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Introduction 

Whether one studies the geometry or analysis in the complex number  space C a + l ,  

or more generally, in a complex manifold, one will have to deal with domains. Their 

boundaries are real hypersurfaces of  real codimension one. In  1907, Poincar4 showed by, a 

heuristic argument tha t  a real hypersurface in (38 has local invariants unde r biholomorphie 

transformations [6]. He also recognized the importance of the special uni tary group which 

acts on the real hyperquadrics (cf. w Following a remark by B.  ~Segre, Elie :Cartan 

took, up again the problem. In  t w o  profound papers [1], he gave, among other results, a 

complete solution of the equivalence problem, tha t  is, the problem of finding a complete 

system of analytic invariants for two real analytic real hypersurfaees in C~ to be locally 

equivalent under biholomorphic transformations. 

Let z 1, ..., z n+l be the coordinates in Cn+r We s tudy a real hypersurface M at  the 

origin 0 defined by  the equation 

r(z l  . . . . .  Zn+l, ~1 . . . .  , ~ n + l )  = O, ' ( 0 . 1 )  

where r is a real analytic function vanishing at  0 such tha t  not  all its first partial  

derivatives are zero at  O. We set 

Z = (zl,: . . . . .  gn) ,  Z n+x = W  = U + i V .  ( 0 . 2 )  

After an appropriate linear coordinate change the equation of M can be written as 

v = F ( z ,  ~: u), (0.3) 

where F is real analytic and vanishes with ,its first partial  derivatives at O. Our basic 

assumption on M is , that  i t  be:nondegenerate, tha t  is, the Levi  form 
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is nondegenerate at  0. In  w 2, 3 we s tudy the problem of reducing the equation to a 

normal form by  biholomorphie transformations of z, w. This is first studied in terms 

of formal power series in w 2 and their convergence to a holomorphic mapping is 

established in w 3. The results are stated in Theorems 2.2 and 3.5. I t  is worth noting tha t  

the convergence or existence proof is reduced to tha t  of ordinary differential equations. 

The normal form is found by fitting the holomorphic image of a hyperquadric closely 

to the given manifold. For n = 1 this leads to 5th order osculation of the holomorphie 

image of a sphere at  the point in question, while for n >~2 the approximation is more 

complicated. In  both eases, however, the approximation takes place along a curve 

transversal to the complex tangent  space. The family of the curves so obtained satisfies a 

system of second order differential equations which is holomorphically invariantly 

associated with the manifold. For a hyperquadric, or the sphere, these curves agree with 

the intersection of complex lines with the hyperquadric. For n = 1 the differential equa- 

tions can be derived from those of the sphere by  constructing the osculating holomorphic 

image of the sphere, while for n > 1 such a simple interpretation does not seem possible. 

This family of curves is clearly of basic importance for the equivalence problem. At 

first the differential equations for these curves are derived for real analytic hypersurfaces 

but  they remain meaningful and invariant  for five times continuously differentiable 

manifolds. 

On the other hand, equation (0.1) implies 

iOr = --iOr, (0.5) 

which is therefore a real-valued one-form determined by  M up to a non-zero factor; we 

will denote the common expression by  0. Let T,  and T* be respectively the tangent and 

cotangent spaces a t  x f i M .  As a basis of T* we can take 0, Re (dz~), I m  (dz~), l<~at<~n. 

The annihilator T, .c=O • in T has a complex structure and will be called the complex 

tangent  space of M at  x. Such a structure on M has been called a Cauchy-Riemann 

structure [8]. The assumption of the nondegeneracy of the Levi form defines a conformal 

hermitian structure in T~. c. To these data  we apply Cartan's  method of equivalence, 

generalizing his work for C~. I t  turns out tha t  a unique connection can be defined, which 

has the special unitary group as the structure group and which is characterized by  

suitable curvature conditions (Theorem 5.1). The successive covariant derivatives of the 

curvature of the connection give a complete system of analytic invariants of M under 

biholomorphic transformations. The result is, however, of wider validity. First, it 
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suffices that  the Cauchy-Riemann structure be defined abstractly on a real manifold of 

dimension 2n + 1. Secondly, the connection and the resulting invariants are also defined 

under weaker smoothness conditions, such as C ~, although their identity will in general 

not insure equivalence without real analyticity. In  this connection we mention the 

deep result of C. Fefferman [2] who showed that  a biholomorphic mapping between two 

strictly pseudoconvex domains with smooth boundaries is smooth up to the boundary. 

The equivalence problem was studied by N. Tanaka for real hypersurfaces in 

Cn+l called by  him regular, which are hypersurfaces defined locally by the equation (0.3) 

where F does not involve u [7 I]. Later Tanaka stated the result in the general case 

[7 II], but  the details, which are considerable, were to our knowledge never published. 

One interesting feature of this study is the difference between the cases C~ and 

Cn+l, n ~ 2. There is defined in general a tensor which depends on the partial derivatives of 

r up to order four inclusive and which vanishes identically when n = 1. Thus there are 

invariants of order four in the general case, while for n = 1 the lowest invariant occurs in 

order six. This distinction is also manifest from the normal forms. 

The Cauchy-Riemann structure has another formulation which relates our study to 

systems of linear homogeneous partial differential equations of first order with complex 

coefficients. In fact, linear differential forms being covariant vector fields, the dual or 

annihilator of the space spanned by 0, dz ~ will be spanned by the complex vector fields 

X~, l ~ n ,  which are the same as complex linear homogeneous partial differential 

operators (cf. w 4). The question whether the differential system 

X,tw=O, l ~ < ~ < n ,  (0.6) 

has n + 1 functionally independent solutions means exactly whether an abstractly given 

Cauchy-Riemann structure can be realized by  one arising from a real hypersurface in 

Cn+l. The answer is not necessarily affirmative. Recently, Nirenberg gave examples of 

linear differential operators X in three real variables such that  the equation 

Xw = 0 (0.7) 

does not have a nonconstant local solution [5]. 

I t  may be interesting to carry out this correspondence in an example. In C~ with 

the coordinates 
z = x + y i ,  w = u + v i ,  (0.8) 

consider the real hyperquadrie M defined by 

v = z~  = x ~ + y ~  ( o , 9 )  

On M we have 
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0 = ~ w - i ~ d z  = ( ~ u + x d y - y d ~ ) ,  dz =dx+idy.  

Solving the equations 0 = dz - O, 

we get dx: dy: du  = - i :  1: =2z. 

The corresponding operator, defined up to a factor, is 

Ox i~y O~u = ~ -~x+~ - i ( x + y i )  , (0.10) 

which i s t h e  famous operator discovered by Hans Lewy. 

The spirit of our study parallels that  of classical surface theory. We list the 

corresponding concepts as follows: 

Surfaces in euclidean 3-space 

Group of motions 

Immersed surface 

Plane 

Induced riemannian structure 

Isometric'imbedding 

Geodesics 

Real hypersurfaces in Cn+l 

Pseudo-group of biholomorphic transformations 

Non-degenerate real hypersurface 

Real hyperquadric 

Induced CR-structure 

Existence of local solutions of certain systems of 

PDEs  

Chains 

Because of the special role played by the real hyperquadrics we will devote w 1 to a 

discussion of their various properties. Section 2 derives the normal form for formal 

power series and w 3 provides a proof that  the resulting series converges to a biholo- 

morphie mapping, These results were announced in [4], In w ~ we solve the equivalence 

problem of the integrable G-structures in question .in the sense o f  Elie Car tan.  The 

solution is interpreted in w 5 as defining a connection in an appropriate bundle: Finally, 

the results of  the two  approaches, extrinsic and intrinsic respectively, are shown to agree 

with each other in w 6. 

In the appendix we include results of S. Webster who derived some important  

consequences from the Bianchi identities. 

1. The real hyperquadrics 

Among the non-degenerate real hypersurfaces in C~+1 the simplest and most im- 

portant  are the real hyperquadrics. They form a prototype of the generalnon-degenerate 

real hypersurfaces which in turn derive their impor tant  geometrical properties from the 

"osculating" hyperquadrics. In fact, a main aim of this paper is to show how the 
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geometry of a general non-degenerate real hypersurface can be cqnsidered as a generaliza- 

tion of that  of real hyperquadrics. We shall therefore devote this section to a study of this 

special case. 

Let za, zn+ 1 (= w =u + iv), 1 <~ ~ <~n, be the coordinates in C,+r A real hyperquadric is 

defined by the equation 
v=h:,~z%~, z ~=z'~,, (1.1) 

where ha~ ~re co,slants sgtisfying the condit ions 

h~ = hp~ = h~, det (h~) * 0. (1.2) 

Throughout this paper we will agree that  small Greek indices run from 1 to n, unless 

otherwise specified, and we will use the summation convention. By the linear fractional 

transformation 

2z ~ w ~ = w , i  
Z~ ~io:~i  . . . .  w + i ; :  (1.3) 

equation (1.1) goes into 
h~Z'~Z p + W W  = 1. (1.4) 

This defines a hypersphere of dimension 2n + 1 when the matrix (h~) is positive definite. 

In general, we suppose (h~) to have p positive and q negative eigenvahies, p ~q =n. 

[fi order to describe a group which acts on the hyperquadric Q defined by (1.1), we 

introduce homogeneous coordinates ~a, 0 ~<A ~<n +1, by the equations 

z~=~/~ ~ l~<i~<n+l.  (1.5) 

C,+1 is thus imbedd, ed as an open subset:~ ~~ the:: complex 0rojective space P,+I of dimension 

n + 1. In homogeneous coordinates Q has the equation 

i! 

r �9 - ~ , ~  ) =  . (1.6) 

For two vectors in Cn+~: 

Z = (~0, ~1 . . . . .  ~n+x!),. Z '  ~-.(~t O, ~ t l  . . . . .  $ ' ,~-!) ;  (1.7) 

we introduce the hermitian scalar product 

(z, z') = h ~ ' P ~ + - ~  (~n~+,~,o _ ~o$, .+,)  (1.8) 

This product has the following properties: 
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(1) (Z, Z') is linear in Z and anti-linear in Z'; 
(2) (z, z')=(z',  z ) ;  

(3) Q is defined by 
(z, z) = o. (l.6a) 

Let SU(p+I ,  q + l )  be the group of unimodular linear homogeneous transformations 

on CA, which leave the form (Z, Z) invariant.  Then Q is a homogeneous space with the 

group ~ U ( p + l ,  q + l )  as its group of automorphisms. I t s  normal subgroup K of order 

n +2,  consisting of the transformations 

r  En+2=l ,  0 ~ < A ~ < n + l ,  (1.9) 

leaves Q pointwise fixed, while the quotient group SU(p + 1, q + 1)/K acts on Q effectively. 

By a Q-frame is meant  an ordered set of n +2  vectors Zo, Z1, ..., Zn+, in C,+2 satisfying 

i 
(z~ ,  z p )  = h ~ ,  (go,  Z . + I )  = - ( Z . + l ,  Z0) = - ~ ,  (1.10)  

while all other scalar products are zero, and 

det (Zo, Za ..... Z,+,) = 1. (1.11) 

For later use it will be convenient to write (1.10) as 

(Z~, ZB) = ha~, O ~ < A , B < n +  1, (1.10a) 

i 
where ~.~u = - h,+,.~ = - ~, (1.10 b) 

while all other h's with an index 0 or n + 1 are zero. There is exactly one transformation 

of SU(p+I ,  q + l )  which maps a given Q-frame into another. By taking one Q-frame as 

reference, the group SU(p+I ,  q + l )  can be identified with the space of all Q-frames. 

In  fact, let ZA, Z] he two Q-frames and let 

z~ = a~Z~. (1.12) 

The linear homogeneous transformation on C,+2 which maps the frame Za to the frame 

Z] maps the vector ~aZ a to 
r = ~'4 a~ Z~. (1.13) 

I f  we denote the latter vector by r we have 

r = a~A,  (1.14) 

which is the most general transformation of S U ( p + I ,  q + l )  when Z* runs over all 

Q-frames. 
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Let H be the isotropy subgroup of S U ( p  + 1, q + 1), tha t  is, its largest subgroup leav- 

ing a point Z 0 of Q fixed. The most general change of Q-frames leaving the point Z o fixed is 

Z; = tZo, 

Z*~ = t~Z o + t~P Z p, (1.15) 

Z'n+1 = TZ 0 -~ ~'flZ/~ -I- ~- lZn+l ,  
where 

t,-1 det(ot:)= 1, / 

o / 

/ 
In the first equation of (1.16) we have used h :  to raise or lower indices. Observe that  

gn+l lies on Q, as does gn+l; the equa- the last equation of (1.16) means that  the point * 

tion can also be written 
Im (Tt -1) = - h r  (1.17) 

H is therefore the group of all matrices (!o o) 
t~ # 0 (1.18)  
$~' t-1 

with the condition s ( 1.16 ) satisfied. I ts dimension is n ~ + 2n + 2. By  ( 1.14 ) the corresponding 

coordinate transformation i s  

~ =  t~+ t ~ +  Tr ~.1, 
J 

~*n+l = ~-1 ~rt+l, J 

or, in terms of the non-homogeneous coordinates defined in (1.5), 

Z*# = ($t?ZCt q- 1"#W) t - l ~  -1 ] 

w* = Itl-2w~ -1, l (1.20) 

where ~ = 1 + t-at,,z~'+ t-ITw. (1.21) 

We put  C~ # = t-itS, C= aa~'= t -~vB,  e = Itl -~. (1.22) 

Then (1.20) can be written 
z *p = C~ (z~+ a ~w) ~-1, ~ (1.23) 
w* = Qw~ -1. l 
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By (1.16) the coefficients in (1.23) satisfy the conditions 

G,,aC/ha~ = Qh~, (1.24) 
and the coefficients in 0 satisfy 

- (1.25) 
Im'(t=a~) ~ - h~a~a ~. J 

Equations (1.23) give the transformations of the ~so~ropy group H in non-homogeneous 

coordinates. 

