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Introduction

Whether one studies the geometry or analysis in the complex number space C,,,,
or more generally, in a complex manifold, one will have to deal with domains. Their
boundaries are real hypersurfaces of real codimension one. In 1907, Poincaré showed by, a
heuristic argument that a real hypersurface in €, has local invariants under biholomorphic
transformations [6]. He also recognized the importance of the special unitary group which
acts on the real hyperquadrics (cf. §.1). Following a remark by B. Segre, Elie Cartan
took, up again the problem. In two profound papers [1], he gave, among other results, a
complete solution of the equivalence problem, that is, the problem of finding a complete
system of analytic invariants for two real analytic real hypersurfaces in €, to be loeally
equivalent under biholomorphic transformations.

Let 21, ..., 2"+ be the coordinates in C,,;. We study a real hypersurface M at the

origin 0 defined by the equation
2, ..., 2 2, L F) =0, ©.1)

where r is a real analytic function vanishing at 0 such that not all its first partial
derivatives are zero at 0‘. We set
z=(2 ..., 2%, 2"l =w=u+tiv. (0.2)
After an appropriate linear coordinate change the equation of M can be written as
v=F(z, Z, u), (0.3)

where F is real analytic and vanishes with its first partial derivatives at 0. Our basic

assumption on M is that it be nondegenerate, that is, the Levi form
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is nondegenerate at 0. In §2, 3 we study the problem of reducing the equation to a
normal form by biholomorphic transformations of z, w. This is first studied in terms
of formal power series in §2 and their convergence to a holomorphic mapping is
established in § 3. The results are stated in Theorems 2.2 and 3.5. It is worth noting that
the convergence or existence proof is reduced to that of ordinary differential equations.

The normal form is found by fitting the holomorphic image of a hyperquadric closely
to the given manifold. For n=1 this leads to 5th order osculation of the holomorphic
image of a sphere at the point in question, while for »>2 the approximation is more
complicated. In both cases, however, the approximation takes place along a curve
transversal to the complex tangent space. The family of the curves so obtained satisfies a
system of second order differential equations which is holomorphically invariantly
associated with the manifold. For a hyperquadric, or the sphere, these curves agree with
the intersection of complex lines with the hyperquadric. For n =1 the differential equa-
tions can be derived from those of the sphere by constructing the osculating holomorphic
image of the sphere, while for n>1 such a simple interpretation does not seem possible.
This family of curves is clearly of basic importance for the equivalence problem. At
first the differential equations for these curves are derived for real analytic hypersurfaces
but they remain meaningful and invariant for five times continuously differentiable
manifolds.

On the other hand, equation (0.1) implies

i0r = —1idr, (0.5)

which is therefore a real-valued one-form determined by M up to a non-zero factor; we
will denote the common expression by 6. Let 7', and T be respectively the tangent and
cotangent spaces at tEM. As a basis of Tz we can take 0, Re (dz=), Im (d22), 1 <a<mn.
The annihilator 7', =0+ in 7 has a complex structure and will be called the complex
tangent space of M at z. Such a structure on M has been called a Cauchy-Riemann
structure [8]. The assumption of the nondegeneracy of the Levi form defines a conformal
hermitian structure in 7', .. To these data we apply Cartan’s method of equivalence,
generalizing his work for C,. It turns out that a unique connection can be defined, which
has the special unitary group as the structure group and which is characterized by
suitable curvature conditions (Theorem 5.1). The successive covariant derivatives of the
curvature of the connection give a complete system of analytic invariants of M under
biholomorphic transformations. The result is, however, of wider validity. First, it
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suffices that the Cauchy-Riemann structure be defined abstractly on a real manifold of
dimension 2n +1. Secondly, the connection and the resulting invariants are also defined
under weaker smoothness conditions, such as €, although their identity will in general
not insure equivalence without real analyticity. In this connection we mention the
deep result of C. Fefferman [2] who showed that a biholomorphic mapping between two
strictly pseudoconvex domains with smooth boundaries is smooth up to the boundary.

The equivalence problem was studied by N. Tanaka for real hypersurfaces in
C,. called by him regular, which are hypersurfaces defined locally by the equation (0.3)
where F does not involve u [7I]. Later Tanaka stated the result in the general case
[7 II], but the details, which are considerable, were to our knowledge never published.

One interesting feature of this study is the difference between the cases C, and
C,.,, n=2. There is defined in general a tensor which depends on the partial derivatives of
r up to order four inclusive and which vanishes identically when n=1. Thus there are
invariants of order four in the general case, while for n =1 the lowest invariant occurs in
order six. This distinction is also manifest from the normal forms.

The Cauchy-Riemann structure has another formulation which relates our study to
systems of linear homogeneous partial differential equations of first order with complex
coefficients. In fact, linear differential forms being covariant vector fields, the dual or
annihilator of the space spanned by 0, dz* will be spanned by the complex vector fields
X,, 1<a<n, which are the same as complex linear homogeneous partial differential

operators (cf. § 4). The question whether the differential system
X,w=0, 1<a<mn, (0.6)

has »+1 functionally independent solutions means exactly whether an abstractly given
Cauchy-Riemann structure can be realized by one arising from a real hypersurface in
C,.,- The answer is not necessarily affirmative. Recently, Nirenberg gave examples of
linear differential operators X in three real variables such that the equation

Xw=0 07

does not have a nonconstant local solution [5].
It may be interesting to carry out this correspondence in an example. In €, with
the coordinates
z=x+yi, w=utvi, (0.8)
consider the real hyperquadric M defined by

v=2Z=02+y% 0.9)
On M we have
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10 = Ydw —izZdz = (Jdu +xdy —ydz), dz=dzx+idy.
Solving ‘;he equations 6=dz=0,
we get . dx: dy: du = ;i: 1: =22

The corresponding operator, defined up to a factor, is

0,0 0 1 (o .o . . 0
gy — ——=—2 — - — 1 - 0-1
L cax—i- 2zau 1{2 (6x+zay) z(x+yz)au}, (0.10)

which is the famous operator discovered by Hans Lewy. » ,
The spirit of our study parallels that of classical surface theory. We list the

corresponding concepts as follows:

" Surfaces in euclidean 3-space Real hypersurfaces in C,,

Group of motions Pseudo-group of biholomorphic transformations

Immersed surface Non-degenerate real hypersurface

Plane : Real hyperquadric

Induced riemannian structure Induced CR-structure

Isometric' imbedding Existence of local solutions of certain systems of
- PDEs

Geodesics "Chains

Because of the special role played by the real hyperquadrics we will devote §1 to a
discussion of their various properties. Section 2 derives the normal form for formal
power series and § 3 provides a proof that the resulting series converges to a biholo-
morphic mapping. These results were announced in [4]. In §4 we solve the equivalence
problem . of the integrable G-structures in question in the sense of Elie Cartan. The
solution is interpreted in § 5 as defining a connection in an appropriate bundle.. Finally,
the results of the two approaches, extrinsic and intrinsic respectively, are shown to agree
with each other in § 6.

In the appendix we include results of S. Webster who derived some important

consequences from the Bianchi identities.

1. The real hyperquadrics

Among the non-degenerate real hypersurfaces in C,,; the simplest and most im-
portant are the real hyperquadrics. They form a prototype of thie general non-degenerate
real hypersurfaces which in turn derive their important geometrical properties from the

“osculating” hyperquadrics. In fact, a main aim of this paper is to show how the
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geometry of a general non-degenerate real hypersurface can be considered as a generaliza-
tion of that of real hyperquadrics. We shall therefore devote this section to a study of this
special case.

Let z2, 2" (=w=u+1iv), 1 <a<n, be the coordinates in €, ;. A real hyperquadric is
defined by the equation : ) .
v="hg2*2f, 2F=2P, (1.1)

where h,3 fire constants satisfying the conditions
hag= ﬁﬂ;=h3a, det (hq3) =+ 0. (1.2)

Throughout this paper we ‘will agree that small Greek indices run from 1 to », unless

otherW1se spemfled and we will use the summation convention. By the linear fractional

tra.nsformatlon
22% w—i
7%= g Wi=——,. 1.3
W W w+1 (%)
equation (1.1) goes into e
hpZ2ZF + WW =1. (1.4)

This defines a hypersphere of d1mens1on 2n+ 1 when the matrix (haﬁ) is positive definite.
In general, we suppose (h,5) to have p positive and q negatwe elgenvalues pPrq=n.

[ order to describe a group which acts on the hyperquadric @ defined by (1.1), we
introduce homogeneous coordinates (4, 0<A<n+1, by the equations

F=0, 1<i<n4l. (1.5)

Cu41 is thus imbedded as an open, subset of the complex prOJectlve space P\ of dimension
n+1. In homogeneous coordlnates Q has the equation

aﬁC"C’“r (C“C"“ L =0. (1.6)
For two vectors in Cp.y:
Z= (0,0 . MY, 2 =00, L UMY, (1.7)
we introduce the hermitian scalar product
(Z,2) = hago b4 (E 0 - PF ™). (18)

This product has the following properties:
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(1) (Z,Z') is linear in Z and anti-linear in Z’;
) (Z,Z')=(Z', Z);
(3) @ is defined by
(Z,2)=0. (1.6a)
Let SU(p+1, g +1) be the group of unimodular linear homogeneous transformations
on {4, which leave the form (Z, Z) invariant. Then @ is a homogeneous space with the
group SU(p+1, g+1) as its group of automorphisms. Its normal subgroup K of order

n+2, consisting of the transformations
(=gl £2=1, 0<A<n+1, 1.9)

leaves @ pointwise fixed, while the quotient group SU(p +1, ¢+1)/K acts on @ effectively.

By a Q-frame is meant an ordered set of n+2 vectors Z, Z,, ..., Z,,, in C, . satisfying

)
(Za: Zﬂ):h«zﬁ’ (Zoy Zn+l)= —(ZrH-l,Zo): _"2', (110)

while all other scalar products are zero, and
det (Zy, Zy, ..., Zpy) = 1. (1.11)
For later use it will be convenient to write (1.10) as

(ZA,ZB)zhAE’ 0<A,B<n+l, (1.10&)
where hosri= —hnsro= —%, (1.10b)
while all other A’s with an index O or = +1 are zero. There is exactly one transformation
of SU(p+1, g+1) which maps a given @-frame into another. By taking one @-frame as
reference, the group SU(p+1, ¢g+1) can be identified with the space of all @-frames.

In fact, let Z,, Z} be two Q-frames and let
2t =alZ,. (1.12)

The linear homogeneous transformation on C,.s which maps the frame Z, to the frame

Z3 maps the vector {4Z, to
T = a2y 113)

If we denote the latter vector by [*?Z,, we have
*B=alf4, (1.14)

which is the most general transformation of SU(p+1,q+1) when Z} runs over all
@Q-frames.
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Let H be the isotropy subgroup of SU(p +1, ¢ +1), that is, its largest subgroup leav-
ing a point Z, of @ fixed. The most general change of @-frames leaving the point Z, fixed is

5

Zg = tZ,,
Zy =t Zy+ t,f Zp, : (1.15)

Z:.*.l = 'L'Zo + TﬂZﬂ + l‘IZ,,H,
where
ta= — 22T he = — 21lt,°T,,
1 det(t,f)=1,
t285 hgs = b r (1.16)

haw e + 5 (@ - =0,

In the first equation of (1.16) we have used kg to raise or lower indices. Observe that
the last equation of (1.16) means that the point Z% ., lies on @, as does Z,.,;; the equa-

tion can also be written _
Im (zt7Y) = — hge1°, (1.17)

H is therefore the group of all matrices

t 0 0
<ta t2 o ) (1.18)
Tt ¥ !

with the conditions (1.16) satisfied. Its dimension is n% +2n +2. By (1.14) the corresponding
coordinate transformation is
[O=t00+ 8,0+ w0,
P =tPrr+ A0, (1.19)
C*n+1 — f_l Cn+1,

or, in terms of the non-homogeneous coordinates defined in (1.5),

= (1P 4+ TPw)t 167!
#=( e w) (1.20)
w* = |t] 2w,
where =1+t 2%+t 1w, (1.21)
We put Ch=tf, Cla*=t1F, o=|t|2 (1.22)
Then (1.20) can be written s
*f a a -1
2 Cl(z*+ a*w) 671, (1.23)
w*=owd ™1,
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By (1.16) the coefficients in (1.23) satisfy the conditions

cl C'E;hz; = oha3, (1.24)
and the coefficients in § satisfy

7 = — i, = —'2iha3a7’,} (1.25)

Im(t'7)= — hagd“a’_’.

