. o [P () (1.5).

lcaok
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for ' €0H and 0<t<ah. We shall assume in (1.4) that b,=0 for {j, N) <0, so that for
2 €AS the domain of dependence of ¢,(D)v(x) is entirely contained in H.

If veL2(R"), we define a discrete analogue of a Sobolev norm,

lo: P@Yi= 3 Ao fRndxlA‘;‘,vlz.

jal<m

Here we use a multi-index notation for the finite differences A, v(z) =f(z +he,) —f(z). For

any measurable subset Q< R" we define
lv: L2(Q)|[, = inf {||6: L* R™)||,: 6 =v in Q}.

This norm, which we often abbreviate to ||v||,, provides an estimate for the smoothness
of v that is not dependent on the non-local differences AZ fitting nicely at &Q. We shall
call a boundary scheme (g,(D), u,) consistent (with Dirichlet boundary conditions) if for
all $E€S(H)

lim lg, (D) ¢ ~ pa[p(D) $1: L (W8)]], =0, (1.6)

where p(D)¢ =(4, ..., (8/oN)"14) is the Dirichlet data of ¢ on 6H, and we shall call a dif-

ference scheme convergent if the following two conditions are satisfied.

(i) For any A>0, if >0 is sufficiently small, then

@uD)+MDv=G in H~hS

(1.7)
g(D)v =g in kS
is uniquely soluble in L?(H) for any G €L H ~hS), gELRS).
(ii) For any F€S(H), f* € §(0H), the solution v, of
QuD)+ v, =F in H~hS
(1.8)

gn(D)yvy, = pylf] inhS

converges to the solution » of (1.1) in the norm || -: LX(H)]|,.

In the following theorem, the main result of this paper, we use an extension of the
symbol @, (£) to complex values of the argument Since @, (5) =h~2"Q, (&), it is sufficient
to extend only in the case h=1; also, it is more convenient to work with the normalized
operator Q(D) = T,,Q\(D), where 70€Z" satisfies (1.3). For £€T™ and 0<s< oo let

O(&,s) =3 ¢y exp {05+ Gos & — G+ 70, N s} (1.9)

Then é(é‘, 0) is the symbol of é(D) and é(f +1tN, s) is an analytic function of ¢-+¢s. More-
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over by the choice of j,, every term in (1.9) possesses & limit as s— oo, uniformly in §,

which is constant along the line {{N}, so we may regard @ as a function on
M = 7" x[0,00) U TG x {0},

where @ is the closure of the line {t{V}.in the torus T". Similarly we may extend the symbol

of g,(D) to a function § on M; here no normalization is required, as b, =0 for {j, N) <0.

TeEOREM 1: Suppose Q,(D) is an elliptic difference operator consistent with P(D).
The difference scheme (Q,(D), g, D), ) is convergent for all py, which give consistent boundary

conditions if and only if @ and § do not vanish simulianeously in M.

We shall say that ¢,(D) is elliptic with respect to @,(D) if § and @ do not vanish si-
multaneously in 1. The following theorem, which asserts that the difference equation may
be solved stably, is the basis of the proof that ellipticity is a sufficient condition for con-

vergence.

TaEOREM 2: Suppose @,(D) is an elliptic difference operator consistent with P(D). If
gn(D) is elliptic with respect to Q,(D), then for all small kb, (1.7) 1s uniquely soluble in L*H)

and moreover
”v: Lz(H)”h < C{HG: LZ(H~hS)|| + “g L2(‘h8)”h}

for some constant C independent of h.

Theorems 1 and 2 are proved in §4 and §3 respectively. These proofs are based in part
on the properties of certain difference operators acting on solutions of the homogeneous
equation (@,(D)+2A)v=0 which are studied in § 2.

