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Introduction

In this paper we wish to exhibit the utility of differentials of half integer order in the
theory of Riemann surfaces. We have found that differentials of order } and order —3
have been involved implicitly in numerous earlier investigations, e.g., Poincaré’s work
on Fuchsian functions and differential equations on Riemann surfaces. But the explicit
recognition of these differentials as entities to be studied for their own worth seems to be
new. We believe that such a study will have a considerable unifying effect on various
aspects of the theory of Riemann surfaces, and we wish to show, by means of examples
and applications, how some parts of this theory are clarified and brought together through
investigating these half-order differentials.

A strong underlying reason for dealing with half-order differentials comes from the
general technique of contour integration; already introduced by Riemann. In the standard
theory one integrates a differential (linear) against an Abelian integral (additive function)
and uses period relations and the residue theorem to arrive at identities. As we shall
demonstrate, one can do an analogous thing by multiplying two differentials of order } and
using the same techniques of contour integration.

As often happens, when one discovers a new (at least to him) entity and starts looking
around to see where it occurs naturally, one is stunned to find so many of its hiding places
—and all so near the surface.

Our current point of view concerning the study of Riemann surfaces has evolved from
an earlier one in which we introduced the notion of a meromorphic connection in analogy

with classical notions in real differential geometry; we now view the theory of connections
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on Riemann surfaces as being the theory of first order linear differential equations. The
present paper is concerned with the next step—second order linear differential equations.
The remarkable difference between first and second order linear differential equations on
a closed Riemann surface of genus greater than one is that there exist everywhere regular

second order equations, although each first order equation must be singular.

I. The Schwarzian differential parameter and related connections

1. In the theory of conformal mappings and univalent functions the following expres-
sion plays a central role. If f(z) is an analytic function in the plane domain D, the function

[5, 8, 15, 20]

fa =1t )

Fiz,0)=log— — =
is analytic in the Cartesian product domain D x D except for logarithmic poles. A necessary
and sufficient condition for f(z) to be univalent in D is the regularity of F(z, {) in D x D.
Since a linear transformation

_af(z)+b
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does not affect the univalence of the function, it is to be expected that the corresponding
function in two variables F*(z, {) stands in a simple relation to F(z, {). Indeed, we find
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Thus it seems useful to define
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which is in view of (3) invariant under linear transformation. Clearly, the univalence of
f(z) in D is still equivalent to the regularity of U(z, {) in D x D.
Let w={f(z) and o ={({) and define
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If we consider z=g(t), { =g(r), we can form the analogous expression
, gigm 1 6)
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It is easy to verify that for w=Ff{g(t)}, o =Ff{g(v)} we have
[w, w; 2z, {]dzd +[2, C; t, T]dtdr =[w, w; ¢, T]dtdr. (7)

This additive law for [w, w; 2, {]dzd¢ under composition of mappings is of significant value
in the theory of conformal mappings.
If we identify the two arguments in Uf(z, {), we obtain

oo EYAET

We are thus led in a natural way to the Schwarz differential parameter

_ (@) _ L@y
tos=(55) =3 () ©
in terms of which (8) can be expressed as

U(z,2)=[w,w; z,2]= —} {w,z}. (8

From the preceding properties of U(z, {) follow then the well.-known properties of the
Schwarzian differential parameter:

(a) {w,z} is invariant under a linear transformation of w.
(b) Under the composition w=f(z) and z=g(f}) we have

{w, 2}dz?+ {z, t}dt2={w, t} d2. (10)

From (a) follows that for the linear transformation

at+ 8
—_ ) 11
R ()
holds identically {z, t}=0. Hence we infer from (b) in this case:
{w, £}dt*={w, z}dz? (12)

that is, the Schwarzian differential parameter transforms like a quadratic differential
under a linear transformation of the independent variable.
Finally, let in (10) =w and use the fact that in this case again {w, t} =0. Thus

{w, 2}dz?= — {z, w}dw? (13)

which determines the Schwarzian differential parameter of inverse functions,
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We may consider w as a function on the domain D and the independent variable z
as local coordinate. Then the mapping z =g(f) can be conceived as a change of coordinates
and the transformation law (10) shows that the Schwarzian differential parameter {w, 2}
transforms under such change of coordinates according to a linear inhomogeneous law of
transformations. The expression behaves almost like a quadratic differential; however,
we have to add the inhomogeneity {z, t}dt> which does not depend on the function w
considered, but only on the transformation law from z to t. We may call {w, 2z} a connec-

tion in analogy to the corresponding concept in differential geometry [18].

2, Naturally we are now led to consider connections analogous to the Schwarzian
differential parameter on Riemann surfaces. We ask for quantities S, defined in terms of
the local uniformizer 2, which transform under a change of uniformizer 2z =g(t) according

to the law
Sy(t)diz=8,(z)dz?+ {z, t} dt? (14)

Clearly, it is enough to construct on a given Riemann surface only one such Schwarzian
connection. For, if S, and S, are two such expressions with the law of transformation (14),
their difference would be a quadratic differential on the surface and this class is well
known and completely understood.

It is now remarkable that on every Riemann surface i there does indeed exist a
regular analytic Schwarzian connection 8. In order to construct it, we introduce the
Abelian integral of the third kind {10, 14, 22] w(p; , s) which is analytic in p, has logarith-
mic poles with residues +1 and —1, respectively, at the two given points r€R and s€R
and which is normalized to have the periods zero with respect to the cross cuts %, of a canon-
ical cut system {,, B,}. The analytic dependence of the Abelian integral so defined upon
its parameters is best understood by means of the fundamental theorem that for every
quadruple p, ¢;7,s on R the combination

W(p, g; r, s) =w(p; r, 8) —w(g; r, 8) (15)

is symmetric in the pair p, ¢ of arguments and 7, s of parameters. In particular, we see that

P w(p;r,8) _Pw(rp,q) _FW(p, g1, s)

opor orop opor (16)

depends analytically on p and r, is symmetric in p and r and is independent of s and g.
This expression has a singularity if p=r, and to study it we introduce a local uniformizer
z such that p has the coordinate z and r has the coordinate {. We then find that
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FW(p,g;r8)_ 1
020 (=0

+1.(2, {), amn

where [,(z, {) is symmetric in both variables and regular analytic in the uniformizer neigh-
borhood. If we change uniformizers by the analytic relations z=g(¢), { =g(r), we find by

use of (6)
L, ©)dtdr =1z, )dzdl + [z, C; t, T]dtdr. (18)

Let us then define the expression

FWp,grs) 1 )] (19)

8,(2)= —6lz(z,z)=gijg [—6 ( oz (z—C)?

This is an analytic function in each uniformizer neigborhood which depends, however,

upon the choice of uniformizer. In view of (8') and (18) we have
S(t)dt2 =8, (z)dz? + {z, t}di2. (20)

A comparison of this transformation law with (14) shows that § satisfies the proper trans-
formation rule of a connection.

We obtain all Schwarzian connections on % by adding to the expression S,(z) con-
structed explicitly any quadratic differential on . However, we may construct another
Schwarzian connection in a different way and arrive at a remarkable identity. Let ¢(p)
be the analytic function which is defined on the universal covering surface 3, of R and
maps N, onto the unit disk. It is well known that the ¢(p) is polymorphic on N, that is,
at points of i, over the same point of N the function ¢(p) has different determinations
which are related by a linear transformation. Thus, if ¢(p) and ¢(p) are two such determina-

tions, then
$(p)=Lip(p)], (21)

where L transforms the unit disk onto itself. If we introduce a local uniformizer z at p,

we see that in view of (21)
{p, 2} ={¢, 2} (22)

that is, the Schwarzian differential parameter of the polymorphic function ¢(p) is the
same for all branches of this function; it is single-valued and analytic in each uniformizer
neighborhood on . It depends, however, on the choice of the uniformizer; if we replace
z by t through the analytic relation z=g(f), we find by (10)

{p, t}di2={p, z}d2®+ {z, t}di*. (23)
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Thus {@, z} has the same transformation law of a Schwarzian connection as S,(z). Hence

we have
{g, 2} = —6l(2,2) + Q(z), (24)

where Q(2) is a regular quadratic differential on .

Since the Abelian integrals and quadratic differentials of a surface R are of a more
elementary character than the uniformizing transcendatal function ¢(z), we may consider
(24) as a useful differential equation for ¢(z) in terms of the easier accessible expressions
1.(z, 2) and Q(z).