Equations (1.23) give the transformations of the iéo:tropy group H in non-homogeneous
coordinates. ‘

‘ Incidentally, the hyperquadric . can be viewed as a Lie group. To see this we con-
sider the isotropy subgroup leaving Z,,, fixed. The relevant formulae are obtained from
(1.19) by the involution (0~ [+l (0 Fasia (q=1,2, ..., n):

(o110
S .y Y -(1.26)
C*nu!: _TCo+taca+t&-n+l

with the same restrictions (1.16) on the coefficients. We consider the subgroup obtained
by choosing

tf =42, t=1 (1.27)
and hence, by (1.16),

ta= — 2iho5t?, Im T+ hept*eh =0.
In, non-homogeneous coordinates. we obtain .
¥ = g%t 2% B '
: C } (1.28)
w*=b+ 2ihpz%a’ + w
where a*= —1* b=—1, Imbd= k‘,,;ga“t-z?.

Thus the point with the coordinates (al,%a?, ..., ", b) can'be viewed as a point on Q. If
we take the point (21, 22, ..., 2", w) also in @ then (1.28) defines a noncommutative group
law on @, making Q@ a Lie group. Moreover, the (n+2)2—1 dimensional group SU(p+1,
¢+1)/K is generated by the subgroup (1.26) é;a,tisfying (‘1.27) and the isotropy group H.
- The Maurer-Cartan forms of SU(p+1, g+1) are given by the equations

. @Zy=m BTy {1.29)
They are connected by relations obtained from the diffentiation of (1.10a) which are

a5 +75a =0, (1.30)
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where the lowering of indices:is relative to h,z. For the study of the geometry of-@ it
will be useful to write out these equations explicitly, and we have

) o+ e =0,

non*.l - ﬁnw—l = 7'511+10 - ﬁn+=:19’_; 0,
o+ " =0, (1.30a)

i+ My Phge=0,

Z 1t Qimghgp =0,

Another relation between the n’s arises from the differentiation of (1.11). Tt is
nA=0, (1.31)
or, by (1.30a), aE+ 7y — 7, =0. (1.81a)

The structure equations of SU(p+1,q-+ 1) are obtained by the exterior differentia-
tion of (1:29) and are”
dnB=n0nB, 0<A,B0Ln+1.- (1.32)

The linear space T¢ spanned by Zo, Zy, ... ,Z, is the complex ta,ngent. space of Q at Z,.
It is of complex dimension n, in contrast to the real tangent space of real dimension
2n+-1 of @, which is defined in the tangent bundle of P,,;, and not in P, itself. The
intersection of @ by a complex hne transgversal to T'¢i is called a chain. One easily verifies that
a complex l1ne 1ntersectmg T transversally at some pomt of Q 1s transversal to T¢ at
every other point of intersection with Q. Without loss of generahty, suppose the complex
line be spanned by Z,, Z,,. The line Z;, Z, , being fixed, it follows that along a chain
dZy; dZ, ., are linear combinations of Z,, Z,, ;. uHence'the chains are defined by the system

of differential equations
Tg* = 1 =0, (1.33)

Through every point of @ and any preassigned direction transversal to 7¢ there is a
unique chain. Since the complex lines in P, ., depend on 4n real parameters, the chains on
Q depend on 4n real parameters. The notion of a chain generalizes to an arbitrary real

hypersurface of C,,,.

§ 2. Construction of a normal form

(a) In this section-we considersthe equivalerce problem froin an extrinsic point’ of
view. Let ]
’(?la zz’ ey zn+1, -z—t]?g",-r" z-.zn-l.l) =0
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denote the considered hypersurface M in C*+!, where r is a real analytic function whose
first derivatives are not all zero at the point of reference. Taking this point to be the
origin we subject M to transformations holomorphic near the origin and ask for a simple
normal form. At first we will avoid convergence questions by considering merely formal
power series postponing the relevant existence problem to the next section.

We single out the variables

M —w=u+t+tv, 2" =u—w
and assume that we have
ra=0, a=l,..,n

o= —T5+0

at the origin. This can be achieved by a linear transformation. Solving the above equation
for v we obtain
v=F(z Z, u) (2.1)
where F is a real analytic function in the 2n+1 variables z, Z, », which vanishes at the
origin together with its first derivatives. This representation lacks the previous sym-
metry but has the advantage that F is uniquely determined by M.
We subject this hypersurface to a holomorphic transformation

= f(z’ W), w* =g(z9 'LU), (22)

where f is n-vector valued holomorphic, ¢ a holomorphic scalar. Moreover, f, g are
required to vanish at the origin and should preserve the complex tangent space (2.1) at
the origin: w=0. Thus we require '

f=0, g¢g=0, 2—3=0 at z=w=0. (2.3)

The resulting hypersurface M* will be written
v* = F*(2*, 2, u*).
Our aim is to choose (2.2) so as to simplify this representation of M*.

From now on we drop the assumption that ¥ is real analytic but consider it as a formal
power series in zl, ..., 2" Z!, ..., ", and « with the reality condition

F(z, 2, u)= F(Z,2,u).

Moreover, F is assumed to have no constant or linear terms. This linear space of formal
power series will be denoted by F. Similarly, we consider transformations (2.2) given by
formal power series f, ¢ in 21, ..., 2*, w without constant term and-—according to (2.3)—
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no terms linear in z for g. These formal transformations constitute a group under
composition which we call G. Often we combine f and g to a single element h.
For the following it is useful to decompose an element F€ F into semihomogeneous
parts:
[+2]
F= ZFV(Z,Z,'M)

where F(tz, 17, t*u) =t F (2, Z, u) for any £>0. Thus we assign u the “weight” 2 and z, Z
the “weight”’ 1. To simplify the terms of weight » =2 we observe that they do not contain
u—since F contains no linear terms—so that

F,=Q(2) +Q() +H(z, 2)

where @ is a quadratic form of z and H a hermitian form. The transformation

(«Z) ~ (Z - 2iQ(2))

removes the quadratic form, so that we can and will assume that F,=H(z,2) is a
hermitian form. This form, the Levi form, will be of fundamental importance in the

following. In the sequel we will require that this form which we denote by
<z’ z = F 2

is a nondegenerate hermitian form. If (z, 2> is positive the hypersurface M is strictly

pseudoconvex. With (z;, z,> we denote the corresponding bilinear form, such that
(A2, pze) = 42y, 25)
With this simplification M can be represented by
v=<,2,2)+F (2.4)

o0
where F=3F,

r=3
contains terms of weight »>3 only. Now we have to restrict the transformation (2.2) by
the additional requirement that &2g/0z202# vanishes at the origin.

(b Normal forms. To determine a formal transformation in G simplifying M* we
write it in the form

© ©
=zt 3 f, w=wtg, (2.5)
y=2

v=3

where foltz, Bw) = tf (2, w), g,(tz, Bw) = bg,(z, w),
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and call-» the “weight” of these polynomials f,, g,. Inserting (2.5) into
o* = (2 2 + P
and restricting the variables z, w to the hypersurface (2.4) we get the transformation

equations, in which z, Z, u are considered as independent variables. Collecting the terms of

weight u in the relation we get

F,+Img,(z, u+i(2)) =2 Re {f, 1,2 +F% ..

where the dots indicate terms depending on f,_,, 9,, F,, F; withy <u.In F, the arguments

are z, w=1u+1{z, z>. We introduce the linear operator L mapping k=(f, g) into
Lh=Re{2<z )+ 19} v-uricz.2> (2:6)
and write the above relation as
Lh=F,—F,+... for h=(f,4, 9,) (2.7)

and note that L maps f,.,, g, into terms of weight u.

In order to see how far one can simplify the power series F} one has to find a
complement of the range of the operator L which is a matter of linear algebra. More
precisely we will determine a linear subspace # of JF such that } and the range of L span F;
i.e., if ¥ denotes the space of h=(f, g) with F=>%0f; 9=2239,, then we require that

F-LY+N and NNLY = (0). (2.8)

Thus H represents a complement of the range of L.

Going back to equation (2.7) it is clear that we can require that F, belongs to %
and solve the resulting equation for 4. Using induction it folows that (2.5) can be deter:
mined such that the function F* belongs to H. We call such a hypersurface M* with
F*€N in “normalform”. It is of equal importance to study how much freedom one has in
transforming (2.4) into normal form which clearly depends on the null space of L. Thus
we have reduced the problem of finding a transformation into normal form of M to the
determination of a complement of the range # and the null space of the operator L. Our
goal will be to choose Y such that the elements N .in.} vanish to high order at the origin
so that the hypersurface M* can be approximated to high degree by the quadratic
hypersurface v— &, 2.

(e) Clearly a transformation into .a normal form can be unique only up to holo-
morphic mappings preserving the hyperquadric v={z,z> as well as the origin. These
mappings form the (n+1)2+41 dimensional isotropic group H studied in §1 and given
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by (1.23). We will make use of H to normalize the holomorphic mapping transforming 3
into normal form.

After the above preparation we may consider the group {; of all formal transforma-
tions preserving the family of formal hvversurfaces

v =z, z) +{weight >3},
as well as the origin. One verifies easily that the elements of §, are of the form
#* = Cz+{weight 22}; w* =pw + (weight >3),

where (Cz, Oz) =p{z, 2). Using the form (1.23) one sees that any $€ G, can be factored
uniquely as

¢ =yod,

with ¢,€H and v a formal transformation of the form (2.5) with

£,00,w)=0, Re=—g,0,wy=0 at w=0.
The first term can be normalized by choice of a* (¢=1, ..., n) in (1.23) and the second by

Re (t-17). We summarize the normalization_ conditions for y by requiring that the series

0 0
f ’ o f » a~wf
0 2 & G 29)
g g
Ly Ly L Re(9E
Por? ow? e T (8w2)
all have no constant term.

From now on we may restrict ourselves to ‘transformations (2.5) with the normali-
zation (2.9). The submanifold of power series h=(f, g) with the condition (2.9) will be
called U,. Similarly, we denote the restriction of the operator L to W, by L,. We will see
that Ly W,~ F is injective. This implies, in particular, that the most general formal power

series mapping preserving v ={z, z) and the origin belongs to the isotropic group H.

(d) The operator L introduced above is of basic importance. To describe it more

conceptually we interpret & =(f, g) as a holomorphic vector field

0 “ g, O o
g — A4S L5
ga 2T e 9=

o
X=21"5z ow

% oz

near the manifold, M. We describe the manifold v = (z,2)> by
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Then Lh=CLxgr|smo

is the Lie-derivative of r along the holomorphic vector field X restricted to r=0. Of
course, L is meaningful only up to a nonvanishing real factor.