The principal restriction on the class of difference equations we consider is the assump-
tion that g,(D) does not depend on the location of z in AS8. It is natural to assume that
q,;(D) is translationally invariant along directions parallel to 817, but one would like to
allow a fairly general dependence on <x N >. Our assumption limits the accuracy of the
difference equatlon to lowest order. It is also a restrlctlon that ¢,(D) depends on % only
through the’ spaelng of its translations. However this is less significant, for it is reasonable
to suppose qh(D) is homogeneous in %, and in ‘an apprOXImatlon of Dirichlet boundary
conditions it would be unnatural to have a positive degree of homogeneity.

We note the relation
Qun(D) + a7t = a2 [Qu(D) +A1J, (1.10)

for o >0, where J, is' the dilation
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JLo(®) = a20(z/a) (1.11)

needed in (1.10) to compensate for the fact that the spacing of the translations in @, (D)
and in Q,,(D) are different. Of course J, is an isometry of L?(H) onto itself, and both J,
and its inverse are uniformly bounded with respect to the discrete Sobolev norms. Through-
out this paper we consider only the equation (Q,(D)+1)v =G where 1=1, since the solu-
tion of the equation for other positive values of 1 may be reduced to this case by homo-

geneity.

§ 2. A study of certain operators on the space of solutions of the homogeneous
equation

If y ER" satisfies (y, N> =0, let R, be the restriction of the translation T, to L*(H).
The translations {R;: <y, N> > 0} form a commutative semi-group, where of course B, R, =

R,.,. Moreover
X = {vEL¥H): (@uD)+1)» =0 in H~hs}
is an invariant subspace of R, for {y, N> >0, being the kernal of

Ry (Qn(D)+1)=h7" ; Cijo Bpy+ By,

which commutes with R,.
Let 4 be the Banach algebra of functions on T" with absolutely convergent Fourier
series whose Fourier coefficients {a;: j€Z"} vanish for (j, N)<0. By the above remarks

we may define a representation g, of 4 on X,: let
on(Za,e"7) =S, By | X,

It is clear that g, is norm-decreasing, where for € 4 we take ||y|| to be the absolute sum
of the Fourier coefficients of ¢ and

lloatw)| = sup {llony) o]l v€ Xn and |[o] <13

The proofs of §§ 3 and 4 will use the properties of the operators p,(y) which are stated
be ow in Lemmas 2.1 and 2.2. In these lemmas, if ¢ = Xa,¢"*” € 4 we define § as the ex-

tension of ¢ to a function on M,

I/A"(E: ,g) = zaj exp {7‘<7: §> —<j: N> 8}
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for 0<s< oo and P&+ G,00) =lim_, o P(£, s), and we define 71=é—1(0)c: M. Below we
identify M with the maximal ideal space of 4; that is, we show that every non-zero homo-
morphism of 4 into € is of the form y—>() for some 5 € M. On an intuitive level, Lemmas
2.1 and 2.2 state that for small &, # is a good approximation of the maximal ideal space

of the Banach algebra of operators on X,, generated by g,(A).

LeMMA 2.1: Suppose w€ A; if § is non-zero on N, then p,(y) is invertible for all small
k and
Tim sup [lgn () 7| < e

LeEMMA 2.2: Suppose w€ A and n,€ N; for any >0, if b is sufficienily small, o,(y)
has an approximate etgenvalue in the disk of radius ¢ centered at P(n,).

Proof of Lemma 2.1: We begin the proof by determining the maximal ideal space of
A. Of course A4 is isomorphic to I}(H N Z") by the Fourier transform, and we-quote the
results of Arens and Singer [1] concerning the latter algebra. These authors define a char-
acter of the semi-group H 0 Z" as a continuous, non-zero homomorphism of H n Z" into
the unit disk, and they show that the maximal ideal space of I*(H N Z") is homeomorphic
with the space of characters of H N Z", given the topology of uniform convergence on
compact sets. They also show that any character { of H N Z" admits a polar decomposi-
tion

L) = e e4”

where £€T™,

For each 7€M we define a character of H N Z" as follows. If #=(&, s) where £€T"

and 0 <g< oo, Jet
K> — gIE N> s, (2.1)