II. Schwarz’ differential equation and half-order differentials

1. We return to the case of planar domains D. Suppose that a function 8(z) is given
in D and that we wish to find the solution of the differential equation of the third order

in w(z),

{w, 2} =8(z). (1)

Schwarz showed that the solution of this nonlinear differential equation can be reduced
to the simpler problem of finding two independent solutions of the linear second order
equation

u"(2) + 4 S(z) u(z) =0. (2)
Indeed, if %,(2) and u,(z) are independent solutions of (2), their Wronskian

uy(2) ua(2) —up(2)ug(z) = W(z) 3)

will be not identically zero. On the other hand, we see from (2) at once that W(z) must be
a constant; thus we may choose W(z)=1. In any case, as a simple calculation shows, the

ratio
_(2)
uy(2)

w(?) (4)

will satisfy the differential equation (1).

Let us now change the independent variable by a conformal mapping z=g(t) and refer
to the independent variable ¢ in a domain A. Clearly, w=w/[g(t)] is defined in A by composi-
tion and we have

{w, 1} dt*=8(z)dz2 + {z, t} dt2. (8
To find w as a function of ¢, we might also consider the corresponding linear second order
equation

v"(#)+ § {w, }v(f) =0 (6)

and express w as the ratio of two independent solutions of this equation.
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However, the natural question arises whether there isany relation between the solutions
u,(z) of (2) and v,(¢) of (6). An easy calculation shows that

v, () =u,(g@) g )}, v=1,2 (7)

yields a system of two independent solutions of (6) whose Wronskian has also the value 1.

We have thus the remarkable fact: If S transforms like a Schwarzian connection
S(t) A2 =8,(z)dz? + {2, £} dt? {8)
the solutions of the differential equation
u”"(z) + 3 S,(z) u(z) =0 9)
transform like differentials of order —1, i.e.,
uy(B)dt—* =u,(z)dz—*. (10)

2. To show the usefulness of this covariance of the auxiliary functions wu,(z), we
rederive an interesting theorem of Nehari [13] which connects the univalence of a function
f(2) analytic in the unit disk with the growth of its Schwarzian differential parameter
S(z)=1{f, z}.

Suppose that f(2) is not univalent in |z| <1. There would be two different points in
the disk, say a and b, such that f(a)=f(b). By a linear transformation of the independent
variable we can achieve that a=0, b=r>0, and by a linear transformation of f(z) we can
achieve that f(0) =f{r}) =0. We introduce now the solutions u,{z) and u,{z) of the differential

equation (2) and express f(z) as their ratio

uy(z
=22, (1)
The non-univalence of f(z) leads to the conclusion
4,(0) =u,(r) =0, (12)
To utilize this equation we map the unit disk onto the strip

—}n<Im{t}<in (13)
by means of the function
1+z

z=g(t)=tanh ¢, t=1}logl_z.

(14)

The points z=0 and z=r go into the points £=0, t=} log ((1+7)/(1 —7))=0>0 on the
real axis. By virtue of (10) we know that the functions
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v,(t) = ulg(t)]g'(t) "} (15)
are defined in the strip (13) and satisfy the differential equation
2, (8) + 3 Su#) v, (t) = 0, (16)
where §,(t) is obtained from S(z) by the transformation (8). Equation (12) implies
v3(0) =2,(e) =0. (17)

Consider equation (16) for »=1, multiply it by v,(f) and integrate the result along the
real ¢-axis from 0 to p. Integration by parts and the boundary conditions (17) lead to

(4 e
3 f Sit) o) de = f |vit) [P de>o0, 18)
0 o
We compute now the factor S,(¢) by means of (8) and (14). We find by an easy compu-
tation
S,(t)=8(z)- (1 —23)2—2, (19)
In particular, if on the real axis
2
—_— 20
IS(z)I<(1_z2)2 ( )

we clearly have Re{S,(t)} <O for real ¢ and the inequality (18) is impossible. On the other

hand, the inequality

1866 o< 212 (21)
TP .

is invariant under linear transformations in view of (1.12) and the invariance of the non-

Euclidean line element in the unit disk. Thus, if the Schwarzian differential parameter

8(z)={f, z} satisfies the inequality
2 '

we can assert that f(z) cannot take the same value at two different points in the unit disk
and f(z) must be univalent.
(21") is Nehari’s sufficient condition for the univalence of f(z). It is also known that
the inequality [5, 13]
6
— 22
l{f’z}l (l_lz|2)2 ( )
is necessary for univalence. However, the gap between the two conditions (21') and (22)
cannot be narrowed since Hille showed that {11]
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¢ 0
-4 (), 4a-200 (23

is univalent for real d, but non-univalent for arbitrarily small imaginary 8. Thus, the con-
stant 2 in the sufficient condition (21’) cannot be replaced by any larger one.

We gave the above derivation of (21’) to show how useful the covariance of the auxiliary
functions #,(z) can be. It allows us a great freedom in simplifying transformations and a
clear understanding of the meaning of (21’). The reader may deduce from (18) many other

(though not so elegant) conditions on {f,z} which would ensure the univalence of f(z).

3. As we have shown in Section 1.2, we have Schwarzian conections on every Riemann
surface . We may thus consider the second order differential equation

d? u,
d2?

+ S . (2) us(z) = (24)

in each neighborhood with a uniformizing parameter z and continue the differential equa-
tion into adjacent neighborhoods with z=g(t) through the transformation laws

uylt) = wfg()1 [9"()] ", (25)
8,(2)di? = 8,(z) d2® + {z, £} dt*.
Thus we can express the differential equation (24) in an invariant manner as
dzu ’
3 S(r)u(p)=0 (24')

for all points p€R.

We start with an arbitrary but fixed pair «,(p), »=1, 2, of independent solutions of
(24') and continue them analytically along a closed path I' on the surface. By the principle
of permanence of analytic relations the functions will remain solutions of (24') under
this continuation, and on returning to the starting point on I' we will arrive with new
solution functions u{’(p). However, these new determinations must be linear combinations
of the original solution set u,(p). Thus we have

UP(p) = A (D) uy(p) + Apa(T) uy(p)- (26)

An(T) Ay(T)
A =
© @mmAMm)

The matrix {26)

is complex-valued and depends on the cycle I' described.
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We consider the Wronskian

W(p) = uy(p) us(p) — uy(p) u1(D). (27)

It is easily seen that in view of the law of transformation (25) this expression is independent
of the choice of uniformizers and that because of the differential equation (24) it is a
constant. We may assume without loss of generality that W(p)=1. It then follows from

(26) and (27) that
WO(p)={|AD)- W(p), [AD)]=1. (28)

The transformation matrices for the fundamental system u,(p) are unimodular for every
cycle I'. Thus there exists one constraint among the four elements of the matrix A(T),
and we find that each such matrix depends on three independent complex parameters.

If R is of genus g, we can select a canonical set of cross cuts {,, B,}, =1, ..., 9,
and express each homotopy class of curves on R in terms of the homotopy classes of these
cross cuts, i.e., we take the homotopy classes of the cross cuts as generators of the funda-
mental group of N. If I is a closed curve on R, then A(I") depends only on the homotopy
class of I" and not on I' itself. It is therefore sufficient to study the 2g unimodular matrices
A(U,) and A(B,). We note that the transformation matrices of different cross cuts do not
necessarily commute, and the matrix A(I') of curve I" depends on the homotopy class of
I" and not merely on the homology class of the cycle which I" gives rise to. The study of the
various matrices A(I") leads therefore to a deeper theory of the moduli of a Riemann
surface than that of the period matrices of Abelian integrals.

The 2g matrices A(,), 4(B,) depend on 6g complex parameters. However, we have
a certain freedom in the choice of the solutions % ,(p) whose transformations they represent.
A change of the fundamental system u,(p) leads to a similarity transformation

AD)=MATYM (29)

of the corresponding matrices. It is easily seen that M contains three essential complex
parameters such that the 2¢g matrices depend on 6g —3 compiex numbers.

