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1. Introduction 

We begin by  considering the class S of all functions/(z) holomorphic and univalent 

in the unit disk [z I < 1 with/(0)  =0,  f (O)= 1, and denote by  k(z) the Koebe function, 

k(z) = (1 - z) ~ '  

which maps the unit disk eonformally onto the complex plane sht along the negative real 

axis from - � 8 8  to - ~ .  The Koebe function is known to be extremal for many  problems 

involving S. The first result in this paper asserts this is the case for a large class of problems 

about integral means. Specifically, I will prove the following theorem. 

THEOREM 1. Let (P be a convex non-decreasing function on ( - ~ ,  ~) .  Then for ~fiS 
and 0 < r < l ,  

f ]  ~(logl/(re~O)l)dO ~ f ]  Cb(loglk(re'~ (1) 

I] equality holds for some rE(O, 1) and some strictly convex ~, then ](z)=e-~k(ze ~') for 
some real o~. : 

In  particular, we have for 0 < r < 1, 

f[I/(re'~ ( 0 < p <  ~ ) ,  

f [  log+[f(re'~ f [  log+]k(re'~ (2) 
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The best previously known result in the direction of (2) is apparently tha t  of Bazi- 

levic [4], who showed tha t  (2) holds for p = 1, 2 if a universal constant is added to the right 

hand side. MacGregor [19] and Wilken [26] have proved (2) for / close-to-convex and p ~> 1. 

I t  remains an interesting open question whether (2) holds for any values of p if / and k 

are replaced by their derivatives. The inequality is sometimes false for 0 < p  < ~, since k' 

belongs to the Hardy  class H p for these p, whereas Lohwater, Piranian, and Rudin [18] 

have constructed a function in S whose derivative does not belong to any H p. For [ close- 

to-convex and p >/1 MacGregor [19] has proved tha t  (2) holds with [ and k replaced by 

[r and/c Cn) for all positive integers n. 

The most famous unsolved problem about S is Bieberbach's conjecture, which asserts 

tha t  if [(z)=~anznES then lanl ~<n. In  other words, the Koebe function is extremal for 

the problem of maximizing the absolute value of the n ' the  coefficient. By taking p = 1 in 

(2) and using Cauchy's formula, one can easily obtain the bound l a~ I <~ �89 en. The best 

known bound at  this t ime is l an I ~< 1.081 n, due to Fitzgerald [7]. Since Theorem 1= provides 

considerably more information than  just the inequality between the L 1 norms, it is con- 

ceivable tha t  there might be some way of using its full strength to obtain further results 

about  the coefficients. 

Consider now a not necessarily univalent function/(z)  =]Eanz n which is holomorphic 

in I zl < 1. Rogosinski  made the conjecture, more general than Bieberbach's, tha t  if / is 

subordinate to some' function geS, then la~l ~<n. I t  was proved (see, e.g. [14, p. 422]) by 

Littlewood tha t  

f.,,, f. re t~ I dO < I g(re ~~ ) I dO. 

Using this inequality together with Theorem 1, we once again obtain the coefficient esti- 

mate  l an I < �89 en, which is apparently the best one known in this context, a fact pointed 

out to me by  Ch. Pommerenke. 

The proof of Theorem 1, and of the other results in this paper, is based on considera- 

tions involving a certain auxiliary function. Let  u(z) be an extended real valued function 

defined in an annulus r l <  Izl < r  2. We suppose u(re to) is, for each rE(rx, r2) , a Lebesgue 

integrable function of 0, and define a new function u* in the semi-annulus {re% r 1 < r < r2, 

0 ~<0 ~<~} by 

u*(re t~ = sup ( u(re ~) dw (3) 
E J E  

where the sup is taken over all measurable sets E =  [-~r,~r] with I EI =20. Here, and 
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throughout the paper, 
] E I = Lebesgne measure of E. 

The reader may  recognize u* as the integral from - 0  to 0 of th e symmetric non-increasing 

equimeasurable rearrangement of u. (See Proposition 2 of w 3). The usefulness of u* for our 

purposes stems from the following result, 

T H ~ 0 R ~ ~ A .  Suppose  u is  subharmonic  in  the annu lus  r 1 < I zl  < r~. Then  u* is sub.  

harmonic  in  the semi -annu lus  {reiO: r 1 < r  <r2, 0 <0 <7t}. 

Theorem A was proved by the author in [1] for functions of the form u = l o g  ]g], 

where g is an entire function. I t  is not difficult to adapt  t h a t  proof to the more general 

situation considered here. Different, simpler, proofs have recently been discovered by 

M. Ess6n and P. SjSgren. In  w 2 we present SjSgren's proof of (an extended version of) 

Theorem A. 

The original application of.Theorem A, in [1], was to obtain a precise estimate of the 

size of the set where certain functions meromorphic in the plane are large. Refinements of 

this result appear in [3]. In  [2], two variants of u* were used to obtain a result about entire 

functions that  generalizes the Wiman-Valiron cos ~t~ theorem. 

In  w 3 of this paper we prove some simple real variable results, and in w 4 some results 

about Green's functions. In  w 5 we prove Theorem 1. Here is the idea. Let  u and v be the 

Green's functions, with pole at  ~ =0,  of the ranges of / and k respectively. Extend u and v 

to the whole plane by  setting them equal to zero outside their original domains of defini- 

tion. Then u and v are subharmonic in the plane, except for a logarithmic singularity at  the 

origin. :From Proposition 3 in w 3 and Cartan's formula it will follow tha t  the conclusion 

of Theorem 1 holds if and only, if u* ~< v* everywhere in the upper half plane. The key to 

proving this inequality is the fact tha t  the proposed extremal function v* is harmonic in 

the upper half plane, whereas, by  Theorem A, u* is subharmonic there. 

In  w 6 we present some complements and extensions of Theorem 1. The proofs require 

only very slight modifications of the proof of Theorem 1. Theorem 2 asserts tha t  the con- 

clusion of Theorem 1 holds if / and k are replaced by  their reciprocals. Theorem 3 is an 

analog of Theorem 1 for univalent functions in an annulus, and Theorem 4 asserts tha t  

Theorem 1 remains true for normalized weakly univalent functions in the sense of Hay-  

man [11]. 

In  w167 7 and 8 we consider integral means inequalities associated with circular sym- 

metrization. Let  D be a domain in the extended plane. The circular symmetrizat ion of 

D is the domain D* defined as follows: For each rE(0, co) let D($) = (O E [O, 2~t]: tetOED}. 

I f  D ( t ) - [ 0 ,  2~t] then the intersection of D* with the circle [z I = t  is the full circle, and if 
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D(t) is empty  then so is the intersection of D* with [z I =t. I f  D(t) is a proper subset of 

[0, 2z] and I D(t) l = o~ then the intersection of D* with I z I = t is the single arc (te'O: I01 < od2}. 

Moreover, D* contains the origin, or the point at  ~ ,  if and only if D does. 

Accounts of the theory of symmetrizat ion may  be found in [22] and [12]. We point 

out tha t  our use of the notation u* for functions u differs from tha t  in [12]. Our results 

all concern circular symmetrization, but  the corresponding results for Steiner symmetriza- 

tion are also true and can be proved by straightforward modification of the proofs for the 

circular case. 

Assume now tha t  D possesses a Green's function. Fix z 0 E D and let u(z) be the Green's 

function of D with pole at  z 0. Let  v be the Green's function of D* with pole at  ]z01. We set 

u and v equal to 0 outside D and D* respectively. 

T H E O R E M 5. Let (1) be as in Theorem 1. Then 

~(u(re~~ ~(v(ret~ ( O < r <  ~ ) .  (4) 

I t  follows from (4) tha t  

sup0 u(ret~ <~ sup v(re~~ 

and from this follows very easily the inequality 

lira u(z) + log I z - Zo I ~< lira v(z) + log [z - [Zo [ I, 

tha t  is, symmetrization increases the inner radius, a well-known result of Pdlya and Szeg5 

[22]. 

I t  seems probable tha t  if equality holds in (4) for some r and some strictly convex 

(P then D must  be a rotation of D*, but  this does not follow from our proof. 

For )l > 0 let 

D~ = { zeD:  u(z) >2}. 

The question is raised in [13] whether (D~)* c (D*}~. From considerations in w 3 it is easy 

to see tha t  this holds for all ~t if and only if 

0u* 0v* 
< (5) 

80 80 

throughout the upper half plane. Theorem 5 is equivalent to the inequality u* ~< v*, but  we 

have not been able to prove the more precise inequality (5). 

Theorem 5 and a result of Lehto 's  [17] lead to a strong symmetrization principle for 
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functions holomorphic in a disk. L e t ]  be holomorphic in I z l <  1 and D be the set of all 

values taken on by ]. Let  D o be a simply connected domain containing D*. We assume D o 

is not the whole plane, and let F be a conformal map of I z I < 1 onto D o with F(0) = I](0) 1. 