For example, if we represent the manifold =0 by
Q=<2,Z>+WW =1

we can associate with a holomorphic vector field

— 8 iy
a__— - _ B_._
X=3de o+ 4o aZ“J’B +B 2

the Lie derivative of the above quadratic form
CxQ=2Re {<A4,Z)+BW}
restricted to @=1.
For the following we will determine the kernel and a complement of the range for L

in the original variables z, w. To formulate the result we order the elements ¥ in terms of

powers of z, Z with coefficients being power series in . Thus we write

F= Z F Kl
k120
where Fy\(Az, uz, u) = Nu'Fy(z, Z, w)

for all complex numbers 4, u, and call (k, I} the “type” of Fy,.
The basic hermitian form will be written as

(z,2)= Z_haﬁz“ik, hag=bga.
o B

Using the notation of tensor calculus we define the contraction tr (Fi;) = Gy_1,;-1 of
Fkl = Z g, ...dkﬁl...ﬁlzal b Zakéﬁl o 52 ‘

where we assume that the coefficients a,, 3 are unchanged under permutation of ,..., %
as well as of By, ..., f;. We define for k,1>1

60 (Fi) = 3 by ..ap_Br. By 2o 221 2P L EA (2.10)
Where bal ...15_151...51_1 = Z_ h’akﬂla’ﬁl ...Ggﬁl ..,Bz'
apfy

Here h*# is defined as usual by _
B hyg= 0%
being the Kronecker symbol.
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For the description of a complement of the range of L, we decompose the space F of
real formal power series as

F=R+N

where R consists of series of the type

R= 3  Ru+Gy,<2)+ (Gt Gy) 20+ Gz, 2)°

min <1
G, being of type (j, m), and where
N={N€F Ny, =0min (k1) <1; tr Ny =(tr)2N,, =(tr)* Ng; =0}. (2.11)

This constitutes a decomposition of F, i.e. any F can uniquely be written as F =R+ N with
R€R, NEN. Thus PF =R defines a projection operator with range R and null space H.
One computes easily that

PF= 3 Fu+G3& 20+ (Gt Gy iz, 202+ Gz, 2)° (2.12)

min (%, )<1
where

4

Gu= p—— tr (Fyp) — TES TS (tr)* (Fyp) <z, 2)

6

Gm=m+1nn+m

(tl')2 Fy

6

Goo= 2T )+ 2) (tr)® Fyy

In particular, for n=1

PF= 3 Fy+ Fy+ Foy+ Fyp+ Fy,. (2.13)

min (x,D<1

While for n>1 it is a requirement that <z, 2)! divides F,, (k=>1), this is automatically
satisfied for n=1.
Evidently this decomposition is invariant under linear transformations of z which

preserve the hermitian form (z, z).

The space N turns out to be an ideal in F under multiplication with real formal
power series. We will not use this fact, however, and turn to the main result about the

kernel and corange of L

LeMMA 2.1. L, maps Y, one lo one onto Ry=PF,, where F, denotes the space of those
F € F containing terms of weight >3 only, and Y, is the space of formal power series satisfying
(2.9).
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Before proving this lemma we draw the crucial conclusion from it: For any F€F,

the equation
Lyh = F (mod H)

can uniquely be solved for % in U,, since this equation is equivalent to PLyk=PF. Thus
N represents a complement of the range of L, and applying our previous considerations

on normal forms we obtain
THEOREM 2.2. 4 formal hypersurface M can be transformed by a formal transformation
=24z, w), w'=w+g{z, w)
normalized by. (2.9) into a normal form
v =*, 2>+ N with NEN.
Moreover, this transformation is unique.

COROLLARY. The onlyr formal power series transformations which preserve v=<{z, 2>

and the origin are given by the fractional linear transformations (1.23) constituting the group H.

(e) Obviously it suffices to show that the equation
Lh = F (mod )

possesses a unique solution A€ Y,. Here F is a formal power series containing terms of

weight >3 only. Collecting terms of equal type we have to solve the equations
(Lh)y, = F,,; for min(k,l) <1
(Lh), = Fy, (mod H) for (k,1) = (2,2), (3,2), (3,3).

For this purpose we calculate (Lh)y, for the above types (k, 1); because of the real character

of 'F we may take k>1. We will use the identity

flz,u+1<z,2>) =Zi (8%}) fz,u) ¢ <z,!z> .

Expanding f(z,w), g(z, w) in powers of z,Z we write

‘Where filtz, w) = Ehiz, w), giltz, w) = gu(z, ).

‘This notation should not be confused with the previous one which combined terms of

equal weight, and which will no longer be needed.
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We write Lh in the form

Lh=TRe{2{f,2> +ig}panrice.s=f +F iz, 2>+ ..., 2>

- +-(g+g'i<z, 2>+ ...)+ complex conj.

[

where the arguments of f, f', ..., ¢, ¢, ... are 2z, u, and the prime indicates differentiation
with respect to . Now we collect terms of equal type (&, 1). For example, if k& > 2 the terms of
type (k, 0) and (k+-1, 1), respectively are

00 12> =1

so that we have
i =2Fy }
(k=2). (2.14a)
2{fr+1,2) — gl’c {2,2)=2F;111

For k=1 one gets additional terms and an easy calculation shows
i +2<2,fo> =2Fy
— 9142, 2> + 2{fp,2) — 20z, > <2,2) =2Fy (2.14b)

~ 30D 2D @D ~ (fo) @D =2Fy  (mod ).

Finally, for £=0 one obtains four real equations,
—Imy, =Fy
1Im g;<z,2)* — 2Im {f1,2) (2,20 =Fpy (mod )
—Regy<z,2) +2Relf,2) =F,
IRegy {z,2)*—Re {f1,2) {z,2) = Fy3 (mod H).

(2.14c)

Thus we obtain three groups of decoupled systems of differential equations; actually the
last system (2.14c¢) decouples into two groups.

The solution of these systems is elementary: Equations (2.14a) can be solved uni-
quely for f,.4, 9. (£>2). Equations (2.14b) are equivalent to

ig, +24z, fo) =2Fy
= 91<2, 2>+ 2{fp, 2> — 26z, foy {2, 2) =2Fy
— 44z, foy (2, ) =2 Fgy— 2iF5 2, 2) — F1o<2,2>* (mod ).
Since the last equation has to be solved (mod M) only we replace the right-hand side by

its projection into R, which we call G(z, 2)? so that
16 — 742902 Acta mathematica 133. Imprimé le 20 Février 1974
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—4<{z, f;> =Gy

With such a choice of f, one solves the first equation for g; and then the second for f,.
Here f, is fixed up to a linear function in w; but by our normalization (2.9), f, and hence
¢1, [2 are uniquely determined.

Finally we have to solve (2.14¢): Since

Fp=01442,2>0+Ny, Nyp€M
the second equation takes the form
3 Im go<z, 2> —2Im {fy, 2) =Gy
which can be solved with the first for Im g, and Im <f;, 2> =(d/du) Im <f,, z>. Since

/1 vanishes for =0 we determine Im g,, Im {f,, z> uniquely in this way.

The last two equations of (2.14¢) are equivalent to

—Re 9(,) (z,2>+2Re(f;,2) = Fy

—3Regy’ =Gy
where we used that
- Foy+3F(z, 2% = Goe(z, 2)°  (mod ).

7”7

Clearly, the last equation can be solved for Re g, and then the first for Re {f;, z2>. Thus
go is determined up to aw +bu?, a, b real. But by our normalization both ¢ =0 and 6=0,
and Re g,, Re {f;, z) are uniquely determined.

Thus, summarizing, all equations can be satisfied by f,, g, satisfying the normalization

(2.9) and uniquely so. This concludes the proof of the Lemma 2.1 and hence of Theorem 2.2.

§ 3. Existence theorems

(a) So far we considered only formal series and now turn to the case of real analytic
hypersurfaces M. We will show that the formal series transforming M into normal form
are, in fact, convergent and represent holomorphic mappings. In the course of the proof

we will obtain a geometrical interpretation of the condition
tT Nyy =0, (tr)2 Ngy =0, (tr)*Ng=0
describing the normal form.
We begin with a transformation into a partial normal form: Let M be a real analytic
hypersurface and y a real analytic arc on M which is transversal to the complex tangent
space of M. Moreover, we give a frame of linear independent vectors e, € T¢ (a=1, ..., n),

also real analytic along the curve y. All these data y, e, are given locally near a
distinguished point p on y.
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THEOREM 3.1. Given a real analytic hypersurface M with the above data y, e, there
exists a unique holomorphic mapping ¢ taking p into the origin z=w=0, y inlo the curve
2=0, w=§, where & is a real parameter ranging over an interval, and e, into ¢«(e,) =0/0z*
and the hypersurface into ¢*(M) given by

v=Fy@2u)+ >  Fu(zzu). (3.1)
min (&,1)>2
Proof. We may assume that the variables z= (2!, ..., 2") and w are so introduced that

p is given by 2=0, w=0 and the complex tangent space of M by w=0. If y is given by
z=p(), w=gq()

where £=0 corresponds to z2=0, w=0 then ¢'(0) 0. The transformation
z=pw*)+2*, w=qw*)

is holomorphic and takes the curve y into 2z*=0, w*=§. Changing the notation and

dropping the star we can assume that the hypersurface is given by
v=F(z, %, u)

and y by z=0, w=§, so that F(0, 0, u)=0.

The function F(z,Z, u) is given by convergent series and is real. In the variables
x2, y* given by 22 =x%+1y*, Z2=z%—iy* the function F(z, Z, u) is real analytic. The space
of these functions, real analytic in some neighborhood of thelorigin and vanishing at the
origin will be denoted by F“. In the following it will be a useful observation that z, Z can be
considered as independent variables for F€ J*.

Levwma 3.2. If FE€Fv and F(0,0,u)=0 then there exists a unique holomorphic

transformation
&

=2z, w*=wtgz,w); g0, w)=0
taking v=F(z, 2, u)
wnto v* = F*(2*, 2%, u*)
where To=Fox=0 for k=1,2,.... 3.2)

Proof. The conditions (3.2) can be expressed by
F*(z*,0,u) =0 (3.3)

and a second equation which follows on account of the real character of F*. The trans-
formation formula gives
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1 —_
F* (2,28, u%) =5 (g(z,w) — g (2, w) + F (2,2, u)

where w*=u+(g9(z,w)+ g(z,w)), w=u+iF(z,%, u).

Keeping in mind that z, %, # can be viewed as independent variables, we set 2=0 in
the above equations. Observing that g_(;,;j=0 for Z=0, since g(0, w) =0, we obtain with
(3.3)

0= %, gz, u+1F(z,0,u)) + F(z, 0, u) (3.4)

as condition for the function ¢g. To solve this equation we set
s=u+tF(z, 0, u).
Since, by assumption, F(z, 0, ) vanishes for z=0 we can solve this equation for w:
% =8+@(z,8) where G(0, s) =0.
Equation (3.4) takes the form

1 1
0—2—@-9(2,8)*';(8—’“)

or u =38 +1g(z, 8).

Thus g¢(z, w) =2G(z, w) is the desired solution which vanishes for z=0. It is clear that the
steps can be reversed, and Lemma 3.2 is proven.
Thus we may assume that M is of the form

v=F zu)= 3 Fulz7u),

min (k.1)21

and the curve y is given by z=0, w=£§ Now we will require that Fy(z, %, 0)is a

nondegenerate hermitian form.
Lemma 3.3. If FEF” and
Fro=0="Fy fork=0,1,..
and F,(z, Z, 0) nondegenerate then there exists a holomorphic transformation
HF=z+f(z,w); w=w (3.5)
with {0, w)=0, f.(0, w)=0 and such that v=F(z, Z, u) is mapped into

¥ = F;l (Z*, Z*, u*) + Z F;z. (3.6)
min (k,1)>2
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Proof. By O,; we will denote a power series in z, Z containing only terms of type
(k, 1) with k> and I>A. Thus F(z, Z, u) can be written as

F(z.5,u)=Fy(z,2,0)+ 3 %A, u)+ 2, 2* Ay(Z,u)+ Op
a=1 a=1

0
where 4, (Z,u)= Py (F — F13) |s=0= Ops.

We restrict « to such a small interval in which the Levi form
Fiy (2,2 %) = 3 hop(u) 2227

is nondegenerate. If (h“i) is the inverse matrix of (k,5) and the holomorphic vector func-
tion f(z, w) is defined by
(2, u) = 5 h*B (u) Ay (Z, u) € Opg (3.7)

then Fu(z‘*'f’i"‘f, u)=Fy, (2, Z,u)+ 2,2%4,+ E—Z—O‘Z;'Fozz
=F(z,2,u)+ Oy

so that v=F(z, , u) is transformed by (3.5), defined by (3.7), into
v* = Fy(2%, 2%, u*) + Oy,

Note also that, by (3.6), f(2, %) € Oy which finishes the proof.