We may count, on the other hand, the freedom in the choice of Schwarzian connec-
tions. Let S(p) be the specific connection constructed in (1.19) from the Abelian integral
of the third kind. Then the most general Schwarzian connection which is regular on %
is of the form

3g-3
S(p; &) =S(p)+ ,.Zx 4.Q.(p), (30)

where the @,(p) are a base for all quadratic differentials, regular on R. We see that the
Schwarzian connections form a linear manifold depending on 3g—3 complex parameters.
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It would be more precise to denote the matrices 4 as A(I'; 4,) to describe the cycle as well
as the specific differential equation from which they arise. Finally, it should be observed
that the transformation matrices 4(I'; A,) depend also on the moduli of the Riemann sur-
face N considered. The number of these moduli is well known to be 3¢ —3. Thus the 69 —3
complex parameters which determine the transformation matrices depend on the following
6g — 6 complex parameters: The 3¢ —3 moduli of the surface and the 39 —3 accessory para-
meters 1,.

One would therefore expect that three further relations should hold between the
parameters determining the 2g matrices 4(I'; A,). This is indeed the case since the totality
of cross cuts transforms N into a simply-connected domain and the continuation of each
u,(p) along the boundary of this domain must return each function to its initial value.
Thus, under proper numeration of the cross cuts, we must have the relation

[T AQL; 2,) A3 2,) 47Uy 3,) A7 B 4) = (28)

which represents the sought additional three constraints on the elements of the uni-
modular matrices.

The enumeration of parameters at our disposal and of the essential parameters in the
transformation matrix set shows that the set 4(%,; 4,), 4(B,; 4,) may be considered as a
possible set of moduli for the surface 2. On the other hand, we are led to the interesting
problem of determining those coefficient vectors 4, which lead to important classes of
transformation groups. For example, the question arises how to determine those 4, whose
corresponding solution set u,(p) has as ratio the polymorphic function ¢(p), discussed in
Section 1.2, which maps the universal covering surface of i onto the unit disk.

4. Let us consider a domain D in the complex plane and let g(z, {) be its Green’s
function. We form the analytic kernel [5, 8, 20]

~2529(Z, o__ v
w ozel n(z—¢)?

L(z )= Uz, 0) (31)
which plays a central role in the theory of the Bergman kernel function. I(z, {) is regular
analytic in D and L(z, {) has a double pole at z=¢, as is explicitly displayed in (31).

From the conformal invariance of the Green’s function follows that under a mapping

z2=g(t), £ =g(r) holds
L(z, £)dzdl =Lit, )dtdr. (32)

In terms of I(z, {) this leads to the transformation law
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Uz, O)dz dC=1(¢, T)dtdr +}6 (z, & t, T]dtdr, (33)
where [z, {; t, 7] is defined in (1.6). In particular, by (1.8') we have
Uz, 2)d2 =1, t)dt> ~ EIZ {z,t} d*. (34)

We recognize that S(z)=6n 1z, 2) (35)
transforms as a Schwarzian connection.

Let us suppose that the boundary of the domain is analytic and admits a parametri-

zation z=z(s). Denoting
dz

=2 (36)
we can easily derive from the boundary behavior of the Green’s function that
Lz, 0) 2l =real, 2,(€8D,z=%L. (37)
Hence, Im {i(z, )2} = 1 Im { iC 2}. {38)
n o e—?)

The right-hand side depends here in an elementary way on the geometry of D, while the
left-hand term is an expression involving the much deeper Green’s function of the domain.

In particular, letting z=¢ and making an elementary computation, we find
Im {l(z,2)3*} = 14 #(8), z=2(s) (39)
’ 6mxds " ’

where x(s) is the curvature of the boundary curve at z(s).
We are now able to understand the significance of the differential equation
u”(2) +[3nl(z,2) +24,Q,(z)]u(z)=0 (40)

with real 1, and where the @,(z) are a basis for all real quadratic differentials of D, i.e.,
of all Q(z) which satisfy on 9D the condition

Q(z) 2* =real. (41)

Indeed, let C, be a component curve of 2D. We may assume without loss of generality
that C, is the real axis since this can always be achieved by a conformal mapping and
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since the covariance of the solutions u(z) of (40) is given by (25). By virtue of (39) and
(41) we see that wu(z) satisfies on the real axis a second-order differential equation with
real coefficients. We may therefore choose a basic solution set u,(z) which is real on the

real axis and find as the general solution
u(2) = A uy(2) + Bu,(2) (42)

with arbitrary complex constants 4 and B. The ratio of two independent solutions of
(40) is by (25) a conformal invariant. If we denote

uy(2) _
y(2)

r,(2)=real forz€C, (43)

we find for any two solutions w(z) and »(z) of (40) the ratio

_ y(_zl= Al r,{2) + Bl

R() v(z) C@r, (2)+ D=

onC,. (44)

The values of the ratio E(z) on C, lie therefore always on a circle.

There are various canonical mappings of a domain D which transform boundary
curves into circles. All of them may be obtained by solving the second-order differential
equation (40). We are led again to the problem of determining those 4, which lead to a
univalent mapping of D on the canonical circular domain. The significance of differentials

of order —${ in the theory of such canonical mappings is evident.

5. It should be pointed out that the concept of differentials of half-integer order is
implicit in the general theory of the Schwarzian derivative. Indeed, let us consider the
third-order nonlinear differential equation

{w, 2} =8(z) (45)
for given 8(z) and unknown w={(z). If f(z) solves (45), one defines
u@) =7 ue)=f)f()? (46)

and proves that both functions u,(2) satisfy the same linear second-order differential equa-
tion [2, p. 311]
w”(2) + 3 S(z) u(z)=0. (47)

Likewise our considerations regarding the group of linear transformations of the u,(z)
under homotopy classes of paths of the Riemann surface : considered are closely related
to the approach of Poincaré and Klein in the study of the uniformization problem. The
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coefficients A, in the Schwarzian connection (30) are the well-known accessory parameters
in this theory. Instead of dealing with the linear differential equation (24), one considers
usually the equivalent nonlinear differential equation of the third order for the uniformizing
function f(p). The parameters 4, in the Schwarzian connection must then be adjusted in
such a way that the linear transformations of the uniformizing function under the various
cycles form a Fuchsian group.

It is of interest to show that this requirement simplifies if we use the half-order dif-
ferentials u,(p). Indeed, the condition on the linear transformations is that they preserve

the unit circle, and this engenders the requirement that the non-Euclidean line element

=ds (48)

be unchanged if w=/f(p) undergoes its linear transformations for any closed trajectory.

Since by (4) we may express w(p) as the ratio of the u,(p), we find

|dp]
ds= 49
T - Twa(p) (49)

if we assume the system of solutions normalized by the condition that its Wronskian have

the value 1. Thus, the group of linear transformations must have the invariant
Quy, ug) = |uy |2~ |2 (50)

The use of the u,(p) leads to a very short proof of a theorem of Poincaré’s which we
may paraphrase: The groups of linear transformations engendered by the solution vectors

u,(p) and v,(p) of the differential equations
u"+3Su=0, v"+3Tv=0 (61)

coincide only if the Schwarzian connections S and T are identical.
Indeed, suppose that for given Schwarzian connections S and T we have solution
systems u,(p) and v,(p) with the same unimodular transformation matrices 4(%,), A(B,).

We form the determinant
O(p) =ty v~ Uy®y (52)

which is a reciprocal differential on . Under any cycle I' on i} we find é(p) unchanged
since the vectors u,(p) and v,(p) transform cogrediently and since the determinant of each
linear transformation is by construction exactly 1. Hence we have constructed a regular
and single-valued reciprocal differential on . This is clearly impossible by the Riemann-
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Roch theorem if the genus ¢ is >1. Thus, necessarily d(p)=0, the vectors u,(p) and v,(p)
are linearly dependent and the Schwarzian derivatives of their ratios are equal. This
proves S=1T as asserted.

A proof can also be given for the case g=1. We omit this step since our main purpose
was to show the usefulness of the u,(p). Again we have only paraphrased a standard
proof of the Poincaré theorem [2], but a comparison of the arguments will show how the
explicit use of half-order differentials has been illuminating.

6. The limitation of our consideration to second-order equations of the form of (24)
or, as invariantly expressed, (24')—may seem at first to be an arbitrary restriction. This
is not the case, as we shall show. In fact any second.order, linear, homogeneous, differential
equation which is invariantly defined and everywhere regular on a compact Riemann surface
must be of the form

d*u 1
e +§S(p)u—0, (63)
dz\?
where S(p) transforms as 8=8.\7) + {z, 1} (54)

here, as before, 8, is the representation of S(p) in terms of the local uniformizer f, and
8§, is the representation of S(p) in terms of the local uniformizer z.