THEOREM 6. I/ f i8 holomorphic in the unit disk and F is as ~ust described, then,/or 

0 < r < l ,  

f~ r176 f~r176 (6, 
where r is as in Theorem 1. 

By considering, for example, the g 2 norms of [[I and IF[ in (6) we obtain 

]]'(0) 1 < I F'(0) l, (7) 
a result due to Hayman [12]. 

We note an important special case of Theorem 6. If [ is univalent, then D and D* 

are simply connected and we may take for :F a conformal map onto D* (with F(0) = [](0) ] ). 

For Steiner symmetrization with respect to the rea l  axis, the appropriate analogue of 

Theorem 6 involves integrals of Re ] and Re F. When D* is multiply connected, it is con- 

ceivable that  (6) could be sharpened by replacing the F there by the projection of the con- 

formal map onto the universal covering surface of D*. In this context, it is not even k n o w n  

if the inequality corresponding to (7) is:true. 

Assume again that  [ is univalent and F is the conformal map onto D*. Write 

n=O n=O 

Then I%1 = la01 by hypothesis and lull ~< lu l l  by (7). Xs it true that la.I ~< IAal ? Eveu 
if this is not true in general, the situation for subordinate functions suggests that  perhaps 

the weaker result 
n n 

Y.lakl~< Y lA~I ~ (8) 
0 

is true. A proof of (8) when F is a conformal map onto the right half plane would lead to 

a proof of Littlewood's conjecture, l a= ] ~<4n I% [ for non-zero univalent I. 

In w 8 we consider domains D contained in the unit disk. Theorem 7 is an analogue of 

Theorem 5 in which u and V are  harmonic measures associated with D and D* instead of 

Green's functions. This theorem generalizes a result of Haliste's [9], and provides a solu- 

tion of the Carleman-Milloux problem muchmore  refined than the one commonly known. 

: :  I am grateful to P, Sjbgren for communicating to me the proof of Theorem A' that  

appears in w 2 and  to Mutts Ess~n for  many helpful comments. The simple proof of Pro- 

position 5 i s  due to him. John Lewis called by attention to the classes S(d) discussed in 
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w 6. W. H. J .  Fuchs pointed out to me the existence of Lehto's result used in w167 4 and 6. 

Especially, it is a very great pleasure for me to acknowledge the many  helpful conversa- 

tions I have  had during the course of this research with my  colleague, Professor Richard 

Roehberg. 

2. Proof of theorem A. 

iz We recall that  if u is subharmonic in an annulus r l '< I < r2 then u(re ~"~) is a Lebes- 

gue integrablc function of o, for r 1 < r < r  2 ([24, p. 4]). Moreover, the mean  value lg(r, u), 

defined by 

I f _  N(r, u) -- ~ u(re ~) do,, (9) 

is a continuous function of r on (rl, rg} {[24, p. 5]). 

We are going to  prove a more general version of Theorem A, about differences of sub- 

harmonic functions, which will be. needed for the proof of Theorem 5. 

THEOREM A'. Suppose U=Ul ,U2,  where u 1 and u 2 are subharmonic in r l <  ]z I < r  2. 

Define 

u~(re ~~ = u*(re ~) + 2gN(r, us) 

where u* is de/ined by (3) and ~V by (9). Then u ~ is 8ubharmonic in (re~~ rl < r < r  s, 0 < 0 < g }  

and is continuous on (re~: rl <r  <rs, 0~<0<~}. 

Proo]. First we note tha t  :for each re ~o, r l < r < r  ~, 0~<0~<~, there exists a set E c  

[ - z ,  ~] with I EI  =20 for which the sup in (3) is attained, i.e. 

u*(re '~ = f eu(re ) do,. 

This follows from Prop6sition 1 in w 3. Moreover, letting E c denote the complement of E 

in [ - ~ ,  ~], we have 

u~( re 'O)=feu ( re~ ' )do ,+ f_~u: ( r e '~176  (9a) 

Observe that,  for any  E with [E[ =20 the right hand side is <~u~(retO). Now we prove the 

continuity statement.  If  u 1 and u s are continuous in the annulus then the proof is quite 

straightforward and we omit  it. For the general case we use a regularization argument,  Take 

R1, R s with r i < R 1 <.R s < r  2. For  sufficiently small ~ > 0  and R 1 < [ z [ <R~ define ~:~ 
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_ 1  ( ' f"  
(Aou) (z)- nc~s jo j_ u(z + te ~) t&p dt. 

Define Aau ~ and Aau~ similarly. The  subharmonic i ty  of u~ and  u~ implies Asut(z)>~ ut(z) 
for R 1 < I z I < Rz and i = 1, 2. This, together  wi th  (9a) shows t h a t  

~(z),< (~4,u)~'(z)(R1 < Izl < _% Im z>~ o), 

(We are comput ing  (A~u) ~ relat ive to  the  decompos i t ion  Asu=Aau~-A~u,.) Take  re ta 
with R 1 < r  < R~, 0 ~<0 ~<~. Choose E with  ] E] =20  so t h a t  (9a) holds wi th  A$u in place 

of u. Then  

O~ (A~u)'(re") -u'(re") <~ fE (A'ul-ul) (re'~)d~ + ~z ~(A'u~- us) (re'~176 

= N(f ,  Aoul)  - N(r ,  ux) + N(r ,  Aau~) - N(r ,  us) 

I claim t h a t  limN(r, A6ut)=~Y(r,u~) ( i =  1,2) 

(10) 

(11) 

uni formly  for rE(R 1, Rs). This, together  with (10), shows t h a t  u s is the  uni form limit  as 

(~-~ 0 of (As u) * in the  upper  half of R 1 < ]z I < R s. Since A~u I and A,  u~ are cont inuous for 

each ~, the  same is t rue  of (A$u) ~ and hence of u s. 

Le t  v s tand for u 1 or u s. T h e n  

1 /'~ g" r" 
N(r, A,~v)= ~ J o  tdtJ--ndOJ-n v(ret~ + te~)d~fl (12) 

Now 

j':, v(rr + "'~1 a~ = ~),(,'r176 + t, '§176 ~[ ~,(,.,,o + re,o+,,,,)+ v(rr + t,'-"la~ 
,! ! 

So, for  0 <  t~< ~, 

f~ dO f~ v(reta + te~V)dcp= f~ d~o~: [v.((r + te~)e$)-t-v((r + $e-~)eta)] dO 

= f~ N(Ir + te~], v) + N(lr + te-t~l, v) d~0 ~< 2g sup (N(s, v), Is - r l ~< t} 

~< 2~ sup {N(s, v ) : l s  - rl ~< 0}, 



146 AT.RE/~T B A E R N S T E I N  I I  

Subst i tut ing in (12), we find 

N(r, A,v) < s u p  {N(s, v): Is-rl <~). (13) 

Since N(r, v)<~N(r, Aav)and N(r, v) is uniformly continuous on [R t, R2], the desired 

s ta tement  (11) follows f rom (13). This completes the proof of continuity.  

For  the proof of subharmonic i ty  we need a result about  subsets of the uni t  circle T. 

As usual, we identify T with the quot ient  of the real line modulo the subgroup 2~Z. For  

E c  T let E ,  denote the t ranslate  of E by  e. 

LEMMA. Let E be a measurable subset o/ T, with 0 <  [E[  <2~.  Then there exists ~ > 0  

such that 
I E, n E_, I < I ~1 -2 ,  (14) 

/orO<e<& 

Proo[. If E is an  interval, or differs f rom an interval  by  a null set, then equali ty holds 

in (14) for all sufficiently small e. I n  the cont ra ry  case, there are points  a 1 <b  1 < a  S <b2 < 

a x + 2 g  such tha t  a 1 and a S are densi ty  points  of E e and b 1 and b 2 are densi ty  points  of E. 

We m a y  assume 0 < a t  and b~ <2z~. Choose e with bt < c  < a  S and let Z denote the charac- 

teristic funct ion of E. Then, for e > 0, 

Yo Y :  'YI?  J: X(t+e)X(t=e)dt<~ X(t+e dr+ (t-e)dt+ X(t+e)dt 
1 

= X(t+e)d2+ ,_~X(t)dt" J~l+,)~lt)dt" 

Choose (~ > 0 such tha t  0 < t < ~ implies 

f aal+e s fbl+e ,_X(t)dt<~, j0,_ Z(0d~>~.  

Then 

Similarly, using 

f~Z( t+e)Z(t-e)dt<<.f~Z(t+e)dt--:e (0<  e <  $). 

