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1. Introduction and main result

This paper is concerned with the existence of T-periodic solutions (T€R, T>0) of the
following Hamiltonian system

z=gH'(2)+f(1). (1.1)

3 [0 —1]
=17 o
is the standard skewsymmetric matrix, z=z(f)=(p, q): R—=R?", z=dz/dt, H: R*>R is
a given Hamiltonian and £ R—R?" is a given function which is assumed to be 7-
periodic. The function f(¢) represents a forcing term and thus periodic solutions of (1.1)

are called forced vibrations of the system. Here, H will be required to satisfy the
following hypotheses.

Here,

(H1) HEC*R*™,R)
(H2) 0<H@)<O6H'(z)-z, VZER™, [Z]=R, 0<0<]
(H3) alzP*'-b< H(z)<a'lz]7"'+b’ with 1<p<q<2p+l,

where a,a'>0, b, b’=0 and R>0 are constants. H'(z)-z denotes the scalar product in
R*V, Condition (H2) is a usual way to express that the Hamiltonian is superquadratic

(") The work of the second author has been supported in part by NSF Grant MCS-8104242.
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as |zl—»+. (Indeed, (H2) implies an inequality H(z)=alz)'"°—b, a and b>0 being
constants.)
Our main result is the following.

THEOREM. 1. Let H satisfy conditions (H1)—(H3), T>0 be given and
FECYR,R?*M) be a given T-periodic function. Then, (1.1) has infinitely many distinct
T-periodic solutions {z;}xen- Moreover, ||zl .—+ as k—+».

The proof of this result (which was announced in [9]) will take up most of this
paper. In the last section we derive the existence of periodic solutions for different
kinds of perturbations from autonomous systems.

Let us describe in a few words the principle of the method to prove Theorem 1. A
first step is to construct critical values for the Lagrangian functional associated with the
autonomous system (when f=0):

z=gH'(2). (1.2)

This construction is based on a “‘minimax”’ principle which relies on the S'-invariance
(through time shifts of (1.2)) and ‘‘semi-Galerkin’’ approximation of the space. Then we
show that the critical values so constructed are stable in a topological sense. More
precisely, we prove that some homotopy groups of level sets associated with those
values are not trivial and remain so under ‘‘small’’ perturbations. Sharp estimates on
the growth of the critical values are also required. Combining the preceding results and
using Morse theory allow us to derive the existence of infinitely many critical values for
some perturbations of the autonomous functional, thereby proving Theorem 1. In this
argument we rely on recent results of A. Bahri [4, 5] in Morse theory that we recall
together with their proofs in section 6.

The method employed here is to be compared with the perturbative approach in
critical point theory we have used in [7, 8]). There, our purpose was to study some
perturbations of even functionals. A ‘‘stability”’ result for the critical values defined in
this context was obtained with a view to solving problems of the type —Au=g(u)+h(x)
in Q, u=0 on 3Q, where h € LX(Q) is given, QcR" is a bounded domain and g: R—R is
odd and superlinear. (See also A. Bahri [6] for related results.)

In a separate paper [10], we study the case of some separable Hamiltonians:
H(p,q)=§|q|2+ V(p). This leads to a second order differential system of the type

#+V'(x)=h(f), x()ERN. (1.3)
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With no restriction on the growth of V(x)(!) we show in [10] the existence of infinitely
many periodic solutions by combining the methods developed here with different kinds
of estimates.

Many works in the literature consider the particular case f=0, where (1.1) reduces
to the autonomous Hamiltonian system (1.2). In the context of a superquadratic H,
existence of free vibrations for (1.2) (i.e. non-constant T-periodic solutions for any
given T7>0) has been established in the recent years by Rabinowitz [29, 30, 33] and
Benci-Rabinowitz [14]. The reader is also referred to the work of Ekeland [18] for an
approach to (1.2) that uses convex analysis. (In the course of the proof of Theorem
l—see section 3—we will also have the occasion to derive the existence of free
vibrations for (1.2).) The most general result in this direction is due to Rabinowitz [33]
who shows the existence of a free vibration(?) in (1.2) under condition (H2) and
HEC'R*™,R).

The methods employed in the above works do not seem to extend to the non-
autonomous problem (1.1). In fact, Theorem 1 appears to be of a new type of result.
Indeed, even the existence of at least one periodic solution of (1.1), for any given f was
an open problem. (Compare for instance Fucik [23], Ekeland {19, 20] and the works
previously mentioned.)

For different classes of non-autonomous superquadratic Hamiltonian systems a
few partial results are known. In [29] Rabinowitz shows the existence of one periodic
solution for a system of the type z=gHt, z). There, H(t, z) is T-periodic in ¢ and is such
that |A(z, z)—H(z)| is bounded in the norm of C'(RXR?*",R)(®). A much more general
version of this result will be derived in the last section of the present paper. We show
for instance that if H satisfies (H 1), (H2) and has polynomial growth when |z]—>+,
then the system 2=gﬂ;(t,z) possesses infinitely many T-periodic solutions.

When the Hamiltonian is subquadratic rather than superquadratic, the problem is
of a different nature. The reader is referred to the works of Clarke-Ekeland [16] and
Rabinowitz [31] for the existence of ‘‘subharmonic forced vibrations’’. Lastly, the
limiting case, when H is exactly quadratic as |z]—>+ has been studied by Amann and
Zehnder [2, 3] who prove the existence of non-trivial solutions under ‘‘non-resonance’’

(") VEC*RY,R) just verifies an assumption like (H2) on R".

(® The existence of free vibrations for some nonlinear wave equations in one spatial dimension has
also been obtained by Rabinowitz [28] and Brézis, Coron and Nirenberg [15].

() Another result for systems of this kind is mentioned in [31] under different hypotheses. When
specialized to (1.1) for instance, these hypotheses mean that f=0.
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type assumptions. As for (1.1) with a superquadratic H, the only previously known
result is due to Ekeland [20] (see also [19]). Under somewhat different conditions on H,

he proved that for [|f]|,., ,, sufficiently small, (1.1) possesses at least fwo solutions.
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2. Functional framework

From now on we assume that 7=2x which obviously causes no loss in the generality.
(Indeed, a scale change in time reduces the problem to this case.) In the following, 27-
periodic functions on R will be thought of as functions defined on §'=R/27Z. We will
work in the space E=(HY*(S")?V. Recall that H'*(S") is a fractional order Sobolev
space obtained by interpolation between L%(S') and H'(S'). (See Lions—-Magenes [25]

or Adams [1].) Equivalently, H"%(S') can be identified as the completion of C*(S')
under the norm

+a
”Z“iﬂ/zsx = Z (1+'k|)’ak|2 2.1
where z()=L17 a, e’ is the Fourier series expansion of z. It is well known that

HY*(S") is embedded with a compact injection into L'(S") for any finite r=1.
The scalar product in (L%(S"))*V will be denoted ( , ):

n
(v,w) =f v-wdt
0

where v-w is the product in R, The scalar product { , ) extends naturally as the
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duality pairing between E and E'=(H~"%($'))*". (One identifies (L*($")*" with its
dual.) Thus, for any z €E, the action integral } A(z) is well defined, where

A()=(z,az).

It will often prove to be convenient in the sequel to identify R*Y with CV through
the isomorphism

P1 s PN>G1s - AN ERTY & (py+igy, ..., pn+ign) ECY.

Thus, multiplication by g in R? is replaced by multiplication by the scalar i in CV.
Similarly, functions into R?V will often be thought of as functions valued in C~. Both
the real and the complex notations will be used in an interchangeable way in the
following.

Since we will need some ‘‘semi-finite’” dimensional approximation, we introduce
the classical orthogonal basis associated with A. The eigenspaces of the operator z——gz
in E consist of the subspaces CV{e*’} where k€Z. Let E]"be the span of these eigen-

spaces for j<k<m and set E"=E"_, E*=E7, E"=E_! and E°=E3=C". Then
E=E*@®E"®E° and A is positive (resp. negative) definite on E* (resp. on E7). If
z=z"+z"+2z° denotes the decomposition of z along E=E*®E DE°, we define the

norm in E as
”2”125 _"A(Z+) A(z7)+ |Z°|22N' 2.2)
R

This norm is a Hilbert norm and is easily checked to be equivalent to the norm induced
on E by ||-|| defined in (2.1).

HI/Z(SI)
For z €EE, the Lagrangian associated with (1.1) is

27
1(z) =%A(z)—f H@)dt—{f,z).
0

The 27-periodic solutions of (1.1) are the critical points of I on E. Indeed it will be seen
later on that the critical points of I on E actually are in (L*(S'))*" and in fact are C'
classical solutions of (1.1). Similarly, solutions of the autonomous Hamiltonian system
(1.2) are the critical points in E of the Lagrangian

2n

I*(2) =%A(z)—j H(z)dt. O

0
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3. Sl.action and free vibrations

An element of S* will be denoted either by €™ or by r ( € R/27Z). The group S'=R/22Z
acts naturally on E by (T, z) (f)=z(t+71). Notice that T, z=z, Vt ER/2aZ, just means that
zZ€E"°. This action leaves invariant each subspace ET" of E. We recall that S! also acts
on odd dimensional spheres $%*~!, kEN*=N\{0} in the following standard way:
Identify $%*~! with {£€C¥; t=(¢&y, ..., &0, EX,|C[=1} through the same identifica-
tion R*=C* as in section 2 above. Then, for e¢?€S!, and (€S5* ! define
Tpt=er=(eC,, ..., e%); ToE€8% !, A mapping h:S* '>E is said to be
equivariant if hoT,=T,oh for all ¢"€S', and similarly for a mapping
h: S*182K -1 (K k' €N*).

A crucial property of the action 7, that will be used later is the following result
which extends Borsuk’s theorem to the $!-action.

PROPOSITION 3.1. Let j and k be integers with 1sjsk. There does not exist
any continuous mapping h:S* '>8¥" such that h(e"®0)=e™°h(t), VLES* !,
Ve €S! where n€ENN\{0} is any fixed integer.

For an elegant proof of this proposition, we refer the reader to Nirenberg [27]. (See
also the proofs in Benci [12] and in Fadell-Rabinowitz [22].) Further extensions of the
Borsuk theorem are developed in [21, 22, 27]. Note that as a particular case of
Proposition 3.1 we see that there is no continuous mapping: $%*~'—S%~! which is
equivariant when k>j. Actually, we require the following slightly more general state-
ment.

PROPOSITION 3.2. Let j,kEN*, 1<j<k. There does not exist any continuous
mapping h: S*'—8%~! such that

(D) =(e™hy©), € hy©), ....e" h(D))
for all LES™! and all €® €S, where
hl(g), cery hj(g) e C’ h(C) = (hl(C)’ ceny hj(c)) e SZi—l

and ny,...,n;EN* are arbitrarily given.

Proof of Proposition 3.2. Suppose such an h exists. Let w=IV_,n; and w;=w/n;.
Define /4:§%*7'»8¥~! by setting AQ)=(A1(),....h ) and A (E)=|h()| ALY
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| Ol oA L)=0 if h(£)=0) for 1<s<j. Then A=S%*"'-$%"! is continuous and
satisfies

F(e®0) = e“OR(Z), VLESH!, VePesl. (3.1
Since (3.1) is impossible by Proposition 3.1, the proof is complete. a
An essential feature of I* in the following construction is its invariance under the
Sl-action:
I*(T,z2)=I*(z), VTER2AZ.
We adapt to the present framework the method of Krasnosel’skii {24, Chapter VI]
which concerned critical points of even functionals. Here, the S'-action will play the

role assumed by the Z/2Z-action in the even case. We use a ‘‘semi-Galerkin’> method,
that is, we first construct critical values for 7*|e~ and we then obtain critical values for

I* on E by letting m—>+co.
Define a set of mappings and a family of sets in E” for mEN*, kEN, ksm=1 by
letting:
Hp(k) = {h: S>Nm=2k=1_, pm\ {0}; h is continuous and equivariant
with respect to the S'-action}.

Am(k) = {A c E™\{0}; A=h(S N2 hE K, (k)}.

We now let

¢, (k)= sup minl*(). (3.2)
A€, (k) zEA

For the next result, weaker assumptions than (H 1) and (H 3) will suffice. In particular,
(H 3) will be replaced here by

(H4) H)<a'|l]""'+b’', VZERXN

where g>1, and a’, b'>0 are some constants.
Let us recall that (H2) implies that H is superquadratic at infinity, that is:

H@)=alzZP*'—b, VzER¥ (3.3)

where p+1=1/8, (p>1), and a, b>0 are constants. Thus, the difference with (H 3) is that
no restriction is imposed here on p and g. Without loss of generality we may assume in
the following that H(0)=0 so that I*(0)=0.
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PROPOSITION 3.3. Suppose HE C'(R*™,R) satisfies (H2) and (H4). Then
(i) Vhksm—1, 0=c,(k—1D=<c, (k)<>.
(ii) For any k€N, there exist O<u(k)<v(k)<+o (u and v are independent of m)
such that

Vmzk+1, wkysc kysvk) and lim pk)=+x.
k—4»
(iii) (k) and v(k) only depend on the constants p, q, a’, b’, a and b in (3.3) and
(H4). (u(k) and v(k) do not depend on the particular H satisfying (H2) and (H4).)