To be more specific, consider a general second-order, linear, homogeneous, differential
equation on the Riemann surface. Let its representation in terms of ¢ be
" +pv’ +qv=0, (65)

and its representation in terms of z be
u" +Pu' +Qu=0 (55")

where ’ denotes differentiation with respect to the obvious argument. We require that the
coefficients in the differential equation transform according to a linear inhomogeneous
law under change of uniformizer
p=oP+8, g=yQ+d {56)
with coefficients which depend on the relation between z and ¢ only. The dependent vari-
able shall transform according to a linear homogeneous rule
o(t) =D () ulz(t)]. (57)
Thus v =0u'z +O'u (58)

14 — 662945 Acta mathematica. 115. Imprimé le 11 mars 1966,
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du(z) dz

. do(t) dz | o, ,
which means 7 () I dt+ D' () u(z). (58")
We also have " =02'2u" + (202" + Pz")u’' + D" u. (59)

Upon substituting from (58) and (59) into (55) we get
D2'2" 4 (20°2 + 02" + p®2)u' + (O +D'p+Dg)u=0. (60)

Since the differential equation is invariant, we can immediately conclude, upon comparing

(56) and (60), that
D"+ P'p+bg=02"2Q (61)

and 202 + @z2" + p02' =02'2P. (62)

Since @(z) depends on ¢ and ¢, but certainly not on p, we may conclude from (61) that

either

(i) ®=constant (so ®'=0)
or (ii)) p=0.

Let us examine the consequences of (i) first. In this case (61) reduces to
q(t) =Q(2)z’%; (611)

thus g, i.e., the last coefficient in the differential equation, is a quadratic differential. Also,

equation (62) becomes

”

p(t)=P(z)7’ —Z—, i (621)

This means that p, i.e., the coefficient of the first order term, is a connection, see [18, p. 251].

But it is known (see [18, p. 252]) that the sum of the residues of a connection on a
compact Riemann surface of genus g is 2 —2g; therefore, if g+ 1 the connection must have
singularities. Thus the differential equation (55) must be singular unless either g=1,
the case of elliptic function theory, or p=0, which brings us to case (ii). Before we consider
case (ii), let us mention that since ® =const, we can take ®=1, which means that the
solutions of (55) are functions, at least locally, i.e., they transform like functions.

In considering case (ii) we again return to equation (61) which now becomes

o

$ ta=Q (61 i)

And equation (62) becomes
207 +®z"=0. (62ii)
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This means that O =kz}, (63)

where k is a constant which we choose to be 1. In this case an easy calculation shows that

" 1
o~ "3t8
so that (61ii) becomes
q=Q-2"+1{z1}, (61ii")
and setting g=38; and Q=18

we have established our assertion. In case the equation (55) is regular, i.e., p=0 (in all
coordinates), then @ =(z')-%, so the solutions of (55) transform like reciprocal half-order
differentials, i.e., differentials of order —}.

Finally, we should mention that the case g =1 has not been overlooked (in fact, we
consider it a very important testing ground for general theories—as it has been for more
than a century!). Although one nonsingular connection does exist in this case, we may use
a uniformizer on the surface which makes it equal to zero everywhere, which brings us
back to the case (ii) again. All other connections in the case g=1 are singular, so our
assertion is established with complete generality.

7. In this section we wish to make precise the concept of analytic continuation of
differentials of order +3} over the Riemann surface. This consideration is necessary in
order to define clearly the meaning of the transformation matrices A(I") introduced in
Section 3 of this chapter.

If we consider the Riemann surface i realized as a covering over the complex z-plane,
we might define the half-order differentials locally as analytic functions of z and their
continuation over i as explicit analytic continuation. However, for the general theory
of abstract Riemann surfaces the following argument may be more appropriate.

In order to save space, we adopt the notations and definitions given in [18, pp. 249-51].
Thus, by a differential of order § we mean a collection of variables {y,} which satisfy the

transformation laws

1
Vu =Yg (g—zﬁ) inU,nU,. (64)

2

By (dzg/dz,)* we mean an analytic function in U, N U, whose square is dz 4/dz,. Of course,
this function is not unique (there are two choices in each case) and we must show that we
can choose them consistently, i.e., such that

dzp\ (dz,,)* (dza,)*: .
(dza) i) \az, =1 mU,nU,NU,. (65)
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In order to show that we can make such a choice, let 6,5 be any collection of analytic

functions chosen on the sets U, N Uy such that

62ﬁ=g§é in UaﬂUﬂ.

Then Ba,; Bﬂy 071280”9), =41 for Ua N Uﬁ n U.},#: a. (66)

Let N(11) be the nerve of covering 1={U,}, and U chosen as in [18, p. 255]. Then s,;,
determines a 2-cocyele on N(Ul) given by

S[Uaﬂy] = saﬂ‘y (67 )

which in turn determines an element of H2(f, G), the two-dimensional cohomology group
of N with coefficients in @, the multiplicative group consisting of the two elements 1
and —1.

Clearly, we have [1s[e*]1=1, (68)

where the product is taken over all the positively oriented o2 in N(1l). Indeed [],s{o] as
given in (68) represents the product of all the s,4,. But each o,z occurs as the face of
exactly two two-simplexes, say 0,5, and o, (see illustration [18, p. 255}). Since 6,, and
05,=1/6,5 each occurs once in the product, equation (68) holds. But this equation means
that s is cohomologous to the identity (upon using the fact that R is an orientable, two-

dimensional manifold), i.e.,

Sapy =SapSpySyar UaNUp0U,+0, (69)
where s,,=+1, ete.
i
Now define (Z_:ﬂ) = 58,5 0ps
dzg\} (dz)\* (dz.\* .
then clearly (d—z;) (d_z,, dn) =1 mU.nUnT, (65)
since 82802888y 08y 870 0y0a=84p, 82py = 1.

We have thus defined a coherent set of expressions (dzz/dz,)}. By defining
¥
Uy = Ug ((—i—%é) (70)

we can now give an unambiguous definition to differentials of order 4 on .
The differentials of order —3 can be defined by the same procedure.
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IIl. The Szego kernel of a Riemann surface

1. Let D be a planar domain bounded by a finite set of analytic curves. In the boundary
value problems for analytic functions in D, as well as in the theory of conformal mapping,
one can very successfully apply the theory of orthogonal analytic functions and their

kernels. The most important norms used in such theories are those involving area integrals

@-[[ pev@dsdy, s-oriy )
and boundary line integrals

(g, ¥) =f @) plz) ds. @)
oD

If we have a complete orthonormal set of analytic functions ¢,(z) in D, we can form their
kernel (3, 4, 8, 20]

K@ 5= 5 9,@9,0), )

which converges in both cases almost uniformly in D and is independent of the particular
choice of the complete orthonormal set. For normalization (1) one obtains the Bergman
kernel which is closely related to the Green’s function of D and which has many applications
in the theory of conformal mapping. In the case of normalization (2) one obtains a kernel
which was first introduced by Szegd [21]. Garabedian [9] showed the close connection be-
tween the Bergman and the Szegd kernels in the case of planar domains.

We can characterize the Bergman kernel by the reproducing property

ffDKB(Z, §) {Q) dedy = f(z) (4)

and the Szeg6 kernel by the analogous equation

f Ky(z, §) f(2) ds = f(2). ®)
D

In order to study the behavior of the kernels under conformal mapping and with the
aim of extending the theory to domains on Riemann surfaces we shall write (4) and (5)
in the form

ffDKB(z, O)f (¢ dzdy={'(2) #)

and LDKS"" VPO ds=VFm), )
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where we assume that V/f(z) is a single-valued analytic function in D. If we now define

the transformation laws
R p(w, @) dw did> = K p(2, §) dzdl (6)

and R(w, @) dwt dio* = Ks(z, {) dz* dL (7

it can easily be seen that the reproducing properties (4') and (5') are preserved under con-
formal mapping. We see, in particular, that a more penetrating theory of the Szeg6 kernel
leads necessarily to the consideration of differentials of half-integer order.

2. It is well known that the function theory of planar domains can be easier under-
stood if we complete them to compact Riemann surfaces by adding to them their double.
In particular, the Green’s function and the Bergman kernel can be expressed in terms of
certain Abelian integrals and differentials of the symmetric Riemann surface so obtained.
We therefore shall start with an arbitrary closed Riemann surface % and consider there
such expressions which for the case of symmetric surfaces will reduce to differentials like
the Bergman and the Szegé kernel.

