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We shall prove the following

TaEOREM. Let f(2) be meromorphic and of finite lower order u in the finite plane, and

let a,,a,, ... be its set of Nevanlinna deficient values. Then

25*(a»,f) < oo, 1)

This problem seems to have first been considered in 1939 by O. Teichmiiller [16;
P. 167] who suggested that, in addition to the classical Nevanlinna defect relation

> 8a, <2,

certain conditions including finite order might imply

2 64(a,, f) < oo. @)

In 1957 W. Fuchs [5] established (2) under only the assamption that f(z) be of finite
lower order. This work was subsequently refined by V. Petrenko [13], and I. Ostrovskii
and I. Kazakova [9] who concentrated primarily on the bounds for the sum (2); an alter-
native proof of Fuchs’s theorem was given in 1965 by A. Edrei [2; p. 85].

A major advance was made by W. Hayman [8; p. 90] who proved that if f(z) has
finite lower order then

2.0, f) < oo

for every £>0. ’

Following Hayman’s approach, Petrenko [14], in 1966, proved the convergence of
> 6¥(a,, f) (log e/d(a,, )~ and in the following year E. Bombieri and P. Ragnedda [1]
proved the convergence of > (d(a,,f) o(d(a,, f)))} for suitable functions o (f) satisfying
Joo®)/tdt < oo.

(1) Research supported by N. 8. F. grant GP-9454.
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As to the best possible nature of our Theorem, Hayman has shown that a construe-
tion technique due essentially to A. Goldberg [6] will yield examples of meromorphic func-
tions of finite order for which > 6t *(a,, f) diverges for every £>0. In fact, as Hayman
has observed [8; p. 98], the convergence of (1) may be made arbitrarily slow in the sense
that, given any convergent positive series > ¢,, there exists a meromorphic function of
finite order such that §%(a,, f)> Kc, (v=1,2, ...) for some constant K > 0. The necessity
of finite lower order in the Theorem can be seen by examples due to Fuchs and Hayman
[8; p. 80].

I should like to express my gratitude to the late Sir Edward Collingwood for several
discussions which inspired this proof.

1. Notations and conventions

Our study of f(z) will be confined to annuli around the Pélya peaks {r,} of order u
of T(r,f). For the basic properties and existence of PSlya peaks the reader is referred to
[2; p. 82]. The relevant property for our investigation is that for any fixed o> 1,

T(r, f) < (i)”Tm,, f)(L+0(1)) (m—oo) (L.1)

rm
for r,<r<or,.
We shall take {«,} to represent a sequence of positive numbers tending to = such
that
tn=0(T(rm, f))  (m—> ) (1.2)

and corresponding to {x,,} we define

E=E({an}) = Ulz=re® r,<r<6r,, log |f (re®)| < — ctp}- (1.3)

A particular sequence {«,,} will be specified in Lemma B.

We shall make some assumptions here for the sake of later convenience, and without
loss of generality. First we assume that the intervals [r,,, 67,] are pairwise disjoint. We
also assume that the value co is not included among the set a,, as, ... of deficient values
and that this set has at least two elements. The latter condition implies that © >0 [3;
p. 297].

Throughout the proof of the Theorem, the letter K will denote constants which will
not necessarily be the same at each occurrence, and which may depend upon some para-
meters. More precisely, the constants K which appear in the proofs may depend upon the

lower order y as well as the sizes of the first two deficiencies 8(a,, f), 6(as, f).
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2. Preliminary lemmas

In this section we shall prove five lemmas, none of which is essentially new. Lemmas
A and C are quite standard estimates; Lemma B is substantially contained in Lemma 1
of [18]; and Lemma D is a variation of a theorem of H. Selberg {15; p. 811] (see also
[17; p. 22]) in a form suitable for our applications. Lemma E is an inequality on harmonic
measure which is closely related to known estimates [12, p. 76] but which takes into ac-

count the fact that the sets we consider need not be simply connected.

LevMMmaA A. Let f(z) be as in the statement of the Theorem and {r,} a sequence of Pélya
peaks of order u of T(r,f). Then if ¢ >1 is fizxed

8ay, ) T(r, /) A +0(1) < T(r, fy<2T(r, f) (1 +0(1)) (2.1)
as r—- oo through the intervals r,, <r<gr,,.