Proof of Proposition 3.3. Proof of (i). Given any A€, (k—1), there exists
A' €4, (k) with A'cA. Indeed, think of §2Nm=2k=1 49 standardly imbedded in
SINm=2%+1 o that $2Nm=2k=1 ig invariant under the S' action on §*VmTH*1
Now let A=h(S?V"=2*1) with h€ ¥, (k—1). Clearly, the restriction of h to
§2Nm=2=1 pelongs to H.(k) and thus A'=h(S*N""2*-YHY€ ., (k). It follows that
Clk—D<c (k).

Choose any A € o,,,(k) (in the proof of (ii) below we indeed check that (k) is not
empty). For any real r>0, rA € &/,,,(k). Therefore,

¢, (k)= minI*(2).
zErA

Letting r\0, yields c,,(k)=0. Lastly, that c,,(k) is finite will be shown in the next
argument.
Proof of (ii) and (iii). By (3.3) and (H4),

alzP'-b<H@)<a'|lJ+b'.

Let

2n
|Zlq+l (1)

D(z2) =1A(z)—a’ f

1]

2n
W(z) =}A()—a f [P+
0

Hence

P()—2nb' <I*(2) < W()+2nb

(Y) From now on the measure df is understood in integrals over [0, 27].
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and thus
Yk)—27h’ < ¢, (k) < O, (k) +27th 3.4
where
0, (k)= sup min¥(z) 3.5
A€, (k) €A
Y..(k) = sup min®(z). (3.6)
A€, (k) zEA

To prove the existence of v(k) (thus also showing c,,(k) to be finite) we require the
following consequence of Proposition 3.2.

LEMMA 3.4. For any A € A4,,(Nk), one has
ANEMT g,

Proof of Lemma 3.4. Let A€ o4, (Nk), i.e. A=h(S>N"~P~1) with h€ %,,(Nk).
Suppose ANE** 1=,

For zE€E, jEN, we denote Qiz=(1/27) [FFz(t)e™ ¥, Qz€CY is the jth coefficient
in the Fourier series expansion of z. It is easily seen that
O(T,z) =€" Q). 3.7

Since ANE*"'= and 04 A, at least one of the coefficients Q;z is not zero, with
k+2<j<m. Therefore, setting

0(2) = Qi+ 2| *+... QD) ™ (Qu42(D), .-, QD))

o is well defined, continuous on A and o:A—SN"—k-D=1 Now let h=coh;
f: §3NGm=b=1_, @2Nen—k=D-1_" Uging (3.7), and writing A=(Ars2,...,Hn), We see
that A verifies

(D) = (€ PR 1l©), -, ™)

for all ¢€S?Nm=P=1 and ¢°€S'. But this is impossible by Proposition 3.2. The
proof of Lemma 3.4 is complete. o

Proof of the existence of v(k). Since c,,(k—1)<c,,(k), it suffices to show that for
each k, and each m=k+1, c, (Nk)<v(Nk). By Lemma 3.4 we know that each
A € o, (Nk) intersects E“*!, Hence, for all A € &/, (Nk)

min ¥(2) < max ¥(z)
Z€EA ZEEF*1
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whence

4, (Nk)< max ¥(z). 3.8)

zEEk+I

Now, for z€E E**!, one has

AR < k+D]z|}

LY0,2m)°

Therefore, for z € E**1,

W< DD el =l g 69

Since the right hand side of (3.9) is bounded from above independently of z EEFT, we
conclude, using (3.4), (3.8) and (3.9) that ¢, (Nk)<v(Nk). Whence,

clk)svik) <o, YKEN, Vm=k+1.

It is clear from the preceding argument that »(k) only depends on p (that is on 6 €(0, 1)),
aand b. O

Proof of the existence of u(k). We now construct a particular set A € o4,,(k). This
will show incidentally that s4,,(k) is not empty and thus that c,,(k) is well defined. Let
k=Nko—I with ko, IEN, 0<I<N. For =(8,, . BYEC!, write B=(B,...,B1, 0,...,0) so
that BECY and C'=CV. For B=(g,e"",....one MYECN, (01, ...,on=0) and jEN, we

use the notation:
; 6 o
BY=(0,e™,....one"").
An element { € $2V"~Z~1 will be written as

&=Ly iyr1r-Em)  With GECN for ky+1<j<N

and §, €C'=CV, £, |t=1. Now set

hQ O =V 22 ) D, (G )i et
J=ky
Thus, h: M%7\ EFN{0}<E™\ {0} is a continuous mapping. Since (e®ty=

ey, it is clear that h(e’C) ())=h(E) (t+0), that is h is equivariant. Thus, k€ (k)
and A=h(S*Nm2k-1y  verifies A€ A, (k)+D. Furthermore, by construction,
h(§)ES={z€E; A()=1}.
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For any z€S, let A(z)={a’(g+1) jg”|z|q+1}—1/(q‘“, This choice of A=A(z) maxi-
mizes the function A—»®(Az) when A(z)=1. Therefore,

2 -2(g—~1)
P[A(2) 2] =[(g—1)/2(g+1)] {a’(q+1)f |Z|"“} (3.10)
[}
Observe that A(z) is invariant under the S'-action: A(T,z)=A(z). Let us now set
RO =A[h(©)] h(). Clearly, 4 is continuous and equivariant under the S'-action. Let
A=Hh(§2Nm=2k=1) 5o that A €.s4,,(k). Then,
Ym(k) = min &(z). (3.11)
Z€EA

Since h(£) ESNEY, V&€ §2Vm=2-1 e derive from (3.11)

y (k)= min ®A(z)2).

zGSnE%
Hence, using (3.10) we obtain
2z -2(g-1)
ym(k)zymin{f |z|"+‘} (3.12)
zESh 0

for all m=k+1, k€EN*; y>0 is some constant, and Sk0 denotes Sk0=S n(EJ‘ 0_I)L.

It just suffices to observe that the right hand side in (3.12) goes to + as k—+x.
By Holder’s inequality, one has

(12l o1 < 2l Izl - (3.13)
for any r such that 2<(g+1<r<e and where
a=Q2r-2q-2)(rg+r-2q-2)"1 (O<a<l).

Furthermore, since for zESNE*=S;, one has A(z)=||z]2=1, and since ESL'(SY),
there exists C,>0 such that

llzll,,<Cllzlle=C,, VzESNE". (3.19)

We also know that

2
j i <k'A@<k', Vz€S,. (3.15)
0
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Noticing that a—2(g+1)~! as r—+, (3.13)-(3.15) yield that for any ¢>0, there exists
a constant C,>0 such that

2
f R <C k00, Wz €S, . (3.16)
0

Therefore, it follows from (3.13) and (3.16) that Ve>0, there exists y,>0 (y. only
depends on £>0, a’ and q) such that

c, (ky=y kY@~ _2x7p’, (3.17)

Let us choose u(k)=yk"@~VY—27b’ where y is the constant y, in (3.17) corresponding
to e=1/(g—1). Then u(k)—= as k- and c,,(k)=u(k). Moreover, this holds uniformly
for any Hamiltonian H satisfying (H4).

The proof of Proposition 3.3 is thereby complete. ]

Remark 3.5. It will be seen in section 7 that the estimate (3.17) on the growth of
cm(k) as k—+o0 can be much improved, at least along a subsequence of indices k. O

By letting m—+, we will not derive from the ¢, (k) the existence of critical
values of I*.

THEOREM 3.6. Suppose HE€ C(R?M, R) satisfied (H2) and (H4). Then, problem
z=gH'(2) (1.2)
possesses at least one non-constant 2n-periodic solution.

Remark 3.7. As we pointed out in the introduction, Theorem 3.6 is weaker than the
result of Rabinowitz [33] where only (H2) is being assumed. We only indicate this
theorem here because it is a natural byproduct of our method. Note also that the
method we use here is quite different from the ones of [33] and of all the other related
works quoted in section 1. a

Proof of Theorem 3.6. We will show the existence of an infinite family (zi)i e of
2x-periodic solutions of (1.2) such that I*(zx)—>o as k—. Observing that if z is a
constant solution of (1.2), then I* is bounded from above by some constant, the
existence of one non-constant 2z-periodic solution readily follows. Notice that it is not
asserted, and actually not true in general, that z; has 27 as a minimal period. Let us
also remark that because of the possibility of dividing the period, the statement of
Theorem 3.6 obviously implies the existence of infinitely many 2z-periodic solutions.
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The proof of Theorem 3.6 will be divided into three steps:
(a) a truncation procedure of Rabinowitz,

(b) passage to the limit as m— + o,

(¢) conclusion.

(a) A truncation procedure of Rabinowitz. We use here the same type of trunca-
tion as the one introduced in Rabinowitz [29]. Let R=1 be a real number. Consider a
function wg € C*[0, +) such that 0<swgx=<1, wi(r)<0 on R, and

wr(@)=1 if r<R and wgr(r)=0 if r=R+1. (3.18)
Define

HE(2) = wg(2]) H@)+(1—wg(z]) (a'|z]* ' +b) (3.19)
where a’, b’ and g are given by (H4). There exists 6, 0<0sé<% and C>0 such that
Hr(z) <OHR(2)-z+C, VZERYM, (3.20)

with 6 and C independent of R=1. (A straightforward calculation shows that it suffices
to choose §=max (0, 1/(g+1)) with an adequate C>0.) Let us now define the truncated
functional

2
1% (2) =%A(z)—f Hi(z).
Q
We require the following lemma.

LEMMA 3.8. For all >0 there exists y=y(8)>0 such that for all R=1 and zEE
satisfying (XY (2)=0, I{(2)<P, one has zEL™(S") and |jz|},.<y(B).

Proof of Lemma 3.8. From z=gHx(z), we know that

Hgr(z(1)) is independent of tER. 3.21)

Furthermore, one has

2
(2,92) =A(z)—f Hi(2) 2 (3.22)
0

and

27
%A(z)—f Hp(2)<p. (3.23)
0
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Using (3.20) in (3.22) and (3.23), we derive
2n
j Hp(z)<CB.
0

Then, using (3.21) and (3.3), we obtain
llzll,. <y =CB"**P+C. (3.24)

Here and henceforth, C will denote generically various positive constants. Thus, y(8) is
independent of R=1. Later on, in section 5, we shall derive similar estimates in a more
general situation. O

(b) Passage to the limit as m—+ . In the appendix, we prove in a more general
setting that I satisfies the following Palais-Smale type condition.

CONDITION (P.S). For any bER and any sequence (z))jen, % EE, such that
%(z)<b and (Ij'é)’(zj)ﬂ 0 there exists a convergent subsequence of (z;) in E.

For each m€N, the restriction of I§ to E™ also satisfies the condition (P.S) in E™.

Furthermore, I} satisfies the following slightly different condition introduced by A.
Bahri [6]:

CONDITION (P.S)*. Let F,, be the restriction of I to E™. For any bER and any
sequence (Zm)men With 2, €E™, Fo(2,)<b, ||Fm(2Zm )II(E,,,),—>0,there exists a conver-

gent subsequence of (z,,) in E.

The proofs are given in the appendix. We require the last condition in order to use a
‘‘semi-Galerkin’’ approximation of E by E™ as m—+®.
For R=1, let us now define

cnrk)= sup minlk(2). (3.25)
A€, (k) 7€EA

Since the constants 6 and C in (3.20) and g, a’, b’ in (H4) do not depend on R>1, we
know by Proposition 3.3 that

wk) < cp rk)<v(k), VR=1, VKEN* Vmz=k+l. (3.26)

Here, v(k) is associated with the constants § and C in (3.20) rather than with 8 and C of
(H2). Notice that H also satisfies (3.20) so that ¢, (k)<v(k).
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LEMMA 3.9. For any k=1 and m=k+1 such that w(k)>0, c,, gr(k) is a critical
value of F,, the restriction of I to E™, for any R=1.