We start with the symmetric Abelian integral W(p, r; ¢, 8) of the surface R, as we
defined in Section 1.2, and form the double differential

_&W(p.riq,8)

L(p,9) opog

8
which is independent of r, s and symmetric in p, ¢. It is regular for p, €N, except for the
case p=q when we have a double pole as indicated in (1.17). This double differential is
closely related to the Bergman kernel in the case of planar domains; we may therefore
refer to it as the Bergman kernel of .

We wish now to construct correspondingly a Szegé kernel for the Riemann surface
which shall be a half-order differential in each variable, have a simple pole if both argu-
ments coincide and which is anti-symmetric in p and ¢. Let us denote it by A(p, g). Clearly,
A(p, ¢)% will be a double differential on } with all the regularity and symmetry properties
of the Bergman kernel L(p, ¢). If it exists at all, it must have the form

A,07 ~Lp,0)+ 3 awwi (p)wila), )

i 1

where the w;(p) are the normalized Abelian differentials of the first kind of i and where the
ay form a symmetric matrix. Since L(p, q) and the Abelian differentials w;(p) are well
studied, we are led to the algebraic problem to form a combination of L(p, g) and the g
differential w;(p), which has only double zeros on .
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An algebraic approach to this problem is as follows. Let p, (k=1, 2, ..., g) be a set of
points on R and form the determinant

L(p,q) wi(p)

y (10)
L(pi; @) wi (px)

D(p; ¢; p5)= ”

of g+1 rows and g +1 columns. This expression represents for fixed ¢ and p, a differential
of the first order on R with the g zeros p, and the double pole at ¢. Since a differential of
the first order with a double pole has precisely 2¢g zeros, we see that D(p; ¢, p;) has
another set of g zeros on f. But we have still the freedom in the choice of the p; to

achieve that each zero p, is a double zero. For this purpose, we must fulfill the g conditions

L'(psq) wi(p,)

D'(pg; q,p5) = ll
¢ ! pk’ ) wz(pk)

=0, p¢=1,...,9. (11)

We thus have g equations for the g zeros p,, which shows that the problem is hopeful.

‘But in order to avoid the theory of elimination for algebraic functions, we shall construct
A(p, ¢) through the deeper theory of Abelian integrals and by use of the classical results on
the Jacobi inversion problem. We follow here an analogous approach as was used by
Garabedian in constructing the Szeg6 kernel of plane domains. We use the Abelian integral
of the third kind w(p; r, s) defined in Section 1.2. Since it is normalized to have the periods
zero around each cross cut ¥, of an arbitrary but fixed system of canonical cross cuts, we
know that it has the following periods along a cross cut B,:

J;B,dw(p; r§) =2 mifw,(r) — w,(s)]. (12)

The integrals of the first kind w,(p) are normalized with respect to the same canonical
cut system such that

f dw, =3, (13)
Au

We select an arbitrary but fixed differential of the first kind »’(p) on R and denote its

zeros by P, Pa, .-r» Pp; 0 =29 —2. We pick another set of ¢ points gy, ..., g, on R and form
the expression '

g-1
E(p; 0, 0,) =log v'(p) + 2, [(; ¢y, P2s—1) + 0(P; 0y, P22)]

. .2
+20(p; g5, q) + 46 2, a,0,(p). (14)
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On the right-hand side we have cancelled out all logarithmic poles at the zeros p, (v=1, ...,
29 —2) of the given differential »'(p). We have, however, logarithmic poles at the points
g, (w=1, ..., g) with the residue +2 and a logarithmic pole at ¢ with the residue —2.

The expression E(p; g, ¢,) is not single valued on . If we describe a cycle 9, the
w(p; q,, p,) do not change, but loge'(p) may change by 2nim, (m; = integer) and the last
sum increases by 4nias. Under a cycle B, we have in view of (12) the period

g—1

J;BﬂdE(P; ¢,9,)=2mi {nﬂ + gl [2wp(g,) — we(P2y-1) — we(D2)]

+ 2(wp(go) — wplg)) +2 21 a, Paﬂ} (15)

if we introduce the Riemann matrix of periods for the normalized Abelian integrals of the
first kind,
P,= f dw,. (16)
Bg
ng is again an integer.
We apply now the existence theorem for the Jacobi inversion problem. Given any set

of g complex numbers §;4, we can always find g points ¢, on N such that

g g
,,,zlwﬂ(q")=§ﬂ+kﬁ+,;1 laPaﬂ’ ﬁ=1,2,...,g, (17)

with integers k, and I,. That is, the left-hand sum differs from the £, only by a period of

wg(p) [12].
Given an arbitrary but fixed ¢ €R, we determine g, in such a way that

g 29-2 g
2, 0s(@) = wp@) +} 3 0p0)+ kg 2 L Py as)

v

This is always possible by the inversion theorem. Finally, we determine the coefficients

a, as the integers
a,= —1,. (19)

With these choices of parameters we find that

f% dE(p; ,4,) = 27ing + 2ky) (20)
B

and f dE(p; q.9,) =2mi(mg— 21;). (21)
Ug
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All periods of E(p; q, ¢,) on i are integer multiples of 2xi. Hence
Mp, g)=exp {E(p; ¢, ¢,)} (22)

is single valued on 9 and has a double pole at the chosen point ¢ and double zeros at the
points g, determined by it. Since A(p, ¢) has the factor +'(p) and is else expressed in terms
of Abelian integrals only, it is a differential of the first order on R with a double pole and g
double zeros.

Finally, we construct the expression

Ap,9)=Vip, 9. (23)

It is a half-order differential in p which is regular everywhere on R, except for a simple pole
at ¢. It is determined only up to a + sign and can change its determination if we continue
it over a closed cycle on R. It therefore will, in general, be single valued only on a proper

two-sheeted covering of the surface. It is easily seen that the indeterminacy of sign comes

solely from the behavior of V;’G)—) Indeed, the change of argument of A(p,¢) over A,z and
By is ymg—1z and 4n,+ky, respectively, as-can be seen from (20) and (21). Thus, only the
parity of the periods my, ng depending on v'(p) decides the changes of sign in A(p, q).

Hence, if we construct A(p, ¢) for different values of ¢ but with the same differential
of the first kind »'(p), the two-sheeted covering of i will always be the same.

3. We normalize the half-order differential A(p, ¢) by the requirement that in a uni-

formizer neighborhood of ¢ we have

Vazdg

2~

A(p,q)dp? dgt = + regular differential. O (24)
It is easily seen that this normalization is independent of the specific parameter used.

Let now A(p, ¢) and A(p, ¢;) be any two half-order differentials on R with simple
poles at ¢ and ¢,, respectively, the normalization (24) and both single valued on the same
two-sheeted covering of . In this case the product A(p, g¢) A(p, ¢;) is a single-valued
differential on M with two simple poles at ¢ and ¢,. Hence the sum of its residues must

equal to zero and we find
Algy, 9) +Alg, 1) =0 (25)

We thus proved Alg, ¢1)=—Algs, 9)- (25")

The half-order differential A(p, ¢) in p is antisymmetric in both its arguments. It is there-
fore also a half-order differential in ¢. It is single valued in dependence on ¢ on the same
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two-sheeted covering of . Our argument shows further that A(p, q) is uniquely deter-
mined by the fact that it is a half-order differential in p with a simple pole at ¢ and the
normalization (24), provided that its sign changes on cycles on R are prescribed. We shall
call A(p, g) the Szegi kernel of R with respect to the two-sheeted covering considered.

We can construct interesting combinations of Szegé kernels which are single valued
on R. Consider, for example, the expression

_Alp, ) A(p,8)

Uip;r:9) Ars)

3. (26)
It is a single-valued differential of first order in p and a single-valued function in r and s
on the surface M. Indeed, if any variable changes on R, the corresponding sign changes
occur always in pairs in the product (26). The differential in p has two simple poles at
and s with the residues +1 and —1, respectively. It is thus an Abelian differential of the
third kind, analogous to w'(p;r, s) used before. The new differential has, however, a
remarkable factorization. The identity (26) indicates the significance of the half-order
differentials as building blocks for the classical single-valued differentials on a Riemann
surface.

4. Given a Szegi kernel A(p, ¢}, which is single valued on a specified two-sheeted
covering of N, we shall call two points m and » on R associated if they satisfy the equation

A(m, n)=0. (27)

Because of the antisymmetry of the Szegé kernel this relation is a symmetric one. Each
given point ¢ €N has precisely g associated points g, (v=1, 2, ..., g) if we count them by
their multiplicity.

