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1. Introduction

We begin by considering the class S of all functions f(z) holomorphic and univalent
in the unit disk |z| <1 with f(0)=0, f'(0)=1, and denote by k(z) the Koebe function,

2

k(z)= =2

which maps the unit disk conformally onto the complex plane slit along the negative real
axis from —} to —oo. The Koebe function is known to be extremal for many problems
involving 8. The first result in this paper asserts this is the case for a large class of problems

about integral means. Specifically, I will prove the following theorem.

TuroreM 1. Let © be a convex non-decreasing function on (— oo, ). Then for f€8
and 0 <r<1,

f " ®(log|f(re)|)dO < F @ (log| k(re')}) db. (1)

If equality holds for some r€(0, 1) and some strictly convex ®, then f(z)=e “k(ze™) for
some real .

In particular, we have for 0 <r<1,

f_ |f<re“’>|"de<f_ |(re™[d8  (0< p< o),

T

fﬂ log*l]‘(re"")lal0<J~ log™ | k(re'®)|d6. (2)

(1) This research was supported by NSF Grant GP-38959
10— 742902 Acta mathematica 133. Imprimé le 27 Janvier 1975
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The best previously known result in the direction of (2) is apparently that of Bazi-
levic [4], who showed that (2) holds for p=1, 2 if a universal constant is added to the right
hand side. MacGregor [19] and Wilken {26] have proved (2) for f close-to-convex and p>1.

It remains an interesting open question whether (2) holds for any values of p if f and &
are replaced by their derivatives. The inequality is sometimes false for 0 <p <}, since &’
belongs to the Hardy class H” for these p, whereas Lohwater, Piranian, and Rudin [18]
have constructed a function in S whose derivative does not belong to any H”. For f close-
to-convex and p=>1 MacGregor [19] has proved that (2) holds with f and % replaced by
1 and k™ for all positive integers 7.

The most famous unsolved problem about § is Bieberbach’s conjecture, which asserts
that if f(z) =2a,2"€S then |a,| <n. In other words, the Koebe function is extremal for
the problem of maximizing the absolute value of the n’the coefficient. By taking p=1 in
(2) and using Cauchy’s formula, one can eé,sily obtain the bound |a,| <} en. The best
known bound at this time is | @, | <1.081 n, due to Fitzgerald [7]. Since Theorem 1 provides
considerably more information than just the inequality between the L! norms, it is con-
ceivable that there might be some way of using its full strength to obtain further results
about the coefficients. ’

Consider now a not necessarily univalent function f(z) =Xa,2z" which is holomorphic
in |z| <L Rogosinski made the conjecture, more general than Bieberbach’s, that if f is
subordinate to some function g€, then |@,| <n. It was proved (see, e.g. [14, p. 422]) by
Littlewood that

‘r, |f(re'0)|d0<fn [g(re'®)|d0.

Using this inequality together with Theorem 1, we once again obtain the coefficient esti-
mate |a,| <}en, which is apparently the best one known in this context, a fact pointed
out to me by Ch. Pommerenke.

The proof of Theorem 1, and of the other results in this paper, is based on considera-
tions involving a certain auxiliary function. Let u(z) be an extended real valued function
defined in an annulus 7, <|z| <r,. We suppose u(re’) is, for each r€(ry, ry), a Lebesgue
integrable function of 9, and define a new function «* in the semi-annulus {re*d: r; <r<r,,
0<0<a} by

u*(re'’) = supf u(re’) dw 3)
E JE

where the sup is taken over all measurable sets E<[—mx,n] with | E|=26. Here, and
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throughout the paper, B
- | 2| = Lebesgue measure of E.

The reader mair recognize u* as the integral from —@ to 6 of the symmetric non-increasing
equimeasurable rearrangement of u. (See Proposition 2 of § 3). The usefulness of u* for our
purposés }s‘te'ms from the following result.

THEOREM A. Suppose u is subharmonic in the annulus ry<|z| <r,. Then u* is sub-
harmonic in the semi-annulus {re'd: ri<r<ry, 0<0 <az}.

Theorem A was proved by the author in [1] for functions of the form u=log |g],
where g is an entire function. It is not difficult to adapt that proof to the more general
situation considered here. Different, simpler, proofs have recently been discovered by
M. Essén and P. Sjogren. In §2 we present Sjdgren’s proof of (an extended version of)
Theorem A.