With the convention that ¢~ =0 we may also use (2.1) to define ¢“"» when 7= (£ 4 @,°)
—although eX¢*¢% is not defined for all j, we need only define this expression when
{j, N> =0, and this is possible since the dual group of 0H n Z" is T"/G. We claim that any
character of H 0 Z" is of the form (2.1). Suppose { is a character of H 0 Z™ If {j, N} <
{j’', N>, then

126 = 126" =D 1ZD | <[Ei)]-
Tt follows that there is an order reversing homomorphism z: X—[0, 1], where

3 = {G, Ny: jeH 0 Zr}<[0,%0),

such that [£(j)| =n({j, N)). Since any such homomorphism is given by 7(0) =¢~* for some
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8€[0, 0], we see from the polar decomposition of £ that it is included in (2.1). Thus the
characters ‘of H N Z" are in one-to-one correspondance with M, so we may speak of M
as the maximal ideal space of 4.

- Note that @ is the Gelfand representation of é( +, 0) € A. Let ¥ be the closure of the prin-
cipal ideal in A4 generated by @(-, 0). It follows from an elementary computation that
7’l=@"1(0) is the maximal ideal space of 4/ 7. (See for example Theorem 3.1.17 on p. 116
of Rickart [5].)

Suppose o is an element of A4 such that ¢ is non.zero on H. Then y is invertible
mod ¥, so there exists ¢’ € 4 such that yy' —~I € J; since ¥ is the closure of 4 @(- , 0),

vy’ — I —5@(-, ) <3
for some y € 4. Now

”Qh(’/"l” —I)” < ”9};(‘/"‘/" —I—5Q(-, 0))” + ”Qh(Xé( ’ 0))" (2.2)
But on(@(-, 0)) = —h*" Ry, | X,
Therefore if 2?"<}||y||~%, it follows from (2.2) that g,(y)e.(y’)=1I+A for some operator
A4 with ||4]| <%. Thus g,(y) is invertible and

llontw)11 <3llentw) | <3llw'[l
The proof is now complete.

It is easily verified that the topology on M induced by the Gelfand representation of
A is the quotient topology on T” x [0,0) obtained by identifying points of the form (&)
and (& +y,o0) for y€4.

Proof of Lemma 2.2: Let My="T" x (0,90) be the manifold densely contained in .
If U is the {open) upper half plane, we define a smooth immersion ¢: 0H x U, by

H(&, t+is) = (&' +IN +21Z", 5)

Using this map we may pull back the function

(Q 4 hzm)" (77) — Q(n) + }2m gi<le. >

defined on M to a function $*(Q +k2™ (&', z) on 8H x U. Of course this function is analytic
and almost pericdic in 2.
We show below that if for some € T,

(@-+B™)"(n) =0, (2.3)

then ¢(z) is an approximate eigenvalue of p,(y). But we claim that any neighborhood of
the given point #, €} contains solutions of (2.3) which belong to M, providing & is small.
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Note that (2.3) is a small perturbation of the equation é\(n),zO which defines #, and by
ellipticity gb*@(f’, z) cannot vanish identically for any &’. Thus the claim follows from the
analyticity of qS*@, if 5o€ 10 M,. However, by Lemma 2.3 below, 10 M, is dense in N,
so the claim follows for general #,€ ¥ by a two-epsilon argument. In this way we obtdin
approximate eigenvalues of p,() close to §(z,).

Suppose 5 € M, satisifies (2.3). We shall exhibit approximate eigenfunctions of p,(y)

in X, as linear superpositions of exponentials,
v(x) = f df’w(g’) PRIGR IR (24)
an

where w€C (0H) and Im 2(§')>6>0 so that v€L3(H). Equation (2.4) defines an element
of X, if for each & € supp w, 2(&’) is a root of $*(Q +~*™)" (&', 2) =0. Now if 5 = $(£,, 2;), then
2o is a zero of $XQ+A™) (&, z) with Im z,>0. By analyticity there is & neighborhood
O of & such that for & €0, ¢*(@Q+k*")"(&, 2) has a root z(&') near z, Thus if we take
supp w < O we may obtain an element of X, from (2.4). But

[lextp) ~pimell <. sup |49, =)~ 4*9(0 7o) ol (2.5)

By further restricting the support of w we may make the right hand side of (2.5) small,

80 we see that {() is an approximate eigenvalue of g,(p).
LeMuMa 2.3: NN M, is dense in N.