Incidentally, the hyperquadric Q: can be viewed as a Lie group. To see this we con- 

sider the isotropy subgroup leaving Z,+ 1 fixed. The relevant formulae are obtained from 

(1.19) by the involution ~0_~,+1, ~n+x_~ _~0, $a-~$~ ( a = l ,  2, ' . ;  n): 

�9 ~,B= _ v P ~ o + t  ~ -  .(1.26) 

r ~ o +  t , r  tr 

with the same restrictions (1.16) on the coefficients. We consider the subgroup obtained 

by choosing 

t2  = (~2, t =  I (1.27) 
and hence, by (1.16), 

t~ = - 2 i h ~  B, Im ~+,h~v~v p = 0. 

In, non-homogeneous coordinates we obtain 

z *a = a a + z: w't w* = b + 2ihaii:z~'~ LF (1.28) 

where a ~= - ~ ,  b= - %  $ m . b = h ~ a a a  ~ .  

Thus the point with the coordinates (al,'a~ ,..,~", b) carl~be viewed as a point on Q. If 

we take the point (z 1, z 2 ..... z", w) also in Q the n (1.28)defines a noncommutative group 

law on Q, making Q a Lie group. Moreover, the (n +2) 2~ 1 dimensional group S U ( p + I ,  

q + l ) / K  is generated by the subgroup (1.26) satisfying (1.27) and the isotropy group H. 

The Maurer-Cartan forms of SU(p+ 1, q+ 1) are given by the equations 

. dZA =~ABZb' . (1.29) 

They are connected by relations obtained from the diffentiation of (1,10 a) which are 

~ + ~ A  = O, (1.30) 
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where the  lowering of indices: is relatiye to ha.h. For the s t u d y  of the geometry of Q i t  

will he useful to write out these equations explicitly, and ~e  have 

" 

n + i  L n + l  . . . . .  
0 - -  :Tgn' = ,7~n+10 - -  :7~n+ 10 ~ O, 

~ :  + ~[:n + I n + l  = 0 ,  

�89 i~ ~ + :rn+~hp~ = O, 

~n+l ~ 2i~ro~hD~ = O. 

(L30a) 

Another relation between the ~'s arises from the differentiation of (1.11). I t  is 

~a a = 0, (1.31) 

or, by (1.30 a), zr~ = + ~ro ~ - ~0 ~ = 0. (1.31 a) 

The structure equations of SU(p + 1, q-~ i) are obtained by the exterior differentia- 

tion of (1:29) and a re '  
dT~aB=yrACA,Y~C B, ' 0 <  A, B~,C~. n~+ 1 .  (1.32) 

The linear space Tc spannedby  ~Z~ ~ZI~":'Z n is ~thec~ tangent space of Q at Z 0. 

I t  is of complex dimension nl in contrast to the real tangent space of real dimension 

2n + 1 of Q, which is defined in the tangent bundle o f  Pn+a, and not in Pn+l itself. The 

intersectio n of Q by a comple x line transversMto Tc!s called a chain; On e easily verifies that  

a comple x line interseetin~ T e transversally at some ppint of Q i s  transversal to Tc at  

every other point of intersection with Q. Without loss of generality, suppose th e complex 

line be spanned by Z0, Zn+ 1. The line Z0, Zn+l being fixed, it follows that  along a chain 

dZoi i/Zn+ 1 are linear combinations of Z0, Zn+ i. '~Ience the chains are defined by the system 

of differential equations 
~r0 ~ = zen+l , 0~ (1.33) 

Through every point of Q and a n y  preassigned direction transversal to Tc there is a 

unique chain. Since the complex lines in P.+I depend on 4n real parameters, the chains on 

Q depend on 4n real parameters. The not ion of a chain generalizes to an arbitrary real 

hypersurface of Cn+ x. 

w 2. Construction of a normal form 

(a) In this section,we eonsider:~he equivalence problem ~oin  an  extrinsic point~ of 

view. Let  
r (z), z 2 " :~ ,,+1 :,.~,.,z~ ,Z,~,: .... ,~ : ) = 0  
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denote the considered hypersurfaee M in C TM, where r is a real analytic function whose 

first derivatives are not all zero at  the point of reference. Taking this point to be the 

origin we subject M to transformations holomorphic near the origin and ask for a simple 

normal form. At first we will avoid convergence questions by  considering merely formal 

power series postponing the relevant existence problem to the next  section. 

We single out the variables 

and assume tha t  we have 
r~, = O, ~ = 1  .... .  n 

r w = - r ~  ~eO 

at  the origin. This can be achieved by  a linear transformation. Solving the above equation 

for v we obtain 
v = F(z, ~, u) (2.1) 

where F is a real analytic function in the 2n + 1 variables z, ~, u, which vanishes a t  the 

origin together with its first derivatives. This representation lacks the previous sym- 

met ry  but  has the advantage that  F is uniquely determined by  M. 

We subject this hypersurface to a holomorphic transformation 

z* = / ( z ,  w) ,  w* = g(z ,  w) ,  (2.2) 

where / is n-vector valued holomorphic, g a holomorphic scalar. Moreover, /, g are 

required to vanish at  the origin and should preserve the complex tangent  space (2.1) at  

the origin: w=0 .  Thus we require 

/ = 0 ,  g=O,  O g = O  at  z = w = O .  (2.3) 
Oz 

The resulting hypersufface M* will be written 

v* = F*(z*, z*, u*). 

Our aim is to choose (2.2) so as to simplify this representation of M*. 

From now on we drop the assumption tha t  F is real analytic but consider it as a formal 

power series in z I ..... z n, ~1 .... .  ~n, and u with the reality condition 

P(z, ~, u ) =  ~'(~, z, u). 

Moreover, F is assumed to have no constant or linear terms. This linear space of formal 

power series will be denoted by  ~. Similarly, we consider transformations (2.2) given by  

formal power ser ies/ ,  g in z I . . . . .  z n, w without constant term and--according to (2.3)-- 
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no terms linear in z for g. These formal transformations constitute a group under 

composition which we call ~. Often we combine f and g to a single element h. 

For the following it is useful to decompose an element F E ~ into semihomogeneous 

parts: 
co 

F = ~ F~(z, ~, u) 
vffi2 

where F~(tz, t~, t2u)=t~F~(z, ~, u) for any t>0 .  Thus we assign u the "weight" 2 and z, 

the "weight" 1. To simplify the terms of weight ~ = 2 we observe tha t  they do not contain 

u--since F contains no linear te rms--so  tha t  

F2 = Q(z) +Q(z )  +H(z, z) 

where Q is a quadratic form of z and H a hermitian form. The transformation 

removes the quadratic form, so tha t  we can and will assume tha t  F~=/-/(z, z) is a 

hermitian form. This form, the Levi form, will be of fundamental  importance in the 

following. In  the sequel we will require tha t  this form which we denote by  

(z ,  z )  = F~ 

is a no~egenero~e hermitian form. I f  (z, z) is positive the hypersurface 3 /  is strictly 

pseudoconvex. With (z t, z2) we denote the corresponding bilinear form, such tha t  

With this simplification M can be represented by  

v = (z, z) + F (2.4) 

CO 

where F - -  ~ Fv 

contains terms of weight ~ >/3 only. Now we have to restrict the transformation (2.2) by  

the additional requirement tha t  ~g/~z~zB vanishes at  the origin. 

(b) Normal forms. To determine a formal transformation in ~ simplifying M* we 

w r i t e  it in the form 
co co 

z* = z + ~ f~, w* = w + ~ g~, (2.5} 
v = 2  I, ffi3 

where ~v(tz, t~w) = tv~(z, w), gv(tz, lhv) = tvg~(z, w), 
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and vallu the "weight" of these polynomials/v, g~. Inserting (2.5) into 

~ ,  = <~*, z*~+F * 
�9 I 

and restricting the variables z, w to the hypersurface (2.4) we get the transformation 

equations, in which z, 5, u are considered as independent variables. Collecting the terms of 

weight / t  in the relation we get 

F ~ + I m  g~,(z, u +i(~ ,  ~>) = 2 R e  (/~_~, zy + F*  +...  

where the dots indicate terms depending on/v-l ,  g~, F, ,  F* with u <ft. In F~ the arguments 

are z, w = u + i (z ,  z}.  We introduce the linear operator L mapping h = (/, g) into 

L h =  Re {2(z , / )  + ig}~==+,(~.~> (2.6) 

and write the above relation as 

L h  = Fj,  - F*~, ~, ... for h = (tg-1, gg) (2.7) 

and note that  L maps/g~l,  gg into terms of weight/~. 

In order to see how far one can simplify the power  series F* one has  to find a �9 / t  : .  

complement of t h e  range of t h e  operator L which i s  a matter  of  linear algebra. More 

precisely we will determine a linear subspace ~ of ~ such that  ~ and the range of L span :~; 

i.e., if ~ denotes the space of h = ( / ,  g ) w i t h / = ~ = 2 / v ;  g = ~ a g ~ , ,  then we require tha t  

= L ~ +  ~ and ~ ~ L ~  = (0). (2.8) 

Thus ~ represents a complement of the range of L. 

Going back to equation (2.7) it is clear that  we can require that  F~ belongs to 

and solve the resulting equation for h. Using induction it follows that  (~.5) van be deter-' 

mined such that  the function F* belongs to ~. We call such a hypersurface M* with 

F* q ~ in "normalform". I t  is of equal importance to s tudy how much freedom one has in 

transforming (2.4) into normal form which clear)y depends on the null space of L. Thus 

we have reduced the problem of finding a transformation into normal form of M to the 

determination O f a complement of the r~nge ~, and the null space ~ :the operator  L. Our 

goal will be to choose ~ such that  the elements N i n  ~ vanish to hi.gh or4er at the origin 

so that  the hypersurface M* can be approximated to high degree by the quadratic 

layperShrfa~ce v = <z, z) .  

(c) Clearly a transformation in to ,a  normal form can be unique only up to llolo- 

morphic mappings preserving the hyperquadric v - - ( z ,  z )  as well as the origin. These 

mappings form the ( n + l ) 2 + l  :dimensional i s o t r o ~ : g r o u p  H studied in w 1 and given 
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b y  (1.23). We will make use of H to normalize the holomorphic mapping transforming M 

into normal form. 

After the above preparation we may consider the group ~ of all formal transforma- 

tions preserving the family of formal hvDersurfaees 

v = <z, z> + {weight >~3}, 

as well as the origin. One verifies easily that  the elements of ~1 are of the form 

z* = Cz+{weight>~2}; w* =~w+<weight~>3>, 

where <Cz, Cz> =if(z, z>. Using the form (1.23)one sees that  any r  can be factored 

uniquely as 

with r  and ~ a formal transformation of the form (2.5) with 

8 2 . 
12(0'w)=0; Re~gt(0, w)=0 at w = O .  

g , ~ g ,  

all have no constant term. 

The first term can be normalized by choice of a ~ ( a = l ,  ..., n) in (1.23) :and the second by 

Re (t-l~). We summarize the normalization; conditions for ~v by requiring that  the series 

0w (2.9) 

From now on we may restrict ourselves to ~transformations (2.5) with the normali- 

zation (2.9). The submanifold of power series h =  (/, g) with the condition (2.9) will be 

called ]9o. Similarly, we denote the restrictlbn of the operator L to ]9o by L0. We will see 

that  L0: 290-+ :~ is injective. This implies, in particular, that  the most general formal power 

series mapping preserving v = <z, z> and the origin belongs to the isotropic group H. 

(d) The operator L introduced above is of basic importar~ce. To describe it more 

conceptually we interpret h = (/, 9) as a holomorphic vector field 

near the manifold, M. We describe the manifold v = <z, z> by 

r(z, 2, w,~) <z,z>-~(w-(v)=O. 
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Then Lh = s  r l,-o 

is the Lie-derivative of r along the holomorphie vector  field X restricted to r =0.  Of 

course, L is meaningful  only up to a nonvanishing real factor. 

For  example, if we represent the manifold r = 0  by  

Q = (g,  Z > + W W  = 1 

we can associate with a holomorphie vector  field 

x=2A=  0 + A  ~ +  

the Lie derivative of the above quadrat ic  form 

s  = 2 Re {<A, Z> + B W }  
restricted to Q = 1. 

For  the following we will determine the kernel and a complement  of the range for L 

in the original variables z, w. To formulate  the result we order the elements F in terms of 

powers of z, 5 with coefficients being power series in u. Thus we write 

k , l~O 

where Fkl(~tz, #~, u) = ~lzZFkl(z, ~, u) 

for all complex numbers  2, p,  and call (k, l) the " t y p e "  of Fkz. 

The basic hermit ian form will be wri t ten as 

<z, z> = ~ h~z=~,  ~=~ = hp~. 