Proof, We first make some remarks regarding the exceptional set which arises in the
study of the logarithmic derivative. A basic fact of Nevanlinna’s theory is that

m (h ?f_';) =o(T(r,f)) (2.2)

as r— oo outside an exceptional r set F which has finite measure [8; p. 41]. It is impor-
tant to note that K occurs in intervals where the characteristic grows very rapidly; in
particular £ does not depend on the value a [8; p. 41], and consideration of the growth
lemma from which it arises [8; p. 38] shows that it may be taken to be disjoint from the
intervals [r,, or,]. In other words (2.2) must hold as r-—co through the intervals
T ST 0T,

The right-hand inequality of (2.1) follows from [8; p. 55], and the left-hand side from
the above remarks and the elementary computation

8, YT, ) L +o(l))y<m (r, f—lal) <m (r, fl') +m (,., f_f,al)
ST, f)A+o(l) (r—>oo;r,<r<ary,).

Lemma B. Let f(z) be as in the Theorem and {r,} a sequence of Pélya peaks of order
w of T(r,f). There exist € and {a,} as in (1.2) and (1.3), and pairwise disjoint subsets
Ek=1,2,...) of E such that each &, is the union of components of E, and if E(r) is the
set of arguments in [0, 27) of &, N {|z|=r} we have

1

1 ’
o fsk(r) log m 20> 50(ay, H T(r, ) (r>r(k);r, <r<6r,). (2.3)
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Proof. We use the same procedure here as in [18; p. 123].
By (1.1), (2.1), the Cartan identity [12; p. 177] and the fact y >0, we deduce that

1 27

1 L[ 1
il n (Grm, f’ —te“”) d¢ < (2mlog 2) fo N(l2rm, f'/t——e”’) d¢
< (log 2)7* (log* %+ T(127,, f)(1+ o(l)))
<2(log2)7! (log + %+ T127,,H Q1+ 0(1)))
<2(log 2)7* (10g + %+ 12°T(r,,, ) (1 + 0(1))) (m— o).
Applying the length-area inequality (1) [7; p. 18] we then have
P ) 2 -1,2 +1 @
5 dt <144 n*(log 2)~' r7, | log ;+ 12°T(r, H (1 +0(1)))  (m—> o0)

14

where I(t) denotes the total length of the level curves |f'(z)|=¢t(y <t <p) in {|z| <6r,}.
Taking y =} exp (— VT'(ry, f)) and B=exp (= VT(r,, f)) we deduce the existence of a,, such

that

VIt f) < O < VI(1,, f) +1og 2 (2.4)
and PBe~*) log 2< 14472 (log 2) 1 1242 T (r,, /) (L +0(1)) (m—> o)
so that l(e ™) < (log 2) ' 12*#2 7y, VT (1, f) (1 +0(1)) (m—> o). (2.5)

We thus fix the sequence {«,} as above and note that with this choice, (2.4) im-
plies (1.2). A simple geometric argument and (2.5) (cf. [18, p. 124]) yields that if 2;, 2, are
two points in the same component of £ and 7,,<|2,| <67, 7, <|2,| <67, there exists a

continuous curve I' joining 2, and 2, whose length does not exceed

K(u)rn VT (rm f) (1 +0(1))  (m—>o0)

on which |f'(z)| <e™* and hence

SK(urnVT(rm,f) exp (= V(1 f)) (1+0(1)) =0(1)  (m— oo).

| Fz1) — f(za)| = l fr f'(z) dz

(*) While this inequality is stated for regular functions it is readily seen to be valid for mero-
morphiec functions.
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Now we consider the sets

F.= Lﬂ{{z =re®: 1, <r<6r,, log |f(re®) — a,| < — a,}. 2.7

Taking F,(r) as the argument set in [0, 27) of F, N {]z| =7}, it follows from (1.2) and (2.7)
that

1 1 1
m (7', f_——ak) = EZ J;k(r) log m dO + O(T(’I‘m, f))

as r— oo through the values r, <r<6r,. Since (2.2) holds as r— oo through these inter-
vals we have from (2.8) that

1

1) 1 .
m (r, f—:%) <o L,,mbg o] 20+ 0w ) 2.9)

as r— oothrough the intervals r, <7< 6},,,.
Let G; be the set formed by the components of £ which have a nonempty intersec-
tion with F;(j=1,2,...). From (2.6) and (2.7) if follows that for some integer my,

We define =G n{|z]>r,}. (2.11)

It then follows from (2.10) and (2.11) that the sets &, are pairwise disjoint and each
is the union of components of £. Moreover, since —log |f'(re®)| < a,, = o(T' (7, ) outside
the set £ as r— oo through the intervals r,, < r < 6r,, it follows from (2.1), (2.9), (2.11) and
the definition of &, that (2.3) must hold.