Proof: We observe that
N~ (NN M) = (NNT*x {0}) U (M NTYG x {=o})

By ellipticity 11 NT"x {0} contains only the origin. Now by consistency qS*@(O, z) has a
zero of order 2m at the origin, so for small &' =0, ¢»*é(§’, 2) has 2m zeros near the origin.
Half of these zeros must belong to the upper half plane. These latter zeros correspond to
points of { N M, close to the origin.
Suppose that 1, =(£,+G,>) €N, or that
lim ¢*Q(&, 2)=0.

Imz—>o0

If the almost periodic function f(z)=¢*@(£('), 2) has zeros arbitrarily high in the upper
half plane, these yield immediately points in n m, close to n,. We may therefore assume
that f(z) is non-zero for Im z>s, We shall use Lemma A in the appendix to show that in
any neighborhood of &; there exist points £ such that ¢*@(§’, z) hag zeros high.in the up-
per half plane. Of course these zeros eorrespond to points of 71 N. M, elose to 7,
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In our choice of j, we arranged that at least one term in the Fourier series of @( ., )
on T*/@ was non-zero. Thus Q(-, o) cannot vanish identically on T"/@. But @(', oo) is a
polynomial, so it cannot vanish on any open subset of T"/G.

It follows from (A.3) that for any sufficiently large s there is an £ >0 such that |f(z)] =&

on the line Im z=s. By continuity for & close to &,

|4* QL& 2) — % Q(&), 2)| < &2 (2.6)

if Im z=3s; moreover, since é(-, oo) does not vanish on any open subset of T"/¢, we may
choose & close to &, such that
lim ¢*O(f,2)+0. (2.7)

Imz—>o

Given any neighborhood O of &, choose & €0 to satisfy (2.6) and (2.7) and let g(z) =
¢*@(§’, z). Then f and g satisfy the hypotheses of Lemma A, so by (2.7), g has infinitely
many zeros above the line Im z=s. This completes the proof.

§ 3. Existence, uniqueness, and stability

We prove Theorem 2 in this section. First we solve the difference equation in the
special case
QD)+ 1w =G in H~hS (3.1)
w=0 inhS

where g,(D)=1 and the boundary condition is homogeneous. An explicit solution of this
equation may be obtained with the Wiener-Hopf technique. We then transform the ge-
neral problem (1.7) to a homogeneous eciuation by the change of variable v’ =v —w', Whére
w is the solution of (3.1). Finally We coinplete the proof of Theorem 2 by solving ‘(11.7,) in
the homogeneous case.

The Wiener~Hopf factorization of @,(§)+1 does not present any problem. Since @,(£)
is non-negative, log [Qh(é)-l—l] is a smooth function on T" whose Fourier coeffiéients

{a;: j€Z™) are rapidly decreasing. Therefore we may write
log [@u(§) +11 =¥ (&; §) +¥_(; &),

where the Fourier coefficients of W, vanish for +<j, N>>0. We define @ (h; &)=
exp V. (h; £). Note that @, (h; &) and Q_(h; &) are complex conjugates and their product
is @,(&) +1; thus

|Q,(F; &)| = |Q_(h; &) =[Qu(&) +11F

Since §,(D) is elliptie, it follows that there exists a constant C, independent of %, such that
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C U1 +s,(6)™) < [|Qu(h; &)] < O +8,(E)™), (3.2)

where s,(£)? is the symbol of the difference analogue of the Laplacian,
n
8(E)? =h7% 2 sin® (§ hé&y).
k=1

Let Q.(h; D) be the difference operator on B™ whose symbol is @, (h; £)—a multipli-
cation operator in Fourier transform space. Because of (3.2), @, (k, D) is invertible on
L2R") for any b >0. Indeed, since

¥
{fm di(1+s, (5)'")2|ﬁ<5>12}

is a norm on L2(R") equivalent to the discrete Sobolev norm ||« ||, one sees that
C-4jo: LB < ||Qulh; D)o]| <Clv: AR, (3.3)

for some constant C independent of 4.