Using the no ta t ion  of tensor calculus we define the contract ion tr  (F~,)= Gk-l.~-i of 

Fkl = ~ z ~, z~k~, .. ~ 
~ a a , . . . a k g , . . . g t  �9 

where we assume t h a t  the coefficients aa,... ~z are unchanged under  permuta t ion  of zr 1 . . . . .  ~k 

as well as of ~1 . . . . .  /~z. We define for k, 1 >/1 

tr  (F~) = ~ ba,...a~_~,...~_~ za' za~-~ ~, .. ~ - ~  (2.10) 

where ba, ...a~_lL...~t_ 1 = ~ h%P~aa, ak~,...~r 
gt*,~ l 

Here h ~ is defined as usual by  
h ~ hv~ = (~=~ 

being the  Kroneeker  symbol. 
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For the description of a complement of the range of L o we decompose the space :~ of 

real formal power series as 
:~= ~+~t  

where ~ consists of series of the type 

R = ~ Rkz + Gll (z, z) + (G10 + G01 ) (z, z~ z + O0o (z, z) a 
rain (k./)~<l 

Gj~ being of type (~, m), and where 

7 / =  (Ne:~;  Nkl = 0  min (k, l) ~< 1; t r  _N22 =(tr)2~3~ =(tr)SNa3 =0). (2.11) 

This constitutes a decomposition of :7, i.e. any 2' can uniquely be written as F = R + N with 

R E ~, N E 7/. Thus P F  = R defines a projection operator with range /~ and null space 7/. 

One computes easily tha t  

where 

P F  = ~ F~z + G11 (z, z) + (Glo + Go1 ) (z, z~ ~ + Gee (z, z) a 
rain (k,/)~<1 

4 2 
G u -- ~ - ~  t r  (F~) (n + 1) (n + 2) (tr)2 (Fz~) (z, z) 

(2.12) 

6 
G10 ---- (tr) ~ Fs~ (n+ 1) (n+ 2) 

6 
G00 = (tr) a Faa 

n(n+ 1) (n+  2) 

In  particular, for n = 1 

P F  = ~ Fkz + Fz~ + F~a +.Fa2 + Fa~. (2.13) 
m i n  (k ,  l) <~1 

While for n > l  it is a requirement tha t  (z, z) z divides Fkz (k~/ ) ,  this is automatically 

satisfied for n = 1. 

Evidently this decomposition is invariant under linear transformations of z which 

preserve the hermitian form (z, z). 

The space ~ turns out to be an ideal in :~ under multiplication with real formal 

power series. We will not use this fact, however, and turn to the main result about  the 

kernel and eorange of L0: 

L ~ M A  2.1. L o maps ~o one to one onto ~a=P~3, where ~a denote8 the 8pace o/'those 

F E ~ containing terms o/weight >~ 3 only, and ~o is the 8pace o I lormal power series satistying 

(2.9). 
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Before proving this lemma we draw the crucial conclusion from it: For any F E ~3 

the equation 
L 0h = F (mod ~) 

can uniquely be solved for h in ~0, since this equation is equivalent to PLoh =PF.  Thus 

represents a complement of the range of L o and applying our previous considerations 

on normal forms we obtain 

THEOREM 2.2. A/ormal  hypersur/ace M can be trans/ormed by a/ormal transformation 

z* =z+/(z ,  w), w* =w+g(z ,  w) 

normalized by (2.9) into a normal/orm 

v* = @*, z*} + N  with NE ~.  

Moreover, this transformation is unique. 

COROLLARY. The only /ormal power series trans/ormations which preserve v =(z, z} 

and the origin are given by the/ractional linear trans/ormations (I.23) constituting the group H. 

(e) Obviously it suffices to show tha t  the equation 

Lh = F (rood ~)  

possesses a unique solution h E ~qo. Here F is a formal power series containing terms of 

weight ~ 3 only. Collecting terms of equal type we have to solve the equations 

(Lh)kz = Fkl for min(k, l) ~< 1 

(Lh)k~ = Fkz (mod }l) for (k, l) = (2, 2), (3, 2), (3,3). 

For this purpose we calculate (Lh)k~ for the above types (kl/); because of the real character 

o f F  we may  take k ~>l. We will use the identi ty 

oo / ~ \ v iv (z z~v 
/(z, u + i <z, z}) = ~ i ~ J  /(z, u) ~ ,  -~ . 

v= I \ ~ 7  ~'. 

Expanding/(Z, w), g(z, w) in powers of z, ~ we write 

oo ao 
/=  ~. s g=Vg~ 

k=O k=0 

,where /k(tz, w) = tkfk(z, W), gk(tZ, W) = tkgk(z, W). 

"This notation should not  be confused with the previous one which combined terms of 

equal weight, and which will no longer be needed. 
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We write L h  in the form 

L h  = R e  { 2 ( / ,  z )  + ig} ~. , ,  + ~ <~. ~) = < / + / '  i (z ,  z )  + . . . .  z )  

+ ~ (g + g ~ (z, z) + . . . )  + complex conj. 

where the arguments of / ,  /', .... g, g', ... are z, u,  and the prime indicates differentiation 

with respect to u. Now we collect terms of equal type (k, l). For example, if k >/2 the terms of 

type (k, 0) and (k+l ,  1), respectively are 

so that we have 

i 

(~>2) .  
2 ( / k + i ,  Z) - -  g~ (Z,  Z)  = 2 F k + l .  1 

(2.14 a) 

For k = 1 one gets additional terms and an easy calculation shows 

ig 1 + 2 ( z ,  /o> = 2tVlo 

- g~ (z ,  z )  + 2 (/~, z )  - 2 i  (z , / 'o)  (z ,  z )  = 2 F ~  

i . 
' Io ) ( z ,  z )  = 2~'s~ - ~ gx ( z ,  z )  z + 2 i  (12, z> ( z ,  z )  - ( z ,  " 2 (rood ~).} 

Finally, for k=0  one obtains four real equations, 

- I m g o  =Foe 
�89 " 2 go (z, z) - 2 Im (/1, z) (z, z) = F~2 

- Re  go (z, z )  + 2 Re  (h ,  z)  = ~'111 
Reg0 (z,z) s - R e  " 2 " (/1, z)> (z, z) = FBs 

(mod ~) ] 

(mod ~). 

(2.14b) 

(2.14 c) 

Thus we obtain three groups of deeoupled systems of differential equations; actually the 

last system (2.14e) decouples into two groups. 

The solution of these systems is elementary: Equations (2.14a) can be solved uni- 

quely for ]k+l, g~ (k~>2). Equations (2.14b) are equivalent to 

/gl + 2 (z,/o) = 2 Fie 

- g~ (z ,  z )  + 2 ( ls ,  z )  - 2 i  (z ,  1o> (z ,  z )  = 2 F~I 

- 4 <~,/o) (z, ~)~ = 2 F32-  2 i F h  (z, ~) - F;o <z, z )  ~ (rood 7?). 

Since the last equation has to be solved (rood ~) only we replace the right-hand side by 

its projection into ~, which we call Glo(Z , z )  ~ so that 
16 - 742902 Acta mathematica 133. Imprim6 le 20 F6vrier 1974 
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-4<z,/0> -- G10. 

With such a choice of [0 one solves the first equation for gl and then the second for ]~. 

Here [0 is fixed up to a linear function in w; but  by  our normalization (2.9), [0 and hence 

gl, [3 are uniquely determined. 

Finally we have to solve (2.14c): Since 

F ~  = Gl~<Z, z> +~V=, ~v~ e ~ 

the second equation takes the form 

/ t  t � 89  go <z, z> --2 I m  (/1, z> = Gll 

which can be solved with the first for I m  go and I m  (/~, z> =(d /du ) Im  (/1, z>. Since 

/1 vanishes for u = 0 we determine I m  go, lan <fl, z> uniquely in this way. 

The last two equations of (2.14c) are equivalent to 

t 

- R e  go <z, z> + 2 R e  <fl, z> = F n 

-~Rego' --a~ 
where we used tha t  

-~aa + �89  z> 2 = Goo<Z, z> a (rood ~). 

Clearly, the last equation can be solved for Re go' and then the first for Ice </1, z>. Thus 

go is determined up to aw+bw ~, a, b real. But  by  our normalization both a = 0  and b=O, 

and Re go, ICe </1, z> are uniquely determined. 

Thus, summarizing, all equations can be satisfied by/k,  gk satisfying the normalization 

(2.9) and uniquely so. This concludes the proof of the Lemma 2.1 and hence of Theorem 2.2. 

w 3. Existence theorema 

(a) So far we considered only formal series and now turn to the case of real analytic 

hypersurfaces M. We will show tha t  the formal series transforming M into normal form 

are, in fact, convergent and represent holomorphic mappings. In  the course of the proof 

we will obtain a geometrical interpretation of the condition 

t r  N22 = 0, (tr) ~ Na~ = 0, (tr)3N38 = 0 

describing the normal form. 

We begin with a transformation into a partial normal form: Let  M be a real analytic 

hypersurface and 7 a real analytic are on M which is transversal to the complex tangent  

space of M. Moreover, we give a frame of linear independent vectors ec, qTc  (~=1,  ..., n), 

also real analytic along the curve 7. All these data  7, e~ are given locally near a 

distinguished point Io on 7. 
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THEOREM 3.1. Given a real analytic hypersur/ace M with the above data ~, e~ there 

exists a unique holomorphic mapping ~ taking p into the origin z-~w=O, ~ into the curve 

z=O, w=~, where ~ is a real parameter ranging over an interval, and e a into r a 

and the hypersur/ace into r given by 

v = F l l ( z , ~ , u ) §  • F~,(z, 5, u), (3.1) 
rain (k,l)~2 

Proo/. We may  assume tha t  the variables z = (z 1 . . . . .  $') and w are so introduced tha t  

p is given by  z=0 ,  w = 0  and the complex tangent  space of M by  w =0.  I f  ~ is given by  

z = p ( ~ ) ,  w - -  q (~)  

where ~ = 0  corresponds to z=0 ,  w = 0  then q'(0)~:0. The transformation 

z = p ( w * )  + z * ,  w = q(w*) 

is holomorphic and takes the curve ~ into z*=O, w*=~. Changing the notation and 

dropping the star we can assume tha t  the hypersurface is given by  

v = F(z ,  ~, u) 

and ~ by  z=O, w=~, so tha t  F(0, 0, u )=0 .  

The function F(z, ~, u) is given by  convergent series and is real. In  the variables 

x% y~ given by z~=x~+iy ~, 5~= x~- i y  ~ the function F(z, ~, u) is real analytic. The space 

of these functions, real analytic in some neighborhood of the]origin and vanishing at  the 

origin will be denoted by  :~ .  In  the following it will be a useful observation tha t  z, ~ can be 

considered as independent variables for E E :~ .  

LEMI~A 3.2. I /  _FE:~ ~ and F(O,O,u)=O then there exists a unique holomorphic 

trans/ormatiou 
~*=z; w*=w+g(z ,w) ;  g(O,w)=O 

talcing v = E(z, ~, u) 

into v* = E*(z*, ~*, u*) 

where E*ko = -F~k = 0 for ]c = 1, 2 . . . . .  (3.2) 

Proo/. The conditions (3.2) can be expressed by  

E*(z*, 0, u) = 0 (3.3) 

and a second equation which follows on account of the real character of F*. The trans- 

formation formula gives 
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(z*, ~*, u*) = 1 (g(z, w) - g (z, w) ) + !e(z, ~, u) F* 

where u*= u+ �89 w) + g(z, w)), w= u+ iF(z, ~, u). 

Keeping in mind tha t  z, 5, ~t can be viewed as independent variables, we set 5 = 0  in 

the above equations. Observing that  g(z,w)=0 for ~=0,  since g(O, w)=0, we obtain with 

(3.3) 
1 

0 = ~ g(z, u + iF(z, O, u)) + F(z, O, u) (3.4) 

as condition for the function g. To solve this equation we set 

s =u+iF(z ,  O, u). 

Since, by  assumption, F(z, O, u) vanishes for z=O we can solve this equation for u: 

u = s + q(z, s) where G(0, s) = 0. 

Equation (3.4) takes the form 
1 1 

o = ~ g ( z , s ) + ~ ( s - u )  

or u = 8 + ~J(z, s). 

Thus g(z, w) =2G(z, w) is the desired solution which vanishes for z = 0 .  I t  is clear tha t  the 

steps can be reversed, and Lemma 3.2 is proven. 

Thus we m a y  assume tha t  M is of the form 

v = F ( z ,  ~, u) = Y Fk~(z, ~, u), 
mill (k.l )91 

and the curve 7 is given by  z=O, w=~. Now we will require tha t  Fix(Z, s 0 ) i s  a 

nondegenerate hermitian form. 

L]$MMA 3.3. I] F E . ~  ~ and 

Pk0 = 0 = F0k /or k = 0 ,  1, ... 

and Fll(z , ~, O) nondegenerate the~ there exists a holomorphic trans/ormatio~ 

z* =zq-](z,  w); w*-=w (3.5) 

with/(0, w)= 0, /z (0, w)= 0 and such that v = $'(z, ~, u) /8 mapped into 

v* = F~ ,  (z*, ~*, u*) + 5 F~,,. (3.6) 
rain (k./)~>2 
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Proo/. By 0n~ we will denote a power series in z, 5 containing only terms of type 

(]r l) with b>~u and l>~. Thus F(z, 5, u) can be written as 

n n 
~'s(g. 5, U) = ~'111(Z , 5, U) ~- ~ z=Ao~(5, u) + ~ z ~ A~(5, u) + 0 ~  

~ffil ~ffil 

where A~ (5, u) = ~ Z  ~ (~  -- "~11) ]zffi0 = 002" 

We restrict u to such a small interval in which the Levi form 

~11 (Z, Z, U) = ~ ha~ (u) za2; fl 

is nondegenerate. If (h ~ )  is the inverse matrix of (h~) and the holomorphic vector func- 

t ion/(z ,  w) is defined by 

/P (z, u) = ~ h ~ (u) A~ (5, u) e 00~ (3.7) 

then F11(z +/ ,  5 + f, u) = .Fll (z, ~, u) + ~ z~'A~ + ~ z ~ A~, + 022 

= •(z, 5, u) + O2~ 

so that  v=F(z ,  5, u) is transformed by  (3.5), defined by  (3.7), into 

V* = F11(Z* , 5*, q~*) -~022. 