With these two lemmas we see that the coordinates can be so chosen that y is given
by the u-axis: z=0, w=£ and M given by (3.6). Actually the coordinates are not uniquely
fixed by these requirements but the most general holomorphic transformation preserving
the parametrized curve y: 2=0, w=£ and the form (3.6) of M is given by

¥ =Mw)z, w*=w

where M(w) is a nonsingular matrix depending holomorphically on w. This matrix can be
used to transform the frame e, into 8/0z% which, in turn, fixes M(w) uniquely. This com-
pletes the proof of Theorem 3.1.

In order to make the hermitian form F,,(z, 2, u) independent of  we perform a linear

transformation
¥ =Cw)z, w*=w
and determine C such that

Fp,(Cu)z, Clu)z, 0) = Fy(z, 2, u).
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The choice of C(u) becomes unique if we require that C(u) be hermitian with respect to the
form

Fll(z9 25 0) = <z7 Z>
ie. F1(Cz, %,0) = Fy (2, C%, 0)

Denoting the matrix (h,g(u)) by H(u) these requirements amount to the two matrix

equations

C*(u) H(0)C(w) = H(u) } (3.8)

H(0)C(u) = C*(u) H(0).
Eliminating C*(») we obtain
C%(u) = HO) 1 H(u).

Since the right-hand side is close to the identity matrix for small » there exists a unique
matrix C(u) with C(0)=I. This solution depends analytically on « and, morever, satisfies
automatically the relation (3.8). Indeed, if C(u) is a solution so is H-1(0) C*(u) H(0) which
also reduces to the identity for »=0. By uniqueness it agrees with C(u) yielding (3.8).
Thus we can assume that the hypersurface is represented by
v=_z,2)+ > Fulz,2u) 3.9
min (%,1)>2

and y is given by 2=0, w =£. The freedom in the change of variables preserving ¢ and the
above form of M is given by linear map z-> U(w)z, w—w which preserve the form <z, 2.
In other words we can prescribe an analytic frame e,(u) (x=1, ..., n) along the u-axis

which is normalized by

eq, €8> =h,p Where (z,2)=73 ha;gz“?-

The coefficients of Fy,(z, Z, u) in (3.9) can be viewed as functionals depending on the
curve y: z=p(£), w=q(&). These are, of course, local functionals and more precisely we have

LeMMmaA 3.4. The coefficients of Fy,; in (3.9) depend analytically on p, q, B, § and their
derivatives of order <k+l. More precisely, these coefficients depend rationally on the
derivatives p’, ¢, ¢', elc.

Proof. Let v=G(z, 7, u) represent the given hypersurface containing the curve z=p(£),
w=q(£) where Re ¢’(0) +=0. The condition that this curve be transversal to the complex

tangent space amounts to
Re {¢' —2iG,p' —1G,q'}+ 0 (3.10)

which we require for £=0. First we subject the hypersurface to the transformation
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z =pw*)+2*, w=gqw*)

and study how the resulting hypersurface depends on p, ¢. This hypersurface is given
implicitly by

1 —
ﬂ{q—q'}—G(p+z*,ﬁ+ 2*, 3@+ ) =0 (3.11)

where the arguments in p, ¢ are w*. Under the assumption (3.10) we can solve this
equation for v* to obtain the desired representation. Since the given curve was assumed
to lie on the given hypersurface we have v*=0 as a solution of (3.11) if z*=0, 2*=0
Therefore the solution of (3.11)

v* = F¥2*, 2%, u*) (3.12)

vanishes for z*=0, 2*=0. We expand the terms in (3.11) in powers of 2*, z*, v* and in-
vestigate the dependence of the coefficients on p(u*), g(«*) and their derivatives.
To simplify the notation we drop the star and denote the left-hand side of (3.11) by
Bz, 7,u,0)= D Dy
L+v>0

where @, is a polynomial in 2, Z, v, homogeneous of degree { in 2, Z and of degree » in v.
The equation (3.11) takes the form

Ao+ B+ S Op=0 (3.13)
C+v22
where Av = Oy =Re {g' —2iG(p, P, }(g+7)p’ —1G.q'}v

Thus 4 is an analytic function of p, P, g, § and their derivatives, in fact, depending
linearly on the latter. Moreover, by (3.10), we have 440 for small |u]|.

Similarly, the coefficients of @, are analytic functions of p, §, ¢, § at £=u and their
derivatives of order <. This becomes clear if one replaces g(u +v) by gq(u)+¢'(w)yiv +...
and similarly for p(u+é) in (3.11) and rewrites the resulting expressions as the series
® in 2, 7, v. In fact, the coefficients of @ will depend polynomially on p, 7', ¢’ ete. Finally
to obtain the same property for the coefficients of F* in (3.12) we solve (3.13) for v as a

power series in z, 2; let
V= Vl + V2 + vee

where V; are homogeneous polynomials in 2, Z of degree {. We obtain V; by comparison
of coefficients in (3.13) in a standard fashion, which gives 4 ¥V, as a polynomial in
Vi, Vo, ..., Vpoy with coefficients analytic in p, ¢, p, § and their derivatives of order <(;
in dependence on the derivatives they are rational, the denominator being a power of 4.
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This proves the statement about the analytic behavior of the coefficients of F* in
(3.12). To complete the proof we have to subject this hypersurface to the holomorphic
transformation of Lemma 3.2, 3.8 which preserve the curve z=0, w=§. From the proofs of
these lemmas it is clear that the coefficients of the transformation as well as of the
resulting hypersurface (3.8) have the stated analytic dependence on p, g. The same is true
of the transformation z—C(w)z, w—w which leads to (3.9).

(b) Returning to (3.9) it remains to satisfy the relations
tr Fpa=0, (tr)2F; =0, (tr)® Fyu=0

which give rise to a set of differential equations for the curve y and for the associated
frame.

We begin with the condition (tr) 2F;, =0 which gives rise to a differential equation
of second order for the curve y, where the parametrization is ignored. For this purpose we
assume that the parametrization is fixed, say by Re ¢(£) =£ and study the dependence of
Fyy on p(§). According to Lemma 3.4 the coefficients of Fy, are analytic functions of p, §
and their derivatives up to order 5. But if the hypersurface is in the form (3.9) then Fj,

depends on the derivatives of order <2 and is of the form
Fyy =z, Bp") (2, 2)*+ Ky, (3.14)

where K;,, B depend on p, §, p’, § analytically, and B is a nonsingular matrix for
small |u].
To prove this statement we recall that (3.9) was obtained by a transformation

z=>pw)+Cw)z+..., w->gw)+...

We choose Re g(u)=u fixing the parametrization; Im g(z) is determined by p,$. To
study the dependence of Fg, at w=wu, we subject (3.9) to the transformation

z=s8(w*)+2*+..., w=gq(w*+uy (3.15)

which amounts to replacing p(u) by p*(u*) =p(y+u) + C(uy+u)s(u). Considering p and p’
fixed at »=1wu, we require 8(0) =0, s'(0) =0 and investigate the dependence of Fy; on the
germ of s at u=u, We choose the higher order terms in (3.15) in such a way that the
form of (3.9) is preserved as far as terms of weight <5 is concerned. This is accomplished
by the choice _

z =2* - 8(w*) +2i(2*, §'(w*)) 2*

w = w* +u,+ 212", s('wﬁ—‘—')>.
Since the hermitian form ¢, ) is antilinear in the second argument this transformation is
holomorphic. One computes
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v—2, 2) =v*—{2%, 2*> +4 Re (2*, s"(0)) {z*, 2*)%+ ...

if z, w lies on the manifold (3.9). The dots indicate terms of weight >6 in z*, 2*, u*. Thus,

for u*=0 we get, setting 2*=z2,
Faglumu,=Fizlus-o+ 2 (2%, 8"(0)) (2%, 22
Hence F3, depends on s, ¢/, ¢ only, and using that
(Clug +u)s(u))” = Cluy)s"(0) foru=20
we see that F3p +242*, CYug) p"(0)) (z*, 2*)°
is independent of s which proves (3.14) with B(u)= —2C~(4,). Thus B(0)= -—-2I, and

B(u) is nonsingular for small values of |u|.

Therefore the equation (tr) 2F;, =0 can be written as a differential equation

.p” = Q(P: P, P': f)’: u)

with an analytic right-hand side. Thus for given p(0), p'(0) there exists a unique analytic
solution p(u) for sufficiently small |«|. Choosing the curve y in this manner we have
(tr) 2F,,=0.

To show that this differential equation (tr)2 Fy,=0 is independent of the para-
metrization and the frame e, we subject the hypersurface (3.9) to the most general self
mapping

2= Vg (0) Uw)z

w - g(w)

where Im g(u) =0, g(0)=0, ¢'(0)>0, Uz, Uz) ={z, z) for real w. One checks easily that
under such mapping F,, is replaced by

g 2 Fgy(U1z, U2, g7 (u))

and the equation (tr)2Fg,=0 remains satisfied for 2=0. Thus (tr)®F,, is a differential
equation for y irrespective of the parametrization and the frame.
Next we fix the frame e, so that tr F,,=0. For this purpose we subject (3.9) with

(tr)2 Fg3, =0 to a coordinate transformation
F=Uw)z, w'=w

with a nonsingular matrix U(w) which for Im w =0 preserves the form (z, z) ={Uz, Uz).
We will define U via a differential equation
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4

S U=U4 with (4z,2)+ <z, 42 =0 (3.16)

and find from U(w)=U(u)+iwU’ +... that

&, 2 = (U0, 2> +..)2, (U+iU'{z, 2> +...)2>
={(I+14{, 2> +..)2, (I +5A4L2, 20 +...)2>
=<z, 2>(1 +2i{4z, 2> +...)
where the arguments of U, 4 are « and the dots indicate terms of order >6 in 2, Z. Thus

ng = F22 +2'l:<AZ, z> <Z, z>’ F;Z = Fag,

where on the left side we set 2* = U(u)z. Thus, since tr Fy, is a hermitian form the equation
tr F% =0 determines {34z, z) uniquely as a hermitian form, hence 4 is uniquely deter-
mined as an antihermitian matrix with respect to ¢, >. Thus the differential equation (3.16)
defines a U(u), analytic in u, and preserving the form <, > if U(0) does. More geometrically,
(3.16) can be viewed as a first order differential equation

de,
;ﬁ= Zag(u) €s, <{ea eﬂ> = haﬁ

for the frame. Note that the term Fj, is not affected by this choice of the frame.
Finally, we are left with choosing the parametrization on the curve in such a way
that (tr)® Fy;=0. For this purpose perform the transformation
2*=(q' )z, w*=q(w)

with q(0)=0, gq(w)=q(@), ¢'(0)>0.

Thus v*=q'(w)v—}q"" v +...

n2
2 =q(w) <z 21 (q "= %7) &2

which gives for z, w on the hypersurface

”2

== (v -z, D)+ (’}qm— 3 gq—,) (2, 2%+ ...

n2
or Fiy=q'Fy+ (% g —1 qq—,) {2, D8

Thus, (tr)® F; =0 gives rise to an analytic third order differential equation for the real
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function g(u), uniquely determined by ¢(0)=0, ¢'(0) >0, ¢"(0), which are assumed real.
Thus we have a distingnished parameter & in the above curve which is determined up
to real projective transformations §—>&/(af +f), §>0.

Thus we have constructed a holomorphic transformation taking M into the normal
form, and the existence proof has been reduced to that for ordinary differential equations.
The choice of the initial values for p’(0)€C", U(0) and Re ¢’'(0), Re ¢"(0) allows us to
satisfy the normalization condition (2.9) of § 2. In fact, these 2n+22+14+1=(n+1)?+1
real parameters characterize precisely an element of the isotropic group H. Thus we have

shown

TrEOREM 3.5. If M is a real analytic manifold the unique formal transformation of
Theorem 2.2 taking M into a normal form and satisfying the normalization condition is given
by convergent series, i.e. defines a holomorphic mapping.