X(t + e)dt + fi~'Ztt- e)dt + fl, z(~ + ~)at 

(15) 
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we obta in  (with perhaps  a smaller  ~) 

f? Z(t+e):~(t-e)dt<~ X(t+e)dt-e (0<  e <  ~). 

This, combined with  (15), yields, for 0 <  e <  ~, 

f: f:" [E~ N E_~] = Z(t+e)Z(t-e)dt~ g(g+ r ) d t - 2 e =  IE~] - 2 e ,  

and  the  l e m m a  is proved.  

Now we can prove  t h a t  u # i s  subharmonie .  F o r  f ixed r and  if, 0 <  ~ <  r, define r(v2) 

and a(~o) for ~o real b y  

r(y) = I r + e e ~ I, 

Then  

0~(~p) = arg (r + ~ elY), 

r + ~ e t~ = r(y) e ~(v). 

Note t h a t  r(~o)= r ( -  ~o) and ~ ( ~ ) =  - a ( -  ~o). For  any  funct ion u we have  

f~ u(re '~ + ~e '~) d~p= f~u(re '~ + ~ e'(~+~)) + u(re '~ + Qe'(~-v'))d~p 

f~u(r(~p) e ~(~+~(v))) + u(r(~p) e ~(~-~(~))) d~. (16) 

Le~ u be as in the  s t a t emen t  of the  theorem.  F ix  re t~ with r l <  r <  %, 0 <  0 <  zr. As in 

(9 a) there  is a set  E with  ]E[ = 20 such t h a t  

u'(re'~ ~ ul(re'~')d~o+ fFu2(re'~)d~o (17) 

where F= E c. Since u 1 and u 2 are  subharmonie  we have,  for sufficiently small  Q and 

i =  1,2, 

uj(re '̀ ~ ) <~ ~ uflr(~o) ei! ~+~(~))) + uj(r(v2) e t(~-~(~))) d~p. 

We put  these inequalit ies in (17) and reverse the  order  of integrat ion.  The  result  m a y  be 

wr i t t en  

1 =?g 
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Let O be associated with E as in the lemma. We assume that  ~ is small enough s~ that  

0 ~< ~(yJ)<O and 0 + ~(yJ)~<~ for 0 ~<~ ~<~. Fix such a yJ. By the lemma, we can choose a set 

C with 

such that  if A = (Ea(~ 0 E_a(v~ ) U C then 

[A I = I EI - 2 ~ ( ~ )  = 2(0-~(yJ)) .  (19) 

Let B = (Ea(~ U E_acv~ ) - C. Then 

A U B = Ea(~ U E_~(~, A O B =E~(~ 0 E_~(~. (20) 

Since IA[ + ] B  I = ] A  0 B I + I A  U B[ = ]E~(~, I + IE_~,v,,I =40 

it follows that  
[B I = 2(0 +a(~)). (21) 

By (20), for every integrable function g we have 

fAg+ f . g =  =(.) g" 

A similar identity holds with A and B replaced by their complements and E=(~), E_~(v) 

replaced by F~(v), F_=(v). Thus 

f . + [  u,(r(v2)e'O')d~o dr :.,., .(., + .,., u'(r(w)e'~ 

= s u~(r(~o)e'~)do~+ s u,(r(~o)eU~)dm+ f u~(r(~o)e~)do)+ f u,(r(~o) e'~)do) 

< u~(r(y~) e~(~ ))) + u~(r(y~) e~(~ (22) 

The inequality follows from (19) and (21). Substituting (22) in (18) and recalling (16), we 

obtain 

u'~ (re ~~ ) <~ ~ u" (re ~ + ~ e ~) d~o, 

which proves the subharmonicity of u ~. 

3. S o m e  real variable results 

Let g(x) be a real valued integrable function on [ -  ~. ~]. The distribution/unction of 

g is the function 2(t) defined by 
= I{x: g(x)  > t } l .  
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The definition of Lebesgue integral leads t o  the well known formula 

f g=- f~ td i t ( t ) .  

In particular, two functions with the same distribution function have the same integral 

over [ --~, :rt]. 

We define now 

9"(0)= sup | 9  (0<0~<~t). (23) 
IE1=20 d E 

PROPOSITI(~N 1, For each 0E[0,~] there exists a set E w/th ]/~1 = 2 0 / o r  whichthe 
supremum in (23) is attained. 

Proo/. This is obviously true for 0 = 0 ~nd 0 = ~. Take 0 E (0, ~t). There exists t E ( -- ~ ,  ~ )  

such that  it(t + ) =it(t) ~< 20 ~<it(t - ) .  Let  A = {x: g(x) > t}, B = {x: g(x) >~ t}. Then I A I =it(t), 

[B[ = i t ( t - ) .  Take E such that  IEI =20 and A c E c B .  Let F be any set with IF[ =20. 

Then 

fpg=fF[g(x)-t]dx+2Ot<<-f[[g(x)-t]+dx-~2Ot=fE[g(x)-t]dx+2Ot=fEg. 

This proves the proposition. 

The symmetric non.increasing rearrangement of g is the extended real valued function 

G(x), defined on [ - ~ ,  ~t] as follows. If it(t) is continuous and strictly decreasing then G on 

[0, ~t] is the inverse function of lit. In general, 

GCx)=inf(t:it(t)<~2x} (0~<x< ~t). 

G(zt) = lim G(x) = ess. inf g. 

We set G ( z ) = G ( - x )  for -z t~x~<0.  Then G is non.increasing on [0, ~t] and it is easily 

verified that  G has the same distribution function as g. "(The~reader should b e  aware of 

the fact that  in the literature the function we dr~e calling~G is' often caned g*.) 

The relation between our functions G and 9* is given by the following formula. 

PROPOSITION 2. For gEL 1 [-~t, ze], 

g*(O) = J-f~ ~ G(x) dx (o ~. 0 < ~). (24) 

Proof. For 0 =0  both sides are zero and for  0 ~ t  both sides equal the integral of g 
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over [ - ~ ,  ~]. Take 0E (0, ~) and let E and t be as in the proof of Proposition 1. Then 

g*(O)=fEg=f:~(x)-t]+dx+2Ot=f~[O(x)-t]+dx+2Ot. (25) 

(The last equation follows from the fact tha t  [g(x)- t ]  + and [G(x)- t ]  + have the same dis- 

tr ibution function.) Sets of the form {x: G(x)>s} are intervals symmetric around the ori- 

gin, and G and g are equi-distributed. These facts imply G(x)~t for Ix[ ~<0 and G(x)<.t 
for [ x[ >~ 0. Thus 

; [G(x)-t]+ dx+ 2Ot= ;o[O(x) - t ]dx  + 2Ot= ;oG(x)dx, 

which, together with (25), proves (24). 

Our next  result asserts tha t  inequalities between the convex integral means of two 

functions are equivalent to inequalities between their * functions. 

I:)BOPOSITIOlq 3. For g, h El_,l[-~t, Jr] the/ollowinq statements are equivalent. 

(a) For every convex non-decreasin9 /unction dp on (-0% oo), 

(b) For every rE( - ~ ,  ~),  

(c) g*(O) <. h*(O) (0 < 0 < ~). 

This proposition is a var iant  on Exercises 249 and 250 of [10]. 

Proo/. (a) ~ (b) is trivial. For (b) ~ (c) we may  assume 0 < 0 < ~  and let t = H(O), where 

H is the symmetric non-increasing rearrangement of h. Then for any set E with I EI =20, 

fEa= f ~(x)-t]dx+ 2ot< f~ ~(x)-t] § dx+ 2ot 

< I "  [h(x) - t] + dx + 20t 
j -  

L r~ = [ H ( x )  - t ]  + d x  + 20t  = H(x )  dx  = h*(O), 
j-o 
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which p r o v e s  (c). For  ( c )~ (b )  we may  assume t < e s s ,  supg  and choose 0 so t h a t  

G(O - ) >~ t >~ G(O + ) (For t ~< ess. infg  take 0 = re). Then 

;~ [9(x)-t]+ dx= ; [G(x)-t]+ dx= ;o[G(x)-t]dx=g*(O)-2Ot<.h*(O)- 20t 

= 0 [H(x) - t] dx < ,~ [H(x) - t] + dx = , [h(x) - t] § dx, 

which proves (b). 

Now we turn  to ( b ) *  (a). A simple limiting a rgument  i n v o M n g  t runcat ions  of q~ 

shows tha t  it is sufficient to prove the inequali ty in (a) for convex non-decreasing functions 

qb which are equal to  a constant  ~ on some interval  ( -  cr - M ) .  Consideration of ~P= 

( ~ P - ~ ) + ~  shows tha t  there is no loss of generali ty in assuming ~ = 0 .  Since ~P' is non- 

decreasing there is a positive measure lu on ( - c r  cr defined by  ~u(- cr s ) =  O ' ( s -  ). Then 

r ; r - ; r ; (s-t)d~(t). 