Note also that,  by (3.6), /(z, u)E 030 which finishes the proof. 

With these two lemmas we see that  the coordinates can be so chosen that  7 is given 

by the u-axis: z =0,  w =~ and M given by (3.6). Actually the coordinates are not uniquely 

fixed by these requirements but  the most general holomorphic transformation preserving 

the parametrized curve 7: z=0 ,  w=~  and the form (3.6) of M is given by  

z* = M(w) z, w* = w 

where M(w) is a nonsingnlar matrix depending holomorphieally on w. This matrix can be 

used to transform the frame ea into ~]az a which, in turn, fixes M(w) uniquely. This com- 

pletes the proof of Theorem 3.1. 

In  order to make the hermitian form F11(z , 5, u) independent of u we perform a linear 

transformation 
z* = C(w) z, w* = w 

and determine C such that  

F~(C(u)z, C(u)z, O) = -~ll(Z, ~, u). 
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The choice of C(u) becomes unique if we require tha t  C(u) be hermitian with respect t~ the 

form 
F l l ( Z  , 5, O) = <Z, Z> 

i.e. Fn(Cz, 5, O) = Fn(z, C5, O) 

Denoting the matr ix  (h~p(u)) by H(u) these requirements amount  to the two matr ix  

equations 

C*(u) H(O) C(u) = H(u) } (3.8) 
H(O) C(u) = C*(u) H(O). 

Eliminating C*(u) we obtain 
C~(u) = H(O) -1H(u). 

Since the right-hand side is close to the identi ty matr ix  for small u there exists a unique 

matr ix  C(u) with C(0)= I .  This solution depends analytically on u and, morever, satisfies 

automatically the relation (3.8). Indeed, if C(u) is a solution so is H-I(O)C*(u)H(O) which 

also reduces to the identi ty for u =0. By  uniqueness it agrees with C(u) yielding (3.8). 

Thus we can assume tha t  the hypersurface is represented by  

v = <z, z> + ~ Fk, (z, 5, u) (3.9) 
rain (k,l)~2 

and F is given by  z = 0, w = ~. The freedom in the change of variables preserving F and the 

above form of M is given by  linear map z-* U(w)z, w ~ w  which preserve the form <z, z>. 

In  other words we can prescribe an analytic frame ca(u) (ct=l  ... . .  n) along the u-axis 

which is normalized by  

<e~, ep> = h ~  where <z, z> = ~ h~z~z p. 

The coefficients of Fkl(z, 5, u) in (3.9) can be viewed as functionals depending on the 

curve 7: z =p(~), w =q(~). These are, of course,/oca/functionals and more precisely we have 

L~MMA 3.4. The coe//icients of Fkz in (3.9) depend analytically on T, q,/3, ~ and their 

derivatives o/ order <k+l. More precisely, these coe//icients depend rationally on the 

derivatives p ' , /3 ' ,  q', etc. 

Proo]. Let v = O(z, 5, u) represent the given hypersufface containing the curve z =p(~), 

w=q(~) where Re q'(O) #0.  The condition tha t  this curve be transversal to the complex 

tangent  space amounts to 
Re {q ' -  2iGzp'- iG,  q'} # 0 (3.10) 

which we require for ~ =0.  First we subject the hypersurface to the transformation 
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z=p(w*)+z*, w=q(w*) 

and s tudy how the resulting hypersurface depends on/o,  q. This hypersurface is given 

implicitly by  
1 
2-i { q -  q} - O(p + z*, p + z*, �89 (q + q)) = 0 (3.11) 

where the arguments in Io, q are w*. Under the assumption (3.10) we can solve this 

equation for v* to obtain the desired representation. Since the given curve was assumed 

to lie on the given hypersurface we have v*=0 as a solution of (3.11) if z*= 0, z*=0  

Therefore the solution of (3.11) 

v* = F*(z*, z*, u*) (3.12) 

vanishes for z* =0,z*  =0. We expand the terms in (3.11) in powers of z*, z*--, v* and in- 

vestigate the dependence of the coefficients on p(u*), q(u*) and their derivatives, 

To simplify the notation we drop the star and denote the left-hand side of (3.11) by  

r ~. u, v) = ~>o(1)c~ 

where (bcv is a polynomial in z, ~, v, homogeneous of degree $ in z, ~ and of degree v in v. 

The equation (3.11) takes the form 

Av  + (I)10 ~- c+~2  (I)~p = 0 (3.13) 

where Av = (I)01 = Re {q' - 2iGJp, ~, �89 + q))p' - iGuq'}v 

Thus A is an analytic function of p, ~, q, q and their derivatives, in fact, depending 

linearly on the latter. Moreover, by  (3.10), we have A=~0 for small ]u[. 

Similarly, the coefficients of qbC~ are analytic functions of p, ~, q, ~ at ~ = u  and their 

derivatives of order ~<u. This becomes clear if one replaces q ( u + i v ) b y  q(u)+q'(u)iv+...  

and similarly for p(u+iv)  in (3.11) and rewrites the resulting expressions as the series 

(I) in z, 5, v. In  fact, the coefficients of (I) will depend polynomially on T,/5', q' etc. Finally 

to obtain the same property for the coefficients of F* in (3.12) we solve (3.13) for v as a 

power series in z, ~; let 
v=vl+v~+... 

where V C are homogeneous polynomials in z, ~ of degree ~. We obtain V~ by comparison 

of coefficients in (3.13) in a standard fashion, which gives A V C as a polynomial in 

V 1, V~ ..... Vr with coefficients analytic in p, q, ~, ~ and their derivatives of order ~<~; 

in dependence on the derivatives they are rational, the denominator being a power of A. 
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This proves the statement about the analytic behavior of the coefficients of F* in 

(3.12). To complete the proof we have to subject this hypersurface to the holomorphic 

transformation of Lomma 3.2, 3,3 which preserve the curve z =0, w =~. From the proofs of 

these lemmas it is clear tha t  the coefficients of the transformation as well as of the 

resulting hypersudace (3.6) have the stated analytic dependence on p, q. The same is true 

of the transformation z ~ C ( w ) z ,  w -~w  which leads to (3.9). 

(b) Returning to (3.9) it remains to satisfy the relations 

t r  lv~s = 0,  (tr) 2~'32 = 0, (tr) 8 ~'~ ~ 0 

which give rise to a set of differential equations for the curve 7 and for the associated 

frame. 

We begin with the condition (tr) 2F3~ = 0 which gives rise to a differential equation 

of second order for the curve 7, where the parametrization is ignored. For  this purpose we 

assume that  the parametrization is fixed, say by  Re q(~) = ~ and s tudy the dependence of 

~a2 on p(~). According to Lemma 3.4 the coefficients of F3~ are analytic functions of p, 

and their derivatives up to order 5. But  if the hypersurface is in the form (3.9) then tV32 

depends on the derivatives of order ~ 2 and is of the form 

F n = <z, Bp~> <z, z> s +Ks2 (3 .14)  

where K82, B depend on p, ~, p', ~' analytically, and B is a nonsingular matr ix for 

small I l- 
To prove this statement we recall tha t  (3.9) was obtained by a transformation 

z-~p(w)+C(w)z+..., w--*q(w)+... 

We choose Re q(u)=,=u fixing the parametrization; Im q(u) is determined by  p ,~ .  To 

study the dependence of F n at  u - - u  0 we subject (3.9) to the transformation 

z = s(w*) +z* +.. . ,  w = q(w* +uo) (3.15) 

which amounts to replacing p(u) by p*(u*) =p(u  o +u)  + C(u o + u) s(u). Considering p and s 

fixed =it u = u 0 we require s(0) = 0, s'(0) = 0 and investigate the dependence of Fas on the 

germ of s at u - u  o. We choose the higher order terms in (3.15) in such a way that  the 

form of (3.9) is preserved as far as terms of weight ~<5 is concerned. This is accomp]_ia.hed 

by  the choice 
z = z* + s ( w * )  + 2i<z*, s'(w*)> z* 

w = w* + u  o +2i<z*, s(w*)>. 

Since the hermitian form <, > is ant'dinear in the second argument this transformation is 

holomorphic. One computes 
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v -  <z, z> = v * -  <z*, z*> + 4 Re  <z*, s"(0)> <z*, z*> 2 + . . .  

if z, w lies on the manifold (3.9). The dots indicate terms of weight ~>6 in z*, z*, u*. Thus, 

for u* =0  we get, setting z* =z, 

F* _V= lu~u ' = 32 [u*~o + 2 <z*, s"(0)> <z*, z*> ~ 

Hence F* depends on s, s" 8~ s', only, and using that  

(C(uo+u)s(u)) ~ = C(uo)s~(O) for u = 0 

we see that  F ~  +2<z*, C-I(u0)ID"(0)> <z*, z*> 2 

is independent of s which proves (3.14) with B(u)=--2C-I(uo).  Thus B(0)=-21, and 

B(u) is nonsingular for small values of [u[. 

Therefore the equation (tr)~Fs2 =0  can be written as a differential equation 

p" =Q(p ,  ~, p ' ,  ~', u) 

with an analytic right-hand side. Thus for given p(0), p'(0) there exists a unique analytic 

solution p(u) for sufficiently smaU l u[. Choosing the curve ~ in this manner we have 

(tr) 2Fa~ =0.  

To show that  this differential equation (tr)~Fa2=0 is independent of the para- 

metrization and the frame e a we subject the hypersurface (3.9) to the most general self 

mapping 
z ~ @'(w) U(w)z 

w-~ g(w) 

where Im 9(u)=0, 9(0)=0, g'(0) >0,  <Uz, Uz> =<z, z> for real w. One checks easily tha t  

under such mapping F32 is replaced by 

~'-3]2~'~32 (U-1Z, ~--1~, ~- I (u) )  

and the equation (tr)2F32=0 remains satisfied for z = 0 .  Thus (tr)~Fa~ is a differential 

equation for ? irrespective of the parametrization and the frame. 

Next we fix the frame e~ so that  t r  F22=0. For this purpose we subject (3.9) with 

(tr)~$'3~ = 0 to a coordinate transformation 

z* = U(w)z, w* = w 

with a nonsingular matrix U(w) which for Im w = 0 preserves the form <z, z> = < Uz, Uz>. 

We will define U via a differential equation 
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d 
d---~U=UA with (Az, z)+ (z, Az)=O (3.16) 

and find from U(w) = U(u) +ivU' +... tha t  

(z*, z*) = ((U+iU'(z ,  z) +...)z, (U+iU'(z,  z) +...)z} 

= ((I+iA(z ,  z} +...)z, (I+iA(z,  z} +...)z} 

= (z, z)(1 +2i(Az, z) +...) 

where the arguments of U, A are u and the dots indicate terms of order ~> 6 in z, 5. Thus 

F*2~ = F~ + 2i(Az, z~ (z, z), Fs*~ = ~'32, 

where on the left side we set z*= U(u)z. Thus, since t r -~2 is a hermitian form the equa$ion 

t r  F*u = 0  determines (iAz, z) uniquely as a hermitian form, hence A is uniquely deter- 

mined as an antihermitian matr ix  with respect to (, 7. Thus the differential equation (3.16) 

defines a U(u), analytic in u, and preserving the form ( , )  if U(0) does. More geometrically, 

(3.16) can be viewed as a first order differential equation 

~f f i~a~(u )e  B, (ea, eD)=ha~ 

for the  frame. Note tha t  the term F3~ is not affected by  this choice of the flame. 

Finally, we are left with choosing the parametrization on the curve in such a way 

tha t  (tr) 8 Faa=0.  For this purpose perform the transformation 

Z $ = ( q '  ( W ) ) I / 2 z ,  W $ = q ( W )  

with q(O)=O, q(wi =q(~), q'(O) >0.  

Thus v* = q' (u) v -  ~ q'" va + ... 

= q'(u) �89 (q'"- q, ] (z ,  z )  ~ 

which gives for z, w on the hypersufface 

v* - (z*, z*)  = q ' ( v -  (z, z)) + (~ q 
q-2\ 

I l l  

. ( q'l 
or av88 = q'F83 + �89 q ' "  - �89 q, ] <z, z> 3. 

Thus, (tr) a E~3 = 0 gives rise to an analytic third order differential equation for the real 
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function q(u), uniquely determined by  q(0)=0, q'(0)> 0, q"(0), which are assumed real. 

Thus we have a distinguished parameter ~ in the above curve which is determined up 

to real projective transformations ~ / ( a ~  +fl), fl > O. 

Thus we have constructed a holomorphic transformation taking M into the normal 

form, and the existence proof has been reduced to that  for ordinary differential equations. 

The choice of the initial values for T'(0)EC ~, U(0) and Re q'(0), Re q"(0) allows us to 

satisfy the normalization condition (2.9) of w 2. In  fact, these 2 n + n 2 + l + l = ( n + l ) 2 §  

real parameters characterize precisely an element of the isotropic group H. Thus we have 

shown 

THEORV.M 3.5. I /  M is a real analytic mani/old the unique/ormal traws/ormation o/ 

Theorem 2.2 taking M into a normal ]orm and satis/ying the normalization condition is given 

by convergent series, i.e. defines a holomorphic mapping. 