This fact is derived in very much the same way as in the case of critical point
theory for every functionals. The reader is referred to e.g. Krasnosel’skii [24] or
Rabinowitz [32] for results in this direction. A ‘‘deformation lemma”’ tailored for a
functional which has an S!-invariance (rather than the Z/2Z-invariance of even func-
tionals) is detailed in Benci [13] and could easily be adapted to the present framework.
When H € C*(R*V, R), this deformation lemma, however, is not needed. Since they are
classical, we omit the details of the proofs here. Let us just indicate a few remarks
concerning the way to prove Lemma 3.9 when H is of class C*

(i) Then, I% is a C? functional on E. Notice that without further restrictions on the
growth of H'(z) as |z|—>+, it is not even known that I* is of class C' on E. Indeed, E is
not embedded in L~(S'). Note however that I* is of class C> on ENL”.

(ii)) The gradient flow generated by I% in E (or by F,, in E™) is equivariant with
respect to the S'-action on E (or E™).

(iii) It is required that u(k)>0 because I%(0)=0. (Recall that we always assume
H(0)=0.) This allows one to consider deformations along gradient lines in E\ {0} (or

E™N\{0}). a

By (3.26), for any R=1, and any fixed kEN* such that u(k)>0, the sequence
{¢m,r(K)}m has a convergent subsequence (along a sequence m=m;—+®) to some
xr(k) with 0<u(k)syr(k)sv(k)<oo. Since by Lemma 3.9, c,, g(k) is a critical value of
F,,, it follows at once from (P.S)* that yx(k) is a critical value of I%.

(c) Conclusion. We now show that for any k€N* with u(k)>0, there exists a
critical value of I* in [u(k), v(k)]. This obviously yields Theorem 3.6 since u(k)—» as
k—x. Let us choose R>0 such that R>y(v(k)), where y(-) is given in Lemma 3.8.
Let z; be a critical point of If associated with the critical value yxg(k).
Then, If(zo)=xr(k)<v(k) and (%) (zx)=0. Hence, by Lemma 3.8, one has
IIz]| Lm(sl)Sy(v(k))<R. Therefore I}(z)=I*(z) for z in a neighborhood of z; in ENL™. This
implies that (7*)'(z;)=0 and yx(k) is a critical value of I* (on the space ENnL%) as soon
as R>y(v(k)).

The proof of Theorem 3.6 is thereby complete. O

Remark 3.10. There are two reasons for introducing the truncation 7% and reason-
ing with it rather than directly with I*. Firstly, as we already said, I* needs not be in
general a C'-functional on E. Nevertheless, if z€L*®, then (I*)'(z) is clearly well
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defined. This was for instance the case with z=z, in the preceding argument. Another
reason is that even if I* were to be a C!-functional in E, it is not clear in general that 7*
satisfies a condition of the type Palais-Smale. The truncated functional I} however is
shown in the appendix to verify such conditions. O

4. Stability of a non-trivial homotopy group
Throughout the remaining of the paper, we use the following notations for level sets of
a functional ¢: E—>R, where a€ER and mEN:
lp=al={z€E; ¢(z) = a}
[p=al,=lp=aln E"={z€EE™"}; p(z) = a}.

The purpose of this section is to derive the next result which plays a crucial role in the
proof of Theorem 1.

THEOREM 4.1. Let ¢ € C°(E, R) be a continuous functional invariant under the S'
action on E. Let b,(k) ER be the numbers defined by

b, (k)= sup ming(z)
AEst, (K) 1EA
where m, kEN*, m=k+1. Suppose that for some >0 and some m,k, b,(k—1)+¢
<b,(k)—e<o. Then, for any set W<E,, satisfying

lg=b,(k—1)+el,, o Wole=b,(k)—¢ln

there exists xo € W such that the homotopy group of order 2Nm—2k—1 of W with base-
point xq is not trivial:

L n—2k-1(W, X) # 0.

Remark 4.2. The order of the homotopy group in Theorem 4.1 coincides exactly
with the dimension of the spheres used for the computation of b,,(k). (I}

Remark 4.3. Theorem 4.1 is a kind of *‘stability’’ property for the critical values
b,.(k) in the following heuristic sense. Suppose ¢=I* € C}(E, R) and H satisfies (H2)
and (H4). Then b,,(k)=c,,(k) where c, (k) is defined in (3.2) and c,,(k)=u(k) with
u(ky—> = as k—o. Hence, inequalities like c,,(k— D+e<c,(k)—¢, £>0, hold for infinite-
ly many indices m and k. Then, if { is but a small perturbation from 7*, one expects the
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level sets of [ to be “‘not too far apart’’ from those of I*. More precisely, one expects to
have inclusions of the type

[I* = k=) +€) o [T = apd o 2 [IF = ¢, (k) —€] e

for some a, €R. From Theorem 4.1 we then see that certain homotopy groups of the
level sets [[=a,),, are not trivial. This, in turn, will imply the existence of critical
values for the perturbed functional [ as will be seen later on, in sections 7-9. O

Remark 4.4. The result of Theorem 4.1 is to be compared with a related theorem of
Krasnosel’skii [24, Chapter VI] in the framework of even functionals on spheres. (See
also Bahri-Berestycki [7, Theorem 3.1].) Indeed, let ScH be the unit sphere of an
infinite dimensional Hilbert space H. Let JE€C'(S, R) be an even functional which is
bounded from below on §. Define

¥, = inf maxJ(x)
AEM, xEA

where M;={AcS; A=g(S*™!) with g odd and continuous}. Then, for y,_;+e<y,—e
and WcS such that

{(xE€ES:JX)<yp_1+e} c We {xES; J(x) <y,—¢)

one can show that W is not contractible to a point within the set {x€ §; J(xX)<y,—¢}.
Actually, one can show that IT,{W, x,)30 for some x; € W. For more details, we refer
the reader to [7, Remark 3.5] (see also Conner—Floyd [17]). a

Proof of Theorem 4.1. We argue by contradiction and we suppose that
Monm—au-1(W, %) =0, Vx,€EW. 4.1

By definition of b,,(k), there exists A € ,,(k) such that Ac[@p=b,,(k)—¢],.. Whence,
there exists h: §2Vm—2k~1
such that

—E™\ {0}, h being continuous and S'-equivariant, and

WS =AW,

Since we assumed (4.1), h is null homotopic in W. There exists a deformation
U: [0, 1]x §2Vm=2k=1_, w satisfying

U, 8 =h(), VEesHNm—2-l 4.2)

11848289 Acta Mathematica 152. Imprimé le 29 mai 1984



160 A. BAHRI AND H. BERESTYCKI

U(1,8)=xp, V{ES§HNm-2k-1 4.3)
Ut Lo) = xo, VEIE[O,1] 4.4)

for some (arbitrarily) fixed exelements xo€A and {,€5>V™~2~! Let us now show
that one can use such a deformation U to construct a continuous and S'-equivariant
mapping h: SZV" 2k g=h, (k— 1) +e,,.

An element &€ §2Vm=2k=D-1 wil) be written as E=(,n) with LECY™ X, neC
and |§|2+|7i|2=1. Define A(E, n)=T Ullnl, 7/nt]) if t+0 and n=+0; A(Z,0)=h(C)
if #=0, |{|=1; and A(0,n)=T,xo for {=0, |p|=1. Then, it is easily checked using
(4.2), (4.3) and that h is equivariant under the S'-action (e.g. Ty, h(7&/|nE)=h(E/LD)
that /% is continuous. From the definition of # it is straightforward as well to
see that h(eZ,e®n)=Tyh(,n). That is, h is S'-equivariant. Lastly, since
U([0, 1]x SPVm=%~1y W, and Wc[g=b,,(k—1)+¢} ., We obtain:

R(SZNm—2%+ Yy  [@ = b, (k— 1) +€] 4.5

Indeed, @ being invariant under the S action, the set on the right hand side of (4.5) is
invariant. Now, since A€ ¥,,(k—1), the set A=h(S*¥™~2k*1) belongs to the class
Am(k—1). But we know from (4.5) that

ming >b,(k—1)
A

which is impossible as it violates the definition of b,,(k—1) as a sup.
The proof of Theorem 4.1 is thereby complete. a

5. Some truncation procedures

Some truncations will be required later on for technical purposes. We explicate these
here and we derive some estimates. Throughout this section, we assume that H
satisfies (H1)-(H 3).

First, we require the same truncation procedure of Rabinowitz [29] that we have
already recalled in section 3. Let wg be as in section 3 and Hy, be defined by (3.18) and
(3.19) for R=1. We know that Hg verifies

Hgr(z) < 0Hjg(z)-z+C, VzERP (3.20)

where § €(0,)) and C>0 do not depend on R=1. The only motivation for this truncation

is that since HR(z)=a’|z|"“+b’ for |z] large, the truncated functional
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2n
I§ (2) =}A(@) - f Hg(2)
0

is of class C? in E and verifies the conditions (P.S), (P.S),.(*) and (P.S)* (see the
appendix and section 3 above).

We now introduce a second truncation concerning the term (f, z) in I(z). Let y be a
C~”-function: R*-R such that y(s)=1, V¥s=<l1, x(5)=0, Vs=2 and yx'(s)<0, Vs=0. Set
%o(8)=x(s/@) for p=1. Then j, has the following properties:

% €C"(R",R) 5.1

0<jg, <1, fo(s)=<0, Vs=0 (5.2)

T =1, Vs<p and f,(s)=0, Vs=2o. 5.3)
[io(s) - s|<mqy, Vs=0, 5.4

where my>0 is a constant independent of o=1. Now let

2z
1,2 =Zg( j Izl”“) (5.5
0

for p=1 and z€E, (p is defined in (H3)). For o=1, R=1, we define the truncated
functional Iz, ,: E—R by

P~ 4
I [(2) =AZ)— J Hy(2)—x () (f,2)-
0
We also set
2
IR(z)=%A(z)—f Hy(2)— (f,2).
0

Notice that if ||z]|,.<R and ||z||‘£:+',<g, one has Ig ,(z)=I(z). On the other hand, if

llzl}>20, one has I ((2)=I%(z). The reason for introducing the cut-off function
%0(2) is to allow one to get certain precise estimates on the size of the perturbation
[I%(z)—Ir, o(2)] as will be clear in the conclusion of the proof (see sections 8 and 9) (®).

(*) (P.S),, is the same condition as (P.S) but refers to the restriction to the subspace E™ rather than to
the functional in the whole space E.

(® Observe that I—Ix is unbounded on E.
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In the sequel, for any functional ¢: E—~R, we will denote by ¢™'= ¢| E,,,its restriction
to E™. The next three lemmas contain the estimates that will be required later on.

LEMMA 5.1. {I§2)—Ig ,(2)|<CoV®*V where C>0 is a constant, for all R=1,
0=1 and zZEE.

LEMMA 5.2. There exists two constants a>0, =0 such that for any 9=1 and for
any R=1, one has the following property. If z is a critical point of Ir , such that
Ir, J(2)<ap—p, then z is a critical point of I. Similarly, if for m=1, z € E™ is such that
I} J(Z)ysao—p and (I} ) (2)=0, then (Ig)'(z)=0.

LEMMA 5.3. Let go=1 be given. There exists Roloo)=1 such that for any o,
1<o=<R,, and R=Rgo) the following holds, where a and §§ are given by Lemma 5.2:
Any critical point z of Ig, , such that Ig J()<ap—pB, is a critical point of I; zEL", and
I=1Ig , on a neighborhood of z in ENL™,

The remaining of this section is devoted to the proofs of these three estimates
which are essentially technical.

Proof of Lemma 5.1. By (5.3), ,(2)=0 whenever ||z||L,,+,>(29)”("+1). Thus, since

Xo=<1, one has
1 @I oD <l Il por < Co 0+
in all cases, where s™'+(p+1)"'=1. -

Proof of Lemma 5.2. In all the following, as usual, C denotes generically the
various positive constants that will be called. Let z be a critical point of I such that
IR,Q(Z)sd. That iS,

(Ig, o) (= —qz—Hp(2)-Ty(2) =0, (5.6)

where
T5 (D) =75 (JRlErR) 0+ D {f2) P "2+, .