Thus 

f ' (s- t) + r d#(t) ( - ~ < s <  ~). 

The inequali ty in (a) follows at  once f rom this representat ion together  with hypothesis  

(b) and Fubini ' s  theorem. This completes the proof of Proposi t ion 3. 

Using ( a ) ~  (c) we note  t ha t  Theorem 1 m a y  be succinctly restated as 

(log J/J)* ~< (log J k J)* (]ES) 

The other  theorems m a y  be restated similarly. 

4. Some properties of Green's functions 

A domain D in the  extended plane is said to possess a Green's function, or be of 

hyperbolic type,  if there exists a positive funct ion on D which is harmonic  in D except  a t  

a point  z 0 E D where it has a logarithmic pole. The smallest such funct ion is called the 

Green's funct ion of D, with pole at  %. I f  there is a Green's funct ion of D with pole a t  z 0 

then there is a Green's funct ion of D with a pole at  any  other  point  of D. 

We will say t h a t  D has a classical Green's/unction if each Green's funct ion u(z) tends 

to  zero as z approaches the boundary  of D. A sufficient condit ion for D to posses a clas- 

sical Green's funct ion is t ha t  every boundary  po in t  of D be contained in a cont inuum 

which is contained in the boundary. .  
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In this paper whenever a ::Green's function exists it will be extended to the whole 

Riemann sphere by setting it equal to  zero in the complement of D. Thus, if u is a classical 

Green's function with pole at z 0 then u is continuous on the sphere, except at z 0. At a 

point in the complement of D u is obviously ~< its mean value on circles centered at  that  

point, hence u is subharmonic on the sphere, except at z 0. 

The proofs of our theorems about inteigral means of analytic functions/(z) involve 

transferring the integrals from the z-plane into the image plane. The transfer is accom- 

plished via the following result. 

PROPOSITION 4. Let / be holomorphio in Iz] < t  and D be the range o]/. Assume D 
has a Green's /unction and let~ u be the Green's /unction o/ D with pole at/(0), Then/or 
0~<~ < oo and .0<r  < 1, 

,i 

f_,log+ l/(re'~ dO< f [u(Qe~)+logr]+dT+2ztlog +1/(0)[ (27) 

I / / i s  univalent then equality holds. 

Proo/. For 0 < r < 1 and ~ complex consider the function 

r 
N(r, ~).= N(r, ~, 1) = ~ log + I z, I (28) 

where the sum is taken over the roots z~ of/(z) =$ in Izl <r,  counted according to multi- 

plicity. Cartan's formula ([14, p. 214]) asserts that  

f~ log + ]/(re'e)]dO = f~,,N(r, e'~) d T + 2~z log + [/(0) [. (29) 

The function u(/(z))+ log I z [ is superharmonic in I z I < 1 and has non-negative bound- 

ary values. Therefore ' 
u(l(z)) >~ - l o g  I z[ (Izl < 1). (ao) 

F o r ~ 0 < r < l  let Dr={ r  u($)> - l o g  r}. By (30) we have/(Iz I <r)cD,,  thus N(r, ~)=0 

for $~D,. Lehto [17] has shown that  N(r, ~) is a subharmonic function of $, except for a 

logarithmic pole at  ~ =/(0). Thus u(~)+log r :-N(r, ~) is superharmonic in Dr and has non- 

negative boundary values. I t  follows that:N(r,  ~) ~<u(~) +log r i n  Dr, so that  

N(r, ~) <. [u($) +log r] + (31) 

for all'$ E C. Putt ing this inequality in (29) we obtain the desired integral inequality (27). 

If / is univalent then the Green's function u is given by u(~) - - - l o g  I/-1(~) [. Compar- 
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ing with the definition (28) of N(r, ~) we see tha t  equality holds in (31)~ and hence in (27). 

This completes the proof of Proposition 4. 

The extremal functions in our theorems about integral means all have jthe property 

tha t  their associated domains D coincide with their circular symmetrization, that  is, D = D*, 

The next  result provides some explanation as to why this is so. Let  D be a domain with 

a classical Green's function and let u be the Green's  function of D wi th  pole at  z0. We as- 

sume z 0 is finite, the case z 0 = c~ requiring only obvious modifications. Then we can write 

u(z) = ul(z ) - l o g  le-zol 
where u 1 is subharmonic in the whole finite plane. I f  z o 4 0  then, by  Theorem A', 

f_ u~ (re ~~ = u*(re ~~ + log I re t~-  zold~p (32) 

is subharmonic in the upper half plane, I f  zo=O then u is subharmonic in 0 <  Izl < ~ so 

that  u* is subharmonic in the upper half plane. 

PROPOSXTiON 5. Let D and u be as just described. Suppose that D=D* and that z0= 

ro>~O. Let D~ =D fl (Im z > 0 ) .  Then 

(a) u*(z) is harmonic in D ~, when r0=0, 

(b) u*(z) +2~  log + IZ___[ is harmonic in D +, when r0>0. 
r 0 

Proo]. Consider case (a). Define h by 

f ~ou(re t~) d~ h(re ~~ = (0 <~ 0 <<. :~, r >0). 

Since u is harmonic in D -  {0} and D contains a neighborhood of the arc{re'r: I~1 <~ O} 

whenever it contains re ~~ we have, for reiOED +, 

fo 02u OZh (re ~~ = (re ir) d~o = f ~ o -  o2u t~ b(log r) 2 j_oO(l~gg r) 2 O~o~(re )d~ 

_ ~ u  (re~O) + Ou L~o _ O2h ~0 ~0" ~ ( r e  ) - - ~ 2 ( r e  ). 

Thus h is harmonic in D e, and is continuous in the closed upper half plane, except at  the 

orgin. If  re~O~D '-, with r > 0 ,  0~<0~<~, then, since U>~0 everywhere and u = 0  outside D, 

it follows from the the definition of u* tha t  u*(retO)=h(retO). From u(z)=ul(z)- log Izl 

with u 1 harmonic in a neighborhood of 0 it follows tha t  

lira [u*(z) • h(z)] =0 .  
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The same re la t ion  holds as z-~ ~ ,  since u is cont inuous  a t  ~ .  

W e  have  shown t h a t  u * - h  is subha rmonic  in  D +, con t inuous  a n d  bounded  on the  

closure, and  equal  to  zero on the  bounda ry .  Thus  u* ~<h in D +. Bu t  the  def in i t ion  of u* 

shows t h a t  u* ~>h. W e  conclude t h a t  u* =h, and  hence t h a t  u* is ha rmonic  in D § 

Turn ing  to  the  case r 0 > 0 we observe t h a t  u * - h  is stil l  cont inuous  in the  closed ex- 

t ended  uppe r  half  p lane  and  equal  to  zero outs ide  D +. (The s imple proof  t h a t  u*(z) - h ( z ) ~ 0  

as z ~ r  o is left  to  the  reader . )  

Since u(z)+log ] z - r 0 ]  is ha rmonic  in D i t  follows t h a t  

hl(ret~ = f~o [u(re~V') + log] re ~ - r01] d~0 

is ha rmon ic  in D +. Define 

u2( ret~ = ~ * ( re~~ + f ~ol~ ] re ~ - ro ] dy,. 

Compar ing  wi th  (32), we f ind  

u"(re ~') - u~.(re ~~ = log Ire ~("-~) - ro ld ~. (33) 

The  funct ion on the  r igh t  is a ha rmonic  funct ion  of re ~~ in the  uppe r  haft plane.  Since u* 

is subharmonie  in the  uppe r  half  p lane  the  same is t rue  of ug.. Thus  u 2 -  hx = u * -  h is sub- 

harmonic  in  D +. As in case (a) i t  follows t h a t  u* = h t h roughou t  the  upper  half  p lane ,  

and  hence t h a t  u s = hi there.  The  h a r m o n i c i t y  of h i =  u s in D + implies,  in view of (33), 

t h a t  of u* there .  E v a l u a t i n g  the  mean  va lue  in (32), we f ind 

u~(re t~ = u*(re t~ + 2~ log + r + log r0, 
r0 

so t h a t  u* + 2 ~  log+(r/ro) is ha rmonic  in D § as claimed.  

W e  po in t  out  a consequence of the  equa t ion  u* = h es tab l i shed  above.  

COROLLARY. Under the hypotheses o/Proposition 5, u(~.) =u(z) /or all z and, /or  every 

r > 0 ,  u(re ~a) is a decreasing/unction o /0  on [0, ~]. 

Proo/. I f  th is  were no t  the  case we could f ind  an  r and  0 such t h a t  

u*(re~~ > f~o u(re~) d% 

which viola tes  u* =h. 