Two real analytic manifolds M1, M 2 with distinguished points plEM1, p2EM2 are 

holomorphically equivalent by  a holomorphic mapping ~b taking Pl into I02 if and only if 

(M~, Pk~ for k = 1, 2 have the same normal forms for some choice of the normalization 

conditions. Thus the problem of equivalence is reduced to a finite dimensional one. 

The arbitrary initial values for the differential equations t r  F2~=O, (tr)2F32=0, 

(tr) 3 Fa3 = 0 have a geometrical interpretation: At a fixed point p EM they correspond to 

(i) a normalized frame ea E Tc, (ca, ep~ =ha~ 

(ii) a vector en+ 1E TR- -Tc  corresponding to the tangent vector of the curve ~, and 

(iii) a real number fixing the parametrization, corresponding to Re q"(0).  

With the concepts of the following section this will be viewed as a frame in a line 

bundle over M. 

As a consequence of these results above we see that  the holomorphic mappings taking 

a nondegenerate hypersurfaee into themselves form a finite dimensional group. In fact, 

fixing a point the dimension of this group is at most equal to that  of the isotropy group H, 

i.e. (n § 1) ~ § 1. Adding the freedom of choice of a point gives 2n § 1 § (n § 1) ~ § 1 = (n +2) ~ - 1 

as an upper bound for the dimension of the group of holomorphic self mappings of M. This 

upper bound is realized for the hyperquadrics. 

The above differential equations define a holomorphically invariant family of a 

parametrized curve ~ transversal to the complex tangent bundle, with a frame e~ 

propagating along ?. The parameter ~ is fixed up to a projective transformation 

~ / ( ~ §  ( ~ 0 )  keeping ~=0  fixed. Thus cross ratios of 4 points on these curves are 

invariantly defined. We summarize: (i) tr  F22=O represents a first order differential 
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equation for the frame ea, (ii) (tr) ~ F3~=0 defines a second order differential equation 

for the distinguished curves y, irrespective of parametrization and (iii) (tr)aFsa---0 

defines a third order differential equation for the parametrization. 

(c) The differential equations t r  F22=0, (tr) z Fs2=0, (tr) s F3a=0 remain meaningful 

for merely smooth manifolds. Indeed, if M is six times continuously diffcrentiable one 

can achieve the above normal forms up to terms of order 6 inclusive, simply 

truncating the above series expansions. Clearly the resulting families of curves and 

frames are invariantly associated with the manifold under mappings holomorphic near M. 

Indeed since the differential equations are obtained by the expansions of w 2 up t o  terms of 

weight ~< 6 at  any point one may approximate M at this point by  a real analytic one and 

read off the holomorphie invariance of this system of differential equations. In  this ease 

the distinguished curves 7 are, in general, only 3 times continuously differentiable but  

the normal form (see (2.11) via a holomorphic map, cannot be achieved, not even to sixth 

order in z, ~. This would require that  the function/(z,  u), g(z, u) defining the transforma- 

tion and which can be taken as polynomials in z admit an analytic continuation to 

complex values of ~t. If  the Levi form is indefinite one has to require an analytic continua- 

tion to both sides which can happen only in the exceptional case of analytic curves 7. 

If, however, the Levi-form is definite, i.e. in the pseudoconvex case one has to require 

only that  /(z, ~t), g(z, u) admit one sided analytic continuations. However, we do not 

pursue this artificial question but  record that  the structure of differential equations for 

the curves 7 and their associated frame is meaningful in the case of six times differentiab], 

manifolds. 

(d) In  the case n = 1 the normal form has a simpler form since the contraction (tr) 

becomes redundant. For this reason F2~, F23, Fss, F33 all vanish and the normal form can 

be written 
v=z~+c4zz4~2+c~z2~4+ ~ c~zz~ z (3.18) 

k+l~7  

where again rain (k, l) >/2. This normal form is unique only up to the 5 dimensional group 

H given by 
z ~  ~(z+aw)r -1, w=l -2 iSz - ( r+i la l~ )w}  

W --+ I~ l  2 ~ - 1  (3.19) 

with 0#~EC,  afiC, rfiR. I t  is easily seen that  the property cj2(0)*0 is invarisnt under 

these transformations. If  C4s(0)--0 we call the origin an umbilical point. For  a non. 

umbilical we can always achieve c42(0)=1 since z - ~ z  leads to c4s(0)-*Xs~c4s(0). By this 

normalization ~ is fixed up to sign. 
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For a nonumbilical point we can use the parameters  a, r to achieve 

c43(0) = 0, Re c~:(0) = 0 

so t h a t  the so normalized hypersurface can be approximated to order 7 in z, ~, u by  the 

algebraic surface 
v = z~ + 2 Re {z4~2(1 +jz +iku} (3.20) 

where ~" E C, k E R, and j2, k are invariants at the origin. 

The above statements follow from the fact tha t  (3.19) with ) l= l ,  r=O leads to 

c43(0)-+c43(0)+2ia, c52(0)-~c5~(0)+4i5 

so tha t  j =  %2(0) +2c4a(0) is unchanged. We fix a so tha t  c~(O)=O and consider (3.19) 

with ~ = 1, a = 0 which gives rise to 

Re c~2(0) -+ ' ' Re c42(0) +4 r  

Choosing Re c~2(0)= 0 we obtain (3.20), where we still have the freedom to replace z 

by  - z .  Thus ~'2 and k are indeed invariants. 

The above choice (3.20) distinguishes a special frame at  the origin, by  prescribing a 

tangent  vector ~/au transversal to the complex tangent  plane and a complex tangent  

vector pair ~ / ~ z  in the complex tangent  plane. These pairs of vectors can be assigned 

to any point of M which is non-umbihcal. These considerations clearly are meaningful 

for seven times differentiable M. 

The above vector fields, singular at umbilical points, can be viewed as analogous to 

the directions of principal curvature in classical differential geometry. This analogy 

suggests the question: Are there compact manifolds without umbilical points? Are there 

such manifolds diffeomorphic to the sphere S a ? 

Clearly the sphere [z ]2 + ]w 12 = 1 consists of umbilical points only as, except for one 

point, this manifold can be transformed into v=z5 (cf. (1.4)). Therefore we can say by  

(3.18): Any  3.dimensional mani/old M in C 2 can at a point be osculated by the holomorphic 

image o/the sphere ]z] 2 + ]wl2= 1 up to order 5 but generally not to sixth order. In  the latter 

case we have an umbilical point. 

For n>~2 the analogous definition of an umbilical point is different: A point p on 

M is called umbilical if the term F2~ in the normal form vanishes. Again, it is easily seen 

tha t  this condition is independent of the transformation (1.23) and we can say: Any  non- 

degenerate mani/old M o/real dimension 2n + 1 in Cn+l (n >~ 2) can at a point be osculated by the 

holomorphic image o~ a hyperquadric v = <z, z> up to order 3, but generally not to order 4. 

In  case one has fourth order osculation one speaks of an umbilical point. 
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(e) The algebraic problems connected with the action of the isotropy group on the 

normal form are prohibitively complicated for large n. But for a strictly pseudoconvex 

5-dimensional manifold in Ca we obtain an interesting invariant connected with the 4th 

order terms _F2u. 

We assume n = 2 and 
2 

<z, z>-~ 5. z~z ~ 
t t~ l  

and consider a quartic _F2~(z , ~) of type (2, 2) with t r  -~2 =0. If we subject the manifold 

v* = <z*, z*> + F22(z*, z*) +... 

to the transformation (1.23) of the isotropy group of Q the fourth order term is replaced by 

F~(z*, z*) = .N2~(z, ~) (3.21) 

where z *p = C~z  a, C~ aC~ ~ = ~ ,  ~ > 0. (3.22) 

The question arises to find invariants of hr2~ under these transformations, which are 

evidently multiples of unitary transformations. 

I t  turns out, and we will show, that  one can find (3.22) such that  N2z takes the form 

Z~22 = 2141 + 2 5 4 2  -~- 2343 

where r r Ca are fixed quartics and ~1, 22, 2s are three real numbers which we may order 

21 ~-<2z ~<2s and which satisfy 
21 +22 +2s = 0. 

The 2j may still be replaced by Q2s, so that  

23 - 22 
2 2  - 2 1  - # 

is a numerical invariant, provided we assume that  the 2j are distinct. In this case the 

matrix G~ ~ is fixed up to a complex factor by these requirements. Geometrically speaking 

to every 2~ corresponds a pair of complex lines if the 2j are distinct--so that  we have al- 

together three pairs of complex lines in the complex tangent space holomorphically in- 

variantly associated with the manifold. We remark that  23 = maxj 2~ = 0 characterizes an 

umbilical point, i.e. F ~ = 0 .  

The 2j are reminiscent of eigenvalues of a quadratic form and, in fact, the above 

problem can be reduced to the equivalence problem of a quadratic form. One verifies by 

computation that  any quartic /v22 with tr  F2z =0  is invariant under the involution 
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(z~, z~) -~  (z  2, - z ~ )  

249 

(3.23) 

and conversely any  such quartie differs from one with tr  F22 = 0  by  a multiple of <z, z> ~ 

The function <z, z> -2 F ~  can be viewed as a function on the complex projective 

space CP x, tha t  is on S 2. We use the familiar mapping [3], derived from the stereographic 

projection: 

i~2  = z 1 z ~ - z ~ 

so tha t  8 

to map <z, z) = 1 onto S 2. Then the above involution (3.23) goes into the antipodal maps 

and one verifies tha t  F~2 becomes a real quadratic form 

3 

F22(z, ~)= r = ~ b~,~s, .  
v , , u~  l 

Moreover 
3 

so tha t  t r  2'22 = 0  if and only if the trace of the quadratic form vanishes. 

We subject F22 to the transformation (3.22). At first we take ~ = 1, so tha t  (C~ ~) = C is 

unitary. We assume furthermore tha t  det C = 1 because of the homogeneous character of 

F22. Then, as is well known every such C corresponds to a proper orthogonal transforma- 

tion of the ~-space, and every such orthogonal transformation belongs to two such uni tary  

transformations, namely _ C .  Thus the equivalence problem is reduced to tha t  of the 

quadratic form ~P under proper orthogonal transformations. Choosing this transformation 

so tha t  ~P is mapped into diagonal form 

3 

we have ~ = 1  ~v=0.  Moreover, if the eigenvalues ~v are distinct and ordered the 

orthogonal transformation is up to ~,-~ •  uniquely determined by  this requirement. 

To complete the discussion we have to free ourselves from the restriction det C = 1 

and take the stretching z-+gz into account. Both factors are taken into account by  a 

transformat ion z ~ r z ,  w ~ I r l2w  wi th  ~ a complex  number  w ~ e h  leads to  ~, ~ Ir 12t,. 
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Thus if we set 
r  = ~2 = 2 { z l z 2 z l z  ~ + Re (zl~) s} 

r  = ~ i  = - 2 { z l z S z l z  2 - Re (zl~) s} 

Then the above assertions follow. The pairs of complex lines which correspond to an 

eigendirection have the form 
a l z l + a 2 z ~ = O  

a 2 z  I - - a l  z2 = 0 

where al, as are not both zero, i.e. the second line is obtained from the first by  the involu- 

tion (3.23). 

4. Solution of  an equivalence problem 

Let  G be the group of all nonsingular matrices of the form 

u 0 0 ) _ _ 

v a u~ ~' 0 , v '~=v a, u~ ~ = u i ' ,  

v ~ 0 u~; 

(4.]) 

where, as throughout this section, the small Greek indices run from 1 to n, u is real, and 

v ~, u~ ~ are complex. G can be considered as a subgroup of OL(2n + 1, R). A G-structure in a 

manifold M of dimension 2n + 1 is a reduction of the group of its tangent  bundle to G. 

Locally it is given by  linear differential forms 0, 0 ~, 0 ~, where 0 is real and 0 ~ are complex, 

which are defined up to a transformation of G and satisfy the condition 

0 A01A ... A 0n A 0~ A ... A0 n ~=0. (4.2) 

Let  T x and T*, x E M ,  be respectively the tangent  and cotangent spaces of M at  x. 

The multiples of 0 define a line E z in T* and their total i ty  is a real line bundle over M, 

to be denoted by  E. The annihilator E~ = Tz. c in Tx, called the complex tangent  space, has 

a complex structure. 

The G-structure is called integrable if the Frobenius condition is satisfied: dO, dO ~ 

belong to the differential ideal generated by  0, 0 B. Since 0 is real, this condition implies 

d O -  ih,,~O a A 05, mod 0, (4.3) 

where h ~  = ~p~ = h~a. (4.4) 
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An integrable G-structure is called nondegenerate if 

det (h~) =~ 0. (4.5) 

Integrable G-structures include the special cases: 

(1) Real hypersurfaces in Cn+l. Let  z% w be the coordinates of Cn+l. A real hyper- 

surface M can be locally defined by  

r (z~ ,~ ,w,~v)=O,  r~d=O, (4.6) 

where r is a smooth real-valued function. On M a G-structure is defined by  putting 

0 = i ~ r ,  0 a = d z% (4.7) 

(2) Complex-valued linear differential operators of the first order in R~+I. Denote 

the operators by  P~ and suppose the following conditions be satisfied: (a)P~,  P~ are 

linearly independent; (b) [Pa, Pp] is a linear combination of Pv'  We interpret the operators 

as complex vector fields and let L be the n-dimensional linear space spanned by  P~. I ts  

annihilator L • is of dimension n § 1. Condition (a) implies that  L • fi L" is one-dimensional. 