The expression of (I, ,)" in (5.6) means that we have identified L*(S")*N with its own
dual space and thus, the duality pairing between E and E’ is defined by ( , ). Let us
estimate |(Ty(z), z)|. Using [(f, z)|<|Ifll,. llzll,,..and (5.4), we obtain

KTe @, )| < Cllell 5% el o 120177+ 2l e
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Whence,
|<Té(Z),Z)|SC“Z”LpH' (57)

From (I, ,)'(2)=0 and Ir o(z)<d<ap-—pf, where a and § will be determined later on,
we get

2n
A(z)—f Hg(2)2—(T5(2),2) =0 G.8)
0
2x
%A(z)—f Hg (2)<0+Cll2l| ;.- (5.9)
0
Subtracting (5.8) (after multiplication by 1) from (5.9) yields:
x4
f [{HR () z2—Hr ()} dt <0+Cll2| .-
0
Using (3.20) we deduce
2
(@011 He@dr<3+CHClll
0

But since HR(z)>a|z|"+1—b uniformly in R, we have
2 2z Hp+D
f |z["+'<C6+C{f lz|””} +C. (5.10)
0 Q

This implies that ||| ,., is bounaed. More precisely, (5.10) yields

Lp+l

2
j |zP*!'< Cap—CB+C.
o

Therefore, by choosing adequately a>0 and >0, we obtain
2
f 2Pt <o—1.
[}

Hence, it follows that Igx=Ig , on a neighborhood of z and E and then, x(z)=0. The
preceding préof remains valid if one considers the restrictions of Ix and Ig , to E™,
with zEE™.
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Proof of Lemma 5.3. Let >0 be a given real and z €E a critical point of I such
that Ix(z)<d. As before, using (Ix(z), z)=0, we derive

2z 2n 2n
f H(), f Hy(2) 2, f lp'<c (5.11)
0 0 0

where the constant C only depends on 6 and does not depend on R. We are now going
to derive an L”-estimate for z. Thereby we show at the same time that critical points of
I in E are classical solutions of (1.1) for R large enough.

Let £, €[0, 27z] be fixed and zy=2z(ty). One has

2n 2
Cc= f Hy(z(0) = f {H(@(0)—Hy(zy)} di+2rHg(z,).
0 0

Therefore, since (d/dt) Hr(z)=Hg(2) - 2=2- gf, we derive
2 t
2aHp(z)) =C— f dt f (1) gfir)dr.
0 I
An integration by parts yields:

2 =t 2n t
Z”HR(Zo)sc—f dt{z(v)- ¢f(D)}| +I dtf 20)- gflr) dr.
0 =t Jo f

Hence, since f€ C'[0, 2n], we obtain
Hp(29) < C+Clzg|+Cll2}- (5.12)

By (5.11), |lz|,, is bounded. Using the fact that He(zo)Zalzf’*'—b, we derive from
(5.12) that |zo|<C, with C independent of #,. Therefore, z€ L” and

llzll,.<C (5.13)

where the constant C is independent of R=1 and only depends on ¢ (and on the
constants a, b, ¢...).

We now choose d=ago—p with a and 8 being given in Lemma 5.2. We denote by
C=C(go) the corresponding constant in (5.13), and choose Ry(gg) such that
Ro(00)>C(0p). By Lemma 5.2 and by (5.13) it then follows that for any R=R(g¢) and
for any z€E such that I o(2)<ap—f, 1<0=<0, (Ir,,)'(2)=0, one has I ,(z2)=I(z) on
a neighborhood of z in ENL™ and thus, I'(z)=0.

The proofs of Lemmas 5.1-5.3 are thereby complete. a
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Remark 5.4. In the proof of Lemma 5.3, we have used the fact that f€ CY(R, R*V).
This is the only place where this hypothesis plays a role. Actually, in the above proof
we have only used that f€ W!-9(S', R®*M) with o~ '+(p+1)"'=1. Thus Theorem 1 is
valid with f€ W' 7. It is natural to conjecture that one should be able to still weaken
this assumption. a

An inspection of the preceding proofs (compare (5.13)) shows that we have
actually derived the following more precise a priori estimate that will be useful later.

LEMMA 5.5. Let 6ER be given. For any 0=1, R=1 such that ag—p=0 and
R=Ry(@) and for any z€E with (Ig ,)'(2)=0 and I ,(2)<0, one has zEL” and
lzll,«<R. Moreover, there exists a constant C=C(0), independent of ¢ and R,

(a@—B=06, R=R0(Q)) such that ||z||,.<C.

6. Homotopy groups of level sets and critical points

In this section, we recall together with their proofs some results of A. Bahri in Morse
theory in the way they apply in the present framework. (See A. Babhri [5, 6] for similar
results in a more general setting.) The main objective here will be to extend a theorem
inJ. T. Schwartz [34] (Theorem 7.3, page 183) to situations which may be degenerate in
the sense of Morse theory. This result concerns the triviality of certain homotopy
groups of level sets. The extension to the degenerate case is made possible by using a
version of the powerful ‘‘resolution” method of critical points developed by Marino—
Prodi [26].

We first require some notations. For a C! functional f; E-R and 6 €R, we denote

Z°(N={z€E; f(@=0, f(z)<d}.
In the particular case of the functional I, this means
2= {zEENL™SYH; I'(z)=0, I(z)<d}.

(Indeed, I'(2) is clearly well defined when z € L(S?); this modification is not required
for the truncated functionals which are of class C! on E.)

In order to simplify the wording of some statements below, we denote by %; the
family of all truncated functionals I , corresponding to R=Ry(0) and ag—p=0:

Fs={Ir,o; R=1, p=1, ap—f=06, R=R(0)}
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(a, B and R, are given by Lemmas 5.2 and 5.3). From section 5 we know that for any
S ER, Z%(G)=Z°(I) for any G € %;. Furthermore, we know that if z€ Z%(G) and GE %,
one has G=I on a neighborhood of z in ENL”. Hence, for such a z, the linear operator
G"(z) € AE, E') is independent of the particular choice of G € %; (that is, independent of
¢ and R). We shall denote it: G"(z)=I"(z). It should be kept in mind that this is only a
notational convention since [ is not a C*-functional on E in general. However, this
notation is justified by the fact that if z € Z%(G), then z € L* and I"(z) can be defined e.g.
on EnL>(SY), and I'(z) then coincides with G"(z).

We now define a kind of coindex associated with the critical values below a given
level 6.

Definition 6.1. For 0€ER, jo(0) EZU {*x} is defined to be the least integer j such
that

(I'Wyh,h) >0, VREE)\{0}, VvEZD.

Remark 6.2. In case Z°(=0, we set jo(d)=+o. It will be seen below that
Jo(®)>—, VSER and jy(d)<x provided Z°(N+D. Notice that on E™, in a non-
degenerate situation, 2N(m—jo(d)) serves as a lower bound for the Morse coindex of
any critical point in Zs(J). (If z is a non-degenerate critical point of I, the coindex is the
maximum dimension of a subspace on which the bilinear form (hy, #)—{(I"(v) hy, hy) is
positive definite.) a0

PROPOSITION 6.3. For any 0 €ER such that Z°(D+D, then —o<jy(d)<+o. Fur-
thermore, in this case, there exists €>0 such that

(FWh,h) =¢|h|%, YhE(E), VveZiW.

Proof. Let G=Ig , € Fs; let zE€Z%(I). By Lemmas 5.2 and 5.3, we know that y,=1
on a neighborhood of z in E. Hence,

Px 4
(G"(2)h,h) =A(h)—f Hp ().
0
By Lemma 5.5, zEL® and ||z||,.<R. Hence,
2x
(G"@h,h) = (I'(2)h,h) =A(h)—j H'(h?, Yz€Z(D). (6.1)
0

Furthermore, since ||H"(2)]], .<C=C(9), for any z € Z°(J), it follows from (6.1) that
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2n

('), k) = A(h)—C f 3 6.2)
0
2

(I”(z)h,h)?A(h)+Cj n. (6.3)
0

Now let us recall that

2n
A(h)$jf h’dt, VhEE, VjEZ, j<O,
0

and

2
A(h)+jf h*dt, VhEEYH', jEZ, j=0.
0

Thus, from (6.3), it is clear that jy(d)>—. Indeed, if j<—C—1, then for h€
(FH*nE, one has (I'(2) h, h)< -—HhHiz.On the other hand, (6.2) shows that if one

chooses j=C+1, then for any 4 € (F)*, one has
(I'(Qh,h) = l}h||iz.

Hence, jy(d)<+co.
Let us now prove the second point of Proposition 6.3. Let jo=jo(d) be as in
Definition 6.1. Thus,

(I'Qh,h) =0, VRE(E?)'\{0}, VZ€E€Z(). (6.4)

To conclude we argue by contradiction. Suppose that there exist a sequence
(h)c (E0)*, ilha|le=1, and a sequence (z)=Z%(I) such that

0< (") hy hy) <e,, VREN* with e,—0 as n— +o. (6.5)

By condition (P.S) (see the appendix), Z°() is compact in E, and by Lemma 5.5, Z°(I)
is bounded in the L® norm. Therefore, we can extract from (z,) and (h,) subse-
quences, denoted again by (z,), (h,) such that
Zn— zE€Z°() in E (strong topology)
H'(z,)— H"(z) in the weak * topology of L~
h,— h in the weak topology of E
h,—h in L?> (strong topology).
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(Recall that the injection E<>L? is compact.) Thus,

2n n
f H”(z,,)hf,—>f H'()h, as n— +, (6.6)
0 0

Lastly, let h,= h, +h; denote the orthogonal decomposition of A, such that &, E(E"")l
N(E-@E®) and h' €(E)* nE*. (If jo=1, then h,= k) Because (E®)*n(E-®E°) is

finite dimensional, we have

h;—h~ in E (strongly),

n

while
hf—h* in the weak topology of E
with
h=h"+h".

Since A(h,)=A(h, )+||h: ||f5, we know that A(h)<lim,_, .. A(h,). From (6.5),
(6.6) and the expression of I"(z,) we derive

2n
(I'(Q)h,h) =A(h)— f H'(Qh<0. 6.7)
0

But on the other hand, & G(E’ °)* and comparing (6.4) and (6.7) we derive #=0. Then, it
follows from (6.5) that
2w
lim A(h,)= lim H'(z,)h:=0.
ns+oo s+ g
Whence, h,—0 strongly in E which contradicts the assumption ||A,||z=1.
The proof of Proposition 6.3 is thereby complete. a

The motivation for introducing the index j(d) is that it allows one to show the
triviality of certain homotopy groups of level sets of functionals in the class %s. The
main result of this section is the following.

THEOREM 6.4. Let 0 ER and G be any functional in Fs. There exists an integer
mo=mu(0, G) EN* such that for all m=myd, G), the homotopy groups of [G=90],, are
trivial for all orders up to 2N(m—jy(0))—1, provided Z>(DN[G=01=Q. That is, if 6 is
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not a critical value of I, then n{[G=0],,)=0, VIS2N(m—js(0)—1, Ym=myS, G),
VGE %;.

Remark 6.5. This theorem is due to A. Bahri. Results in the spirit of Theorem 6.4,
but in a more general setting are presented in [5, 6]. As will be seen in the proof, it is
related to and extends classical results from Morse theory (compare Theorem 7.3 (page
183) in J. T. Schwartz [34]). Theorem 6.4 will allow us in the next section to derive an
estimate from below on the growth of the critical values c,,(k) (as k—+ ), where the
cm(k) are defined in (3.2). Furthermore, it plays a crucial role in the conclusion of the
proof of Theorem 1 in section 9. i}

Theorem 6.4 relies on the next lemma, which is an adaptation to the present
framework of a method of Marino and Prodi [26]. This method concerns the *‘resolu-
tion’’ of a compact set of critical points for a given functional into a finite number of
non degenerate critical points for functionals which can be arbitrarily near, in an
appropriate sense, to the given functional. The precise result of Marino and Prodi that
we use will be recalled below: See Proposition 6.8.

LEMMA 6.6. Let 6 ER and G € %5 be such that 8 is not a critical value of G (that is,
0 is not a critical value of I). There exists mo=my(d) such that for any m=my(0), there
exists G€ CHE™, R) with the following properties:

(@) [G> 0], =[G >3],
(ii) 0 is not a critical value of G.

(iii) The critical points of G (if any) which are contained in the set {zEE™;
G(z) <0} are in finite number, are non-degenerate and have a coindex greater than or
equal to 2N(m—jy(0)).

(iv) G satisfies the condition (P.S),.

Remark 6.7. In (iv), (P.S),, refers to the Palais-Smale condition in the space E™.
(See the appendix for the precise definition.) In (iii), the non-degeneracy of a critical
point z means that G"(z) € AE™, (E™)’) is. an invertible operator. The coindex of z is
then defined to be the maximum dimension of a subspace of E™ on which the Hessian
bilinear form (h,, h2)—{G"(2) hy, h,) is positive definite. The index is defined to be the
-maximum dimension of a subspace on which this form is negative definite. Notice that
in the present framework, due to the presence of E~ in E™, the index is, in general,
infinite. O

The proof of the lemma is essentially technical. Its derivation will be done through
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a sequence of lemmas and will take up the remaining of this section. But before that, we
first apply Lemma 6.6 and complete the proof of Theorem 6.4.