In attempting to use the Fourier transform to solve (3.1) on a half space, one en-
counters the usual difficulties of a Wiener-Hopf equation. We remark that with our con-
ventions L2(H ~hS) is an invariant subspace of @, (h; D). Thus the standard Wiener-Hopf

solution of (3.1) is
1 1

= E
Y= 0.5:D) * g_(w; D)

G, (3.4)

where B, is multiplication by the characteristic function of H ~AS. Although we are in-
terested in w only on H, in fact (3.4) defines w as a function on R" which vanishes on
R*~H. Tt follows immediately from (3.3) that |jw: L3(H)||,<C||G||. (Note that only
@, (h; D)* contributes to the smoothness of w—the smoothness of §_{h; D)1 G is destroyed
by the projection E,.) Therefore (3.1) may be solved stably for any G €L H ~AS), and
this solution is unique.

We remark that the equation
@u(D)+)w=0 in H~AS (3.5)
w=g¢g in AS,
where the inhomogeneity appears in the boundary condition, may be reduced to (3.1) by
the standard trick: extend ¢ to a function ¢ €L2(R") and let w'=w—d. Since ||g: L*(AS)||,

is defined as a quotient norm, we may choose ¢ so that ||¢: LAR™)||, =|lg: L2(hS)|». One
easily computes that
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1
w = — E
0.(h; D) "
It follows from (3.3) that the unique solution of (3.5) satisfies |Jw|f, <Cllg| -
Suppose ¢,(D)=2b,T,; is a boundary difference operator. We have -assumed that
b,=0 for (j, N)><0. Hence the symbol of ¢,(D) determines a function g(£)= Zb,e*** in

the algebra 4 of § 2 whose Gelfand representation is g. Also note that g,(q) =g4(D)| X,

D)+ 1) $= = 55 BaQ-: D) .

1
o_s D) &

The following lemma, which shows that solutions to the homogeneous problem

(@u(D)+1)v =0 in H~hS (3.6)
g(D)v =g in kS

may be obtained from an inverse of p,(g), allows us to apply the results of § 2 in solving
(3.6).

Lemma 3.1: Equation (3.6) is uniquely soluble in L*(H) for any g €L*hS) if and only
if on(q) is invertible on X,.. Moreover (3.6) may be solved stably if and only if

lim sup lgy () 7| < 0.

Proof: First suppose that p,(q) is invertible. If g € L2(hS), let w be the solution of (3.5).
Then v =g,(g)~w belongs to X, and satisfies the boundary condition g,(D)v|hS =w|hS =g.
Thus (3.6) has at least one solution. If » and v’ are both solutions of (3.6), then g,(g)v
and g,(g)v’ are both solutions of (3.5). Since the solution of (3.5) is unique, g,(g)v =g,(q)?’,
and by invertibility v =9¢'.

On the other hand, suppose (3.6) is uniquely soluble for all data g. If w€ X, let v be
the solution of (3.6) with boundary data g=w|hS. Then g,(q) v and w are both solutions
of (3.5) with the same boundary data. Hence g;(g)v =w, 80 g,(q) is surjective. If g,(g)v =0,
then v is a solution of (3.6) with homogeneous boundary data, so v=0. Thus g,(g) is also
injective, and therefore invertible.

These considerations may easily be extended to cover the question of stability in
solving (3.6), so the proof is complete.