We can choose a real one-form 0 ELaN ];~ and the forms 0, 0 a to span L ~. The G- 

structure so defined is integrable because of condition (b). 

We shall define a complete system of local invariants of nondegenerate integrable 

G-structures. 

We consider the real line bundle E, which consists of the multiples u0, u (>  0) being 

a fiber coordinate. In  E the form 
o) = uO (4.8) 

is intrinsically defined. By (4.3) its exterior derivative has the local expression 

/ du + \ 

where 0 a, ~0 are one-forms in M and ~0 i s real. This equation can be written 

do) = ig=~o)= A o)~ +o) A~, (4.10) 

where o)= are linear combinations of 0 ~, 0 and g=~ = g~= are constants. The nondegeneracy 

of the G-structure is expressed by �9 

det (ga~) # O. (4.11) 

The forms o), Re o)~, Im o)h and q~ constitute a basis of the cotangent space of E. 

The most general transformation on co, o)~, o)~, r leaving the equation (4.10) (and the form 

o)) invariant has the matrix of coefficients 

1 7 -  742902 Acta mathematica 133. Imprim6 le 20 F6vrier 1975 
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1 0 0 O )  
v ~" ua ~ 0 0 

o ~ o 
(4.12) 

where 8 is real and u~ ~, v ~ are complex satisfying the equations 

g~ue~ p = ga~. (4.13) 

Let  G z be the group of all the nonsingular matrices (4.12). I t  follows that  E has a 

Gz-structure. Denote by  Y its principal Gl-bundle. Then we have 

~/1 ~ Y - ~  B ,  (4.14) 

where j is inclusion of a fiber and ~r is projection. The quantities s, u~ ~, v ~ in (4.12), 

considered as new variables, are local fiber coordinates of Y. Observe that  we have the 

dimensions 
dim G 1 -- (~+1) ~, dim E = 2 ( n + l ) ,  dim Y=(n+2)~-l. (4.15) 

In  Y there are intrinsically (and hence globally) defined forms oJ, co ~, w ~, ~, and we will 

introduce new ones by intrinsic conditions, so that  the total number equals the dimension 

of Y and they are everywhere linearly independent. 

The condition that  our G-structure is integrable implies 

do~ ~ = cop A~,~. ~ +oJ Ar ~ (4.16) 

where Cp.~, ~ are not completely determined. We shall study the consequences of the 

equations (4.10), (4.16) by  exterior differentiation. To be in a slightly more general 

situation the ga~'s are allowed to be variable. I t  will be convenient to follow the 

practice of tensor analysis to introduce ga~ by the equations 

9~ gr~-- ~v, g ~ =  ~ (4.17) 

and to use them to raise and lower indices. I t  will then be important  to know the location 

of an index and this will be indicated by a dot, thus 

u,,~. gp~,=u,~,, u~.,~g~= u ,~, etc. (4.18) 

The exterior differentiations of (4.10), (4.16) give respectively 

i(dg~-r162 h ~aA a~ + ( - d ~ +  io~A r  ir a~)A o~----- O, (4.19) 

(d~p. ~ - ~ .~  ^ ~ ? -  i , ,~ ^ ~ )  ^ ~,~ + (d~"-  ~ ^ ~ -  ~ ^ ~.~) ^ o~ = O. (4.20) 
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L~.~MA 4.1. The~e e~st ~ .  which satis/y (4.16) and 

dg~+ g ~ - ~ - r  o, ~ =  ~ ,  (4.21) 
o r  

@~- a ~  + ~ + r  = o. (4.21 a) 

Such Cp~. are determined up to additive terms in co. 

In fact, it follows from (4.19) that  the expression in its first parentheses is a linear 

combination of o9% o9~, o9, i.e., 

d g ~ -  ~ -  ~ + g ~  = A~-~v ogr + B ~  wr + G~ o9, (4.22) 

where Aa~r = A ~ ,  Ba~ = Ba~.  (4.23) 

From the hermitian pro perry of g~  we have also 

A~v = Bp~, 0 ~  = Cp~. (4.24) 

The forms r  = ~ + A ~  o9~ + �89 C~ o9 (4.25) 

satisfy on account of (4.23) the equations (4.16) and (4.21). The second statement in the 

lemma can be verified without difficulty. 

From now on we will suppose (4.21) to be valid. Equation (4.19) then gives 

d~b = iog~ A ~#+ i ~  A o9#+ o9 A ~, (4.26) 

where ~v is a real one-form. 

L~I~MA 4.2. Let ~ .  be exterior quadratic di//erential /arms, satis/ying 

(I)~. ~ A o9~----0, (I)a~+ alpha-----0, mod o9. (4.27) 

Then we have (I)~---Saz~ o9~ A o9r rood o9, (4.28) 

where S a ~  has the symmetry properties: 

Sa~; = S~a~-- Sa~;~, (4.29) 

Computing mod o9, we have, from the first equation of (4.27), 

(I)~ = g ~ r  A ogr, 

where ga~r are one-forms. Its complex conjugate is 
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By the second equation of (4.27) we have 

X~r A to~ + X ~  A to y =-- 0, mod to. 

The first term, Z~3~ A to~, is therefore congruent to zero rood to, to~. But  it is obviously 

congruent to zero rood toe. Hence we have the conclusion (4.28). The symmetry pro- 

perties (4.29) and (4.30) follow immediately from (4.27). Thus Lemma 4.2 is proved. 

Equation (4.20) indicates the necessity of studying the expression 

[I~.V = d ~ . ~ -  ~.~ A ~.~. (4.31) 
Using (4.21) we have 

IIp~ = g~,:,d~. ~' -  ~ . r  A ~ = d ~  - ~p~ A ~b -- ~ A ~p.~. (4.32) 

I t  follows that  II B; + rI;p = d(~bp; + ~b;p) - (~p; + r A ~, 

since ~ A ~b~. ~ = r A ~v" 

Using the differentiation of (4.21), we get 

H ~ +  II; B = g~;d~.  (4.33) 

By (4.20), (4.26), (4.33), it is found that  

(I)~. v -- II~f - itop A ~ + i~p A to~ + i ~ ( r  A to~), mod to (4.34) 

or (I)~;-- II ~ - ito~ A ~b; + i ~  A to; + ig~'z ( ~  A to~), mod to (4.34 a) 

fulfill the conditions of Lemma 4.2. For such (I) the conclusions (4.28)-(4.30) of the Lemma 

are valid. 

The forms ~ . ,  ~ ,  ~ fulfilling equations (4.16), (4.21), and (4.26) are defined up to 

the transformation 
r r D~ "~to' ] 

~ = r + D~ ~ to~ + E ~ to / (4.35) 

y~ = ~' + Gto + i(Eato a -  E ~ ) ,  J 

where G is real and Da~ + D~a = 0. (4.36) 

L ~ M ~  4.3. The D~ ~. can be uniquely determined by the conditions 

S~ = g ~ S ~  = 0. (4.37) 
def 

To prove Lemma 4.3 it suffices to s tudy the effect on S ~  when the transforma- 

tion (4.35) is performed. We put  
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S=g~S~,~,  D = D ~ .  (4.38) 

Since g ~  and S~  are hermitian and D ~  is skew-hermitian, S is real and D is purely 

imaginary. Denoting the new coefficients by dashes, we find 

S~v. ~ = S'~ r. ~ + i (DZ g ~ + D~ v. g,~ - (~p~' .D~,-  ~,,~ .D~p). (4.39) 

It follows that  S,~ = S ~ +  i{g~D + D ~ -  (n+  1 ) ~ o } .  (4.40) 

Since we wish to make S~ = 0, the lemma is proved if we show that  there is one and only 

one set of D~ satisfying (4.36) and 

- i S ~  = gQ~ D + (n + 2) D~.  (4.41) 

In fact, contracting (4.41), we get 

2(n + 1) D = - i S .  (4.42) 

Substitution of this into (4.41) gives 

i 
(n+ 2) D ~ =  - i S ~ +  2(n+ 1) Sg~. (4.43) 

I t  is immediately verified that  the D~ given by (4.43) satisfy (4.36) and (4.41). This proves 

Lemma 4.3. 

By the condition (4.37) the r are completely determined and we wish to compute 

their exterior derivatives. By (4.34) we can put 

ri~y - ~ B  A r + ~r ^ ~ + i ~ ( r  ^ ~ )  = s ~  ~ ^ ~o ~ + ~.~ ^ ~ ,  (4.44) 

where 2~. v are one-forms. Substituting this into (4.20), we get 

dr a - r  A Ca --r h r --~.~ h cob = ~u a h co, (4.45) 

~u ~ being also one-forms. From (4.44), (4.33), and (4.26), we get 

( ~  + ~ )  A o~ = g~: o~ ̂  to, 

or 2~  + ~t: z + g~v?-= 0, mod w. (4.46) 

To utilize the condition (4.37) we shall take the exterior derivative of (4.44). We will 

need the following formulas, which follow immediately from (4.16), (4.45), (4.21): 

do~, = d(gc~eo ~) -- - o~BA r  ~o~ A ~b + eo A ~b~, (4.47) 

d~a = d(ga~r -~) = ~b~ A ~b~+ ~ a  A o~+/~a A eo. (4.48) 

We take the exterior derivative of (4.44) and consider only terms involving ~oq A eo ~, 

ignoring those in o). I t  gives 
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dS~,~;- S, D ~- S~; ~2 + S~ ~- S~; ~: 

= i(~. go~ + ~ gP; - $~ ~0 - ~ Z;p) mod o~, o) =, w ~ (4.49) 

and by contraction 

dSo~-S~r I)~0}, mod r co=,w ~. (4.50) 

When (4.37) is satisfied, the le~t-hand side, and-hence also the right-hand side; of(4.50) 

are congruent to zero. The congruence so obtained, combined with (4.46), gives 

;t ~ = - �89 r rood ~, eo =, eo ~'. ~ - - - � 8 9  or ~ . -  

Hence we can put  

o r  ;t~--- - �89 g ~ o  + Vo;#eoz + Wo;~eo ~ + a~eo. 

(4.51) 

(4.51a) 

Substituting into (4.46), we get 
V#p + W~p = 0. (4.52) 

We can therefore write (4.44) in the form 

~ = dr - r  ^ r  - i o~p ̂  ~ + iCp ̂  co~ + i ~  { ~  A o~ ~} + �89 ~ o  ^ a, 
P" clef 

= S/~.~of  A oj -~ + Va~eoQ A o~ - V.V~eo ~ A co, (4.53) 

which is the formula for d~. .  Formula (4.53) defines O]. completely; i t  is consistent with 

earlier notations in Lamina 4.2 and in the subsequent discussions where r  are defined only 

rood w. Substituting into (4.20), we get 

C a = d C a - r  r162 r  �89 w ~= - V~mPA co~'+ V.~coPA cor o), (4.,~I) 
def 

where v~ are one-forms. Notice also tha t  (4.49) simplifies to 

d S d ~  - s,g~ r  - sa,~.~ ~2 + sad~ r - sd.~ ~ - o, rood 0,, o, ~, o,~ (4.SS) 

on account of (4.51) or (4.51a). 

Consider again the transformation (4.35) with D ~ = 0 .  The r are now completely 

determined. From (4.53) its effect on V~. o is given by  

Contracting, we have Vpe.a = V~.~ i {n + �89 Ep. (4.57) 

This leads to the lemma: 
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L~MM~ 4.4. Wi~h (4.21) and (4.37) lulfil~ed as  i n  L ~ m m a s  4.1 and 4.2 there is  a un ique  set 

o[ ~ '  , a f i # y i n ~  
v A = o. (4.58) 

To find an expression for d~p we differentiate the equation (4.26). Using (4.16), 

(4.47), and (4.54), we get 

co ̂  ( -d~,  + r  A ~ , + 2 ~  ^ ~ - - ~  ^ ~9--0, ~ ̂ co~) = 0. 

Hence we can write 

~F = d v, - ~  A ~p -- 2i~a ^ Cp = -- icoa A ~,p - i~,P ̂  cop +Q A co, (4.59) 
def 

where ~ is a one-form. 

With this expression for d~v (and expressions for other exterior derivatives found 

above) we differentiate (4.54) mod co and retain only terms involving co~ Ace r By the 

same argument used above, we derive the formula 

. . . V ~ - ~  ; 

= 8#~ .~+igo~r162  mod co, co~, co#. (4.60) 

Condition (4.58) is equivalent to 
= o. (4.58 a) 

Its differentiation gives, by using (4.21 a) and (4.60), 

Hence we can put  

Substitution into (4.54) gives 

vv = O, mod co, co~, COP. 