Two real analytic manifolds M,, M, with distinguished points p,€M,, p,€M, are
holomorphically equivalent by a holomorphic mapping ¢ taking p, into p, if and only if
{ My, pyy for k=1, 2 have the same normal forms for some choice of the normalization
conditions. Thus the problem of equivalence is reduced to a finite dimensional one.

The arbitrary initial values for the differential equations tr F,,=0, (tr)2F;,=0,
(tr)® Fy3=0 have a geometrical interpretation: At a fixed point p € M they correspond to

(i) a normalized frame e,€T¢, {e,, eg) =h,5
(ii) a vector e, ,€Tr— T¢ corresponding to the tangent vector of the curve y, and
(iii) a real number fixing the parametrization, corresponding to Re ¢”(0). -

With the concepts of the following section this will be viewed as a frame in a line
bundle over M.

As a consequence of these results above we see that the holomorphic mappings taking
a nondegenerate hypersurface into themselves form a finite dimensional group. In fact,
fixing a point the dimension of this group is at most equal to that of the isotropy group H,
ie.(n+1)%?+1. Adding the freedom of choice of a point gives 2n +1+(n+1)2+1=(n+2)>—1
as an upper bound for the dimension of the group of holomorphic self mappings of M. This
upper bound is realized for the hyperquadrics.

The above differential equations define a holomorphically invariant family of a
parametrized curve y transversal to the complex tangent bundle, with a frame e,
propagating along y. The parameter & is fixed up to a projective transformation
E[(at+8) (B=0) keeping &=0 fixed. Thus cross ratios of 4 points on these curves are
invariantly defined. We summarize: (i) tr F,,=0 represents a first order differential
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equation for the frame e,, (ii) (tr)? Fg,=0 defines a second order differential equation
for the distinguished curves j, irrespective of parametrization and (iii) (tr)® Fgg =0
defines a third order differential equation for the parametrization.

(e) The differential equations tr Fy, =0, (tr)2 Fy, =0, (tr)’ Fs3=0 remain meaningful
for merely smooth manifolds. Indeed, if M is six times continuously differentiable one
can achieve the above normal forms up to terms of order 6 inclusive, simply
truncating the above series expansions. Clearly the resulting families of curves and
frames are invariantly associated with the manifold under mappings holomorphic near M.
Indeed since the differential equations are obtained by the expansions of § 2 up to terms of
weight <6 at any point one may approximate M at this point by a real analytic one and
read off the holomorphie invariance of this system of differential equations. In this case
the distinguished curves y are, in general, only 3 times continuously differentiable but
the normal form (see (2.11) via a holomorphic map, cannot be achieved, not even to sixth
order in z, Z. This would require that the function f(z, u), g(z, ) defining the transforma-
tion and which can be taken as polynomials in z admit an analytic continuation to
complex values of u. If the Levi form is indefinite one has to require an analytic continua-
tion to both sides which can happen only in the exceptional case of analytic curves y.
If, however, the Levi-form is definite, i.e. in the pseudoconvex case one has to require
only that f(z, #), g(2z, ) admit one sided analytic continuations. However, we do not
pursue this artificial question but record that the structure of differential equations for
the curves y and their associated frame is meaningful in the case of six times differentiabl
manifolds.

(@) In the case n=1 the normal form has a simpler form since the contraction (tr)
becomes redundant. For this reason Fy, Fay, F,, F3y all vanish and the normal form can
be written

V=25+ 2 P+ ey BB+ D €27 (3.18)

k+127

where again min (k, 7) >2. This normal form is unique only up to the 5 dimensional group
H given by

2= Mz+aw)d™ !, w=1-2iGgz—(r+i|al})w
} (3.19)

w | APwd?

with 04+1€C, a€C, r€R. It is easily seen that the property c,,(0)=+0 is invariant under
these transformations. If ¢,,(0)=0 we call the origin an umbilical point. For & non-
umbilical we can always achieve cy,(0)=1 since z—>Az leads to c,,(0)—>4%1c,y(0). By this
normalization 4 is fixed up to sign.
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For a nonumbilical point we can use the parameters a, r to achieve
c13(0) =0, Recg(0)=0

so that the so normalized hypersurface can be approximated to order 7 in z, Z, u by the

algebraic surface
v =22 +2 Re {*2(1 +jz -+iku} (3.20)

where j€C, k€ER, and 5%, k are invariants at the origin.
The above statements follow from the fact that (3.19) with A=1, r=0 leads to

€43(0)>c43(0) +2ia,  c55(0) > c5p(0) +44a

8o that j=cs(0)+2¢45(0) is unchanged. We fix a so that ¢;3(0)=0 and consider (3.19)

with A=1, a=0 which gives rise to
Re ci2(0) > Re ¢(0) +-4r

Choosing Re ¢45(0)=0 we obtain (3.20), where we still have the freedom to replace z
by —z. Thus 2 and % are indeed invariants.

The above choice (3.20) distinguishes a special frame at the origin, by prescribing a
tangent vector 0/0u transversal to the complex tangent plane and a complex tangent
vector pair 10/0z in the complex tangent plane. These pairs of vectors can be assigned
to any point of M which is non-umbilical. These considerations clearly are meaningful
for seven times differentiable M.

The above vector fields, singular at umbilical points, can be viewed as analogous to
the directions of principal curvature in classical differential geometry. This analogy
suggests the question: Are there compact manifolds without umbilical points? Are there
such manifolds diffeomorphic to the sphere S?

Clearly the sphere |z|2+ |w|?=1 consists of umbilical points only as, except for one
point, this manifold can be transformed into v=23 (cf. (1.4)). Therefore we can say by
(8.18): Any 3-dimensional manifold M in C? can at a point be osculated by the holomorphic
image of the sphere |z|2+ |w|2=1 up to order 5 but generally not to sizth order. In the latter
case we have an umbilical point.

For n>2 the analogous definition of an umbilical point is different: A point p on
M is called umbilical if the term F,, in the normal form vanishes. Again, it is easily seen
that this condition is independent of the transformation (1.23) and we can say: Any non-
degenerate manifold M of real dimension 2n+1 in Cyyy (n>2) can at a point be osculated by the
holomorphic tmage of a hyperquadric v={z, z)> up to order 3, but generally not to order 4.
In case one has fourth order osculation one speaks of an umbilical point.
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(e) The algebraic problems connected with the action of the isotropy group on the
normal form are prohibitively complicated for large n. But for a strictly pseudoconvex
5-dimensional manifold in C; we obtain an interesting invariant connected with the 4th
order terms F,,.

We assume n=2 and
{(z,2)= iz“z_"‘
and consider a quartic Fy(z, Z) of type (2, 2) with tr F,, =0. If we subject the manifold
v* = (2%, 2% + Fogle*, 2°) + ...
to the transformation (1.23) of the isotropy group of @ the fourth order term is replaced by
Fyp(z*, 2*) = Nys(2, 2) (3.21)
where PP=0f2%, 00 =gdp 0>0. (3.22)

The question arises to find invariants of N,, under these transformations, which are
evidently multiples of unitary transformations.
It turns out, and we will show, that one can find (3.22) such that N,, takes the form

Nop = i1 + Ay + Aghs

where ¢,, ¢,, ¢; are fixed quartics and A, 4,, A; are three real numbers which we may order

A1 <A, <A; and which satisfy
ll +12 +}.3 = 0.

The A, may still be replaced by pl;, so that

23_12_
}.2_11 Iu

is a numerical invariant, provided we assume that the A; are distinct. In this case the
matrix C,” is fixed up to a complex factor by these requirements. Geometrically speaking
to every A; corresponds a pair of complex lines—if the 4, are distinct—so that we have al-
together three pairs of complex lines in the complex tangent space holomorphically in-
variantly associated with the manifold. We remark that A;3=max; 4,=0 characterizes an
umbilical point, i.e. F,y=0.

The A, are reminiscent of eigenvalues of a quadratic form and, in fact, the above
problem can be reduced to the equivalence problem of a quadratic form. One verifies by
computation that any quartic F,, with tr Fp,=0 is invariant under the involution
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@, 22) ~ (z_z, _'zi) (3.23)

and conversely any such quartic differs from one with tr F,, =0 by a multiple of (z, z)>*

The function (z,2)>2 Fy, can be viewed as a function on the complex projective
space CP!, that is on 82. We use the familiar mapping [3], derived from the stereographic
projection:

E =222+ 2%

i&, =212 — 222t

Ey=2t — 2222
so that 3
2 8=(2 2"
p=1

to map <z, z> =1 onto 82. Then the above involution (3.23) goes into the antipodal maps
and one verifies that F,, becomes a real quadratic form

3
Fop(2,2)= D(§) =”.;=1bvp§v§,u-

3
Moreover tr Fyy= %( > bvv) (2,27,
y=1

so that tr Fy, =0 if and only if the trace of the quadratic form vanishes.

We subject F, to the transformation (3.22). At first we take g =1, so that (C,f)=C is
unitary. We assume furthermore that det C' =1 because of the homogeneous character of
Fy,. Then, as is well known every such C corresponds to a proper orthogonal transforma-
tion of the §-space, and every such orthogonal transformation belongs to two such unitary
transformations, namely +C. Thus the equivalence problem is reduced to that of the
quadratic form @ under proper orthogonal transformations. Choosing this transformation

so that @ is mapped into diagonal form
2 2
RN

we have >3.;4,=0. Moreover, if the eigenvalues A, are distinct and ordered the
orthogonal transformation is up to &, ~ + &, uniquely determined by this requirement.

To complete the discussion we have to free ourselves from the restriction det C'=1
and take the stretching z—>gz into account. Both factors are taken into account by a

transformation z -z, w — |y|2w with y a complex number which leads to 4, - |y|%4,.
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Thus if we set L _
¢, = E2=2{2"2%2"2% + Re (' 2%)*}

== —2 {22212 — Re (21 2)8}
o= E= (2T + (2P - 2123
Then the above assertions follow. The pairs of complex lines which correspond to an

eigendirection have the form
a2t +a,z? =0

(; 2! —a:z2 =0
where a,, a, are not both zero, i.e. the second line is obtained from the first by the involu-

tion (3.23).

4. Solution of an equivalence problem

Let G be the group of all nonsingular matrices of the form

v 0 O
v* ug® 0 |, 1;“_=7;"7, u§;=uf, (4.1)
* 0 u;;;

where, as throughout this section, the small Greek indices run from 1 to », u is real, and
v*, ug™ are complex. @ can be considered as a subgroup of GL(2n+1, R). A G-structure in a
manifold M of dimension 2%+ 1 is a reduction of the group of its tangent bundle to G.
Locally it is given by linear differential forms 8, 6%, 0;, where 0 is real and 6* are complex,

which are defined up to a transformation of G' and satisfy the condition
OAOLA ... ANOPABEA ... AO™ 0. (4.2)

Let 7', and T3, x€M, be respectively the tangent and cotangent spaces of M at z.
The multiples of § define a line ¥, in Tz and their totality is a real line bundie over M,
to be denoted by E. The annihilator E; =T, ,in T,, called the complex tangent space, has
a complex structure.

The G-structure is called integrable if the Frobenius condition is satisfied: df, d6*
belong to the differential ideal generated by 6, 64. Since 8 is real, this condition implies

d9=ih,50% A 64, mod 6, (4.3)

where hap= hga=ha. (4.4)
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An integrable G-structure is called nondegenerate if
det (hyz)+0. (4.5)
Integrable G-structures include the special cases:

(1) Real hypersurfaces in C,,;. Let 22, w be the coordinates of C, ;. A real hyper-
surface M can be locally defined by

(2%, 2%, w,®) =0, 1,0, (4.6)
where r is a smooth real-valued function. On M a G:-structure is defined by putting
0 —ior, 6%=dz" 4.7

(2) Complex-valued linear differential operators of the first order in R,, ;. Denote
the operators by P, and suppose the following conditions be satisfied: (a) P,, P are
linearly independent; (b) [P,, P] is a linear combination of P,. We interpret the operators
as complex vector fields and let L be the n-dimensional linear space spanned by P,. Its
annihilator L+ is of dimension # +1. Condition (a) implies that L*n L* is one-dimensional.
We can choose a real one-form §€L*NL* and the forms 6, 6* to span L*. The G-
structure so defined is integrable because of condition (b).