LevMma C. Let the hypotheses and notations of Lemma B be unchanged and let 0, (r)
denote the angular measure of the intersection of &, and {|z|=r} (r,<r<6r,). Then there
exists 0y> 0 such that

lim sup 6,(r) <2x—0, (k=1,2,...) (2.12)

r—>Co
IMEr<6rm

Proof. Since we have assumed that f has at least 2 deficient values we may define

0y=Tlim inf 0,(r) (j=1,2).
T <T<6m

Using a known lemma of Edrei and Fuchs [4; p. 322] we have

1 L ' + 1
o Lw log prayy 40 <22T@r, ) ,(1) [1 +log' (r)]
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and thus, if ;=0 or a,=0 we would have by (1.1) and (2.1) an immediate contradic-
tion to (2.3).
Taking 0,=min {e;, «;} the result then follows.

LEMMA D. Let D be a component of the set £ of (1.3) and g(z,z,) its Green’s function
with pole at z,. Let 8 be the intersection of D with {|z|=r} and 6(r) its angular measure.

Then if S is nonempty
btr)

glre®, z0) dO < 2% w(zq, 7) tan i
N

where, for the case |z, <7, (2, 7) is the harmonic measure at 2, of the component of D N
{|z] <7} containing z,, with respect to the portion of the boundary on {|z|=r}; for |z,|>r,
(29, 7) is the harmonic measure at z, of the component of D N {|z|>r} containing z, with

respect to the portion of the boundary on {|z|=r}; and for |z4| =1, w(zp, r)=1.

Proof. The case |z,|=r is covered by Selberg’s original theorem [15; p. 311]. Sup-
pose now |zy|<r. Then we define a function w(z) on D N {|z|<7} by taking w(z) to be
the harmonic measure of the component of D n {|z| <7} containing z, with fespect to the
portion of the boundary of the component on {|z|=r}. Then, by the principle of monoto-
neity [12; p. 68] and symmetry of the Poisson kernel we have for z=te®€ D n {|z|<r}

w(z)slf (* —)dy <_1_ J‘e(r)m (" =) dy
2 JsrP—2treos (w—o)+12 mJo r*—2rcosy+

l1-w()_1 f" (r+8)dx
> _ [ M ARk
Therefore, o sorye 1% — 2tr coS 2 + 12
do_ 1 7 dx 1 0(r)
— > — = =— - S. 2.1
and or oz 1 —cosx ~mr cot 4 n (2.13)
By Green’s formula we have
f g— @ rd6 = f rd0 + 2mew(z,). (2.14)

Now, let T be the portion of the boundary of D N {|z|>7} not in S. Another applica-

tion of Green’s formula yields
a9 89
ds— | & =
f on f sor rdf =0

(n denoting the outward pointing normal) so that

9 0_| %
fs 5 740 = fT 5, da<0. (2.15)
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Then, using (2.13) and (2.15) in (2.14) we obtain the result for |z, <r.
As for the case |z,| >, we make the change of variables { =%z and apply the pre-
ceding proof.

LeMmMA E. Let the hypotheses and notations of Lemma D be unchanged. Then

1 (7 do
exp| — —- —_— NS
P( 7T J‘]Zo] Qta:n g(_g_}) (I OI )
4

1 (= do
exp(—j—zf1r ———-@> (20| >1)-

t
Qan4

(2, ") <

L

Proof. We assume first |2o| <7 and let z, € D(|2zy| < |2,| <7). Take w(z;,0) to be the
harmonic measure at z, of the component of D n {|z| <g} (|z;| << r) containing 2, with
respect to the intersection of {z|=p and 7 Then as in the proof of Lemma D we have