The construction of A(p, ¢) suggests a close relation between the set of associated
points ¢, and the Jacobi inversion problem. This relation can be made more explicit by the
following consideration. Let w'(p) and »'(p) be two differentials of the first kind on .
Then their ratio will be a function on R and the integral

1

“(p)] _
=2 L o) B %)

will be defined for every normalized integral of the first kind w;(p). The standard method
of contour integration shows that I is a period of w,(p):

g
I,=n,+ Zlm, P,, mny,m, integers. (29)
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On the other hand, let «, be the set of zeros of w'(p) and #, the corresponding set of v'(p).
Then the residue theorem yields

2g-2

2¢9-2
Ik: = QZI wk(“e) - qgl wk(ﬂe), k= 1: 2’ ey g (29’)

Thus the sum of each w,(p) extended over the set of zeros of any differential of the first
kind is the same except for a period of w,(p).

Each integral of the first kind wy(p) is defined only up to an additive constant. We
may normalize these integrals further as follows. Let v'(p) be the special integral of the
first kind used in Section 2 to construct the Szegd kernel; we demand

2g-2
3wl =0, (30)

where the sum is extended over all zeros p, of ¢'(p). This implies

2g-2

21 wi(,)=0 (mod. period of wy(p)), (30)

o=

where «, is the set of zeros of any differential of the first kind.
In view of (18) we find the following characterization of the set ¢, of points associated

to ¢:
121 wp(q,)=wp(q) (mod. period of wy(p)). (31)

The associated point set g, of ¢ solves a special Jacobi inversion probleml

The normalization (30) is obviously only possible if the genus of R satisfies g>1
since for g=1 the differential of the first kind has no zeros. We shall consider this special
case briefly in the following section.

We may use the concept of associated points to construct the following differentials;
let g, be one point associated to ¢ and form

vi(p) = A(p, 9) A(, 0,)- (32)
It is easily seen that »,(p) is a differential of first order in p, single valued on i and regular
everywhere. Indeed, the poles of the factors are just cancelled out because of the relation
Alg, 9,)=0. Thus we can construct ¢ differentials of the first kind on R by choosing =1,
2, ..., g- Since v,(p) vanishes at all associated points g, of g except for ¢,, we see that the g
differentials of the first kind are linearly independent and form a basis for all differentials
of the first kind. If w'(p) is a differential of the first kind, we have the development

_sAR.w)AD.9)

WP~ 2 Ry, g)

(). (33)
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4. Let us illustrate the general theory of the Szego kernel by considering the special
case of genus 1. Here we may visualize the Riemann surface in the complex u-plane in the
form of a parallelogram generated by the vectors 2w, and 2w, in which opposite sides are
identified. We interpret the effect of a closed cyecle ¥ as a parallel displacement by the
vector 2w, and interpret a parallel displacement by the vector 2w, as the outcome of a
B-cycle. We have at our disposal the elliptic functions with the periods 2w;, 2w, in order
to construct the various Abelian integrals, and we shall use the notations of the Weierstrass
theory.

We find at once that
1
w(p)=g v (34)
1

is the normalized integral of the first kind and that the Riemann matrix reduces to

2 Wy
P= f dw =22, (35)

° Wy

the modulus of the parallelogram. The function

(s q)=c(u—v>—g§u, v="1u(g), (36)

is clearly a normalized integral of the second kind since it has a simple pole at p=¢ and
the period zero over the %-cycle. The expression

L(p,q)= —j—p tpi0) =plu—o)+ 22 37)

is a differential in p; since it is symmetric in p and ¢, it is a double differential in both
variables. It has a double pole for p=¢ and has the residue zero. We verify that

[ pw.0d=0 (38)
from which it follows that this kernel coincides with the Bergman kernel (8) of the Riemann

surface.
According to (9) and because of (34) we find for the Szegd kernel the representation
A(p q)2=p(u—'v)+ﬁ+a-—l—. 39)
’ o, 4ol

The constant @ has to be chosen such that the right-hand side has a double zero. Since
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P'(u)* = 4(p(u) — &) (p(u) — &) (p(x) — &) (40)

we may choose a in three different ways:

A(p, 9P =plu—v)—e, ¢=1,2,3, (41)

and a,= -4w%[eg+ l]. (41')
Wy
; % Oo()

The functions pu)—e= 5 (2) (42)

are very familiar in the theory of elliptic functions and of theta functions. Their signi-
ficance is now explained by the role as the Szegs kernels of the surface. We have three
different Szegd kernels for the surface i since it possesses precisely three different two-
sheeted covering surfaces. These are obtained by assigning independently the sign +1 or
—1 to the effect of a cycle Y or B and omitting the combination +1, +1 which corresponds
to the original Riemann surface itself.

Since P(wy) =¢, (43)
we see that the condition for associated points A(g*, ¢) =0 leads to the equation

v*=v+w,. (44)
The well-known equation

Vo) —eyVo(u+w)—e, = —V(e,—e,) (1~ €5) (45)

is therefore nothing but the special case of (32) since the only differential of the first kind
is a constant in our choice of uniformizer.

In the following chapter we shall discuss some relations between the Riemann period
matrix ((P,s)) and the matrix ((a,4)) which connects the Bergman and the Szegd kernel
through the identity (9). While some interesting results will be obtained, the explicit form
of the coefficient a, given in (41’) shows already that the relation between the two g xg

matrices is by no means elementary.

IV. The variational formula for the Szegé kernel

1. In the preceding chapter we have shown that the Szegd kernel A(p, ¢) is uniquely
determined by the Riemann surface # and the two-sheeted covering on which it is single

valued. If we change J} continuously, we can deform simultaneously the covering in a
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corresponding fashion and are thus led to a continuous variation of the Szegd kernel. A
study of this variation will then disclose the functional dependence of A(p, ¢) upon the
Riemann surface R and its moduli.

Since there exist many ways of describing i in terms of moduli, we shall use a some-
what special but very intuitive kinematics to deform 3. We select an arbitrary but fixed
point 7,€R and introduce at 7, the uniformizer z(p) such that 2(rg)=0. A neighborhood
R<R of r, corresponds to a domain A in the complex z-plane which contains the origin.
Consider now the conformal mapping [14, 17, 19, 20]

ezmgz
F=z+ — 0>0, a=real, 1))

in the entire z-plane. We assume that the disk |z| <p lies in A. Outside of this disk the
mapping z—2* is one-to-one and regular analytic for all finite values z. The circumference
|z] = is mapped onto the rectilinear segment { —2pe', 2g¢'> such that the points z, =pe'®
and z,=0e'®*~% go into the same point 2* =2ge**cos (p — «). If we divide the circumference
|2| = into two arcs by drawing the diameter z=7¢'*, —p <7 <p, we see that points on this
circumference and symmetric to the diameter go into the same points z*.

We are now able to define a rather radical deformation of the complex z-plane. We
cut from it the disk |z| <p and identify points z, =0e'” and z,=p¢'**"?, which removes
all boundary points of the cut domain and makes it to a new Riemann domain. We may
still use the parameter z as a uniformizer on the new Riemann domain, but a funetion in
this domain will be considered analytic only if it is an analytic function of z* =z +¢**p?[z.

The deformation of the complex z-plane just defined determines a deformation of the
Riemann surface R as follows. We delete from % all points in ¢ which correspond to the
disk |z] <p in the uniformizer neighborhood of z and identify points p, and p, which
correspond to points z, and z, with the same value z*. This leaves us with a new Riemann
surface R* of the same genus as R. If o is small, the Riemann surface R* is near to R. This
means that corresponding normalized Abelian integrals differ numerically arbitrarily
little at corresponding points if g is small enough.

We now wish to give an asymptotic formula for the Szegé kernel A*(p, g) of the de-
formed surface R* in terms of the Szeg6 kernel A(p, ¢) of the original surface . For this
purpose we introduce a canonical set of cross cuts {%,, B,} for N and take care that none
of its loops passes through the neighborhood R of the point r, at which we perform the
variation. Under this assumption the same set may also serve as canonical cross-cub
system for M*. We construct the Szegs kernel A*(p, ¢) of R* by the procedure of Section
II1.2, using the corresponding differential of the first kind +*'(p) on R*. Clearly, the kernel
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A*(p, q) so obtained will be single valued on the corresponding two-sheeted covering of
9*. In particular, we come to the fundamental conclusion that

I(D; @1, 22) =A*(p, ¢:) A(D, ) (2)

is a differential of order 1 for p€R —N which is single valued on the residual Riemann
surface. It has simple poles with the residues A(g,, ¢,) at ¢, and A*(g, ¢,) at g, if we assume
that g, and g, lie also in ;f —N. Let |z| =7 (o <r) be a fixed circumference in the uniformizer
neighborhood N and let T" be its corresponding image in R. We apply the residue theorem
to I1(p; ¢4, g5) With respect to the part of R outside of I'. Using further the antisymmetry
(IT1.25) of the Szegs kernel, we find

1

Y Az @) Az, g5) dze= A*(gy, 0) — Algy, 02) @3)
T J z)=r

if we run over the circumference in the positive sense.