We shall define a complete system of local invariants of nondegenerate integrable
G-structures. 7

We consider the real line bundle E, which consists of the multiples 8, » (>0) being
a fiber coordinate. In K the form

o =ul (4.8)

is intrinsically defined. By (4.3) its exterior derivative has the local expression

do = tuhy50% A 08 + oy A (—d—;‘+ 4,0), (4.9)

where 0%, ¢, are one-forms in M and ¢, is real. This equation can be written
do = igg0° Ao +o A, (4.10)

where w® are linear combinations of 6%, 0 and g,5= gz, are constants. The nondegeneracy
of the @-structure is expressed by -

det (g,5) +0. (4.11)

The forms w, Re w?, Im w* and ¢ constitute a basis of the cotangent space of E.
The most general transformation on w, ®% o’ ¢ leaving the equation (4.10) (and the form
) invariant has the matrix of coefficients
17 — 742902 Acta mathematica 133. Imprimé le 20 Février 1975
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1 0 0 0
v* ug® 0 0
o 0 "’ﬁ— 0 (4.12)
s igEufy”  —iggue 1
where s is real and us*, v* are complex satisfying the equations
U UL =gg. (4.13)

Let G, be the group of all the nonsingular matrices (4.12). It follows that ¥ has a
Gy-structure. Denote by Y its principal G,-bundle. Then we have

A ey /] (4.14)

where j is inclusion of a fiber and xz is projection. The quantities s, u?, v* in (4.12),
considered as new variables, are local fiber coordinates of Y. Observe that we have the

dimensions
dim @, = (n+1)2, dim E=2(n+1), dim Y=(n+2)2-1. (4.18)

In Y there are intrinsically (and hence globally) defined forms w, w?, w#, ¢, and we will
introduce new ones by intrinsic conditions, so that the total number equals the dimension
of Y and they are everywhere linearly independent.

The condition that our G-structure is integrable implies

dowr= wf A" +w Nde (4.16)

where ¢4%, ¢* are not completely determined. We shall study the consequences of the
equations (4.10), (4.16) by exterior differentiation. To be in a slightly more general
situation the g,3's are allowed to be variable. It will be convenient to follow the
practice of tensor analysis to introduce g*# by the equations

965977 =87, Gapg®? =5 (4.17)

and to use them to raise and lower indices. It will then be important to know the location
of an index and this will be indicated by a dot, thus

ul g=1tg, ubg® =ub, ete. (4.18)
The exterior differentiations of (4.10), (4.16) give respectively
U095 — bef— Bha+ Jui) N 0% A 0 + (—dp+iws A % +igg A F)A =0, (4.19)

(dpp™ —dp? N " —twgh )N f + (dg* — P N §*— $# A ") A 0=0. (4.20)
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LemMA 4.1, There exist ¢g*, which satisfy (4.16) and

A9ap+ Gapd ~ bep — 45 =0, Ppa= Ppa> (4.21)

dg“ﬁ - g“ﬁgﬁ + ¢uﬁ + ‘/,E“ =0. (4.21a)

or

Such ¢g* are determined up to additive terms in w.

In fact, it follows from (4.19) that the expression in its first parentheses is a linear

combination of we, wi, w, i.e.,
Q905 — bap— Pt Japd = Aupy 0 + Bog; o+ Cio, (4.22)
where Aoy =Ay5s» Bogy=Boyp. (4.23)
From the hermitian property of g,z we have also
Apy=Bgy, Coup=Cp. (4.24)
- The forms bop=bup+ Augy0” + 3 Cap (4.25)

satisfy on account of (4.23) the equations (4.16) and (4.21). The second statement in the
lemma can be verified without difficulty.
From now on we will suppose (4.21) to be valid. Equation (4.19) then gives

dp=iws A $P+igs A 0P+ w Ay, (4.26)
where o is a real one-form.
LeEMmaA 4.2. Let ®g* be exterior quadratic differential forms, satisfying
DN ?=0, O+ D=0, mod w. (4.27)
Then we have Q5= Syg550° A ®°, mod w, (4.28)
where S, 5,5 has the symmetry properties:
Sasgs =S pags=Sapsp (4.29)
Sepgs= Soa.;g = 8;5ap (4.30)
Computing mod @, we have, from the first equation of (4.27),
DOp=Xpy N w7,
where 4, are one-forms. Its complex conjugate is

®po =Xz A 7.
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By the second equation of (4.27) we have
Yoy N 0¥ + Xy A o = 0, mod w.

The first term, y,5, A, is therefore congruent to zero mod w, w”. But it is obviously

congruent to zero mod w?. Hence we have the conclusion (4.28). The symmetry pro-

perties (4.29) and (4.30) follow immediately from (4.27). Thus Lemma 4.2 is proved.
Equation (4.20) indicates the necessity of studying the expression

.7 =dg.”— " A 57. (4.31)
Using (4.21) we have
Mpz=g,2ddp? —p! N dya=dda~ b\ — bz A byl (4.32)
It follows that Mg+ Mzp=d(dgt+ dap) — (dgat dzp) N ¢,
since . b5\ b7 =dp” A Gy

Using the differentiation of (4.21), we get
N+ zs=g4dé. (4.33)
By (4.20), (4.26), (4.33), it is found that
Q=117 —twp A §7 +idg N 07 + 105" (o A @”), mod (4.34)
or Opz=lgz—twpA gzt idg N wztigs(ds A ©”), mod w (4.34a)

fulfill the conditions of Lemma 4.2. For such ® the conclusions (4.28)—(4.30) of the Lemma
are valid.
The forms g%, ¢, p fulfilling equations (4.16), (4.21), and (4.26) are defined up to
the transformation
$s7=s"+ D,
$* =¢"*+ D%+ E*w (4.35)
v =y + Qo+ i(E,0*~- E;wz),

where @ is real and Dyg+ Dg,=0. (4.36)
LevMma 4.3. The Dg* can be uniquely determined by the conditions

8g5 = §°F Suqgz=0. (4.37)
def

To prove Lemma 4.3 it suffices to study the effect on S,z when the transforma-
tion (4.35) is performed. We put
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8=g*68,5 D=D/. (4.38)

Since g‘;’ and S,; are hermitian and D,; is skew-hermitian, § is real and D is purely

imaginary. Denoting the new coefficients by dashes, we find

8’5 =8ep” 5+ UDS 94z + D guz — 05" Dga— 027 D3p). (4.39)
Tt follows that 8 =8,+i{geD + Dg— (n+1) D3} (4.40)
Since we wish to make Sé; =0, the lemma is proved if we show that there is one and only

one set of DJ satisfying (4.36) and
— i8S =gg D+ (n+2) Dg. (4.41)

In fact, contracting (4.41), we get
2(n+1)D = —i8. (4.42)

Substitution of this into (4.41) gives

(n+2) Dig= — iS5+ :

2T D) 8945 (4.43)

It is immediately verified that the D, ; given by (4.43) satisfy (4.36) and (4.41). This proves
Lemma 4.3.

By the condition (4.37) the ¢5” are completely determined and we wish to compute
their exterior derivatives. By (4.34) we can put

7 —iwph ¢? +igpA @7 + i85 ($o A ) = Spls 0 A 0 + 23 A w, (4.44)
where A5 are one-forms. Substituting this into (4.20), we get
dde—Pp Ap2—dE N pg” —As" ANwf =p* Ao, (4.45)
4% being also one-forms. From (4.44), (4.33), and (4.26), we get
At A wo=ggoly,
or Agat Aapt 95 p=0, mod w. (4.46)

To utilize the condition (4.37) we shall take the exterior derivative of (4.44). We will
need the following formulas, which follow immediately from (4.16), (4.45), (4.21):

dwy=Agago?) = — P A dg+ wuh d+ 0 A dy (4.47)
dpo=d(gap$") = $of N P + A A 07 + o\ . (4.48)

We take the exterior derivative of (4.44) and consider only terms involving w? A,
ignoring those in w. It gives
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A8~ 8.3 b4~ Spla bo + Spla bl — Sl b
=3} 9+ A2 955 — 0" Ao — 0 hop)  mod o, 0%, wf (4.49)
and by contraction

85— Sy — SidZ =i{gtf + Ao— (n+ 1) A5}, mod w, w®, o, (4.50)

When (4.37) is satisfied, the left-hand side, and-hence also the right-hand side; of (4.50)
are congruent to zero. The congruence so obtained, combined with (4.46), gives

A= —1%gey or A= -4%6,"y, modw,w® wP.

Hence we can put _
A=—30"p+ Vi 0f+ Wsef +ajw (4.51)

or As= —1gsy+ Vepewf + W,;pw'_’+ agw. (4.51a)

Substituting into (4.46), we get
Vgt Wopp=0. (4.52)

We can therefore write (4.44) in the form

OF = dg7— $7 A p—iwph §7 +idyh w7 +ib (o N 0} + 18PN @
=82 0° A 07 + Vit A o~ Viw® Ao, (4.53)

which is the formula for d¢}. Formula (4.53) defines @7 completely; it is consistent with
earlier notations in Lemma 4.2 and in the subsequent discussions where @/ are defined only
mod . Substituting into (4.20), we get

O =dg*—$ A §*= P A $i+ iy A o= = Vi of A o7+ Vigw! A @® +v A\ w, (4.54)

where v* are one-forms. Notice also that (4.49) simplifies to
855~ Suls bf — Spls ba + Spos 42— Spls $Z=0, mod w, 0% 0f  (4.55)

on account of (4.51) or (4.51a).
Consider again the transformation (4.35) with Dg=0. The ¢4’ are now completely
determined. From (4.53) its effect on V7, is given by

Vo=V, —i{0,YEs+ 305" E,}. (4.56)
Contracting, we have Vie=Ve&—i{n+ 3} B, (4.57)
This leads to the lemma:
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Levma 4.4, With (4.21) and (4.37) fulfilled as in Lemmas 4.1 and 4.2 there i3 @ unique set

of ¢ satisfying
V8,=0. (4.58)

To find an expression for dy we differentiate the equation (4.26). Using (4.16),
(4.47), and (4.54), we get

o N(—dy+PAp+2ipf Ay—iwf Avg—iv® Awg) = 0.
Hence we can write
¥ d=fd1p—¢/\1p—2i¢ﬂ/\¢ﬂ= —twf Nyg—wf Awg+o Ao, (4.59)
L
where p is a one-form.
With this expression for dy (and expressions for other exterior derivatives found

above) we differentiate (4.54) mod w and retain only terms involving w? Ao By the
same argument used above, we derive the formula

AV = Viedb+ Viadi=VisdZ — Vi
- Sﬂ;f;¢ﬂ+igggv“+%59“v; mod o, &, of. (4.60)
Condition (4.58) is equivalent to _
Vs 9¢7 =0. (4.584a)

Its differenﬁation gives, by using (4.21a) and (4.60),
=0, mod w,w% w?.
Hence we can put WwW=Plo*+ Qﬁf’ of mod w. (4.61)
Substitution into (4.54) gives
%= —VE, 0P A’ + Viga? A 0” + PP A w+ Q‘—;‘fa)-‘§ A . (4.62)
For future use we also write down the formula
Vo= d.—dash 7 + 1y |

= = Vig0? A 07 = Vozpar® A 07 + Qpa00f A 0+ Ppa0? A 0. (4.63)
Since the indeterminacy in o can be absorbed in g, substitution of (4.61) into (4.59) gives

Y =i {Qup0* wﬁ—Q;jgwEA wi}—iPO;wQA w”+oA o, (4.64)

where Pig=Pus+ Psa=Psa. (4.65)
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It remains to determine y, which can still undergo the transformation

p =9 +0Go, (4.66)
where @ is real. Denoting the new coefficients by dashes, we get, from (4.54) and (4.62),

Pyr=Pg+ 165G, (4.67)
which gives P;7=P;+’§‘G. (4.68)

On the other hand, from (4.65) we have
Br=2Re(PY). (4.69)
The equation Br=Pzr+n@
involves only real quantities and we have the lemma:
LemMA 4.5. The real form y is completely determined by the condition
Bz=o, (4.70)

We differentiate the equation (4.64), using th fact that ¥ is defined by (4.59).
Computing mod w and considering only the terms involving w? A w”, we get

dPg—Pigi—Prgi—Pas
=2VB;8,5+2V siod? — g, mod w, % w?. : (4.71)
From (4.70) and using (4.21a) and (4.58), we get
7=0, mod w,w% wh.
Since W' is real, we can write (4.64) in the form
W =i {Qup® A 0f — Qz30° A 0P} —iPif A 07 + {Ry0*+ Rz} A . (4.72)
We summarize the discussions of this section in the theorem:

THEOREM 4.6. Let the manifold M of dimension 2n+1 be provided with an integrable
nondegenerate G-structure. Then the real line bundle B over M has a Gy-structure, in whose
associated principal Gy -bundle Y there is a completely determined set of one-forms w, w?,
¢, ¢,f , %, y, of which w, $, p are real, which satisfy the equations (4.10), (4.16), (4.21), (4.26),
(4.37), (4.53), (4.54), (4.58), (4.59), (4.62), (4.70), (4.72). The forms

®, 0% 0%, $, bags 4% 3%, ¥ (4.73)
are linearly independent.