Proof of Theorem 6.4. Let m=my with my=my(d) being as in Lemma 6.1. Since
[G=6],,=[G=6],,, we want to show that II([G=0],)=0 for all I<2N(m—jo(d)). By
Lemma 6.6 we are in the situation where classical Morse theory applies (for G on the
set {zEE™; G(z)<9}). Hence, we know (compare J. T. Schwartz [34, Theorem 7.3])
that II(E™, [G=0],,)=0 for all I<S2N(m—jo(5)). Indeed, [ is smaller than the coindex of
any critical point of G in the set {z€ E™; G(z)<0}. Here, II(E™, [G=0],,) denotes the
relative homotopy group of order /. Let us write down the exact sequence for this pair:

e IIE™, [G = 6),) = IT,_1([G = 6], X) = T, ((E™, X)— ... (6.8)

where x is any given point in [G=6],,. Since IT,_;(E™, -)=0, the exact sequence (6.8)
reads for all I<2N(m—jy(d)):

0—I1,_,({G=6],,)— 0. (6.9)
Therefore, I1([G=6],,)=0, VI<2N(m—jyd))—1. O

The proof of Theorem 6.4 is thereby complete but for the proof of Lemma 6.6 to
which we now turn. This lemma is mainly a consequence of the following result due to
Marino and Prodi [26] (Theorem 2.2, page 14). We denote by d the distance in a given
Hilbert space.

PROPOSITION 6.8. Let Q be a C? open subset of a Hilbert space H and let
fECHR, R). Assume that f' is a Fredholm operator (of null index) on the critical set
Z(N)={u€Q, f'(u)=0}. Suppose furthermore that Z(f) is compact. Then, for any £,>0
and 19>0, there exists g € CAQ, R) verifying the following properties.

(8.1 glw)y=f), if du,Z(f))=no.

(8.2 llg)—fWllg<e&, llg'@—f@lly<e, Vue€Q.

(8.3) llg" @ =" @\ g,y < €0, YUEQ.

(g.4) The critical points of g (if any) are in finite number and are non-degenerate.

(g.5) If f satisfies (P.S), then g can be chosen to satisfy (P.S) too.

For the proof of this result, we refer the reader to Marino and Prodi {26]. There is
just one minor modification with respect to Theorem 2.2 in [26]. The statement of
Marino and Prodi actually concerns functionals which are defined on a Riemanian
manifold modelled on a Hilbert space H and (g.3) does not appear in the statement
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given in [26]. It is easily checked, however, by an inspection of the proof in [26], that
the argument of Marino and Prodi carries, virtually without change, to obtain (g.3) as
well. O

To derive Lemma 6.6 from Proposition 6.8, we require several technical lemmas.

LEMMA 6.9. Let 6 €ER and G be any functional in the class %5. Then, GE CX(E, R)
and G satisfies the Palais-Smale type conditions (P.S), (P.S),, and (P.S)*. (")

The proof of Lemma 6.9 is given in the appendix. In the following, for a closed set
FcE, and >0, we denote by N,(F) the uniform open #-neighborhood about F:
N,(F)={x€E; d(x, F)<n}. For the restriction G™ of GE %; to E™, we also use the
notation

Z(G™={z€E™;, (G™'@=0, G™z)=<c}.

LEMMA 6.10. Let 6 €ER and GE F5. Assume that 6 is not a critical value of G (or
equivalently of I). Then, there exists ;=m(0) EN* such that 0 is not a critical value
of G, VYm=m,. Furthermore, for any n>0, there exists my=m(y, 6) EN* such that
for any m=my, one has

Zs(G™) = Ny(Z2(D)).

Lemma 6.10 is an easy consequence of Lemma 6.9 (and in particular, of condition

(P.S)*). We omit the details of the proof. (Notice that from (P.S) it follows that Zs(I) is
compact in E.) O

LEMMA 6.11. Let 0ER and GE%;. For any mEN*, (G™)': E">(E™) is a
Fredholm operator of null index on Z3(G™).

The proof of Lemma 6.11 is given in the appendix. Let us just observe here that the
content of Lemma 6.11 is to be understood in the sense that (G™)’ is a Fredholm
operator of null index, through the identification of E™ and (E™)' given by the
restriction of E™ of the E-scalar product defined above. O

LEMMA 6.12. Let ER, GE F;. There exists n>0 (n depends on 6 and G), there
exists my,=m,(0) EN* and there exists ¢>0 such that

((G™Y@h, h)=ellhlt, VZEN,(ZXG™) NE", VYhE[EY} nE™.

(*) The precise definitions of these conditions are recalled in the appendix.
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Proof. By Proposition 6.6, there exists £>0 such that:
(P@h,h)y=2|h|E, VhE[EY]:, vzeZ'W), (6.10)

where jo=jo(8). Recall that I"(z2)=G"(z) for zE€Z%(I). Since G"(z) is continuous with
respect to z, there exists, for all z€ Z°(I), an open neighborhood V(z) of z in E such that

(G'Wh,h) =¢el|h|k, VRELE®]*, VvEV(), VZEZ°W). (6.11)

By condition (P.S) in Lemma 6.9, Z°(J) is compact. Hence, there exists °>0 such
that

N/ Z’()= U V(). (6.12)
€20

Now, let m,(8)=m(n’, 8), where m, is given by Lemma 6.10. For m=m, one has
Z%G™ =N, (Z°()). (6.13)

Lastly, applying Lemma 6.9, it is easily seen that U,,..,, ZAG™UZYD) is com-

pact. Hence, from (6.13), there exists #>0, with  depending only on G and 4, not on
m, such that

N,(ZXG™) =N, 2 D), Ym=m,. (6.14)

Combining (6.11), (6.12) and (6.14) yields Lemma 6.12. O

LEMMA 6.13. Let ER, G € F5 and n>0. Let my EN* be as in Lemma 6.12. For all
m=my,, there exists ¢’ >0 (¢' depends on m and 8) such that

||(G”’)’(z)||(E,,,),>a’, VzGE"'\N,,(Z"(G’”)) and G(2)<0.

Lemma 6.13 is an easy (and classical) consequence of conditions (P.S),, in Lemma
6.9. 0

We are now ready to prove Lemma 6.6, and this will conclude this section.

Proof of Lemma 6.6. Firstly, we define my(0)=max (m,, m,), where m, and m,
are given in Lemmas 6.10 and 6.12. Thus, by Lemma 6.10, d is not a critical value of
G™ for m=my. Let us now apply the result of Marino and Prodi, Proposition 6.8, in the
following setting.
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Let m be a fixed integer with m=m,. We take H=E™, Q={z€E™; G(z)<d} and
f=G"™. Let us observe that the hypotheses of Proposition 6.8 are verified. Indeed, since
d is not a critical value of G™ as m=m; (Lemma 6.10), Q is a C? open subset of E™. By
Lemma 6.9, condition (P.S),,, and using the fact that Z‘S(G'")CQ,. we see that
Z(f)=Z°(G™) is compact. Lastly, by Lemma 6.11, (G™)' is a Fredholm operator of null
index on Z%(G™).

Thus, Proposition 6.8 applies. Let F=E"\ Q={zE€E™; G"(z)=0d}. For 6,<9, let
F1={z€E™;, G™(z)=6,}; F,oF. Since Z%(G™) is compact and Z*%(G™cQ, there
exists 0;<9, d; sufficiently close to ¢ so that Z>(G™)nF,=@. Then, set

29’ = d(Fy,Z%G™)>0. (6.15)

Thus, {z€EE™; d(z, Zd(G”‘))>17'} is a neighborhood of F; and of F in E™. Notice that if
d(z, Z°(G™)<n’', one has G™(z)<6;. We now choose £,>0 and 7,>0 in the following
way

2eo=min(g,&',0—031); 21o=min(n,7n’) (6.16)

where ¢, ¢’ and # are given in Lemmas 6.12 and 6.13. ¢, is associated with F, as above
and »’ is defined in (6.15).

Let g €CX(Q, R) be the functional given by Proposition 6.8. We now define

G=gonQ and G=G"onF. 6.17)

We claim that G satisfies the properties listed in Lemma 6.6. By (6.15)-(6.16), the
set {ZEE™; d(z, Z(G™)>7,} is a ngighborhood of 3Q since it contains F,. Hence, by
(g.1) in Proposition 6.8, g=G"™ on a neighborhood of 3Q; G is a C? functional: E"—R.

By the definition (6.17), we certainly have [G™]s=[Gls. Conversely, suppose
2§[G™;, that is, G™(2)<d. Then, if G™(2)+G(z), one has d(z,Z%(G™)<ne<n’.
Whence, G™(z)<d;. By (g.2) in Proposition 6.8, we obtain G(z)=g(z)<d,+¢, hence,
G(z)<d. Thus, [G>0),,=[G>6],, and G verifies (i) in Lemma 6.6. Since G=G™ on a
neighborhood of G~1(9), (ii) follows from the fact that ¢ is not a critical value of G™.

From the property (g.4) and (i) we derive that the critical points of G (if any) in
{zE€EE™; G(z)<4} are in finite number and are nondegenerate. Now suppose zEE™ is a
critical point of G with G(z)<d6. By (g.2), one has ||(G™)'(z)||<é. Therefore, we know
from (6.16) and Lemma 6.13 that zeNﬂ(Z"(G”’)) NE™. Lemma 6.12 then implies

((G™Y'(2)h,h) = ellh|2, Vh elE"]* nE™. (6.18)
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Using (g.3) and the fact that gy<e/2, we derive from (6.18):
(G"@)h, k) = E2) |2 VYhELE]* nE™ (6.19)

This shows that the coindex of any critical point of G in {EE™; G(z)<0} is greater
than or equal to 2N(m—jy(5)). Hence, G verifies (iii).

It remains to show that G obeys the requirement (iv), that is, G verifies (P.S),,.
But this is an easy consequence from (g.5) and Lemma 6.9. (Notice that by (6.16), g and
G™ coincide on the set {zEE™; (0,+0)2<g(z)<d}={z€EE™; (;+)2<G"(2)<4}.
This fact is obtained by the preceding argument used to check property (i).)

The proofs of Lemma 6.6 and of Theorem 6.4 are thereby complete. O

7. The growth of the critical values'

We shall now use Theorems 4.1 and 6.4 to derive an estimate from below on the growth
of the critical values c,,(k) (as k—+) which is required to conclude the proof of
Theorem 1. (See A. Bahri [4, 5] for similar results in a more general setting.)

Let us recall from section 3 that c,,(k) are defined by

¢, (k)= sup minl*(z). (3.2)
A€, (k) 2EA

From Proposition 3.3 we know that
Osuk)<sc lb)svik)<o, VYm=k+1 7.1)

with u(k)»>o as k—>o. We set

ctk)= lim c,(k). (7.2)

m—+o

Hence, c(k)—> > as k—+x.
The main result of this section is the following

PROPOSITION 7.1. Assume H verifies condition (H3) or condition (H4). There
exists a positive constant y and a sequence of indices k;EN*, k; T+ as i1 +% such
that along this sequence, the c(k) defined in (7.2) satisfy

C(k‘) = y(k.)(q+ g— l)'



FORCED VIBRATIONS OF SUPERQUADRATIC HAMILTONIAN SYSTEMS 175

Let ®(2)=4A(z)—a’ [Z|z|7*". Because of (H3) or (H4), one has

)= o(z)-2ab’. (7.3)
Define

b,(k)= sup min®@); b(k)= lim b, (k).
A€d (k) z€EA m—o+

By Proposition 3.3, we also have u(k)<b,,(k)<v(k) and b(k)—= as k—. (7.3) implies
that

Cn(k) = b, (k)-27nb" and c(k)=blk)—2nb'. 7.4)
Hence, Proposition 7.1 is a direct consequence of the next lemma.

LEMMA 7.2. There exists y>0 and a sequence k; T +% as i T +% such that b(k)<
y(k) @@=V, for all k;.

This result will be proved with the aid of three lemmas. We want to estimate (from
below) the b(k) which are critical values of ®. Indeed by the proof of Theorem 3.6, we
know that b,,(k) is a critical value of d>’"=<I>|E,,, and that for any convergent subse-

quence of b, (k) along a sequence of indices m which goes to +, the limit is a critical
value of ®@. To apply Theorem 3.6, it just suffices to observe that in the case of @, the
truncation procedure defined in (3.19) does not modify ®. That is, with the notations of
sections 3 and 5, one has ®=®y (or even P=Py, ).

Now for the functional ® one can give an explicit and complete description of the
set of critical values and of its critical points.

LEMMA 7.3. The set of critical values of ® on E consists of the sequence
{di; kEN} with dy=x{k}9*V9=D where y>0 is a constant. (Explicitly, y is given
by: y=a(q—1){a'} ¥4V {q+1}7 @@=V The set of critical points of ® is
formed by the functions zi=a,e™ with a,€CY, |ay={kl/a'(qg+1)}""9~V and kEN.
Lastly, ®(z;)=d,.

The critical points of @ in E are the 2x-periodic solutions of the autonomous
Hamiltonian system

z=a'(g+1)|z]" 'gz.