It is now trivial to prove Theorem 2. By the reduction presented at the beginning of
this section, it suffices to solve (1.7) in the homogeneous case (3.6). Suppose that ¢,(D)
is elliptic with respect to @;(D). Then § is non-vanishing on #=0-*(0), so by Lemma 2.1,
0x{q) is invertible for small A. Of course, by Lemma 3.1, this implies that (3.6) is uniquely
soluble for small A. It also follows from these lemmas that (3.6) may be solved stably.

This completes the proof of Theorem 2.
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§ 4. Proof of the main theorem

In this section we prove Theorem 1. The proof that ellipticity is a sufficient condition
for convergence involves only a simple application of Theorem 2. Indeed, suppose g,(D)
is elliptic with respect to @,(D). It follows from Theorem 2 that for any » € L2(H)

lo: L3 H)||, < C{|(@u{D) + 1) v: LA(H ~hS)|| + ||gn(D)v: LA(RS)|| ,}- (4.1)

Let u, be a consistent data map; given F € §(H) and f* € §(2H), let u be the solution of
(1.1) and let v, be the solution of (1.8). Then by (4.1)

|2 —all < C{[|(@u(D) + 1)u — (P(D) + Du|| +[lgn( D) —p[ (D) we] |33 (4.2)
here we have used (@n(D)+1)v, =F =(P(D)+1)u

and an analogous equation for ¢,(D)v, to simplify (4.2). Now u belongs to S(H). Since
@,(D) is consistent with P(D), the first term on the right of (4.2) tends to zero with %; the
second term of (4.2) also tends to zero by the consistency of the boundary conditions. Thus
vy, converges to u in the discrete Sobolev norm. This shows that ellipticity is a sufficient
condition for convergence.

Before continuing the proof of Theorem 1 we show that for any boundary difference
operator g,(D) there is a data map u; which gives consistent boundary conditions. Indeed
if ¢(D)=Xb,T,;, then for f€ @I S(0H) let

palfl(e + 1Ny = bz'i’“’—m—

12 (" + k'), (4.3)
where we write j'=j—{j, N> N. With this definition, if ¢ € $(H), then u,[p(D)$] approxi.
mates g,(D)¢ to O(A™) in the boundary layer 2S8. However, it follows immediately from
the definition of | - ||, that for any g €L2(AS)

lo: ol <erov{ [ ar| g+ P
H 0

Thus if $€ S(H ;
”%(D ¢ — un(p(D)14: L*(hS “n (h*)-

Therefore (4.3) gives rise to a consistent boundary approximation.

If the difference equation (1.8) is convergent for some u,,, then in particular the homo-
geneous equation (3.6) may be solved for any g €L*AS), if h is small enough. In the fol-
lowing lemma. we show that if the difference equation is eonvergent for ail consistent w,,
then (3.6) may be solved stably.
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Levwma 4.1: If the difference equation is convergent for all consistent w,, then there
exists a constant C such that for small h the solution of (3.6) satisfies

ol < Cliglla- (4.4)

Proof: Suppose that (4.4) does not hold; that is, suppose there exists a sequence
{h} decreasing to zero and a sequence {g,}, where g, € L3, S), such that

[eella, =1 but {|gel[x,~ O

Here of course v, is the solution of (3.6) with data g,. For the remainder of the proof we
shall omit the subseript “A;,” from these norms. We define a data map »,: @y 1S(eH)~
L2(hS) as follows: choose a non-zero linear functional I on @§~S(0H); if k, <h <h,_,, let

v [f1=1U/) Jh/h,cgk:

where J, is the dilation (1.11). Then if u, is a consistent data map, so is u, +v,, since
llg]| =0. Choose f€ ®7S(@H) such that i(f)=1, and let w,, wy, be the solution of (3.6)
with boundary data pu,[f], (, +v,)[f] respectively. Then

lfoon, = i)l = [leall = 1,

50 not both w, and w;, can converge to the solution of the continuous problem. Therefore
if-(4.4) does not hold, the difference scheme cannot converge for all consistent u,. This
completes the proof of the lemma.