1 [oer (0" — oD ax 2 ! b(0)
< = 1 b . :
(24, 0) J:) Qz Q% 200 c08 arc tan (Q o tan ) (01 |z1|) (2.16)

Following Carleman (cf. [12, p. 76]) we observe that for [zy| <o, < g, the inequality
(2.16) implies

< — t. s =1 2=t s
(,()(20, g) (&TC an (9 01 tan (t)(ZO Ql)
and thus
2 Q 91 ( 6(9))~1)
_— < — s — 8 tan | =———= n —r . 2'17
w(z‘)’ Q) (0(20, 91) w(z(l Ql) Ie ( . ta 1 ( )

Now, by the principle of monotoneity, w(z;, p) is monotone decreasing with g, and
we may thus apply standard results (cf. [10; pp. 211, 212]) dealing with its derivative.
In particular dew(z,, 0)/dg exists almost everywhere and by (2.17) satisfies

dw _ o 0)
% (20, 0) < " (2.18)

tan 2/
mp tan =/
Integrating (2.18) from |z,| to r we obtain the desired inequality in the case |zo| <7.
The case |zy| =r is trivial; if |z,| > the result follows from the above proof and the change

of variable { =+%/3.
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3. Proof of the theorem

Let {r,} be a sequence of Pélya peaks of order y of T'(r, f). By (2.3) of Lemma B,
we may consider the quantities

1
log 55— df
5= lim inf f &N 8 |f (re'®)|
A T(r, )

"TmSr<6rm

@3.1)

in place of the respective deficiencies d(ay, f) in (1).
By consideration of the inequality [11; p. 25]

—f,— f “log* M (s,g) ds < K(x) T(ar,g) (x> 1)
1

and the properties of Pélya peaks (1.1) together with (2.1) we may take sequences {ry},
{rm} satisfying

Py ST <27y Br,<rp<6r, (3.2)

and such that

log* M (r;,,, f—l,) SEKT(@tmf) log* M (r:',,, f—l,) <KT(@m, ) (3.3)

where K =K(u, d(a,, f)) and m >m,.

For each of the zeros z,(§=1,2, ..., 2, ) of f(2) in & N {rn<|z| <rn}, let g(z,2;,x)
be the Green’s function of the component of &, N {r,, <|z| <7y} containing z; ;, and having
its pole at z; .

We now introduce functions k, ,(z) and ks (2). For z€ &, N {r, <[z| <7y} let by ,(z)
be the harmonic measure of the component of &, N {r, < |z|< 7m} contajning z, with re-
spect to the portion of the boundary of the component on {]z|=,} in the case this compo-
nent extends to the circumference {|z|=ry}; otherwise let hy ,(2)=0. If 2¢ &, N {rm<
|z| <rm} for any m we again take &, ,(z) =0. The function %, ;(2) is defined in an analo-
gous way with regard to the circumference {|z|=ry}.

Then, for ry, <r < ry, it follows from (3.2) and (3.3) that

1
log —5—— d@
f &n g |f (re'%)] _2mom _ ! pkim
T(T, fl) T(T, f’) = T(/rm, fl) Ex(r) j=1

g(re”, z;,) dO

+K hy (re®)df + K b, (re'®y dO (3.4)

Ex(r) £x(M)
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where, in the integration of the Green’s functions we take g to be zero outside its region
of definition, and, as before, £(r) to be the argument set in [0, 27) of &, N {|z|=r}.
Let 0,(r) be the measure of E,(r). Then, from (3.1), (3.4), (1.2), and (2.1) we have

b (1-+o(1)) _ 1 om
i) Tlrm f) r0%(r) Ek(T)jglg(re 21,6 40
K J‘ K
toms Py (re'®y dO + b o (re® dO 35
r03(r) J eyn e (re’) r03(r) J ey 2.4(re”) (3.5)

! ”
as 7> 00, 1y, < I <Tp.