REAL HYPERSURFACES IN COMPLEX MANIFOLDS 259

In particular, suppose that the G-structure arises from a real analytic real hypersurface
M in C,.;. Suppose there is a second real analytic hypersurface M' in C,,, whose cor-
responding concepts are denoted by dashes. In order that there is locally a biholomorphic
transformation of C,,, to €,y which maps M to M’ it is necessary and sufficient that there
s a real analytic diffeomorphism of Y to Y’ under which the forms in (4.73) are respectively
equal to the forms with dashes.

The necessity follows from our derivation of the forms in (4.73). To prove the suf-
ficiency condition take the 2n-+1 local variables on M as complex variables. The w, w*
are linear combinations of dz%, dw and are linearly independent over the complex numbers.
From

0 =w, 0*=ep*
we see that the diffeomorphism has the property that dz'=, dw’ are linear combinations
of dzf, dw which implies that z'», w’ are holomorphic functions of 24, w.
The problem for n=1 was solved by E. Cartan [1]. In this case conditions (4.37),

(4.58), (4.70) reduce to
Susi=Vm=Pi=0.

Exterior differentiation of (4.53) then gives

Our formulas reduce to those given by Cartan.
As a final remark we wish to emphasize the algebraic nature of our derivation.

Most likely the theorem is a special case of a more general theorem on filtered Lie algebras.

5. The connection

(a) The flat case. We apply the results of § 4 to the special case of the nondegenerate
real hyperquadrics @ discussed in § 1. The notations introduced in both sections will be

used. In particular, we suppose
Jup = hop (5.1
and write the equation (1.1) of @ as

—% (w—) —gaﬁz“z/—’ =0. (5.2)

By (4,7) and (4.8) we have _
o=u{}dw—ig;z28d2"}. (5.3)
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On the other hand, given @ consider @-frames Z, such that the point Z, lies on Q. We
write

Z,=1Y,Y=(1,2",...,2" w) (5.4)
Then (dZ,, Zo)=%n6‘+1= [t} Y, Y)=|t]® (% dw+g£3z‘_’dz“). (5.5)
By setting u=|tf}, (5.6)
we have w=3}my" = —i(dZy, Z,). (6.7)

The structure equation (1.32) for dm,"*+! shows that we can put

o*=mf ¢=—nl+m, 3= —m’ 7 . (5.8a)
In fact, by setting
¢m=2nn$1’ ¢£=n£—6aﬁ7tooy p= —4nn-?1a (58 b)

we find with the aid of (1.30a) that the equations (1.32) are identical to the equations
given in Theorem 4.6 of §4 with
Saﬂ53'= a§y=Pa§=Qaﬂ=Ra=0- (59)

A (nondegenerate integrable) G-structure satisfying the conditions (5.9) is called flat.

Conversely, it follows from the Theorem of Frobenius that every real analytic flat G-struc-

ture is locally equivalent to one arisen from a nondegenerate real hyperquadric in C,,.
Under the change of @-frame (1.15) we have, by (5.7),

o* =|t|?o. (5.10)
We therefore restrict ourselves to the subgroup H, of H characterized by the condition
|#] =1. The form e is then invariant under H,. From (1.29) we have
Rl =2i(dZg, Dns1)y Ry =g*P(d 20, Zy). (5.11)
By (5.8a) it follows that under a change of Q-frames by H,, we have
0* =w,
0** = t(it* » + t50f),
W=t~ i 0 + Eof),

¢* =Re (17 0 — 2itr, 0%+ 2it 110" + 4.

(5.12)

The matrix of the coefficients in (5.12) belongs to the group G, introduced in § 4. The

mapping
H, -G, (6.13)
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so defined is clearly a homomorphism. In fact, if K denotes the group defined in (1.9), we

have the isomorphism
H,[K>@Q,. (5.13 a)

Since SU(p+1, ¢-+1)/K > H, /K, we will consider G, as a subgroup of the former via the
isomorphism (5.13a). This identification is essential in the treatment of the general
case; the group SU(p+1, ¢+1) is paramount in the whole theory.

We introduce the matrix notation

(h) = (h43), (5.14)

where h,z are defined in (1.10a). The Lie algebra 3u of SU(p+1, ¢+1) is the algebra of

all matrices
()= (L®), 0<4, B<n+1, (5.15)
satisfying
@) (B)+(R)¥(I) =0, Tr () =0. (5.16)
The Lie algebra of H, is the subalgebra of 8u satisfying the conditions
E=T"'=Re (10 =0. (5.17)
With this notation it follows from (1.30) and (5.16) that the matrix
() = (747) (5.18)

is an 8u-valued one-form on the group SU(p -+1, ¢ +1). The Maurer-Cartan equations (1.32)

of the latter can be written
d(m) = (7) A (7). (5.19)

Let HZY =2y, os Zipy) (5.20)
be a matrix of vectors of C,,,. Then equation (1.29) can be written
d(Z) = (7)(Z), (5.21)
and equation (1.15) for the change of Q-frames becomes
(Z*) = (1)(2), (5.22)
where the enfries in (f) are supposed to be constants. If (n*) is defined by
Z*) = (7*)(Z"), (5.23)

we have ()= (6) (x) () = ad (1) (). (5.24)

This equation will have an important generalization.
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(b) General remarks on conneetions. Let Y be a principal G,-bundle over a manifold
E. Let I' be a linear group which contains G; as a subgroup; in our case we will have

[ =8U(p+1,q+1)/K>H, /K=, (5.25)

In applications of connections it frequently occurs that one should consider in the bundle
Y a connection relative to the larger group I'. For instance, this is the case of classical
Riemannian geometry, where we consider in the bundle of orthonormal frames a
connection relative to the group of motions of euclidean space.

Let v be the Lie algebra of I' realized as a Lie algebra of matrices. Then @, acts on y

by the adjoint transformation
ad @) =)D @)L, @FEG,, (I)€Ey. (5.26)

A T-connection in the bundle Y is a y-valued one-form (x), the connection form, such that

under a change of frame by the group @, (n) transforms according to the formula
(n*) = ad () (n), (1)€EG,. (5.27)

Its curvature form is defined by
(I) = d(7) — (7) A (m) (5.28)

and is therefore a y-valued two-form following the same transformation law:
(IT1*) =ad (¢)(II), (#)€EG,. (5.29)

The adjoint transformation of G, on y leaves the Lie algebra g, of G, invariant and induces
an action on the quotient space y/g,. The projection of the curvature form on y/g, is

called the torsion form.

(e) Detinition of the conneection. This will be a geometrical interpretation of the
results of § 4. Our first problem is to write the equations listed in the Theorem 4.1 of
§ 4, i.e., the equations (4.10), etc. in a convenient form, making use of the group SU(p +1,
g+1) and its Lie algebra 3u. The g,3 are from now on supposed to be constants and we
call attention to the convention (5.1). Following the flat case we solve the equations
(6.7), (5.8a), (5.8b) and put

"t =20, —(n+2)m =4S+ ¢,
7 =% w1 = 240,
nn-:l = % ¢a’ nzo = - i‘ﬁa’ (530)

af =¢L+6.,n,
0

0 n+l__ _ =
iy = — 1, Tuiy = —p .
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The 7,2 are one-forms in Y, and the matrix

(@) = (%), 0<A4, B<n+1l, (5.31)
ig 3u-valued, i.e.,

(@) (B) + (B) ') =0, Tr (m)=0. (5.32)

Moreover, restricted to a fiber of Y, the non-zero «’s give the Maurer-Cartan forms of H,,
as is already in the flat case.

As in the flat case it is immediately verified that using the form (7) the equations in
the theorem of §4 can be written’

d(7) = () A () +(II), (5.33)

0 0 0
where m=yo 1nf 0 (5.34)
Hn?—l anl - ﬁoo

and
(n+2) H00= —(D:) Hn21= __ilP"

0__ __ - B _ 8
Ha @(I)m IIn+1 %(D i (535)

1
MNe=of- o 0L
where the right-hand side members are exterior two-forms in w, w?, wF, defined in §4.
For any such form
O=az0%A w# + terms quadratic in @ or %, mod , (5.36)
we set Tro= g"‘? @of. (5.37)
Then equations (4.37), (4.58), (4.70) can be expressed respectively by

TrIl? =0, TrIIL =0,
Tr I, =TrI.5=0, (5.38)
Tr Hngl = 0’

and their totality can be summarized in the matrix equation
Tr (II) = 0. (5.39)
Under the adjoint transformation of H,,
() > ad (¢) (),
(IT) = ad () (ID),
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the condition (5.39) remains invariant. We submit w, w®, w#, ¢ to the linear transforma-
tion with the matrix (4.12) and denote the new quantities by the same symbols with aste-
risks. Since (7) is uniquely determined by (5.39) according to theorem 4.1 in § 4 and since

these conditions are invariant under the adjoint transformation by H,, we have
(n*) =ad (¢) (=), t€G. (5.40)

Therefore (7) satisfies the conditions of a connection form and we have the theorem:

TaEOREM 5.1. Given a non-degenerate integrable Q-structure on a manifold M of
dimension 2n+1. Consider the principal bundle Y over E with the group G, <8U(p+1,
g+1)/K. There is in Y a uniquely defined connection with the group SU(p +1, ¢+1), which
15 characterized by the vanishing of the torsion form and the condition (5.39).

In terms of Q-frames Z, which are meaningful under the group SU(p +1, ¢+1), the
connection can be written

DZ,=ntZ,. (5.41)

These equations are to be compared with (5.21) where the differential is taken in the

ordinary sense.

(d) Chains. Consider a curve A which is everywhere transversal to the complex
tangent hyperplane. Its tangent line can be defined by
w*=0. (5.42)
By (4.16) restricted to A, we get
¢ =bew. (5.43)
The curve A is called a chain if b==0. The chains are therefore defined by the differential

system
w* =¢* =0. (5.44)

They generalize the chains on the real hyperquadrics in €, ., (cf. (1.33)) and are here defined
intrinsically. It is easily seen that through a point of M and tangent to a vector transversal
to the complex tangent hyperplane there passes exactly one chain.