We may now prove that ellipticity is also a necessary condition for convergence.
Suppose the difference equation is convergent for all consistent u;. It follows from Lem-

mas 3.1 and 4.1 that ;
lim sup [lox (¢)~']] < <.

Now if % belongs to N =@"I(O), then by Lemma 2.2, for any £>0, g,(¢) has an approximate
eigenvalue A with [2] < [q(n)l +e&, providing b is small. Therefore for small &, the spectral
radius of g,(g)~1 is at least {|g(n)| -+&}~1. Of course the spectral radius of g,(g)~* is domi-
nated by the norm of this operator, so

1
———— £ lim su S — 0 < oo. .
GopTie < msup fle @7l
But since (4.5) holds for every £ >0, we have |§(n)| >C~1>0. Thus § is non-vanishing on
Q-%(0), 50§ and Q de'not vanish simultarieously on M.

The proof of our main theorem is now complete.
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APPENDIX

Our purpose here is to prove the lemma below. Informally, it asserts that the zeros
at infinity of an analytic, almost periodic function are stable with respect to small per-
turbations. We begin by recalling certain results from the theory of almost periodic func-
tions. (See Chapter VI, §§ 1-3 of Levin {3].)

Suppose f is an analytic, almost periodie function in the upper half plane. If { is non-
vanishing in a strip {z:|Im z—s| <4}, then the limit

6(s) = Tlim (27) 7 {arg f(T + is) —arg f(— T +is)}

defining the mean winding number of f along the line Im z =s exists. If the mean winding

number of f exists along two such lines, say Im z=s,, and Im z=s, with s, <s,, then
0(s,) —~6(s5) = 21 D(sy, 39), (A1)

where D(s,, s,) is the density of the zeros of f in the strip {2: s; <Im 2 <s,}: that is, let

D(s,, 8,; T) be the number of zeros of f in the rectangle {z:8,<Imz <s;, |Re 2| <T} and

let D(sy, 8,) =limgp, o, (27)72D(s,, 85; T'). (Under the above hypothesis this limit exists.)
Suppose moreover that f is bounded in the upper half plane. A leading term may be

extracted from the Fourier series of £, say
f2)=aye™ + 5 a, e (A.2)
k=1
where 4,40 and 0<4,<4, for k=1, if and only { is non-vauishing for-Im z sufficiently
large, say Im z>s,. In this case
e~ [f(2) — aye™*] >0 (A.3)
as Im z—co, uniformly in Re z. Thus the mean winding number 6(s) exists for s >s, and)

6(s) =4,. However, Whether or not f inay be written in the form (A.2), as Im z— oo, f(z

tends to a definite limit, uniformly in Re z.

Lemma A: Let f and g be bounded, analytic, almost periodic functions in thé wpper
half plane. Suppose that f is non-vanishing for Im z > s, but that

lim f(z)=0. (A.4)

Im z—>c0

If \g—f| <|f| along some line Im z=s8;>s,, then either lim g(z) =0 as Im z->co or g has

tnfinitely many zeros above this line.
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Proof: Since f is non-vanishing for Im z>s,, we may extract a leading term a,e**?
from the Fourier series of f. By (A.4), A,>0. Thus 0,(s;) =4,>0, where 0;(s,) is the mean
winding number of f along Im z=s;. But |g—f| <|f| so |arg g—arg f| <u; therefore the

mean winding number of g along Im z =s, also exists and 6,(s;) =0,(s,) >0.

Suppose lim g(z) =0 as Im z—o. Then g(z) must be non-vanishing for large Im z,
say Im z>s3,—§. Thus a leading term b,e°? may also be extracted from the Fourier series
of g, and moreover u,=0. Hence the mean winding number 8,(s,) must vanish.

We have shown that 0,(s;) —0,(s,) >0. By (A.1) the zeros of g in the strip {z:s; <
Im z<s,} have a positive density. This completes the proof.
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