Observe that A(z, ¢,) may be developed into a convergent power series in z since it is
analytic on . This is not the case for the Szegd kernel A*(z, ¢;) of R* whose development
proceeds in powers of z*. Since A*(p, ¢) is a differential of order 4, we have

(e 1) = 8" @) ( ) 4)
where {§(2*, ¢;) is a power series in z*. Using the relation (1) between z and 2*, we thus obtain
A ) =B g + gt S0 S D] o, ®)

Inserting (5) into (3), we may now apply the residue theorem with respect to |z| <r since
%2, g4) 18 analytic there. We find the asymptotic formula

A*(g1, 42) — Mgas 92) =3€* 02T (0, ¢,) A(0, g) — A'(0, g5) (0, ¢1)1+O0(0%). (6)

Since A*(z, ¢,) depends on g so does F(2*, ¢;). But it is evident that this analytic function
remains bounded as ¢—0; we therefore infer from (6) that A*(q, ¢2) — A(g1, ¢2) =0(0?)
uniformly in each closed region in i which does not contain the point 7, at which we
deform the surface. From this fact and (5) we can obtain

Az, ¢1) —F(z, @) =0(g?) for |z| =r. (7

Since the left hand of (7) is analytic for |z| <7, we infer the same asymptotic formula for
all |z] <r and, in particular,
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A0, 4,) =F(0, ¢) +0(e), A'(0, ¢1)=TF'(0, ¢1) +O(e?). (8)
Hence, finally (6) takes the symmetric form
A% (g1, 40) = Algs, 4) = 3 € 6°[A'(0, ¢) A0, g) — A'(0, ¢,) A(0, g1)] + O(g"). 9

This formula allows an asymptotic estimate of the new Szego kernel A*(p, ¢) in terms of the
original known Szegé kernel A(p, ¢) and its first derivative. The error term can be estimated
uniformly in each closed region of ‘R which does not contain r,.

We summarize the result of this section as follows. If we perform a variation of f at a

point 7y, which in terms of the local uniformizer z has the form (1), we have

OA(p, q) =} € P°[A'(ry, P) Alry, @) — Alrg, p) A'(7, 9)], (10)
where A (g, q)= —g; A(r, @) |z-o (10"

In the case of plane domains the variational formula for the Szego kernel was derived in [16].

2. The variational formula for the Szegd kernel A(p, g) leads us to the interesting
combination

Hyr; p, @) =AN'(r, p)A(r, @) —Alr, p)A'(r, 9)- (11)

Tt is antisymmetric in p and ¢ and clearly a differential of order { in each variable. It is

easily verified that it is a quadratic differential in 7; indeed, we can write

0 (Alr,
Hyrsm0) = A 2 (A2 (12)

which displays clearly the covariant character of H,.
Tt is clear that H, in dependence on r has two singularities, namely at points p and q.
If we introduce at p a local uniformizer {(r) such that {(p) =0, we find by (I11.24)
1 2.,
Hyr;p,q)= —?A(p, q)— : A'(p, q) + regular terms (13)

as the series development near p.

We construct next the expression

Hi(r; p, 9) = —A(p, {A'(r, p)Alr, @) — Alr, D) A'(r, )} (14)
Tt is now symmetric in p and ¢ and is a quadratic differential in 7, a linear differential in

p and ¢g. We have thus succeeded in constructing a differential of integer order in all three
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variables. For r near p, we have by (13) the development in terms of the local uniformizer

&(r):
1

1
Hl(r;p,q)=czA(p,q)2+—

C2A’(p, Q) Alp,q)+.... (15)

We observe that the simpler expression A2(r, p) A2%(r, g) is also symmetric in p and g, is
a quadratic differential in r, and a linear differential in p and ¢ and has for r near ¢ precisely
the same principal part (15). Indeed, by (I11.24) we have for A(r, p) the series development

A, p)=5+o C+a B+ ... (16)

1
¢
since it is antisymmetric in » and p and must be an odd power series. Thus we can assert

that
H,\(r; p, @) —AXr, p) A¥(r, q) =H,y(r; p, q) (17)

is symmetric in p, ¢, a linear differential in each of them, a quadratic differential in r, and
regular analytic on 3 in all its variables.

To understand more clearly the significance of this term
—A(ps Q){A'(V, p) A(T, Q) "A(T, P)A'(T: !1)} ._A2(r’ p)AZ(r! Q) (18)

we shall identify it as the limit case of a more general expression which involves four

variables but is of particularly simple structure. We define
N(r, s; p, ) =Alr, s)A(p, 9{A(r, D) As, @) = A(r, ) Als, p)}
+A(r, p)Alr, 9 Als, ) Als, g) (19)

This is a linear differential in all four variables. It has the symmetries
N(r, s; p, ) =Nls, r; p, ) =N(r, 5,4, p)=N(p, ¢; 7, 8) =N(p, 8; 1, q). (20)

We easily verify that it remains finite in each variable on R. Hence we can express it in
terms of the Abelian differentials of the first kind and obtain the multilinear representation

g

No.sp.q)= 2 cuanwi(r)wi(s)w; (P)wnlg). 2L

i, k,l,m=1

The symmetries (20) express themselves in terms of the coefficients as

Cikim = Critm = Cikem1 = Cimix = Cikim- (22)

The coefficients are thus completely symmetric in all four indices.
15 — 662945 Acta mathematica, 115, Imprimé le 11 mars 1966,
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Let us write the identity (21) by means of the definition (19) in the form

— A(r, 8) A(p, @) {A(r, p) A(s, q) — Alr, ) As, p)}

~ACDAN QAP AGD =, > cumwi (V0L ()0 (P)wnle)  (23)

Pass here to the limit s=7 and find H,(r; p, q):
— A(p, ) {A'(r, p) Alr, @) — A'(r, @) Alr, p)}

“ACPAGD ~ | Dm0 (D)0 (24

We have thus found a simple and highly symmetric expression for the important variational
terms (11), (14), and (18) by means of differentials of the first kind. The coefficient set
Cirim is a set of possible moduli for the surface R. We shall show its importance in the

general theory of moduli on a Riemann surface.

3. We have derived in Section 1 a variational formula for the Szegt kernel and ob-
tained in Section 2 remarkable identities for the variational expressions which will facilitate
its applications. We wish to show now to what use the entire variational theory can be put.

We return to the identity (I1.9) which must be fulfilled by the Szegd kernel

AB,0P=L(p, )+, 3 awwi(p)w} (@) (25)

The coefficient matrix ((a;)) is symmetric and uniquely determined by the Riemann sur-
face R and the two-sheeted covering on which A(p, g) is single valued. The a,, may thus
be considered as a set of moduli for . A very similar symmetric ¢ X g matrix of moduli is
given by the period matrix ((Py)) of the integrals of the first kind as defined in (IIL.186).
This matrix has been extensively studied and its importance in the moduli problem is
well known. The question arises whether the two matrices ((ay)) and ((Py)) stand in any
simple relation.

Let Iy and I'y be two closed curves on . Integrating the identity (25) with p€l,,

g€l',, we obtain the equation

f f A(p,q)zdpdq=f f L(p,q)dpdg + 2 at‘kf dw,f dwy. (26)
It T I s i, k=1 1 )

By definition (III: 8) of the L-kernel and in view of (I:15) we have

& w(p; g, 8) 6f
L,d=f———d=- dw(p; g, s). 27
fr (p,9)dp . opog paqr (2;¢,9) (27)
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Because of the normalization of the Abelian integrals of the third kind we then obtain

LI L(p,q)dp=0, f% L(p,q)dp=2 i (g) (28)
and consequently
f fL<p,q)dpdq=f fL<p,q)dpdq=o, (29)
%, Jog B, J 95
f f L(p.q)dpdg=2mid, 29)
QI“ %ﬁ
and f f L(p,q)dpdg=2niP,. (29”)
B, J Bs

Observe the asymmetry of the integrals extended over U, and B,. It is due to the fact
that the integral is in this case improper and therefore, in spite of the symmetry of its kernel,
takes different values for a different order of integration.