The original application of Theorem A, in [1], was to obtain a precise estimate of the
size of the set where certain functions meromorphic in the plane are large. Refinements of
this result appear in [3]. In [2], two variants of u* were used to obtain a result about entire
functions that generalizes the Wiman-Valiron cos 7p theorem.

In § 3 of this paper we prove some simple real variable results, and in § 4 some results
about Green’s functions. In § 5 we prove Theorem 1. Here is the idea. Let u and v be the
Green’s functions, with pole at { =0, of the ranges of f and & respectively. Extend » and v
to the whole plane by setting them equal to zero outside their original domains of defini-
tion. Then « and v are subharmonic in the plane, except for a logarithmic singularity at the
origin. From Proposition 3 in § 3 and Cartan’s formula it will follow that the conclusion
of Theorem 1 holds if and only if u* <v* everywhere in the upper half plane. The key to
proving this inequality is the fact that the proposed extremal function «* is harmonicin
the upper half plane, whereas, by Theorem A, u* is subharmonic there.

In § 6 we present some complements and extensions of Theorem 1. The proofs require
only very slight modifications of the proof of Theorem 1. Theorem 2 asserts that the con-
clusion of Theorem 1 holds if f and k are replaced by their reciprocals. Theorem 3 is an
analog of Theorem 1 for univalent functions in an annulus, and Theorem 4 asserts that
Theorem 1 remains true for normalized weakly univalent functions in the sense of Hay-
man [11].

In §§ 7 and 8 we consider integral means inequalities associated with circular sym-
metrization. Let D be a domain in the extended plane. The circular symmetrization of
D is the domain D* defined as follows: For each $€(0, o) let D(t)={0€[0, 2x]: te'? € D}.
It D(t)=[0, 27] then the intersection of D* with the circle |2z| =¢ is the full circle, and if
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D(¢) is empty then so is the intersection of D* with |z] =t. If D(t) is a proper subset of
[0, 2] and | D(t)]| = a then the intersection of D* with |z| =t is the single arc {te': |0| <«/2}.
Moreover, D* contains the origin, or the point at oo, if and only if D does.

Accounts of the theory of symmetrization may be found in [22] and [12]. We point
out that our use of the notation u* for functions u differs from that in [12]. Our results
all concern circular symmetrization, but the correspbnding results for Steiner symmetriza-
tion are also true and can be proved by straightforward modification of the proofs for the
circular case.

Assume now that D possesses a Green’s function. Fix z,€ D and let u(z) be the Green’s
function of D with pole at z,. Let v be the Green’s function of D* with pole at |z,|. We set
# and v equal to O outside D and D* respectively.

THEOREM 5. Let @ be as in Theorem 1. Then
f D(u(re®))db < f D(v(re'®)) dO (0< r< oo), (4)

It follows from (4) that

sup u(re'?) < sup v(re®),
8 8

and from this follows very easily the inequality

lim u(2) + log|z — 25} < limv(z) + log|z — |z, |,
2-%2¢ 292,

that is, symmetrization increases the inner radius, a well-known result of Pélya and Szego
[22]. :

It seems probable that if equality holds in (4) for some r and some strictly convex
® then D must be a rotation of D*, but this does not follow from our proof.

For 1>0 let

D; ={2€D: u(z) >4}.
The question is raised in [13] whether (D;)* < (D*);. From considerations in § 3 it is easy
to see that this holds for all 2 if and only if ‘

out _oo*

6 96 (5)

throughout the upper half plane. Theorem 5 is equivalent to the inequality u* <v*, but we
have not been able to prove the more precise inequality (5).
Theorem 5 and a result of Lehto’s [17] lead to a strong symmetrization principle for
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functions holomorphic in a disk. Let f be holomorphic in |z| <1 and D be the set of all
values taken on by f. Let D, be a simply connected domain containing D*. We assume D,
is not the whole plane, and let ¥ be a conformal map of |z| <1 onto D, with F(0)=|£(0)].

TuEOREM 6. If f is holomorphic in the unit disk and F is as just described, then, for
0<r<l,

Jm d)(loglf(re’”)l)d0< fﬂ (I>(log|F(ref”)|)d6, (6)

where @ is as tn Theorem 1.