When restricted to a chain, equations (4.10), (4.26), (4.59), (4.72) give

do=wA¢, dp=wNry, dyp=¢Ay. (5.45)

The forms w, ¢, v being real, these are the equations of structure of the group of real
linear fractional transformations in one real variable. It follows that on a chain there is a
preferred parameter defined up to a linear fractional transformation. In other words, on

a chain the cross ratio of four points, a real value, is well defined.
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6. Actual computation for real hypersurfaces

Consider the real hypersurface M in C, ., defined by the equation (4.6). We wish to
relate the invariants of the G-structure with the function 7 (2%, z;, w, 1), and thus also
with the normal form of the equation of M established in §2,3. This amounts to solving
the structure equations listed in the theorem of §4, with the G-structure given by (4.7);
the unique existence of the solution was the assertion of the theorem. We observe that it
suffices to find a particular set of forms satisfying the structure equations, because the
most general ones are then completely determined by applying the linear transformation
with the matrix (4.12). In actual application it will be advantageous to allow
g.5 to be variable, which was the freedom permitted in § 4. Our method consists of first
finding a set of solutions of the structure equations, without necessarily satisfying the
trace conditions (4.37), (4.58), (4.70). By successive steps we will then modify the forms
to fulfill these conditions.

We set
w=0=10r, w*=dz. (6.1)
Then (4.10) becomes _
d0 =tg,d2* A dzf + O A . (6.2)
It is fulfilled if
Gof = ~Taf T 70 Yaluf + 15 15700~ (1u7%)  Tuital
(6.3)

= —rZlrg,de” — 1o P2 4 (o 15) g (rade® + 1d2P),

where we use the convention

or or &r
= — = — 3= i . 6-4
Te aza: TB 62:3’ 'raﬁ P azﬁ’ etc ( )
Exterior differentiation of (6.2) gives
i(dgas + gupd) A d2* A dzf — O A dg=0. (6.5)
This allows us to put

A9u5 + Juf P = Aofy 027 + a5y d? + co50, (6.6)
dp =icgdz* N dzf +0 A, (6.7)
where Aafy = Oyfar Caf = Car (6.8)

With 0, g,5, ¢ given by (6.1), (6.3), equations (6.6), (6.7) determine completely a5, ¢,3,
and also p, when we assume that y is a linear combination of dz=, df only. The a,3,, ¢35,
4 so defined involve partial derivatives of r up to order 3 inclusive.

With w, w2, ¢ given by (6.1), (6.3), we see that the following forms satisfy (4.16),
(4.21), and (4.26):
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¢pfz(l) = aﬁ"_‘ydz?’ + %Cﬂcfe,
¢a(l) — %cﬂﬁ!dzﬂ’ (69)
PP =p.

Its most general solution, to be denoted by ¢4, $2, v, is related to the particular solution
(6.9), the “first approximation”, by

5" = b= g0,
"V = %+ dfdzf + €0, (6.10)
PO =y + g0 + i(e de* — ezdi?),

where dg* satisf dp+dg,=0 (6.11)
B y B B

and g is real; cf. (4.35), (4.36). We will determine the coefficients in (6.10) by the conditions
(4.37), (4.58), (4.70).
In view of (4.53) we set
dgg" P — 7P A P — igﬂ;dz; A Y+ idP A d2 + i85 (¢ A d2%)
= .sﬁe":-fl) dz2 A d2°, mod®@, (6.12)
. 1 .
by which sﬁe?'g‘ ) are completely determined. Let
(D) _ of ) @ _ jaf D
85 =9 8050 8 g 8.5 (6.13)

By (4.43) the condition (4.37) is fulfilied if we put

S | g
(n+2) dos we“+2(n+l)

9os5P- (6.14)
This equation determines d,; and we have completely determined
¢ =P —dg0=agd2? + (Yo5 — dg) 6. (6.15)
For the determination of ¢* we introduce the “second approximation™:
@ = ¢*V —dgdz’. (6.16)
Again in view of (4.53), we set
A — b5\ b — iggade® N § +igfP N da? + 8 ($P N de”) + 3 057 yP A 6

= 8525028 A d2 + v P dze A B — 0¥ D" A 6, (6.17)

which defines the coefficients 875, v5%s". The former satisfy
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85 = 9% 84555 =0. (6.18)
By (4.57) we determine ez by
—i(n+3}) eg= &P (6.19)

.0
so that (4.58) will be satisfied. We have then completely determined
P =¢a® —eaf (6.20)

and we introduce the “second approximation”

‘ @ =y —i(e,dzx —e5 d2P). (6.21)
By (4.54) and (4.62) we set

dp*— ¢ N ¢*— $# N pg:+ 3™ A de®
= —vf, d2? N dz¥ + o5 deP A d2" + P Vdzf A6+ q‘—;fdz’g A D, (6.22)

The eondition (4.70) is fulfilled by setting
2 (1)
9= —= Re(p) (6.23)

and p=9®—gb. (6.24)

The forms ¢4, $%, p so determined in successive steps satisfy now all the structure
equations, together with the trace conditions (4.37), (4.58), (4.70). Notice that our formulas
allow the computation of the invariants from the function r. The determinations
dg, e, g involve respectively partial derivatives of r up to the fourth, fifth, and sixth
orders inclusive.

The procedure described above can be applied when the equation of M is in the

normal form of § 2, 3. Then we have

1 _
(w—1%) —2,2) —Npg—~Ngy— Ny — Nyg— Npy — Nygz — ..., (6.25)

r=—2—i

where
N22 = Uq, a:ﬁnﬁz zal zas zﬂl zﬂi
Nio= Ny = knpouaafigu 2 22 2P 2P
32 23 uldzlsﬁlﬂi (626)

Noyg=Nyy=ly, . afp 2™ 2% 2% 2" 2P2P

N33 = Mo ts0s Elﬁaﬁs C zﬂl zﬁ' zﬂa '

and N,, and N,; aré real; the coefficients, which are functions of u, satisfy the usual
symmetry relations and are completely determined by the polynomials. Moreover, we

have the trace conditions
18 — 742902 Acta mathematica 133. Imprimé le 20 Février 1975
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Tr N,, = Tr2 N,, =0, (6.27)
Tr® Ny =0, (6.28)
where the traces are formed with respect to <, >. .
The computation is lengthy and we will only state the following results:
(i) Along the u-curve T, i.e., the curve defined by
22=9=0, (6.29)

we have ¢ =0, This means that I" is a chain. In fact, this is true whenever the conditions
(6.27) are satisfied.

(2) Along I" we find

8apgo= — 4ba e (6.30)
124 -
vly= = g W kuyi, (6.31)
a_ _ 48 w7 e
%= " mihmLa " (6.32)

where the quantities are defined by

(z,2)=hyz 2%2P. (6.33)
Tr Ngy = kaya, 242028, (6.34)
Tr? Ny, = l5,5,2% 2P, (6.35)

The situation is particularly simple for n=1. Then conditions (6.27) and (6.28) imply
Ny =N =Ny =0. (6.36)

On the other hand, we have the remarks at the end of § 4; the invariant of lowest order is
gu1- Equation (6.32) identifies it with the coefficient in N,,.

Appendix. Bianchi Identities
BY
S. M. WEBSTER

University of California, Berkeley, California, USA
In this appendix we will show that there are further symmetry relations on the

curvature of the connection, which follow from the Bianchi identities and which simplify

the structure equation.
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The Bianchi identities for the connection defined in section 5¢ are obtained by taking

the exterior derivative of the structure equation (5.33). This yields
0 = (IT) A () — (o) A (11) +d(I1).

To write this more explicitly it is convenient to use the formulation given in the theorem
of section 4. In the G, bundle ¥ over E we have the independent linear differential forms

w, w“, w’ﬁ, ¢, ¢¢ﬁy ¢a’ ¢E, v,
the relations ' bopt 52— Gasd =0

with the g,5 constant, and the structure equations

do =ig50* A b + 0 A ¢ (A.1)
do® =P A g+ w A ¢ (A2
d¢=’iw,§/\¢’_g+i¢3/\w’—9+w/\1p (A.3)

dpg™=¢g” N o +iwp A ¢* —~idp A 0% —ibg" (o N 07) =07y A+ BF*  (A.4)
dg*=¢ A ¢%+ 8 A $s*— Fp A %+ D> (A.5)
dp=¢Ap+2ipf A g+ V. (A.6)

The curvature forms are given by

DO = Spps? A o’ + Vil A w~ Vj‘g;w‘; Aw (A.7)
D= — V3, 0? A 0"+ Vigw? A w® + Prw? A o+ Q-&"‘a)" A w, (A.8)
W = iQur? A 0° —iQu0¢ A 0 —iP gt A 0 + (R,00 + R;0%) A o, (A.9)

where the coefficients satisfy the relations
8 pgas = Sopaz = 8 gozas
Spea=Baoig = Sz3p0
Poj =Poj+ Ppa,
and Ve = gﬂZS foac = g""?P,;g =0.
Differentiating equations (A.1) through (A. 6) yields, respectively,
0= ($op+ $pu— Jash) A 0* A P (A1)

0=wfAdf+ o @ (A.2)
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0=wA ¥ —i( @A w, — ®* A wy) (A.3)

0=dDg*+ O’ A $,*— dg? A D% —iwg A D% —iDs A 0*— 8 {i0" A w5+ 3 ¥ Aw} (A 4)
0=dD*+ DA §*~ A A D —p N D*— 3 ¥ A 0® (A.5)

0=d¥ +2iD’ A g —2igP A Dp— AW, (A.6")

These are the Bianchi identities. The actual verification of these equations is rather long,
but they result from differentiating and simply dropping all terms which do not contain
one of the curvature forms @4*, ®%, ¥ or one of their differentials. Equations (A.1’), (A.2"),
and (A.3') are trivial because of the relations .5 + ¢35, = 9,5 ¢ and Sze; = S,45. Substituting
(A.3) into (A.4") gives ‘

0=dDs"+ Of A ¢ — g5" A By —iwp A B i@y A 0" =3 85{O7 A w0, + D7 A g}, (A.4")
Substituting the expression (A.7) for ®s* into (A.4") gives, after differentiating and
lowering the index o,
0= D8 g3 N W8 A 07 + BgggA 0@ A 0 — Bogy A 08 A w
+ 90 grugo w* A w8 A o + 'iCa;;M;w; A we A o
+ 4D grge @? A 07 A @ + 5D 5o Wl A’ Aw

+ i H gz 08 A 0’ A , (A. 10)
where we define

D8 pzz = A8 poaz — S ugaiz $f ~ S puzs b — S poins b5 — Speaun b5 + Spowa
= 8 gaop @ + Sﬂo;;;w’_‘ + 8 poaz 0,
DV gz =V gro— V yzo ¥~V puo b5 — Visandbe ~ Spoas ¢’
=V gaop @+ V gagi w* + V gagr @,
Chaugs =V gaoua+ Vyzo9p5+ GauV e+ 95V yoes
-Dﬂ;oa' = Qoﬂ Joxt %gﬂa Qow
Eges =96 Pz~ Pspgeat 394 (Pos—Psp)-
Comparing terms of the same type in (A.10), we get the following three relations:
8 pozop—~ Spusze= — WV gao9us — V san96s
+(Vizo~ V) 945+ Gau¥ sio— GaoV siu+ 94a(Vise— Vesp)hs  (A.11)
Vﬁ;o‘a - Vﬂan' = -4 {Qoﬂga';— Qo‘ﬂ Joa + % g)ﬂ&(Qoa’ - Qo’a)}: (A. 12)
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Vgos + Vigags =1{945Pg— Pspgea+ 395 (Pg— Pso)} + 8 peaa- (A.13)

Multiplying (A.11) by gﬂ;‘gl‘;, summing over «, f, u, and o, and using the relations
9°*8 pozsu= V=0 gives
V4 =0.

so that contracting § and & only in (A.11) gives
V/tEg = Vgau- (A14)

It then follows that gh® Vgaoe=0, so that contracting the indices § and & in (A.12) and

in (A.13) gives
Qqa = Qo’a and PQE =P39- (A.15)

Equations (A.5') and (A.6") give further relations but no further symmetries of the
curvature functions Spus, Vg, Py, Qoo or R,

We can now write the curvature forms ®* and ¥ as follows:
Q= V5w Aw” + PEal A o+Q o A o, (A.8)
Y = —2iPgwl A w;+Raw9/\ w+R0°\o. (A.9)

Since V£,=0 we now have ®,*=0, so that in the equation (5.35) II,’ =0 and 1,7 =®,°.
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