~Y=P~co~+QYCO~ mod co. (4.61) 

~o~ = _ V]vcoa A ~ + V.~;coP A ~ + p]oaa A ~ + Q~co~ A co. (4.62) 

For  future use we also write down the formula 

% = d ~ -  r  ^ r + �89 co~ 

= - V~co  ~ A co~ - V~pco p A co~ + Qp,,coP A co + P~co~ A co. (4.63) 

Since the indeterminacy in co can be absorbed  in ~, substitution of (4.61) into (4.59) gives 

~F = i {Q~pco~ A cop - Q~co~ A co~} - i P ~  coQ A co~ + ~ A co, (4.64) 

where P~$ -- P~$ + P~p~ -~ P ~ .  (4.65) 
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I t  remains to determine ~, which can still undergo the transformation 

v/-- ~' + G~o, (4.66) 

where G is real. Denoting the new coefficients by dashes, we get, from (4.54) and (4.62), 

P'p:= + (4.67) 

which gives P~'~ = P ~ +  2 G. (4.68) 

On the other hand, from (4.65) we have 

P :  = 2 Re (P~). (4.69) 

The equation P~" = P2 + nG 

involves only real quantities and we have the lemma: 

LEMMA 4.5. The real farm v 2 is completely determined by the condition 

P l  = o. (4.70) 

We differentiate the equation (4.64), using th fact that  ~Ir is defined by (4.59). 

Computing rood eo and considering only the terms involving o~e A oJ ~, we get 

---2V~.~ckp+2V~Q~P-g~ I, rood to, w ~, co y. (4.71) 

From (4.70) and using (4.21 a) and (4.58), we get 

-- 0, mod m, co ~, co ~. 

Since tF is real, we can write (4.64) in the form 

~F--=/{Q~,ewa A a~,a-- Q-~a/~ A w-~}--iP~w~A off + {R~o)a+ R~a~} A co. (4.72) 

We summarize the discussions of this section in the theorem: 

TK~.OR~.M 4.6. Let the mani/old M o/ dimension 2 n +  1 be provided with an integrabl~ 

nondegenerate G.structure. The~ the real line bundle E over M has a (71.structure, i~ whose 

associated larincit~d Gl-bUndle Y there is a completely determined set o/one.forms co, m a, 

~, ~ ,  r % o/which w, q$, v 2 are real, which eatis/y the equations (4.10), (4.16), (4.21), (4.26), 

(4.37), (4.53), (4.54), (4.58), (4.59), (4.62), (4.70), (4.72). The/arms 

wa, w;, r r r (4.73) 
are linearly independent. 
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I n  particular, suppose that the G,~tructure arises/tom a rear analytic real hypersur/ace 

M in (~+:. Suppose there is a second rear analytic hypersur/ace M'  in (~n+: whose cot, 

responding concepts are denoted by dashes. I n  order that there is locally a biholomorphic 

trans/ormation o/ (~n+: to C~+: which maps M to M'  it is necessary and su//icient that there 

is a real analytic di//eomorl~hism o/ Y to Y'  under which the/orms in (4.73) are respectively 

equal to the forms with dashes. 

The necessity follows from our derivation of the forms in (4.73). To prove the suf- 

ficiency condition take the 2n § 1 local variables on M as complex variables. The e0, co ~ 

are linear combinations of dz% dw and are linearly independent over the complex numbers. 

From 
(D p ~ ( D ~  (Dta ~ (Dce 

we see tha t  the diffeomorphism has the proper ty  tha t  dz '~, dw' are linear combinations 

of dzB, dw which implies tha t  z'~, w' are holomorphic functions of zP, w. 

The problem for n = l  was solved by  E. Cartan [1]. I n  this case conditions (4.37), 

(4.58), (4.70) reduce to 

Sl:ii  = V:h = P l i  = 0. 

Exterior differentiation of (4.53) then gives 

P : i  = 0. 

Our formulas reduce to those given by  Caftan. 

As a final remark we wish to emphasize the algebraic nature of our derivation. 

Most likely the theorem is a special ease of a more general theorem on filtered Lie algebras. 

5. The connection 

(a) The fiat case. We apply the results of w 4 to the special case of the nondegenerate 

real hyperquadrics Q discussed in w 1. The notations introduced in both sections will be 

used. In  particular, we suppose 
g~  = h ~  (5. :) 

and write the equation (1.1) of Q as 

By (4,7) and (4.8) we have 

i 
- ~ ( w  - ~ )  - g ~ z = z  p = O. 

~o = u {�89 dw - i g ~  dza}. 

(5.2) 

(5.3) 
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On the other hand, given Q consider Q-frames ZA such tha t  the point Z 0 lies on Q. We 

write 
z0 = t Y, Y = (1, z 1 . . . . .  z n, w) (5.4) 

i-"+l-'"*'dY Itl' (-~ dw + , ~ z ~ d z  ~ ) (5.5) Then (dZo, Zo)=-~ o - i ~ l t  ,Y)=  _ . 

By setting u = It[ z, (5.6) 

we have w = ~ :,to n + l =  - i ( d Z  o, Zo). (5.7) 

The structure equation (1.32) for d:~o n+l shows that  we can put  

~ - - ~ o  ~, ~ - - - ~ o O + ~ n ~ p -  - - ~ o ~  o. (5.sa) 
In fact, by setting 

r  r  ~ r = - 4 ~ , ~  (5.8b) 

we find with the aid of (1.30a) that  the equations (1.32) are identical to the equations 

given in Theorem 4.6 of w 4 with 

S~p~ = V~r = Pr = Q~p = R~ = 0. (5.9) 

A (nondegenerate integrable) G-structure satisfying the conditions (5.9) is called fiat. 

Conversely, it  follows from the Theorem of Frobenius that  every real analytic flat G-struc- 

ture is locally equivalent to one arisen from a nondegenerate real hyperquaAric in C~+1. 

Under the change of Q-frame (1.15) we have, by (5.7), 

~* = I t l ~ .  (5.10) 

We therefore restrict ourselves to the subgroup H 1 of H characterized by the condition 

Itl =1. The form eo is then invariant under H r From (1.29) we have 

Zo~ 2i(dZo, Z~+~), ~o~=g~P(dZo, Zp). (5.11) 

By (5.8a) it follows that  under a change of Q-frames by  H 1, we have 

(D* ~ (D, / 

~*~ = t(it~ ~ + t~ ~P), 
m,~= t_l( _ it-~m + ~ cop) ' (5.12) 

r - -Re  (~t -1) o J - 2 i ~ r ~ o f + 2 i t - l ~ + ~ .  

The matrix of the coefficients in (5.12) belongs to the group G 1 introduced in w 4. The 

mapping 
~1 ""> a l  (5.13) 
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so defined is clearly a homomorphism. In  fact, if K denotes the group defined in (1.9), we 

have the isomorphism 
H1/K "" G r (5.13 a) 

Since SU(p + 1, q §  1)/K~H1/K, we will consider G 1 as a subgroup of the former via the 

isomorphism (5.13a). This identification is essential in the treatment of the general 

case; the group S U ( p §  q §  is paramount in the whole theory. 

We introduce the matrix notation 

(h) = (hA~), (5.14) 

where hA~ are defined in (1.10a). The Lie algebra ~u of S U ( p + I ,  q + l )  is the algebra of 

all matrices 
(l) = (4.s), O<~A, B<-..n+l, (5.15) 

satisfying 
(~)(h) +(h)tCZ) = o, Tr  q) = 0. (5 .16)  

The Lie algebra of H 1 is the subalgebra of ~u satisfying the conditions 

~ = ~+1  = R e  (4~ = o. (5 .17)  

With this notation it follows from (1.30) and (5.16) that  the matrix 

(re) = (re~.~) (5.18) 

is an ~ll-valued one-form on the group SU(p § 1, q + 1). The Maurer-Cartan equations (1.32) 

of the latter can be written 
~(re) = (re) A (re). (5 .19)  

Let t(Z) = (Z 0 . . . . .  Zn+l)  (5.20) 

be a matrix of vectors of Cn+2. Then equation (1.29) can be written 

d(Z) -- (re)(Z), (5.21) 

and equation (1.15) for the change of Q-frames becomes 

(Z*) = (t)(Z), (5.22) 

where the entries in (t) are supposed to be constants. If (7c*) is defined by 

d ( z * )  = (re*)(z*),  (5 .23)  

we have (re*) = (t) (re) (t) -1 --- ad (t) (re). (5.24) 
clef 

This equation will have an important generalization. 
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(b) General remarks on eonneetions.  Let  Y be a principal Gl-bundle over a manifold 

E. Let F be a linear group which contains G1 as a subgroup; in our ease we will have 

F = SU(p  + 1, q + 1)/K ~ H~/K ~ ~1. (5.25) 

In  applications of connections it frequently occurs tha t  one should consider in the bundle 

Y a connection relative to the larger group F. For instance, this is the case of classical 

Riemannian geometry, where we consider in the bundle of orthonormal frames a 

connection relative to the group of motions of euclidean space. 

Let  7 be the Lie algebra of F realized as a Lie algebra of matrices. Then G 1 acts on }' 

by  the adjoint transformation 

ad (t)(1) = (t)(1)(t) -~, (t)EG,, (l)E~. (5.26) 

A F-connection in the bundle Y is a },-valued one-form (g), the connection form, such tha t  

under a change of frame by  the group G 1, (~) transforms according to the formula 

(z*) = ad (t) (g), (~)~G 1. (5.27) 

I t s  curvature form is defined by  

(II) -- d ( ~ ) -  (~) A (~) (5.28) 

and is therefore a 7-valued two-form following the same transformation law: 

(l-I*) = ad (t)(II), (t) eG~. (5.29) 

The adjoint transformation of G 1 on ~ leaves the Lie algebra gl of G 1 invariant  and induces 

an action on the quotient space ~/gl. The projection of the curvature form on F/g1 is 

called the torsion form. 

(e) Definition of the connection. This will be a geometrical interpretation of the 

results of w 4. Our first problem is to write the equations listed in the Theorem 4.1 of 

w 4, i.e., the equations (4.10), etc. in a convenient form, making use of the group S U ( p  + 1, 

q + 1) and its Lie algebra ~U. The g~  are from now on supposed to be constants and we 

call at tention to the convention (5.1). Following the flat ease we solve the equations 

(5.7), (5.8a), (5.8b) and put  

~on+l=2oJ, - ( n + 2 )  Zro ~ = r  r 

3"g0 ~ ~ (D a:, ~T~ n + l  ~ ~(Da~ , 

~2 = r + ~2~o ~ 
~ n + l  = - -  ~ 0 0 .  

(5.30) 
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The ~A s are one-forms in Y, and the matrix 

(~) = (~AB), 0~<A, B ~ < n + l ,  (5.31) 
~s ~u-valued, i.e., 

(~) (h) + (h) t(~) = 0, Tr (~) = 0. (5.32) 

Moreover, restricted to a fiber of Y, the non-zero ~'s give the Maurer-Cartan forms of H 1, 

as is already in the flat ease. 

As in the flat case it is immediately verified that  using the form (~) the equations in 

the theorem of w 4 can be wri t ten 

g(jr) = (a) A (~) + (II), (5.33) 

/no ~ 0 ) 1534/ 
where (II) = / HO I-I~ 

\ n2~  n~5 -rio ~ 
and 

(~+2) n o -  - - r  n~~ - ~ ,  ] 

n2 ir n~. ,= �89162 (5.35) 

where the right-hand side members are exterior two-forms in co, co% co p, defined in w 4. 

For any such form 

0 -aa~co  ~ A coP+ terms quadratic in roe or co~, mod co, (5.36) 

we set Tr O = g~'eaa~. (5.37) 

Then equations (4.37), (4.58), (4.70) can be expressed respectively by 

Tr  l i d  = 0, Tr  II d = 0,] 
t 

T r l i ~  = T r H ~ I = 0 , ~  (5.38) 

Tr li~+~ 1 = 0, J 

and their totali ty can be summarized in the matrix equation 

Tr  (II) = 0. (5.39) 

Under the adjoint transformation of H1, 

(~) -~ ad (t) (~), 

(II) -~ ad (t)(II), 
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the condition (5.39) remains invariant. We submit w, co ~, raP, ~b to the linear transforma- 

tion with the matr ix  (4.12) and denote the new quantities by  the same symbols with aste- 

risks. Since (~) is uniquely determined by  (5.39) according to theorem 4.1 in w 4 and since 

these conditions are invariant  under the adjoint transformation b y / / 1 ,  we have 

(n*) = ad (t) (~), t e G1. (5.4O) 

Therefore (~) satisfies the conditions of a connection form and we have the theorem: 

THEOREM 5.1. Given a non.degenerate integrable G-structure on a mani/old M o/ 

dimension 2 n + l .  Consider the 1arineipal bundle Y over E with the groula Gl cSU(.p + I, 

q + 1)/K. There is in Y a uniquely de/ined connexion with the grout~ SU(p + 1, q + 1), which 

is characterized by the vanishing o/the torsion/arm and the condition (5.39). 

In  terms of Q-flames ZA which are meaningful under the group SU(p + 1, q + 1), the 

connection can be written 
DZA = ~ .  Zs. (5.41) 

These equations are to be compared with (5.21) where the differential is taken in the 

ordinary sense. 

(d) Chains. Consider a curve ~ which is everywhere transversal to the complex 

tangent hyperplane. I t s  tangent  line can be defined by  

~ = o. (5.42) 
By (4.16) restricted to ~, we get 

~ ---- baw. (5.43) 

The curve ~t is called a chain if b ~ = 0. The chains are therefore defined by  the differential 

system 
~ = r = 0. (5.44) 

They generalize the chains on the real hyperquadrics in Cn+l (cf. (1.33)) and are here defined 

intrinsically. I t  is easily seen tha t  through a point of M and tangent  to a vector transversal 

to the complex tangent  hyperplane there passes exactly one chain. 