Lemma 7.3 is an obvious consequence of the fact that any solution of this system satis-
fies |z(r)|=constant. O

12—848289 Acta Mathematica 152. Imprimé le 29 mai 1984
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In view of the preceding lemma it would be tempting to write
b(k) =dgyn)

where E(k/N)= min {j EN; j=k/N}. This of course would yield L.emma 7.2 for the whole
sequence of indices k. We actually conjecture that b(k)=dgwn) is true. But, though
natural as it may seem, this fact reveals not to be easy to prove. As a matter of fact, the
only relation between the b(k)’s and the d,’s we know for certain is that: VkKEN*,
Ir(k) EN* such that

b(k) = d,-(k). (75)

r(k) verifies k<k’=r(k)<r(k’) and r(k)— = as k—. Notice that we know the ‘‘multiplic-
ity”” of each d;: The associated set of critical points is a 2N—1 dimensional sphere.
Hence, if we would have a ‘‘multiplicity’’ result for the b(k)’s guaranteeing that for
k<k', and k'—k>N one has r(k)<r(k'), then, again, Lemma 7.2 would immediately
follow from L.emma 7.3, and the estimate would hold for the whole sequence of indices
kEN*. But, in the absence of such a multiplicity result, a priori nothing prevents the
r(k)’s from remaining constant on large sets of indices k. That is, having equalitieé (or
coincidences) of the type

k) = rk+1) = ... = r(k+j(k))

for arbitrarily large (but finite) values of j(k).

Therefore, to derive Lemma 7.2, we apply an indirect method that uses Theorems
4.1 and 6.4 in the next two lemmas. Thus, somewhat surprisingly, the topological
properties associated with the b(k)’s allow one to obtain an a priori estimate on their
growth.

Remark 7.4. There are two reasons for which one cannot readily give a multiplicity
statement for the b(k)’s. First, using the sets s£,,(k) for the definition of b,,(k) via a
maximum does not lead to a multiplicity result. Or, at least, such a result is not known.
If we were using a class of sets defined through the cohomological index of Fadell and
Rabinowitz [22] or the geometrical S'-index of Benci [12, 13], we would indeed have a
multiplicity property (compare the results in [12, 13, 22]). But then, on the other hand,
we would loose, at least as far as we can see, the stability property of the critical values
given by Theorem 4.1. Since this property plays a crucial role in the study of perturba-
tions from I* and in the proof of Theorem 1, we have to define the b,,(k) using the class
A(k). Secondly, even if one had a multiplicity property for the b,,(k) it would not
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be easy to derive a similar statement for the b(k), since b(k) is defined via
b(k)=tim,_, . b, (k). O

In the following, we denote by jy(d, ®) the index of Definition 6.1 but associated
with the functional ® instead of I. That is, jo(d, ®) is the minimum integer j€Z such
that

(D"W)h,h) >0, VREE)\{0}, VvEZX®), (1.6)

where Z(®)={z€E; ®'(z)=0, ®(z)<d}. Observe that the results of section 5 and 6
apply to the functional ® as well. The class of truncated functionals %; associated with

@ is, in this case, simply {®}. Indeed, the truncation procedure of section 5 does not
affect @: dg , =P, VR, o=1.

LEMMA 7.5. Suppose that for a certain k€EN* there exists a sequence (m;)cN*,
m;=k+1, mi—+x as i—+~ such that
b, (k—1)<6<b,, (k)
where 0 ER is fixed and 0 is not a critical value of ®. Then jo(d, ®)>kIN.
Proof of Lemma 7.5. For all i, choose an &0 such that
bm,.(k_ D+e; <0 <bmi(k)—£,-. (7.7)
From (7.7) it follows that
[®@=b, (k—D+e]), 2[@=0], 2 [®=b, (k)-¢tl,. (7.8)
Hence, by Theorem 4.1, we know that for some x,€[®=0],, one has
H2Nm,.—2k—1([q) = 6]m,:xo) +0. 7.9)
On the other hand, choosing m; large enough, we have by Theorem 6.4:
N(®=6],)=0, VI<2N(m—jd,P))—-1. (7.10)
Comparing (7.9) with (7.10) yields

AN(m,—jo(8, ®)—1 <2Nm,~2k—1.
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Hence,
Jo(0, ®) <k/N.

LEMMA 7.6. Let 3€ER be such that d,..,>0 where d,, are the critical values of ®
defined in Lemma 7.3. Then ji(8, ®)<qgn.

Proof of Lemma 7.6. Since jo(d, @) is non-decreasing with respect to 6, we can
assume that d,<d0<d,,,. By Lemma 7.3 we have: Z%(®)={z; z=qa;e%, a;EC",
lajj={jla’(g+ 1)} @™V, j=1,...,n}. Let z=z; be an element in Z%(®) with Isj<n.
Then, since

2r

(@"@h,h) =Ah)~a'(g+Dg f Joj? 2,

0

we have

pr 4

(D"(z)h,h) =A(h)—qu h?. (7.11)

0

Let jo=max {/EN, I=<gn} denote the integer part of gn. We know that

2
A(k)z(jo+1)J K, VhE(E")*:. (7.12)
0

Since jy+1>¢gj Vj=1,...,n, we derive from (7.11) and (7.12) that
(D"()h,h) >0, YHE(ED)', Vz€Z)(®). (7.13)
By the definition of jy(6, @) this implies that
Jjo(, @) < jo<qn.
The proof of Lemma 7.6 is thus complete. O

Proof of Proposition 7.1 and Lemma 7.2. We know that limy_, ;. b(k)=+.
Hence, we can find a sequence of indices k; € N* such that

blk—1)<btk), Vi, limk;=+>. (7.14)
i—>+®
This defines the sequence k; of Lemma 7.2.
Since b(k)=fn_lm_,w b,, (k) it is easily seen that, for each i, there exists a sequence

m;EN*, lim; , .. m;=+, and a real  such that

b, (k—1)<6<b, (k) and b(k—1)<6<b(k). (7.15)
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Since the set of critical values of ® is discrete, we can furthermore assume that ¢ is not
a critical value of ®.

By (7.5), there exists n=r(k;) such that b(k;)=d,,. Therefore, by Lemma 7.6,
Jo(9, )< g(n—1). (7.16)
On the other hand, by (7.15) and Lemma 7.5, we know that
Jo(0, ®) = k/N. (7.17)
Hence, from (7.16) and (7.17), we derive
n=(k/Ng)+1. (7.18)
Since b(k)=d,=x{n}9* "4~V we obtain from (7.18)
b(k;) = y{k;}y@*Va-b (7.19)

for all i=i,, where y is a positive constant.
The proofs of Lemma 7.2 and Proposition 7.1 are thereby complete. a

Remark 7.7. Recall that we have defined in section 3:

Cngk)= sup minl}() (3.25)

A€ (k) zEA

where R=1, I}‘;(z)=%A(z)-—f§"HR(z) and Hp is the truncated Hamiltonian defined

by (3.19). Since Hg(z)<a'lz|?*'+b’, VR=1, VZER™, we have I4(z2)=®(z)—2xb'.
Hence, it follows immediately from LLemma 7.1 that

Co gk =y {k} @ V@D (7.20)
where y>0 is constant independent of R=1. d

To conclude this section we now derive the following consequence of Proposition
7.1 or rather of (7.20). It states the precise result we will use in the next sections.

PROPOSITION 7.8. Suppose H satisfies (H3) or (H4) and let p>1 be such that
q<2p—1. Let A>0 and a,, 0,>0 be arbitrarily given positive numbers. There exists a
real number M>A, depending on A, o, and o, with the following property. For all
R=1, there exists kEN* and a sequence mj—+ such that

A<c, k=D <c, (D<M
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and
c,,,j,R(k)—ij,R(k— D=0, {cmle(k)} 1/(p+1)+(72

with lim, .., Cm, RO=HM,,. o C, R(K)=Y (K-

For the proof, we require the following simple observation.

LEMMA 7.9. Let 0y, 05, D>0 and 0<6<1 be given real numbers. Let ko, k; EN* be
also given. Suppose that (ay) is a sequence of real numbers such that:
() 0<a, <D

(ll) 0<ak—ak_1Sal(ak)e+02, Vk, kosk$k1

Then, there exists a constant C=>0 depending only on ko, D, 01, 0, and 6, (C does not
otherwise depend on the sequence (a;), nor does it depend on k) such that

A< CRVA=0 Yk, ko<k<k,.

Proof of Lemma 7.9. This result is a more precise version of Lemma 5.1 in Bahri-
Berestycki [S]. Let t=(1—-6)"! and set a,=k’a,. We want to prove that a;>0 is
bounded. Inequality (ii) for a; reads

a—{k= 1)k} a,_ <ok 'al+ok".
Hence, with (1 ~(1/k))*=1—(1/k), we have
a,—0y_ 1+ (k) ay_ <ok ag+ok". (7.21)
Let us assume a;>a;_¢. From (7.21), it follows that
< (01 al+(o/Dk .
Again from (7.21) we know that
a<a,_+tok'al+o,k".
Whence,
a, <0 {(1D)+(1/K)} df+a,{ (V) + (1K)} k' ~*
or

a < {1-0+(Uky} (0,0 +0,{k} *~?). (1.22)
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Now (7.22) obviously implies a bound on a;: a;<u, where 4>0 only depends on the
various constants in (7.22), that is on kg, 0,, 02 and 8. Hence, from (7.21) we deduce,
in all cases, that

;< max (ag—y, 4).

This obviously implies a;<max (ak, p) for all k, ko<<k<k,. Since ax=a,{k}""~?,
we have proved the lemma. d

Proof of Proposition 7.7. It suffices to show the existence of M and KEN*, k
depending on R=1, such that
Asyplk—1)<yrtk)=<M (7.23)
and
xr(k)=xrk—1) = 01 {xr(K)} "?* V+0,. (7.24)
Indeed, the result of the Proposition clearly follows by taking a sequence m;— + % such
that yg(k)=1im,, ., c,, z(k) and observing that lim,, ... c, g(k—D<ysk-1).

To prove the existence of M>A and, for any given R=1, of k€ N* verifying (7.23)
and (7.24), we argue by contradiction. Suppose that VM>A, 3R=1 such that for all
indices k with A<yr(k)<M, one has

xr(K)—xrtk—1) < 01 {xr(K)} " P+ 0,. (7.25)

Let k€EN* be such that ygr(kg)>A, VR=1. Applying Lemma 7.9 to the sequence
ay=xr(k) and recalling that yr(ko)<v(ky), VR=1, we obtain

R <CKP*VP Yk=k, VR=1. (7.26)

But since (p+1)/p<(q+1)/(g—1), as g<2p+1, (7.26) is contradictory with (7.20).
The proof of Proposition 7.7 is therefore complete. O

Remark 7.10. We have used here the assumption g<2p+1 of (H3). It should be
emphasized that this is the only place in the proof of Theorem 1 where this condition is
being employed. O

8. Existence of one forced vibration

We are now ready to conclude the proof of Theorem 1. We first prefer, however, to
derive the existence of one forced vibration of (1.1). It is hoped that in this way, the
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argument will be more transparent. In the next section, we give the full proof of
Theorem 1 by making the proper modifications in the argument below. The idea here
can first be described heuristically in a simple fashion. If I has no critical value at all in
E, then for any 0, I'" has no critical value below ¢, for large m. This implies that
[I=0],, or rather [Ig ,=0],, With an appropriate choice for R and a, in a deformation
retract of E”. Hence, all the homotopy groups of [Ig, ,=0],, are trivial. On the other
hand, since I, , is a perturbation from /%, we shall show that one can apply Theorem
4.1 to establish the nontriviality of a certain homotopy group of such a set. This
contradiction will prove the claim.

We now turn to the detailed proof. Thus, to show the existence of one periodic
solution of (1.1), we argue by contradiction. Let us assume that I has no critical values
at all. Let C>0 be as in Lemma 5.1 and a>0, §=0 be given by Lemma 5.2. We apply
Proposition 7.8 with the choice A=8, 0,=2CQIa)"?*V g,=2. Let M>0 be the
corresponding number whose existence is asserted by Proposition 7.8. Then, from this
proposition we know that for each R=1, there is an integer kEN* and a sequence
m;j—+ such that

B<c,, gh—=1)<c, (K)<M. 8.1)
Co 0= C, k=1)<2C{ [cmj,R(k)+ﬂ]/a} Ve+D o, (8.2)
o Cm,8) =220 8.3)

Actually, with our choice of constants in Proposition 7.8, the right hand side of (8.2)
should read

o {ij,R(k)}”(”H)+02 =2C{2c,, zWVa} Up+D 4o

But using (8.1) we know that c,, .(k)=f and (8.2) obtains.