F o r  cer ta in  s imply  connec ted  doma ins  D wi th  D = D* the  above  resul t  was p roved  b y  

J enk in s  [15]. 
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5. Proo |  o[ Theorem 1. 

Let  /ES  and k be the Koebe function. Using (b)~ (a)of  Proposition 3 with g(O)-~ 
log If(re'~ h(0) =log Ik(re'~ and t= log  e we seo that  the inequality of Theorem 1 will 

hold provided we can show that  

I/(re~~ dO <~ I k(ret~ dO (34) 
P ' - 'e 

for all r E (0, 1) and all ~ > 0. 

Let  u(~) and v(~) be the Green's functions, with pole at  $ =0,  of the ranges of ] and k 

respectively. These Green's functions are classical, in the sense of w 4. Thus, when defined 

to be zero outside their original domains, u and v are subharmonic in 0 < I ~ I < oo. In  view 

of Proposition 4, inequality (34) is equivalent to 

f ~ [ u ( o e  '~) + logr] + dT~< j ~  [v(~e '~) + log r]*d~. 

By (c) ~ (b) of Proposition 3, this inequality Will follow from the inequality 

u*(qe t~) <<. v*(Qe ~) (0< ~ < o% 0 ~< ~ < ~). (35) 

By Theorem A, u* is subharmonic in the (open) upper half plane: The range of k is 

the slit plane t3- (  - ~ ,  i), so, by Proposition 5, v* is harmonic in the upper half plane. 

Fix e > 0 and define the function Q by 

Q(~e ~) -u*(~e ~) -v*(Qe ~) - e ~  (0 <Q < ~ ,  0 ~< ~0 < ~). 

Then Q is subharmonic in the upper half plane, and, by the continuity statement in Theo- 

rem A', is continuous in the closed upper half plane except at the origin. 

Let  d be the distance from the origin to the  complement of the range o f / .  Then d >~ �88 

We can write 
u(~) = - l o g  [~l +u l (~ )  t.q6~ 

where u 1 is harmonic in [~[ <d. From ] ' (0)=1 it follows that  ul(0) =0, and from this it  

follows that  
u*(~e '~) = - 2 n  log q +o(1) 

as q-~0, uniformly in ~. The same relation holds for v*. Thus 

lin~ s%up Q(~)=0. (37) 

11 -742902  Acta mathematica 133. Imprim~ le 27 Janvier 1975 
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Since u(~)~0 and v(~)-~0 as ~ - ~  the same is true of u* and v*. Thus 

lira sup Q(r = 0. 

From the definition of the * function, we have 

Q (e )=0  (q>0) .  
From (36) we obtain 

eta) = ---I[= u (~  e tr d ~  = - 2~t U*(~ log Q 

Define v 1 by 
v($) = - l o g  "4-V1(~)" 

The circle 

Hence 

(38) 

(39) 

(0< q <d ) .  (40) 

Then vl(0 ) =0,  vl is harmonic in [~[ <�88 and v I is subharmonie in the whole plane. Thus 

v*(0e~")= v(eee)dcp= a 2 z t l o g e +  d~>~ - 2 ~ l o g  0 ( 0 < ~ <  r162 (41) 

Comparing (40) and (41), we see that  

Q(oe ~') <~ 0 (0 <O < d). (42) 

Let  M be the supremum of Q in the upper half plane. We want to show that  M = 0. 

Let  {$n} be a sequence such that  Q(~n)-~M. A subsequenee of {~n} converges to some point 

~0 in the extended closed upper half plane. Since Q is subharmonie, we may, by the maxi- 

mum principle, assume that  $0 is a boundary point. If ~0 = co or if $0 is a point of the real 

axis in [ , d ,  ~ !  then, in view of (37), (38), (39) and (40), M = 0 .  

The remaining possibihty is $0 =Qo eL', with d <0o < or Then 

Q(~o e'~') -Q(eo e'~) >~ 0 (0 < q  ~<z). (43) 

Let G be the symmetric non-increasing rearrangement of the function qJ--->U(Qoe~). The 

continuity of u implies that  G is continuous on [ -~r, ~]. By Propositon 2, 

Du* 
~-~- (~0 eta) = 2G(~) (0 < ~ ~< ~t). 

I~] =e0 intersects the complement of the range of ]. Thus inf~ U(qo e'~) = G(zt) = O. 

~u* 
h m  - -  (~0 e~ )  = 0. 

The same is true with u* replaced by v*. Hence 

li,m_ ~ (Qo e~) = - ~ .  
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I n  view of the  mean  value theorem this is inconsistent  wi th  (43). We conclude t h a t  

- ~ < ~0 < - d is impossible, and  thus  have  shown M = 0. Hence  Q ~< 0, and,  since e was 

a rb i t ra ry ,  (35) is established and the  proof of the  inequal i ty  s t a t emen t  in Theorem 1 is 

complete.  

We prove  now the s t a t emen t  in Theorem 1 regarding equal i ty .  The  nota t ions  used are 

the  same as above.  Suppose / is not  the Koebe  funct ion or one of its rotat ions.  Then  d > t .  

I f  ~0>�88 then  v can not  be harmonic  in any  annulus  ~0 < [~1 <~~ since v achieves its mini- 

m u m  value zero a t  the interior points  Qe ~', ~ E (Q0, Q1). I t  follows t h a t  Vl(~ ) = - l o g  I~1 + v(~) 

fails to be harmonic  in [$1 <~ as soon as ~>�88 Let  h be harmonic  in 151 <ff and equal  to  

o n  = e .  

Then  

0 = vl(0)< h(0)=2~J_v~(~dr  (e >1). 

Thus  (see (41)) 
v*(~e ~'~) > - 2 ~  log ~ ( t  <Q < ~ ) .  (44) 

The  funct ion u * - v *  is subharmonic  in the  upper  half plane. We showed above t h a t  it 

is cont inuous and bounded in the  closed half plane, and  is ~< 0 on the  real axis. B y  (40) 

and  (44) it  is s t r ict ly negat ive  on the  in terval  ( - d ,  - t ) ,  hence is s t r ict ly negat ive  in the 

open uppe r  half plane. 

T h a t  is, U*(~e ~) < v*(qe ~) (0 <~  < c~, 0 < ~0 < g). (45) 

F ix  r E (0, 1). I claim there is an in terval  J c  (0, ~ )  such t h a t  Q E J  implies 

f ~ .  [u(~ e ~) + log r] + d~ < f ~  [v(~ e ~) + log r] + d~. (46) 

For  u(~)=  - l o g  [~1 we m a y  take  J = (r, r +~), where ~ > 0 is sufficiently small (direct veri- 

fication, using v = - l o g  [k- l [ . )  Any  other  u has  the  p rope r ty  

inf u(e e ~) < supu(  e e ~) 

for all ~ ~<d. The inf is a continuous funct ion of Q, equals zero for ~ =d ,  and  tends  to  co as 

Q-~0. We  take  for J an in terval  such t h a t  

inf u(Q e ~) < ~ log r < sup u(~ e~): (Q E J) .  

Le t  E(~) = {~: u(~e '~) + log r > 0}. Then  0 < I E(Q)] < 2g for  Q e J .  
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f ~  (u(~ log d~ = J ~ ( q ) e  'r log r) d~ 
s 

(u(q e ir ) + r )  + w~ 

U*(~ e |[E(O)ll2) + ] E ( ~ )  ]log r < v*(~ e ilE(~ + [ E ( ~ )  [log r, 

where the strict  inequali ty is by  (45). The right hand  side is, b y a n  obvious argument ,  ~< 

f ~  (v(Q log d~0. e ~v ) + r )  + 

Thus we have proved (46). 

In  view of Proposi t ion 4, inequal i ty  (46) may  be wri t ten as 

ff ' , log  + ]/(re*~ dO< f "  log + Ik(re'~ dO (qEJ). (47) 
- ~ . l -  

Let  (I) be a non-decreasing str ict ly convex funct ion on ( - ~ ,  ~ ) .  (By str ict ly convex, 

we mean (I) is not  linear on any  interval).  Le t  J' be the interval  log J .  We m a y  assume 

J' is a finite open interval.  Le t  s o be a number  lying to the left of J', and decompose (I) as 

follows, 
= ~x+~p~, 

where (I) 1 coincides with (I) on ( - ~ ,  So] and is hnear  on [So, ~ )  with slope ~P'(So-). Then 

(I) 1 and (I) 2 are non-decreasing and convex on ( - ~ ,  r and (I)2 is str ict ly convex on (80, ~ ) ,  

(I)2(s) = 0  for s ~<s 0. We m a y  write, as in the proof of (b )~  (a) of Proposit ion 3, 

(D~(s) = (s  , -  t)  + d ~ ( t )  (48) 
--CO 

where/x is a positive measure. Since (I) 3 is not  linear o a J ' ,  we must  have 

/~(J') > 0. (49) 

From the inequali ty s t a tement  of Theorem 1 we have ' 

f~(logl/(re'~176 

for  all t, and by  (47), we have str ict  inequal i ty  for  tEJ'. Using (48), (49), we denote  

f~ ,,(loglt(re~ f~ *,(loglk(r,'~ (50) 

Since f~ ~10og I !(re~ I ) dO ~< f ~ ,  (Dx(log[h(rem) [ ) dO, 

and (I) = (I) 1 + (l)2, (50) remains t r u e w h e n  (I)9. is replaced by  (I), and we are done. 
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6. Cgmplements and extensions of Theorem I. 