We now integrate both sides of (3.5) from 3r,, to 4r,, and obtain

4Tm Pr,m  [4rm
8, (L +o(1)) dr 3 f L()-"W 2 24,k) 4 d

srm TOR(r) S Trmf) ("“m,f )I 1 rbi(r)
K f L[ veydsdrr k[ = hy o(re®) dfdr.  (3.6)
arm 70R(7) J ey L 8rm Tek(" ) Jen =

We next estimate the first term on the right side of (3.6). To this end, we first ob-
serve that Lemma C implies the existence of a constant K = K(6,) >0 such that for r,, <
7 <Tp, and m>m,

tan 6"1’) < KO, (7). (3.7)

Now, let §, be the index corresponding to the maximum term in the sum in (3.6),
and z,=z, ;. We assume that 37, <|z,| <47r,; the modifications needed for the other case

will be obvious.. Then, applying Lemma D, (3.7), and Lemma E we obtain, for m > my(k)
plc m 41
g(re® z, k) Kpy,m ™ (2, 7)
didr < dr
T(rm’ j‘ 3rm Lk(f) 702 ( maf 37m rok('r)

2] dt T dt
<« Epem (fl #l ( f £0 (¢ ) f“mkeXp (_ KJ‘I%I t@k(t)) r)
l

T(Tm, .f 'rok Zk| rek: (7’)

_ Kpem ( il d{ ( flebl dt )} f4rmi{( (,_Kfr __di_)}dr)
Tt ) \J o 1 19, () L2 AN W TN
ka.m
Trn ) (38)

Next consider the remaining terms on the right side of (3.6). The same estimate for
harmonic measure and (3.2) yield
4— 712908 Acta mathematica. 128. Imprimé le 20 Décembre 1971.
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4rm 4irm .
f _1 hy x(re®)dOdr + L ~21—~ by, (re!®) d6 dr

arm 703(r) &0 m 70%(7) Jeum

3rm 4rm dr T dt 4rm d?’
< — 2 7
2”‘”‘"( Kf t@(t)fsfmrez(r)””e” ( E i 0.0 Jora 7026
3rm dt . brm dt 4rm d?’
confosn (K[ v (R[N [
”(e"p( 2 te,,m) TP v 18,0)) Jorn 785D @9
Combining (3.6), (3.9), and using the Cauchy-Schwarz inequality twice yields

i Rpem 3tm ) (_ 5rm i )
‘5"(“"“”<U3,,,. B >) Trmf) eXP( K L,m w0) T\ K, B

kam (J‘&rm dr )— (_ $Tm dt )
ST ) \Jom 8o TER ), 8

brm 4rm 2
+K exp(—K dt )< Kpi.m (f B (r) dr)

m tek (t ( rm.f 3rm T
3rm d 5tm dt
+ K exp (— K . tﬂk(t)) + K exp (— K - —tek (t)) (3.10)

as m-> oo,
Using in (3.10) the simple estimates (J¢,)¥ <S¢t (¢, >0) and

Ky, m f”’" B (r) ) ) Kpym f Arm Bk )]
(T(rm, ) ( o 7 7)) T e T
we obtain

4rm 8rm 5rm
5§(1+o(1))<~@&1‘,-+f ekr(’) dr+Kexp(—K at )+Kexp(—Kf ——d—f—)
8

T(rrmf) Tm 27m tek(t) 4 t@k (t)
g e () o ()
T(rm,f)+ 3rm T dr+ K 2rm 105 (8) +K irm 10, ()

< EKpem f ek(r) f 8rm f Srm 9,,(#)

T(”)+ dr+ K dt+K dt (3.11)

as m-» oo,

In view of (3.11), we may for each & choose my=m,(k) such that for m > m,

br,
t Pr,m ™ G ()
<K (T(rm,f')+ f% " dr},

where K depends only on the lower order u and the size of the first two deficiencies

a(als f)s 6(“% f)'
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For a finite set 6;, ..., 6, we thus have for all sufficiently large m

57m G, (r)

2rm T

dr. (3.12)

i<k 3 Pem i3S f
;21 * kgl T(rmf) kgl

The second term on the right side of (3.12) is clearly bounded above by 2zK log §.
As for the first term on the right side, since p, ,, is the number of zeros of f'(z) in

& N0 {rn<|z| <7y} it follows from (2.1) and that

n

1 1 1
2 PrmS<n (67',,,, f_') <I&g——2 N(Q12r, —)

) 4
1 1 2.12# '
<@ T(IZTW ?) <m D(rm, ') (1 +0(1))

as m-—» oo,
Thus both sums on the right side of (3.12) are bounded independent of n and hence
S% 18} < oo from which (1) follows.
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