Let po=(M+p)/a and let us prescribe a fixed R>R(go) Where Ro(oo) is given by
Lemma 5.3. Henceforth in order to try to keep the notations simple, we will denote

Cn k) =c, (k) and x(k)=yzk)= lim c, f(k).

m—+o

Let us set a=(y(k)+f)/a; thus a<p,. Hence, by (8.3), for m; large enough, say m;=u,,
one derives from (8.2) that

¢, (k) —c, (k—1)=2Ca"*V+1. (8.4)
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Suppose c<aa—fB=yx(k)<ago—f is a critical value of I ,. Then, since R=R(go),
we know by Lemma 5.3 that ¢ is a critical value of I. Therefore, I, , has no critical
value in (—o, y(k)]. Furthermore, by condition (P.S)* (cp. the appendix) this implies
that for m large enough, say m=u,, Iy, (=IR,a|Em) too has no critical value in
(—,x(k)]. In the sequel, m is fixed such that m=m; for some j and m=u,, u,.

By Lemma 5.1, we know that |[§(z)—Ig, 4(2)|<Ca"®*V, VzEE. Therefore, for
all reals d, 60 and d, which are such that

6=d+Ca"®*" and d,=06+Ca"®*?
we have
U= dlm > g, a = 0lm 2 (I = di]m. (8.5)
We choose d =c,, (k—1)+1. 6 =c,(k—1)+} +Ca"?*V and d, =c,(k)—}. Since
0=d+Ca"®*V and, by (8.4), di=6+Ca"®* PV we derive from (8.5) that:
[I§ =c,k— 1)+%]m >[Iz ,=0],> [Iﬁ = cm(k)+%]m. (8.6)

We may now apply Theorem 4.1 and obtain from (8.6):

I nm-2k=1([{R,a = 0] s %) + 0 8.7

for some x,. On the other hand, since d<c,,(k), the choices of R and m made above
guarantee that Iz , has no critical value in (—%,d]. As I}, satisfies condition (P.S),,

and is of class C?, the set [I§ ,=6],, is a deformation retract of the whole space E™.

(See e.g. the ‘‘non-critical neck principle’” in [34] or [7, Lemma 2.2] for related con-
structions of deformation retracts.) Hence we deduce

T([1z . =9],) =0, VIEN* (8.8)

We have therefore reached a contradiction with (8.7) when [=2Nm—2k—1.
This shows the existence of one periodic solution of (1.1). O

9. Proof of Theorem 1

Let us emphasize that the above argument does not readily extend to obtain the
existence of many solutions of (1.1) in spite of (8.6) holding for infinitely many indices k
(as will be seen). For as soon as there is one critical value below 0 (¢ as above), it is
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impossible to show, and indeed not true in general, that [Ig ,=d],, is a deformation
retract of the space E™. Therefore, to obtain further critical points, we need now to
exploit the information pertaining to the order of the homotopy group given in Theorem
4.1. This will be made possible by using the precise result of Theorem 6.4,

To prove Theorem 1, we are going to show that the critical values of I are not
bounded from above. We argue by contradiction. Suppose that the critical values of 1
are bounded from above by A;>0. Let jo(A,) be the index (associated with I) given by
Definition 6.1. Choose an A>0 such that A>max {v(Njo(A1)), A1, B} where v(j) is
defined by Proposition 3.3. Hence, if ¢m, rR(K)>A we are sure that k>Njo(A,), since
Cm. rREE)SV(k), and v is non-decreasing with respect to k. Let M>A be given' by
Proposition 7.8 and corresponding to ¢,=2C(2/a)"®*V and 0,=2. Let go=(m+p)la
and let R be a fixed real such that R>Ry(0o) (Where Ry(go) is defined by Lemma 5.3).
We denote c,,(k)=c,,, r(k) and y(k)=xr(k). Then, by Proposition 7.8 and arguing as in
section 8 above, we know that there exists Kk €EN* and a sequence m;—+ such that
x(k)= limm]_, e cmj(k) and

A<c, k=D <c, <M, 9.1)
Cn=Ck=1) <2C{ [, (k) +B) 0} V42, ©.2)

As above, set a=[x(k)+Bla, d=c,(k—1)+1+Ca"®* D, where c>0 is given in Lemma

5.1 and a>0, 8=0 are given by Lemma 5.2. In the following, m will be fixed at a large
enough value in such a way that m=m; for a certain j and

c () —c,(k—1)=2Ca"?*V+1, 9.3)
m>m(d), 9.4)

where (9.3) follows from (9.2) and my(d) is the number given by Theorem 6.4. With the
notations of section 6 we indeed know that I ,€ %, because aa—f=yx(k)=0 by (9.2)
(where we let mj— +x).

From (9.3) and Lemma 5.1 we derive that

[Iﬁ =c, (k- 1)+%]m o IR,a26]m =) [Iﬁ Zcm(k)—ﬂm. 9.5
Thus, by Theorem 4.1,
onm-2u1{UIR, e = 61 ms Xo) ¥ O 9.6)

for some base point xo.
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Since 0>c,(k—1)=A=A;, J is not a critical value of 1. Furthermore, I has no
critical values in [A;, 6] and therefore (using the notations of section 6), Z"(I)=ZA (.
This implies that the index j, (of Definition 6.1) associated with I is such that
Jo(A)=je(Ay). From c,(k—1)2A>v(Njy(A|)) we infer that k=k—1=Njy(3). Therefore,
2Nm—2k—1<2N(m—jy(6))—1. Whence, by Theorem 6.4 we obtain:

I N2k 1([Ig,a=6]m> *) =0. 9.7

The contradiction between (9.6) and (9.7) shows that the set of critical values of I
cannot be bounded from above.
The proof of Theorem 1 is thus complete. O

10. Bounded perturbations from an autonomous Hamiltonian system
and open problems

We first state a result concerning forced vibrations for Hamiltonian systems which are
bounded perturbations from autonomous Hamiltonian systems. Consider the system

z=gHut,2). (10.1)

Suppose that H verifies:
(A1) AECHRXR*, R).
(A2) H is T-periodic with respect to ER.
(H3) There exists H € C2(R?", R) satisfying (H2) and (H4) and such that

|- H]| <w

C'RxR™,R)

THEOREM 10.1. Under the hypotheses (H1)-(H3), the system (10.1) possesses
infinitely many T-periodic solutions.

Remark 10.2. For this result, the condition g<2p+1 in (H3) is not required any
longer. In hypothesis (H 3), we only need to assume that

|H(t,2)-H@)|<C, |HAt,2)-H'()|<C, VIER, VZzERM. 0

Remark 10.3. Theorem 10.1 is an extension of a result of Rabinowitz [29]. He
proved the existence of one periodic solution of (10.1) under (H2), (H2), (A3) and a
different hypothesis instead of (H4). Other results concerning non-autonomous sys-
tems of the kind (10.1) are given in Rabinowitz [29, 30]. The case of even Hamiltonians,
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i.e. H(t, —z)=H(t, 7) is considered in a recent work of Benci {11]. (Notice that this
hypothesis does not allow one to study forced systems of the type (1.1) with f&0.) O

Proof of Theorem 10.1. Since the proof closely follows the lines of the proof of
Theorem 1, we only sketch here the main idea. The arguments are technically simpler
here because the truncation with the cut-off x, is not needed (due to condition (H3)).
The truncation in R, however, is still required.

We assume T=2m and we continue to use the notations and results from the
previous sections concerning H. Let

2n
J(z)=%A(z)—f H(t, 2(0)).
0
The 2n-periodic solutions of (10.1) are the critical points of the functional J on E. For
R=1, let wg be the function defined in (3.18). Let
Hg(t,2) = w(l2) H(t, 2)+(1-wg(|z))(@'|2] ' +b)
and

2
J(2) =1A@) - f Hylt,2).
0

1t is easily checked that

|Hp(t,2)—Hg(z)] <C< o, forallt, zandR, (10.2)
[Hz(t, 2)—Hx(z)| < C(R)< e, forall t and z. (10.3)

From (10.2) we see that
Vr(2)—I(z)|<C, VzE€EE, VR=1, (10.4)
where C>0 is a constant which is independent of R=1. Hence, by (10.4), we have
[Ux=d),, o [Jr=d+Cl,, > [I§ =d+2C], (10.5)

for all R=1, dER and m €N*. Using the estimate (7.20) and (10.5) it is then straightfor-
ward to see that there exist infinitely many indices kK € N* with the following property.
For each such k there exists a sequence m;—+ such that

Ik = ¢, k= D+}],, 2 [Te= ), 2 [Ik =c,, (01, (10.6)

where a, is fixed and a,<yr(k)<v(k).
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Notice that to obtain (10.6), we do not require g<2p+1, but rather g>1 in (7.20).
(Indeed, (7.20) implies that y(k)—y(k—1) cannot remain bounded.) It is not difficult,
then, to repeat the arguments of section 8 or 9 in order to derive from (10.6) the
existence of a sequence of critical values for J; which is unbounded from above.
Lastly, using a priori estimates of the same kind as those derived in section 5, one can
show the existence of a sequence of critical values for J which is unbounded from
above. O

It is clear from this argument that Theorem 10.1 remains valid (with the same
method of proof) under alternative sets of hypotheses. In particular, in order to derive
inclusions of the type (10.6), all that we have used from (H 3) was the weaker property:

(A4 |A-H|| xRN gy < T

The hypothesis that H,—H’ is bounded on RXR?" only served to obtain a priori

estimates. It can thus be replaced by any other assumption playing this role. For
instance

(AS5) 0<HA(t,2)<0H.t,7)-z, VZER®™, |7/=R, VIE€ER,

where 0<@<1 and R>0 are constants. Using the same type of method as in section 5
we obtain the next result that we state without proof.

THEOREM 10.4. Suppose H verifies (H1), (H2), (44), (A5) and H verifies (H1),
(H2) and (H4). Then, the system (10.1) possesses infinitely many T-periodic solutions.

As a conclusion we would like to indicate a few open problems in connection with
the results presented here.

(1) We conjecture that Theorem 1 remains true under weaker assumptions. Name-
ly, HEC'(R*M, R), fEC°R, R*™), fis T-periodic and H verifies (H2). Recall that
when f=0, those hypotheses suffice to prove the existence of non-constant free
vibrations of (1.2) (see Rabinowitz [33]).

(2) More generally, we may think that non-autonomous systems of the type (10.1)
always possess infinitely many T-periodic solutions provided H € C'(RxR?", R) satis-
fies (H2), (H4).

(3) It should be observed that in the framework of problem (1.1) all the periodic
solutions have, in general, T as a minimal period. Indeed if f has T as a minimal period,
then any z, which is a T-periodic solution of (1.1) has T as a minimal period. This is
opposite to the situation for the autonomous case (1.2). For instance if H(z)=|z]? 1
there is exactly one solution of (1.2) with minimal period T. It is by and large an open
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question to know whether one can give a more precise description of the geometry of
the solutions to (1.1) or (1.2). Consider again the case with H(z)=(1/(p+1))|z’ +1
Then, the solutions of (1.2) are of the form zz=axe™ with a; €CY and |a=k"®"".
Now consider the problem (1.1) with freplaced by &f. As e—0, does there exist a family
of solutions of (1.1) which approximate z;, for all k€ N*?

(4) Lastly, it is a question which arises naturally to know whether a result
analogous to Theorem 1 holds for a nonlinear hyperbolic equation of the type

u,—u,=gw+ht,x), t€R, 0<x<2m.
u(t,x)=u(t+2m,x) (10.7)
u®,0)=u(t,2n)=0.

Assuming that g satisfies the same type of hypotheses as in {15, 28], does (1.3) possess
infinitely many solutions for all #?

Remark 10.5. Using the same type of method as the one we have developed here,
one could slightly sharpen the results we have presented in [7, 8] for problems of the
type

—Au=gx,u)+h(x) inQ,
u=0 onodQ,

(10.8)

where g is super-linear and odd with respect to # and QR is a bounded domain. In
particular with this method, one does not need to work with functionals defined on the
unit sphere of H)(Q). Rather, one could directly work on the whole space Hy(Q) with
the functionals

J(u)=%f |Vu|2dx—f G(x,u)dx—f h(x)udx
Q Q

Q

and
J*(u)=%f IVufzdx—j G(x,u)dx,
Q Q

where G(x, u)= [} g(x, 5)ds. For instance in [7, Theorem 6.1], hypothesis (6.3) could be
eliminated and replaced by (6.5) with this approach. a
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Appendix: The Palais-Smale and related conditions

Consider the truncated functionals I and I , defined in sections 3 and 5. We recall
that

2n
@) =3AR) - f Hy(2),
0

2z
I (2) =}A(9)— f Hp(@) =y (){f,2)
0

where Hpg is defined in (3.19) and y, is defined through (5.1)-(5.5). On several
instances in this paper, we have used the fact that J=1I} or J=I% , satisfy the following
three conditions:

P.S) Viz)<E, Jz)=C, J(z,) i 0, imply (z,) is precompact in E.