THEOREM 2. F o r / E S  and �9 as in Theorem 1 

~ c O ( l o g ~ l ) d O < ~ ( l o g ~ ) d O  (0< r <  1). 

I /  equality holds /or some.re (0, 1) and some strictly convex ~,  then/(z) = e-*~k(ze*~) /or 

some real ~. 

Proo/. Assume / is not the Koebe function or one of its rotations. As in the proof of 

Theorem 1, i r i s  sufficient to prove, for all ~ >0, 

L log + 1 1 
_ ~[/(reiO) l dO ~ - -  ~1 k(ret~ dO (5i) 

with strict inequality: for ~ in some open interval. By Jensen's formula and  the fact 

tha t /ES ,~  : 

Thus 

; f: log + (ell(rei~ I ) dO = 2~r(log e - log r) + , log + 1 dO, 
. e l /(re'~ 

(52) 

and t he  same is true when / is replaced by k. By Theorem 1, the left  hand side of (52) 

does not decrease when / is replaced by k, and is strictly increased for ~ in the reciprocal 

of the interval J of (47). Thus (51) holds, and the theore m is proved: 

We turn our attention now to an analogue of class S for functions univalent in an 

annulus. For R > 1 let A(R) denote the annulus 1 < I zl < R, and let S(R) denote the class 

of all holomorphic univalent functions / in A(R) which s a t i s f y  

] / ( z ) ] > l  f o rJzEA(R) ,  :[/(z)[~-I for z l = l .  

Thus / maps A(R) onto a ring domain i n t h e  S-plane whose bounded complementary com- 

ponent is the disk I~] ~< 1. There is a unique function kR E S(R) which maps A (R) onto the 

exterior" o/ the un i t  disi~ With a slit" along the negative real axis from some point - d ( R )  

to - 0 %  and which satisfies ka(1 ) = 1. 

THEOREM 3. F o r ] E S ( R ) , ~  as in Theorem l, and l < r < R  , 

/(re~~ I ) dO <, ~ (I)(log[ kR(re l~ I (a) 
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f ' _ = , ( l o g ~ ) d O < ~ f ~ _ = * ( l o g i k R ~ ) d O .  (b) 

I! equality holds/or some r e ( l ,  R) and some strictly convex (I), then ](z)=ei~kR(ze ~) ]or some 
real o~ and ft. 

From the theorem it follows tha t  for each fixed zeA(R) the quant i ty  [/(z) l is maxi- 

mized and minimized over  S(R) by rotations of kR. This distortion result was proved 

first by  Groetzseh [8], who used the method of extremal length, and has also been proved 

by  Duren and Sehiffer [6] by means of a variational argument.  

To prove par t  (a) of Theorem 3 it suffices, as in the proof of Theorem 1, to prove 

['~ log + I/(re'~ dO<<. f" log  + dO (ss) 
J -  

for 1 <r<R, ~ > 0  a n d / E S ( R ) .  As before, the first step is to transform the proposed in- 

equality into an equivalent one involving integrals of the inverse functions. Suppose g is 

holomorphic in A(R) and has a continuous extension to Iz] =1. I f  g has no zeros, then, 

for 1 <r<R 

f loglg(re'O)ldO=f=log,g(e'~ (54) 

where B is the winding number  of the curve g(e to) around the point ~=0 .  This is easily 

deduced from the fact tha t  the mean value on the left in (54) is a linear function of log r. 

I f  g has exactly one zero z 0 e A (R) and no zeros on [z[ = 1 then (54) holds provided we add 

27t log+(r/Izol) to the right hand side: 

L e t / e S ( R )  and D=/(A(R)). Define u by  

u(~)=O for I~1 ~<1 

= - l o g  I/-1(r for r e D 

= - l o g R  for r  ] r  

The argument in the proof of Cartan's formula [14, p. 214] together with the above facts 

about  mean values leads to the formula 

f lo+-tt(r " l dO= [,,(O + log ,] + # 1) g 

r 
--- 2~ log-  , (0< ~<  1) 
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Thus (53) is equivalent to the inequality 

f f [u{~ e ~~ + log r] § dqo ~< [v(0 e t~) + log r] + d~ (55) 

where v is obtained from k~ in the same way that  u is obtained f rom/ .  By Proposition 3, 

(55) is implied by 
U*(~e!~) < v*(~e i~) (0 <~ < oo, 0 < ~ < ~). (56) 

For 0 ~ < ~ 1  both sides of (56) are zero, so it suffices or prove (56) for ~e*~EH, where 

H = {~: I~1 > 1, Im $ �9 0}. u is subharmonie in I EI �9 1. Therefore u* is subharmonic in H. 

The argument in the proof of Proposition 5 shows that  v* is harmonic in H. 

Let  ~0 be a point of smallest absolute value in the unbounded complementary com- 

ponent of D=/(A(R)), and put  d= I~ol. Then each circle I~] =e  withq>~d intersects the 

complement of D. From well-known symmetrization results [16, Theorems 8.3 and 8.4] it 

follows that  the modulus of the ring domain D~=(~: I~1 >1, ~ ( - o o ,  - d ]}  is >~ t h e  

modulus of D, with strict inequality unless D 1 is a rotation of D. The modulus of D is the 

same as that  of 
kR(A(R)) = {~: I~] �9 1, ~ r  co, -d(R))}.  

Hence d >~d(R), and strict inequality holds unless ] is a rotation of kn. 

For ~ ~>d we have, as in the :proof of Theorem 1, 

u~ (~ e ~) = v~ (~ e i~) log R. 

Also, u is harmonic in 1 < I ~1 < d, so 

u*(~et~)= u(~e~)dqJ = A log~+ B 

B =  0, since u= 0 on I~1 = 1, while, by the Cauehy-Riemann equations 

A =  J _.0r , ~  arg (/-!(e'~)) d~0 = , 2•. 

Similarly, v*(~e ~) . . . .  2g log ~ (1 <~ ~ d(R)) 

> - 2 g l o g ~  (d(R) <~ <r 

I t  follows that  (56) holds for 9e ~ when 1 ~<~ ~<d and, if / is not a rotation of kR, strict in- 

equality holds for d(R) <~ <~d. The proof of (a) of Theorem 3 and the accompanying equa- 

lity statement can now be accomplished by an argument entirely analogous to that  in the 

proof of Theorem 1, except now the full upper half plane is replaced by H. 
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Par t  (b) is obtained from (a) just as Theorem 2 was obtained from Theorem 1. This 

t ime we use 

~ log(el](re~~ 2~(ldg~+ logr) 

for a l l /ES(R)  and i <~r<.R. 

Kirwan and Schober [27] have used the L 1 case of Theorem 3 to obtain bounds for 

the coefficients in the I~uren t  expansion of ]ES(R) which are better  than any previously 

known. 

�9 The convex integral  means of log I kRI are in fact extremal for a class more extensive 

than S(R). We state this as a corollary.  

COROLLARY. Suppose/ is  holomorphic and univalent in A(R) and that the bounded 

component C o/the complement o//(A(R)) is contained in 1~1 <1. Then (a) o/ Theorem 3 

holds/or/. 

Proo/. Let g be a conformal map of the complement of C onto [w[ > 1 with g (~ )  = ~ .  

Then go/EA(R), and Schwarz's lemma applied to 1/g-1(1/w) leads to the pointwise esti- 

mate  ]/(z)] ~< ]go/(z)[. Thus the corollary follows from Theorem 3. 

We return now to functions holomorphic in the unit disk and will show tha t  Theorems 

1 and 2 extend to a class of functions which are only "approximately"  univalent. Let  p 

be a positive integer. Following Hayman  [11] we say tha t  a function / holomorphic in 

[z ] < 1 is weakly p-valent if for each e > 0 either every point on the circle I$[ =~ is covered 

exactly p times by / (counting multiplicity) or else there exists a point :on ]~[ =~ which 

is covered less than p times. This class contains the class of circumferentially mean p- 

valent functions, but  neither coritains nor is contained in the class of areally mean p- 

valent functions. These latter classes are studied in [12]. 