When restricted to a chain, equations (4.10), (4.26), (4.59), (4.72) give 

dw=o~A~, d C = o J A %  d ~ = r  (5.45) 

The forms co, 4, ~ being real, these are the equations of structure of the group of real 

linear fractional transformations in one real variable. I t  follows tha t  on a chain there is a 

preferred parameter  defined up to a linear fractional transformation. In  other words, on 

a chain the cross ratio of four points, a real value, is well defined. 
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6, Actual computation for real hypersurtaces 

Consider the real hypersurface M in •n§ defined by  the equation (4.6). We wish to 

relate the invariants of the G-structure with the function r (z a, z ~, w, ~), and thus also 

with the normal form of the equation of M established in w 2, 3. This amounts to solving 

the structure equations listed in the theorem of w 4, with the G-structure given by  (4.7); 

the unique existence of the solution was the assertion of the theorem. We observe that  it  

suffices to find a particular set of forms satisfying the structure equations, because the 

most general ones are then completely determined by applying the linear transformation 

with the matrix (4.12). In  actual application it will be advantageous to allow 

ga~ to be variable, which was the freedom permitted in w 4. Our method consists of first 

finding a set of solutions of the structure equations, without necessarily satisfying the 

trace conditions (4.37), (4.58), (4.70). By successive steps we will then modify the forms 

to fulfill these conditions. 

We set 
eo = 0 = i2r, eo ~ = dz ~. (6.1) 

Then (4.10) becomes 
dO = i g ~ d z  ~ Adz ~ + 0 A ~. (6.2) 

I t  is fulfilled if 

~ = - -  r a ~  -~- rw I r~rw ~ + r~ 1 ~ ~ a  -- (r~ ~ ) -  1 rw~ r~ r~ 1 (6.3 
) 

= - r :  1 ~ d z  ~ - rw 1 r ~ d ~  + ( r ~ )  -1 r ~  (r~dz ~ + ~dz~) ,  ! 
where we use the convention 

~r ~r 
r~ = ~z-~, r~ = ~ ,  r ~  = - -  

Exterior differentiation of (6.2) gives 

This allows us to put  

where 

~2 r 
etc. (6.4) 

~z ~ ~z ~' 

i (dg~  + g~,~r A d z  ~ A d ~  - 0 A de  = O. 

dga~ + got~r = aa~,dz ~" + a~a~dz~ + ca~O, 

d e  = icr A d ~  + 0 h ~,  

(6.5) 

(6.6) 

(6.7) 

(6.s) 

With 0, g~, r given by  (6.1), (6.3), equations (6.6), (6.7) determine completely aa~r, c~, 

and also/u, when we assume that /u  is a linear combination of dz ~, dz -~ only. The a~r ,  c~, 

/z so defined involve partial derivatives of r up to order 3 inclusive. 

With to, to~, r given by (6.1), (6.3), we see that  the following forms satisfy (4.16) ,  

(4.21), and (4.26): 
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~ ~.(1)__ a~ydzV + �89 c~O,1 

r = �89 c~'dzP' l (6.9) 
v2(1) =/~. 

Its most general solution, to be denoted by r ~ ,  ~, is related to the particular solution 

(6.9), the "first approximation", by 

�9 - ~ , ~ . -  ~. , 

~a(1) = ~ a  2f- d~dz  p + eaO, (6.10) 

v2 (1) = y~ + gO + i(eadz ~ - ehdz~), 

where d~ satisfy d ~  + dz~ = 0 (6.11) 

and g is real; cf. (4.35), (4.36). We will determine the coefficients in (6.10) by the conditions 

(4.37), (4.58), (4.70). 

In  view of (4.53) we set 

d$~y(1) _ ~fl.q(1) A ~a. F(1) - -  igp~dz; A 6~1) + i~1) h dz 7 + i(~pv(r 1) A d z  r 

= 8 v(1) dze A d z  ~, mod 0, (6.12) 

by which s r(1) ~q.~ are completely determined. Let  

8(1)_  ~fl8(1) (1) ~ (1) q ~ - y  ~ ,  s =g  s~ .  (6.13) 

By (4.43) the condition (4.37) is fulfilled if we put  

i 
(n + 2) d~ = - / 8  (1) + - -  g ~ s  (1). (6.14) 

e, 2 ( n +  1) 

This equation determines d~ and we have completely determined 

~ ;  = r _ d ;O  = a~.rdz ~' § (�89 - d~) O. (6.15) 

For the determination of r we introduce the "second approximation": 

r = ca(l)  - -  d~ dz p. (6.16) 

Again in view of (4.53), we set 

dr - ~ A r - ~p~d~ ~ ̂  r + i~(~ ~) Adz:' + i ~  ( ~(~ ~) ̂  d~ ~) + �89 ~ ( 1 )  ^ 0 

= s~V.~dze ^ dz ~ + v~V.(~)dz e ^ 0 - vr.~)dz ~" A 0, (6.17) 

which defines the coefficients s v- v v(~) The former satisfy ~.~, ~.0 �9 
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B y  (4.57) we determine e~ b y  

s~; = ~;F~s=~ = O. 

- i ( n  + �89 e ~  = v-~<~) p.~, , 

so tha t  (4.58) will be satisfied. We have then  completely determined 

(6.18) 

(6.19) 

and  we introduce the "second approximat ion"  

v2(~) = ~p(1) _ i(e~dz ~ _ e~ dz~). 

By (4.54) and (4.62) we set 

de=- r A r  CP A CZ + �89 ~(~) ̂  dz= 

= - v~x dz p A dzV + v .~  dz p A d ~  + ~op.~(1)dz p A 0 -}- q~dz  ~ A O. 

The condit ion (4.70) is fulfilled by  sett ing 

2 (~.~(1)) 
g =  - - -  Re  

(6.20) 

(6.21) 

(6.22) 

(6.23) 

and ~ = ~0 (~) - gO. (6.24) 

The forms ~ ,  r yJ so determined in successive steps satisfy now all the s t ructure  

equations, together  with the t race conditions (4.37), (4.58), (4.70). Notice tha t  our  formulas  

allow the  computa t ion  of the invariants  f rom the funct ion r. The determinations 

d~, e a, g involve respectively partial  derivatives of r up  to  the fourth,  fifth, and sixth 

orders inclusive. 

The procedure described above can be applied when the  equat ion of M is in the  

normal  form of w 2, 3. Then we have 

1 
r = ~ (w - ~) - <z, z)  - ZT~ -- Na~ --/V~a - N4~ -/V2a - h~sa - - . , . ,  (6.25) 

where 

- .-a,a~a,~,~,- . . . .  (6.26) 
N4~ = N~a = l~, ... ~,~,~, z ~' z ~' z ~' z ~' z L z ~ 

Nss = ma,a,a, ~,~#, za' Za'Za' Zfl' Zfl' Zfl' ' 

and -hT~2 and  /Yaa are real; the coefficients, which are functions of u, satisfy the  usual 

s y m m e t r y  relations and are completely determined b y  the polynomials.  Moreover, we 

have the  trace conditions 

1 8 -  742902 Acta mathematica 133. Imprim6 1r 20 FSvrier 1975 
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Tr N22 = Tr ~ Nsz --- 0, (6.27) 

Tr s Naa = 0, (6.28) 

where the traces are formed with respect to {, }. 

The computation is lengthy and we will only state the following results: 

(1) Along the u-curve 1", i.e., the curve defined by  

z~ = v = 0,  (6 .29 )  

we have ~a___ 0. This means tha t  I ~ is a chain. In  fact, this is true whenever the conditions 

(6.27) are satisfied. 

(2) Along F we find 

where the quantities are defined by  

s~, p~o -- - 4 b~, p~ ,  (6.30) 

12i hp ~ k~,~, (6.31) 
n + 2  

48 
( n +  1) (n+  2) h ~ - l ~ '  ~ ( 6 . 32 )  

<z, z> = h ~ z ~ .  (6.33) 

Tr Ns~ = k~,c,,~z~"za'~. (6.34) 

T r  2 N24 = l~,~,zP'z p'. (6.35) 

The situation is particularly simple for n = 1. Then conditions (6.27) and (6.28) imply 

Ns2 = Ns2 = Na~ = 0. (6.36) 

On the other hand, we have the remarks a t  the end of w 4; the invariant  of lowest order is 

q11. Equation (6.32) identifies it with the coefficient in N42. 

Appendix. Bianehi I d e n t i t i e s  

BY 

S. M. WEBSTER 

University o/CaliJornia, Berkeley, Cali/ornia, USA 

In  this appendix we will show tha t  there are further symmet ry  relations on the 

curvature of the connection, which follow from the Bianchi identities and which simplify 

the structure equation. 
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The Bianchi identities for the connection defined in section 5 c are obtained by taking 

the exterior derivative of the structure equation (5.33). This yields 

o = CIT) A ( ~ ) - ( ~ )  A (H) +dCH). 

To write this more explicitly it  is convenient to use the formulation given in the theorem 

of section 4. In  the G 1 bundle Y over E we have the independent linear differential forms 

the relations r  + ~ - g ~ r  = 0 

with the g~ constant, and the structure equations 

do) = ig~a) ~ A e.o~ + o) A 4) (A. 1) 

d~  ~ = ~oP A ~ + o~ A ~ (h. 2) 

de = ieo~ A r + ir A eo~ + eo A ~p (A. 3) 

d ~ = r  A ~p + 2 i r  p A CB + ~'. (A. 6) 

The curvature forms are given by 

r = s~:.~o~ A o? + VZoo~ A oJ - V . ~  ~ ^ ~o (h.  7) 

0 ~= -- V~.voOA ~o~ V~-o~eA.~(~ ~+PQ~ o) + Q~o(r A co, (A. 8) 

~2"=iQova)e A o.)#-iQ~o~eo8 A ~o ~ -iPe~a)e A m~ + (Rowe + Row~) A co, (A. 9) 

where the coefficients satisfy the relations 

~ = P,,~ + P~,~, 

and V~.~ = gB~ S ~o-~~ = ga~ Pa~ = O. 

Differentiating equations (A.1) through (A. 6) yields, respectively, 

0 = eo~ A r + o) A (I) a (h. 2') 
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0 = co A W -- i(O ~ A ~o~ -- O ~ A ~o~) (A. 3') 

O = d O ~ ~ 1 6 2 1 6 2 1 8 9  (A. 4') 

0=dO~+O~A r  r A %~--r  O~-- �89 ~o ~ (h. 5') 

0 =  d~F+ 2i0~ A r 2 ir 0 ~ ' r  A ~2'. (A. 6') 

These are the Bianchi identities. The actual verification of these equations is rather long, 

but they result from differentiating and simply dropping all terms which do not contain 

one of the curvature forms r  (I} a, ~F or one of their differentials. Equations (A.I'), (A.2'), 

and (A.3') are trivial because of the relations Ca~ + ~ = ga~ ~ and S~e ~ = SQ~.~. Substituting 

(A.3') into (A.4') gives 

0 = d O ~ +  O~A r  ~ff A Or~--im#A O~--iCp A co~- -2~{O~ A 0)~}, (A. 4 ~ ) 

Substituting the expression (A.7) for O~ ~ into (A.4") gives, after differentiating and 

lowering the index •, 

0 = DS#~'~ A we A eo ~ + BD~ o A a~ A r -- B ~  o A o~ A eo 

+ i O p ~ w ~  A eoe A to ~" + iC~t,q~ oJ~ A of~ A co ~ 

+ i D f ~  eoe A oJ r A oJ + iDa~oo, o~e A o~ ~ A oJ 

+ iEp~coe  A oJ ~ A o~, (A. 10) 
where we define 

S -  ; - ~ '  

= V~-;o~ ̀ w# + V ~ o  ~ of~ + V~;o, w, 

U#~,~ = V #;og ~ + V~.og#; + ~ ,V#;o  + g#~,V~o, 

E ~ = g~ P ~  - p ~ g ~  + �89 g~ ( P ~ -  ~q).  

Comparing terms of the same type in (A.10), we get the following three relations: 

S ~ ,  - S # ~  o = - i{ V ~7,q g ~  - V #;~, ge; 

+ ( V ~ -  V ~ , ) g ~ + g ~ , V ~ ; o - ~ V ~ , + g ~ 7 , ( V ~ o -  V~)},  (A. 11) 

V~;~ e - V # ~  = - i { q q ~ g ~ -  q~# g ~  + �89 g'~; (qo,~ - Q,~e)}, (A. 12) 
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V ~  + V p;o~ = i { g ~ P ~  - P~pg~ + �89 g~(P~z-  P~o)} + 8 p ~ .  (g. 13) 

Multiplying (A.11) by  gpagt,r summing over a, fl, p, and a, and using the relations 

g~a ~ ~o~ ~ = V ~  = 0 gives 
5~o =o. 

so tha t  contracting fl and ~ only in (A.11) gives 

V.~Q = VQ~.. (A.14) 

I t  then follows tha t  g~V~oq=O,  so tha t  contracting the indices fl and ~ in (A.12) and 

in (A.13) gives 
Qo~=Q~o and P~=P~o"  (A.15) 

Equations (A.5') and (A.6') give further relations but  no further symmetries of the 

curvature functions S~;~, V~o, Pqo, Q0~ or R a. 

We can now write the curvature forms (I) ~ and ~t p as follows: 

(I) ~= V~;oJQ A w;+Pq~eoq heo + Q~eo~ h to, (A. 8') 

tF = -- 2 iP~co~ A ~o-J + Rowq A m + R ~ o f i A  m. (A. 9') 

Since V~q=0 we now have (I)ff = 0, so tha t  in the equation (5.35) ri0 ~ = 0  and I I ~  =(I ) f .  
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