The equations (26), (29), (29") and (29”) lead to the period formulas

f f A(p, 9 dp dg=a,y, (30)
Ay Qllg
g
f f A(p,qPdpdg= 3 Py au, (30)
%“ Qfﬂ k=1
g
f f A(p’ q)zdpdq=2au' 6aﬂ+ z Quic Pkﬂ’ (30”)
Upe %ﬂ k=1

g
J;B J;s A(p,q)2dpdq=2niPaﬂ+ > Pyay P (30""")
x J B =

i 1

The symmetric matrix ((a,4)) of coefficients in (25) has thus been identified as the period
matrix of A(p, ¢)? with respect to the cycles 9,:

A=((a.4) = (( f% f%A(z’, q)*dp )) (31)

It is therefore very analogous to the Riemann matrix ((P,s)) which is the period matrix
of the L-kernel with respect to the cycles B,:

P- (@i~ ( L}a f%L(p,q) avg)) (32)
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We define next the matrices

K = ((k.p)) = ((La LﬁA(P, q)*dp dq)) (33)

and &= (k- (( f% fmﬁmp, ot apdg)). (33)

While A and P are symmetric matrices, K and K are not. By (30’) and (30") we have
R=2mI1+K", (33")

where I is the unit matrix and K7 is the transposed matrix of K. We can now bring the
equations (30’) and (30""’) into matrix form if we also define the period matrix of A(p, ¢)*
with respect to the B-cycles:

B=((byp)) = ((L fm A(p, q)2dpdq))- (34)
o (]
We find K=L.P-A; B=P——L2PAP. (35)
. 2m 47

‘We can condense the matrix relations into one single equation if we introduce the symmetrie

-2

matrix

which depends only on the periods of A%(p,q) and the matrix

2=( II 0) (37)
2_mZP I

which depends only on the periods of L(p, q). The equations (35) can then be combined in

the matrix equation

8=3 (;4 ;:) ST, (38)

4, After these formal considerations we are now ready to study the dependence of the
various period matrices upon the Riemann surface i for which they are defined. By virtue
of the identities (35) or (38) it is sufficient to know how the matrices P and A4 change
under a deformation of the surface i in order to compute the change of the remaining

periods under the same variation.
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It is known that under a variation of R at r, according to (1) we have the asymptotic
formula [14, 20]
0Py, = — 270 €% g w, (ro) w, (ry)- (39)

To find the variation of the matrix 4 we have to use the identity (30) and the known
variational formula for the Szeg6 kernel. By use of (10) and (14) we find

6a,w=—ez‘°‘92f f H,(ry; p,q)dpdq. (40)
u, Ju,

We simplify considerably by representing H,(r,; p, ¢) by means of (24). Indeed,

g
-2
j k=1

6“,41: = — ¢ g? {J' A( (79 p)z dp f A('ro: Crcuv wf (7o) wi (ro)} (41)

We reduce the formulas further by use of (25) and (28) which yield
0 ’
f Afr,, pydp= 2 g wy (7). (42)
511” j=1
We therefore arrive at the final result:
g g , ,
da,,=e€" 2{ 2 W) (re) Wi (o) = 2 @y iy ("o)wk(%)}- (43)
o k=1 Jok=1
If we combine the variational formulas (39) and (43), we obtain the elegant equation
. g
2 méa#, = kz (a]y Ay — Cjk/,w) 6P/k- (44)

fik=1

Let us introduce a set of moduli m, of which the P, and a,, are real analytic functions.
We then find

L0y, < oP
2qi = 3 (@t = Cpem) 5 ”‘. (45)
a k=1 My
Observe that because of (22) we have
Qs Ay — Ciropy = Qpy Qg — Cpuygrc- (46)
g
This implies (a& 0Py 00 éE—"”) =0 (47)
nv=1 \OMyz OMyg  OMg OMy

for any pair of indices o and 8. But (47) is the well-known integrability condition which
guarantees that the integral
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g

2 a,dP,,=J (48)
pov=1
is unchanged under continuous deformation of the path in the space of moduli provided
the end points are kept fixed. Thus we can define a function J(m,) in the space of moduli
such that
g

aJ =#.§1aw dpP,,. 48")
These identities and theorems illustrate the value and the significance of the variational
formulas for the various differentials on a Riemann surface . The amount of new identities
and suggestive relations involving the Szego kernel show the usefulness of the new concept

for the general theory of Abelian integrals.

5. We introduced the coefficient scheme c,,,, by the definition (21), and we may also
characterize them in view of (44) as differential coefficients of the matrix ((a,,)) with
respect to the matrix ((Py)). Another interesting role for this set of coefficients can be
deduced from identity (23) if we specialize the point p in this formula to be a point ¢,
associated to g according to the relation

A(g,, 9)=0. (49)
In this case, (23) reduces to

g

Z Cikim wi, (7‘) wllc (8) wll (QV) w;n (Q) = A(r, q:/) A(T, Q) A(‘g’ QV) A(S, q)' (50)

i,k,l,m=1

On the other hand, we showed in Section ITI.3 that v,(p) =A(p, ¢) A(p, ¢,) is a differential
of the first kind if ¢ and ¢, are associated points. We may express each v,(p) in terms of the
canonical basis for such differentials and write

(2) = A(p, ) AP, 2) = 3 eel0) i (2) 1)

With the coefficient matrix ((c,4(g))) so defined and in view of the linear independence of
all w,(p) we derive from (50) the identity

g

2. Cixim W1 (2,) Wi (2) = €1 (q) 60 (9)- (52)

l,m=1
We can eliminate from this identity the c,,(g) entirely and bring (52) into the form

g

Z =l(ciklm Ciap ~ Citim Chokedp) wz, (%) w; (9») Wn (9) w,', (q)=0. (83)

m,d.p
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It is convenient to introduce the bilinear forms of quadratic differentials
g
By(p.9)= . ; 1(ciklm Ciscan ™ Cittm Croron) Wi (D) Wa (P) wm (9) Wy (q) (54)
Jm, A, =

which is based on the coefficient scheme c¢,,,. We then see by (53) that
Bik(qw Q) = 0, 1 <7’ <k <g’ (55)

for any pair of associated points ¢,, ¢ on R.

We may also express the property (55) by writing
Bu(p, 9)=Ap, 9) TulP, 9), (56)

where the kernels 7,(p, ¢) are antisymmetric in p and ¢ and 3/2-order differentials in
each variable. To represent the T';(p, ¢) in a simple manner, we have to investigate the
class of all regular 3/2-order differentials on 9} which are single valued on the same two-
sheeted covering of : as A(p, q).

We easily see that

T(p)=A(p,q) {gl C,w'(p; q,,90) + gl ¢y w, (p)} (67)

will be the most general, regular 3/2-order differential if the coefficients C, and c, satisfy

the two linear, homogeneous conditions
g g g , ,
20,=0, 2 0wgq,.%)+ 2 em)=0. (67)

The point g,€R can be chosen arbitrarily except for being different from g¢. There are
precisely 2(g—1) linearly independent regular 3/2-order differentials on . We choose a
basis T,(p) (x=1, ... 2(g—1)) of such differentials and can then write

29-2

Tw(p,q)= ;,:dtk a8 To(P) T4(9) (58)

o, =1

with d,,, being antisymmetric in the last pair of indices.
Observe now that there are 39 —3 linearly independent quadratic differentials. Hence
-2
the most general symmetric bilinear form of quadratic differentials depends on (392 )
independent coefficients. On the other hand, the antisymmetric bilinear forms of dif-

ferentials of order 3/2 depend only upon (292_2) independent parameters. Thus, each

of the coefficient sets of the forms By (p, q) has to satisfy a large number of constraints.
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These set up numerous conditions in the matrix ({c4;,)) which may be interpreted as dif-
ferential relations for the ((a,,)) in their dependence on the ((P,,)).

The significance of the variational formula for the Szegd kernel in the problem of
the moduli of a Riemann surface and the Teichmiiller spaces is evident. These problems
have been treated extensively and successfully in recent years [1, 6, 7]. We hope to be able
to contribute to these questions by the present developments and techniques.
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