I do not know whether or not Theorem 4 below remains true for nOrmalized areally 

mean p-valent  functions. Spencer [25] has shown that ,  for p = l ,  la21 ~<2 holds in this 

class, and also (unpublished) tha t  there exist functions in this class witl~ [aal > 3. 

THV.OR~M 4. Suppose / is weakly p-valent in Izl < 1  and its power series eXpansion 
has the/orm 

/(z) z ~ + higher powers o/z. 

Then, r ~9 is as in Theorem 1 and 0 <r < 1 

�9 |0 tO p �9 (log l/(re r dO, (a 
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. . . . .  1 '(I) log r dO<<. dO. �9 (b) 

I /  equality holds ]or some re(O, 1) and some strictly convex r then ](z)=(e-i~k(ze~)) v /or 

some r6al ~. 

Proof. B y L e m m a  3 of [11], /1/v is weakly 1-valent. Thus, it suffices to prove the 

theorem when p = l .  ~ Let D denote the range of ]. By Lemma 4 and Theorem I I I  of [11] 

there' exists a number dr>~ �88 such that  D contains the disk I~1 <d l  but  does not contain 

any circle I $ I = ~ for ~ >~ d r. If ] is not the Koebe function or one of its rotations then d1> 2. 

Assume for now that  / has an analytic extension to I z I ~< 1. Then, by Lehto's Theorem 

(cf. proof of Proposition 4), 
u(~) -- iV(l, ~, l) 

is subharmonic in 0 < ] ~ I < oo. For this u, the inequality 

u*(ee ~) < v*(Qei~) (0 <e  < r 0 < ~ < re) (57) 

with v as in the proof of Theorem 1 can be proved by exactly the same argument as in 

that  proof. That  the u here has all of the necessary properties for the argument to go 

through follows from the above discussion together with some simple considerations which 

we leave to the reader. 

For 0 < r < l  the inequality iV(r, ~,/)<~[u(~)+logr] ~ follows easily from the defini- 

tions. So, using Cartan's formula (29), 

l~ "'e 'd0 < l o g r ]  + d ~ .  

This, together with (57i and the arguments in Theorems 1 and 2, proves the inequalities 

in Theorem 4 for ] analytic on the closed disk. For  a general ] the inequalities may be ob- 

tained by considering R- ' / (Rz )  and letting R - ~ l - .  

Because of the limiting process the argument just given is not good enough to est- 

ablish the uniqueness part  of Theorem 4. Here is one way to obtain the uniqueness. For 

de(�88 1) there exists a unique function 9aES which maps [zl <1 onto the plane minus a 

circularly forked slit of the form 

{~: - o o < ~  ~< - d }  U {~: Ir ~ ~<,larg ~{ <n} .  

If d ~<dt, where d I is as at the beginning of th is  proof, ~then the argument in Theorem 1 

shows that  in fact the convex integral means of log I][ are dominated by those of log Ida I" 

For d > �88 the strictly convex integral means of log Ida[ are, by Theorem 1, strictlv less 

than those of log I k I, and the uniqueness in Theorem 4 readily follows. 
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By considering Z 1 norms in Theorem 4 we obtain the coefficient estimate [ an I < (e/2)n 

for weakly univalent functions. The best previously known estimate in this case was a n = 

O(n2). 
Netanyahu [20] studied the class S(d)  of all f unc t i ons /ES  whose image domain con- 

tains the disk I$[ <d.  He proved, using the Schiller and Julia variations, tha t  la2] is 

maximized in this class by  the function gd. As just pointed out, all the convex integral 

means of log I/I f o r / E S ( d )  are dominated by  those of log [g~[, and consideration of L 2 

norms leads a t  once to Netanyahu 's  result. I t  is conieetured, but  has not been proved, 

tha t  l a31 is.also maximized in this class by g~. 

7. Proof of Theorems 5 and 6. 

In  Theorem 5 we assume from the outset that  the Green's functions u and v of D 

and D* are classical, i.e. have continuous, hence subharmonic, extensions to the respec- 

tive complements when set equal to zero there. The general case may  be obtained from this 

special case by an obvious approximation process. 

Consider first the case when the pole z 0 is at  0. Then, by Theorem A, u* is subhar- 

monic in the upper halfplane. Let  D* = D* N (Ira z > 0). By Proposition 5, v* is harmonic 

in D*.  

The argument tha t  follows is in many  respects similar to the one used in proving Theo- 

rem 1. For e > 0 let 

Q(z) = u*(z) - v * ( z ) - t O  (z = ret~ 

Then Q is bounded in the closed upper half plane, and is continuous, except at  0 and ~ .  

Let  M = s u p  (Q(z): I m  z>0}.  As in the proof of Theorem 1 we want to show tha t  M < 0 .  

Let  {zn) be a sequence in the upper half plane such tha t  Q ( z , ) ~ M  and z,~--.'.z', where 

z' is some point of the closed extended upper half plane. Since Q is subharmonie in D* 

we may  assume z' qD*.  If  z' lies on the positive real axis then M=0 ' ,  as required. 

Suppose next  that  z' ~D *! and z' = R e  ~q~ with 0 < R  < ~ ,  0 < ~  ~<g. I f  the circle [z I = R 

does not intersect D then u*(z') --v*(z') =0,  so tha t  M <0,  which is impossible. I f  the circle 

intersects D in a set of measure 2m, but  is not entirely contained in D, then m ~<r ~<~. 

On this circle u and v are zero off a set of measure 2m, so, by  Proposition 2 a n d  the con- 

t inui ty of the non-increasing rearrangements, 

~v* 
_ ~u* lio__m - - ~  (Re ~~ = O. lira ~ (Re ~~ = 

a .~_~d 

.... aQ Re,O Hence l i m ~ ( _ _  ) = - e < 0 .  
0 - ~ - O  
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B y  the  mean  va lue  theorem,  i t  follows t h a t  the  m a x i m u m  M of  Q canno t  be achieved a t  

a po in t  z' of th is  sort .  

Consider  now the  poss ib i l i ty  t h a t  z ' =  - R  wi th  0 < R <  ~ ,  and  the  circle Izl = R  lies 

en t i re ly  in  D. Le t  R 1 < I z I < R2 be the  larges t  annulus  conta in ing  - R which is con ta ined  

ent i re ly  in D. Then  u and  v are  harmonic  in  R 1 < I zl < R~, hence 

Q( - r) = u(re ~~ dO - v(re ~~ dO - e~ 

is a l inear  funct ion  of :log r for r E I = (R u R2). I f  Q achieves i ts  m a x i m u m  a t  - R  then  

Q ( - r )  m u s t  be cons tan t  for r E I .  Ei the r  R I > 0  Or R z <  oo (perhaps  both) .  Say  R I > 0 .  Then  

Q( - R1) =Q(  - R) = M .  B u t  the  circle I zl = R 1 is no t  conta ined  en t i re ly  in D, so, b y  the  

preceeding pa ragraph ,  M = Q ( - R )  is impossible.  The  case R~<  oo is d isposed  of in  the  

same way.  

The  only  remain ing  possibi l i t ies  are  z ' =  0 or z ' =  oo. Consider  z ' - 0 .  L e t  I zl ~ R 1 be 

the  larges t  d i sk  centered  a t  0 which is con ta ined  in  D. Then  

u(z) = - l o g  lzl +Ul(Z), - l o g  tzl 
where u I and  v 1 are  harmonic  in  ]z[ < R x. W e  have  

Q(re ~~ = (2u1(0) -2v1(0 ) - e ) 0  +o(1) = AO +o(1) 

un i fo rmly  in 0, as r-+0.  I f  A 4 0  then  M = 0 .  I f  A > 0  then ,  since Q ( - r )  is cons tan t  on 

(0, R1), M = A g  =Q(  - R1). Since the  circle I zl = R 1 is no t  con ta ined  en t i re ly  in  D, th is  las t  

poss ib i l i ty  does no t  occur, as no t ed  above.  

The  case z' = ~ is sp l i t  in to  the  sub-cases oo E D or  oo r D. I f  oo ~ D then  u(z) and  v(z) 

t end  to  0 as z-~ 0% thus  the  same is t rue  of  u* and  v*, and  we deduce  M = 0 .  I f  oo E D  then  

u and  v are  ha rmonic  in  some ne ighborhood  Izl > R z  of 0% and  we deduce  as in the  case 

z' = 0 t h a t  M = 0. 

W e  have  shown t h a t  Q ~< 0 in  t h e  uppe r  half  plane.  This  implies  

u*(re ~0) <<. v*(re ~~ (O < r < ~ ,  O <~ O <<- ~), 

and  the  in tegra l  i nequa l i t y  in Theorem 5 follows f rom Propos i t ion  3. 