P.S),, V(z,)cE™, J(z,)<C, (J'")’(z,,)ﬂo, imply (z") is precompact in E™.
P.S)* Y(z,)<E; z,€E", J(z,)<C, ||(J'")’(z,,,)||(5,,,),—-> 0, imply(z,) is pre-

compact in E.

Here, and in the following, C designates various positive constants.
Since R is fixed, we set H=Hpg. The above three Palais-Smale type properties for
I% or I, , hinge on the following conditions satisfied by H:

HEC'(R*™,R). (A1)

H()<O0H'(z)-z+C, VzER™, with0<6<], C>0'|E,TwH(Z)=+°°'
z (A2)

|H' @)Y <aH'(z)-z+b, VZER?* where y>1,a>0,b=0 are constants.
(A3)

Since Hg(z)=a'[z|]7"'+b’, for |z|=R+1, with g>1 (where Hpy is defined in (3.19)), it is
obvious that H=Hyp, satisfy (A 1)-(A3). In (A 3) for instance, y could be chosen to be
y=(g+1)/q.

Let J(z)=}A(z)— [3* H(z) and K(z)=J(z)—¥4(z) {f, z) where a is fixed. The purpose

of this appendix is to show the following:
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PROPOSITION A. Suppose H verifies (A1)—(A3) then J and K satisfy the condi-
tions (P.S), (P.S),,. (for all m) and (P.S)*.

We start with:
Condition (P.S) for J. Let (z,)cE be a sequence satisfying

2
1A(z,)~ f H(z)dt<C (A4)
0
—-gz,—H'(z,)=¢,~0 inkE'". (AS)
Multiply (AS) by z, (in the sense of ( , )) to obtain:

2n
'A(Z""f H(z,) 2,d] = Kz p A <& (46)
0

where £, =||¢,||z—0 as n—+ . Comparing (A 6) with (A 4) and using (A 2) yields

2r
(1-9) f H'(2,)-2,d<}8, 2, +C. (A7)
0
Thus, we obtain
2n
f H,(Zn).znsCEnHZn”E-’-C’ (AS)
(1}
27
f H(Zn) = Cén”zn“E+ C’ (A 9)
0
2n
f |2t < Ce Iz, lle+C, (A10)
0
2n
[ rear<catedere. A1)
(i}

(A9 follows from (A 8) by (A 2). In (A 10), p+1=1/6>2 and (A 10) follows from the
observation that (A 2) implies

alzP*'-b<H(z), VZER™ (A12)

with a>0, b=0. Lastly, (A 11) is a consequence of (A 3).
Let z,=z'+z,+z;, denote the orthogonal decomposition of z, along E=E*®
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E~®F°. We recall that ||z|[z=A(z;) —A(z;)+|z | v- Since 25=(1/27)[5* z,, we have by
(A10)

125 [eaw < llzall o1 S C(ENI2,l15) O +C. (A13)

Notice that {—gz,, z} )=A(z}) and {—gz,, z, }=A(z;). Multiplying (A 5) by z; yields
2
A== | e a e
0

Hence, by Hélder’s inequality, with (1/y)+(1/y’)=1, we have
llzx i< IH I Mzl + &l e (A 14)

From (A 11), we know that ||H'(z,)||,<C(,||z,ll9)"" +C. By the injection EL?, there

exists a constant C such that ||z;]| ,<Cllz;||z<Cllz,)lz. Therefore, (A 14) yields

7 llz< CED™ Izl +& iz llg+C. (A15)
And similarly, multiplying (A 5) by z,, we get

Iz IE< CEN Izl +&, Izl +C. (A 16)

Now, using the fact that £, is bounded (¢,—0), and that ||z, |2=|lz} | +]|z; |[5+|2° x> We

R
derive, by adding up (A 13), (A 15)
llzllz= Cllz,|lz+C (A17)
where 0<2. Thus, from (A 17) we have a priori estimate on z, in E:
lzAlle<C. (A18)

One can therefore extract a subsequence of (z,), which we denote again by (z,),
such that

Z,—zweaklyin E, z,—zstronglyinL", Vr<o, rzl. (A19)

(Recall that the injection E<L” is compact, for any finite r=1.) Condition (A3)
obviously implies

|H'(2)| < Clz|*+C, VzERMX (A20)

13848289 Acta Mathematica 152. Imprimé le 29 mai 1984
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for some s (s=(1/(y—1))>1 by (A 12)). (A20) implies that the mapping z—H'(z) is
continuous from L% into L2 Hence, it follows from z,—z strongly in L* that
H'(z,)—>H'(z) strongly in L. Thus, a fortiori, H'(z,)—~>H'(2) strongly in E'. Now by
(A 5) one has

—Qzp= H'(z,)+¢,— H'(2) strongly in E'. (A21)
The last step needed to conclude is the observation that
Izl = Iz +|2lows  Y2ZEE. (A22)

We now prove (A 22). Let (-, -)g denote the scalar product associated with the Hilbert
norm || ||l That is, (9, ¥)e={¢"*, g9 )—(¢~, g@~)+¢° y°. (¢°-y° is the usual

product in R?V.) Let us denote z=u+z° where u=z*+z~ €(E°)* and z°€E°. One has
l2lle = lléel|z = max (&, ). (A23)
@€E

il =1

For any y €E, denote p=gyp* — gy~ +y° and observe that (i, ¢)=(u, ¥)g. Since the
transformation y+—>@ an isometry: E—E, it is straightforward from (A 23) that

llzlle = max (4, )z = jullg- (A24)
YEE

helle=1

Since {{zz=//ul[z+Iz%] v, We obtain (A22).
We can now conclude. By (A 19), z,—z in L' and therefore z5, =(1/2x) J'(Z,”z,,—>z° in

R?N. By (A21), z,~2 strongly in E’'. Therefore, by (A22), z,—z strongly in E. We
have thus proved that J satisfies condition (P.S). O

Condition (P.S),, for J. Let (z,)cE™ be a sequence satisfying
Jz)<C, (U™ (z)—0 in(ET). (A25)
Thus, (z,,) satisfies (A 4), while (A S) is replaced by
—-qz,—P"H'(z,) = &,—0 in (E™) (A26)

where P™ denotes the orthogonal projection onto E™. Indeed, one obviously has
™' (2)=—gz—P™H'(z), when identifying the dual space as (E™)’, that is with respect
to the duality pairing { , ). By inspection of the preceding argument, one can see that in
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order to derive the a priori estimate (A 18), (A 5) has only been used via multiplications
by z,, z; or z,.Since those elements are in E™, one obtains the very same results by

using (A 26). Hence (z,) is bounded in E. As above one proves using (A 26) that, for a
2
subsequence denoted by z,,, z,,—iz weakly, H'(z,,) i>H’(z), Zp—2° and 2,—Z strongly

in (E™)'. Then, using the analogous relation of (A 22) for E™:

2l = Nl + e ans - VZEE™, ¥m=0 (A27)

(which is derived in the same fashion as (A 22)), we have reached the same conclusion:

Z—z in E™. That is, J satisfies (P.S),,. a

Condition (P.S)* for J. Let (z,,)<E be a sequence such that z,,, € E™, J(z,,)<C and
1™ @l gy -
that is,
—8Zm—P"H'(2,n) = &€m, Hsm“(E"')'—) 0. (A 28)

Again, as for (P.S) or (P.S),,, this leads to an a priori estimate of the type:
lIz.lle=l1z 1/l »<C. Hence, for a subsequence denoted again by (z,,), one has z,—2
weakly in E, z,,—z strongly in L', Vr, 1<r<w and z5,—z° in R, In view of (A 20), we
also know that H'(z,)—H'(z) strongly in L?. Consequently, P"H'(z,,)—>H'(2) (as
m—+), strongly in L? and, a fortiori, strongly in E’. Thus we are in the following
situation

Zm =Nt en, (A 29)

2
with >k, 25>2°, 2,~>z weakly and ||z,
By (A 27) for all m=1, we have

(E,,,),—>0.This implies in particular that z=h.

o= P2l == P2l 20 2P
(where we have used the fact that (P™z)'=P™%). Whence,

”Zm_I)mZ”Zmg {”hm_th”(Em)'+”em“(EM)r}2+|z'°'" —Zolf{ZN' (A 30)

Since ||k,,~P"h|| gu,<C||h,,—P"h|| >0, as m—+o, it follows from (A30) that
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\lz,,— P"zl| .=llz,,— P"z|z converges to 0 as m—+c. This shows that z,,—z in E. We

have proved thereby that J satisfy (P.S)*.

Palais-Smale conditions for K. The arguments to show that K verifies (P.S),
(P.S),, and (P.S)* are very similar to the preceding ones. Therefore, as an example, we
just sketch the proof of (P.S).

Let (z,) be a sequence in E such that K(z,)<C and K'(z,)=¢,—0 in E’. We denote
K(z)=J(2)—T(2) with T(2)=x,(z) (f, z) for some fixed a=1. As in (5.6), we have

T'@) =% 12l 0+ 1) (. 2) |2 'z 4x (). (A31)
We have the following estimate
IT @l g, <C, VZEE. (A32)
Indeed, [||zP~" 2|l o= { [T 12FP* " }"**" and |{f, 2)|<|l2l|,,.. show that
IT @l o0 < CE (2701 12101+ C o2
Using (5.2), (5.4) and (5.5), we derive (A 32). From (A 32) we know that

KT (2,), 20| KT 2,), 22 (T (2,), 2 )| < Cliz, - (A33)

This in turn allows one to repeat the argument used in (A 6)—(A 11). Indeed, since
|T(z,)|<Cl|z4)|e, Wwe know that

2n
%A(zn)—j H(z)<C+Cl|zlle (A34)
0

—-02,~H'(2,)-T'(z,) =€,—0 inkE". (A35)

Thus, multiplying (A 35) by z, and using (A 34) yield
2z 2n 2% 27
f H'(z,) z,, f H(z,), J |z 7", f |H' )V <C+Cllz,|le.  (A36)
0 1] 0 0

Then, multiplying (A 35) by z and z, and using (A 33) lead to the same conclusions as
before, that is, ||z,/| is bounded. Lastly, when z,—z weakly in E, it is easily seen that
T'(z,)—T'(z) in L?, whence in E’. Thus, one derives the strong convergence of z,, in E
from (A 35) by using (A 22) in the same way as we did for J.

The proof of Proposition A is thereby complete. O
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Proof of Lemma 6.11. With the notations introduced in the appendix, Lemma 6.11
reads as follows:

(K| k) :E™— (E™) is a Fredholm operator of null index

where

p£ 4
K@) =%A(z)—j H(z)dt—yx (2) {f,2).
0

H satisfies (A 1)-(A 3). Furthermore H satisfies:
HEC)R*,R). 3s>0 and C,C’ such that |H'(2)|<Cl|s|*+C". (A3")

In order to prove Lemma 6.11, we compute the second derivative of K™= K|Em: Let
(h, w) EE™. Then we find:

2 2
(K™)'h,w) = —J gh-wdt—f H'(Qh-wdt

2n 27
+p(+ D, ( f Izl”“dt) f 2P~ wat (A37)
0 0
2n 2n 2r
+(p+ 1250 (f Izl”"'dt) (f |z|”"z-hdt> (j |z|”"z-wdt>.
0 0 0
Let
2n .
HAz) (h,w) = —J' gh-wdt+h°-w° (A38)
0

where h° and w°® are the orthogonal projections of 4 and w on E° and #°- w® denotes their
scalar product in R?", and let

R(2)(h, w) = (K™Y h-w—HA2) (h, w). (A39)

Both Az) and R(z) are continuous bilinear and symmetric forms on E™. Hence, they
can be written in the E™-scalar product, as follows:

Az) (h,w)=(Lh, w)g (A40)
where

Lh=h"—h"+h° (A41)
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(h*, h~ and h° are the orthogonal projections of 4 onto E*, E~, E° respectively) and
R(z) (h, w) = (Rh, w)g. (A42)

It is not difficult, but technical, to see that the linear operator R: E"—FE™ is compact.
This fact is due to (A3’) and to the compact embedding of E into (L'(S'))*V for any
r=1. Furthermore, the operator L is obviously invertible, with a continuous linear
inverse. Hence, the operator

L+R

E"— E™

h— Lh+Rh

is Fredholm of null index (notice that L and R are self-adjoint operators). But this
operator is exactly the second derivative of K™ expressed in the E™-scalar product.
Hence, Lemma 6.11 is proved. O
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