I n  case the  p01e z o is a t  ~ the  des i red  resul t  follows b y  invers ion  f rom the  case z 0 = 0. 

F o r  0 < I zo[ < ~ we wr i te  
U(Z) = U l ( Z  ) - -  log I z -  z01. (58) 

Then  u I is ha rmonic  in  D and  subharmonic  in  t he  whole plane.  B y  Theorem A '  and  the  

discussion in the  proof  of Propos i t ion  5 

r 
u*(re ~~ + 2~ log + Iz01 
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is subharmonic in the upper half plane, B y  Proposition 5, 

r 
v*(re! ~ + 2~ log + - -  

Iz01 

is harmonic in D*.  Thus, once again, 

Q(z) = u*(z) - v*(z) -cO 

is subharmonic in D*. The proof tha t  Q ~< 0 is accomplished just like it was for z 0 = 0, except 

for tr ivial  modifications concerning the possibility z' =0.  (Use the argument appearing 

above for z' = oo). We also point out tha t  Q ( - r ) ,  which involves the difference of the mean 

values of u and: v, is still a linear function of log r in the appropriate intervals.  This may  

be seen by  considering the decomposition (58) of u and the corresponding decomposition 

of v. This completes the proof of Theorem 5. 

�9 For the proof of Theorem 6,=we let D =/([z[ < 1). Our hypothesis tha t  D* is contained 

in a simply connected domain D o which is not the whole plane insures tha t  D* has a 

Green's function, which in turn implies tha t  D has a Green's function. (One way of very- 

lying the last s tatement  is to consider an exhaustion of D by  regular domains and use 

Theorem 5). Let  u,,v, and w be the Green's functions of D, D*, and Do; respectively. The 

pole Of u is to be at  z 0 and the pole of v and w at  [ z 0 [. Since D* c D O we have v < w through- 

out the plane. This , together with Theorem 5, implies, 

[u(Q e t~) + log r] § d~ <~ [w(o e t~) + log r] § d~ 
0 

fo r  al l  positive ~ and r. From Proposition 4 we thus obtain 

f ~  l~ "(re~~ dO<"- f ' log+ 'F(re'~ dO. 

So, by Proposition 3, al l  of the convex integral means of log [/(re~~ are dominated by 

those of log ] F(ret~)l �9 

8 .  C i r c u l a r  s y m m e t r i z a t i o n  a n d - h a r m o n i c  m e a s u r e s  

Let D be a connected open subset of I z [ < 1, and set 

~=~Dn([~[ =1), ~=~Dn([z[ <1). 

We assume tha t  both a and fi are non-empty.  Let  u(z) b e t h e  harmonic measure of a with 

respect to D. Precisely, u is the harmonic function in D, constructed by  Perron's method, 

corresponding to the boundary function ga (g =characteristic function). All account of 



I N T E G R A L  M E A N S ,  U N I V A L E N T  F U N C T I O N S  A N D  C I R C U L A R  S Y M M E T R I Z A T I O N  167 

Perron's method and of other notions and results from potential theory used in the sequel 

may be found in [23]. 

Let  v denote the harmonic measure of a* =~D* N (Izl =1) with respect to D*. Extend 

u a n d  v t o t h e  whole open disk Izl <1 by setting them equal to zero outside D and D*, 

respectively. 

TI~EOREM 7. Let (I) be as in Theorem 1 and u and v be the harmonic measures just de. 

scribed. Then 

f o to ,~  (u(rd~ v(rd dO ( O < r < l ) .  

In par t icular ,  Sup0 u(re~~ <~ sup v(re ~~ = v(r) (59) 

Haliste [9] proved the analogue Of (59) for certain domains under Steiner symmetrization. 

She gave two proofs, one based on Ahlfors" distortion theorem and the other on the theory 

of Brownian motion. The Brownian motion proof may be adapted to prove (59) for sub- 

domains of the unit  disk. On the other hand, Haliste 's Steiner symmetrization result fol- 

lows from (59) by means of a logarithmic transformation. 

Haliste also proved inequalities of the type (59) for Steiner symmetrization in n-space. 

C. Borell [5] has recently extended these results by proving the full analogue of Theorem 

7 for this situation. 

With D as in Theorem 7, let D** be the unit disk with the circular projection of fl 

onto the negative real axis removed. Then D * c  D** and, letting w denote the harmonic 

measure of I zl = 1 with respect to D**, we have v < w everywhere by  D*. So by (59), 

sup u(re ~~ ~ w(r). 
O 

This inequality is the solution of the Carleman-Milloux problem found in [21, Theorem 1, 

p. 107]. 

For the proof of Theorem 7 we impose at first some restrictions on D. These are tha t  

all points of/~ be regular points for the Dirichlet problem in D, all points of/~* =3D*fl 

(Iz ~1) be regular for the Dirichlet problem in D*, and that  t i c  I Izl ~<R) for some R < I .  

Then ~ is the whole unit circle. The harmonic measures u and v are subharmonic in I z I < 1, 

cor~tinuous on [z [ < 1, equal to 1 on [z ] = 1, and equal to 0 at points of ]z [ < 1 outside D 

and D*, respectively. The argument in the proof of Proposition 5 shows that  v* is harmonic 

in~ D*-= {z E D*: Im z > 0}, Thus 

QCz)=u*Cz)-v*(z)-eO 
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is subharmonie  in D* and cont inuous on the  closed upper  half  disk, except  a t  0. Since 

u*(e ~~ = v*(e'~) = 20 (0 <~ 0 < ~), 

we have  Q ~< 0 on (~D*)N ( I z I = 1). h repet i t ion of the a rgumen t  used in the  proof  of Theo- 

rem 5 now shows t h a t  Q < 0 ,  hence u*~<v *, th roughout  the upper  half  disk, and  thus  the 

convex integral  means  of u are domina ted  b y  those of v. 

Next ,  we con t inue  to assume tha t /~  is bounded away  f rom I zl = 1, bu t  drop  the as- 

sumpt ion  abou t  bounda ry  regulari ty.  (Of course, every  point  of I z] = 1 is still  regular). 

Let  (D,~} be an exhaust ion of D by  domains  which sat isfy the hypotheses  of the case al- 

r eady  proved.  Then,  le t t ing un and  vn be the harmonic  measures  of I zl = 1 with respect  

to D~ and D*, it follows by  a rout ine a rgumen t  t h a t  u , 7  u and  v~S v in D. The  convex 

integral  means  of each un are domina ted  by  those of v~, hence the same is t rue  for u a n d v .  

Finally,  we consider the  general case in which the inner  boundary /q  m a y  have  l imit  

points  O n Iz l  = l .  For  0 < R < I  let D R = D  tJ ( R <  Izl < l )  and let u R and v R be the harmonic  

measures  ~ of IZ I = 1 with respect  to DR and D*R. The convex integral  means  of ua are do- 

mina ted  b y  those vR, so, to finish the proof, i t  will suffice to show t h a t  

uR(z)"-~u(z), vR(z)"~v(z) ( zeD,  R ~  1). 

The  fami ly  of funct ions  uR is clearly decreasing as R increases. Thus  the u R converge 

to a funct ion u I which :is harmonic  in D. Since un ~> u, we have  u I >~ u in D. 

Le t  h be an upper  funct ion for the problem of de termining u. Thus  h is superharmonic  

and bounded below in D, and,  for each z 0 E ~, z I Eft 

lira inf h(z)/> 1, lira inf h(z) >~ O. 
Z--~Zo Z-~Zl 

The funct ion h - u 1 is superharmonic  in D. Since 0 < Ul < l, we have,  for z 0 e ~, 

lira inf (h(z) - ul(z)) ~ O. (60) 
Z-~Zo 

Suppose z 0 is a poin t  of fl which is regular  for the  Dirichlet  problem in D. Regula r i ty  is a 

local proper ty ,  so z 0 is also regular  for  the  Dirichlet  p rob lem is DR, as soon as R > I z0 I" 

Thus,  for such R, uR(z)-~O as z-~z O, and hence ul(z)~O as z-~z o. Thus  (60) holds for  regular  

z o eft. The set of i r regular  points  is a countable  union of compac t  sets of capac i ty  zero, 

a n d  hence is a set  of inner  harmonic  measure  zero. We have  shown t h a t  h( z ) -u l ( z  ) has 

non-negat ive  bounda ry  values, except  perhaps  on such a set. B y  the  extended m i n i m u m  

principle, h -  u 1 ~> 0 i n  D. Since u is the  lower envelope of the  set  of a l l  upper  functions,  i t  

follows t h a t  u >~u~, and  hence u =u~, in D. This  proves  t h a t  uRXa u. The  proof t h a t  v R ~ v  

is the  same. 
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