By considering, for example, the L2 norms of |f| and | F| in (6) we obtain

|70 < | F'0)], (7
a result due to Hayman [12].

We note an important special case of Theorem 6. If f is univalent, then D and D*
are simply connected and we may take for 'F a conformal map onto D* (with F(0) = |£(0)]).
For Steiner symmetrization with respect to the real-axis, the appropriate analogue of
Theorem 6 involves integrals of Re f and Re F. When D* is multiply connected, it is con-
ceivable that (6) could be sharpened by replacing the F there by the projection of the con-
formal map onto the universal covering surface of D*. In this context, it is not even known-
if the inequality corresponding to (7) is.true.

Assume again that f is univalent and F is the conformal map onto D*. Write
: o .
fR)= 2 a,2", F(z)= 3 A,2"
n=0 n=0

Then |a,| =|A4,| by hypothesis and |a,| <|4;| by (7). Is it true that |a,| <|4;|? Even
if this is not true in general, the situation for subordinate functions suggests that perhaps
the weaker result

Sladt< 314,00 ®

is true. A proof of (8) when F is a conformal map onto the right half plane would lead to
a proof of Littlewood’s conjecture, |a,| <4n|a,| for non-zero univalent f.

In § 8 we consider domains D contained in the unit disk. Theorem 7 is an analogue of
Theorem 5 in which » and » are harmonic measures associated with D and D* instead of
Green’s functions. This theorem generalizes a result of Haliste’s [9], and provides a solu-
tiow of the Carleman-Milloux problem much more refined than the one commonly known.

1 am grateful to P. Sjégren for communicating to me the proof of Theorem A’ that
appears in § 2 and to Matts Essén for many helpful comments. The simple proof of Pro-
position 5:is due to him. John Lewis called by attention to the classes S(d) discussed in
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§6. W. H. J. Fuchs pointed out to me the existence of Lehto’s result used in §§ 4 and 6.
Especially, it is a very great pleasure for me to acknowledge the many helpful conversa-
tions I have had during the course of this research with my colleague, Professor Richard
Rochberg.

2. Proof .of theorem A.

We recall that if u is subharmonic in an annulus r, < |2| <7, then u(re™) is a Lebes-
gue integrable function of w for r, <r <r, ({24, p. 4]). Moreover, the mean value N(r, u),
defined by

N(r,u)= ;—nf u(re*) do, 9)

is a continuous function of r on (ry, 75) ({24, p. 5]).
We are going to prove a more general version of Theorem A, about differences of sub-

harmonic functions, which will be needed for the proof of Theorem 5.

THEOREM A’. Suppose u=u, —u,, where u, and u, are subharmonic. in r,<|z| <r,.
Define

w*(re'?) = u*(re'd) + 2N (r, up)

where u* is defined by (3) and N by (9). Then u* is subharmonic in {re': r, <r<r,, 0 <0 <m}
and is continuous on {re': ry <r<r,, 0<O<n}.

Proof. First we note that for each re®, r, <r<r,, 0<0<z, there exists a set £
[ —n, ] with | E| =26 for which the sup in (3) is attained, i.e.

u*(re’®) = f u(re) dw.
E

This follows from Proposition 1 in § 3. Moreover, letting E° denote the complement of E
in [ —n, n], we have :

T

u*(re'®) = f u(re) dew + f ug(re’)dw = f uy(re”)dew + f uy(reydow. . (9a)
E n E EC

Observe that, for any £ with | E| =20 the right hand side is <u*(re'’). Now we prove the
continnity statement. If %; and u, are continuous in the annulus then the proof is quite
straightforward and we omit it. For the general case we use a regularization argument. Take
R,, R, with rj< R, <R, <r,. For sufficiently small >0 and R, <|z| <R, define
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1 d rn
(Asu){z)= ——2f J u(z + te*) td dt.
ﬂa 0J-=
Define A;u, and A;u, similarly. The subharmonicity of u, and u, implies 4;%,(2) > w,(2)
for B, <|2| <R, and i=1, 2. This, together with (9a) shows that
u?(2) < (4;u)*(2) (R; <|2| < R,, Im 2> 0).

(We are computing (4;u)* relative to the decomposition Ayu=Azu, — Ayu,.) Take re'd
with R, <r<R,, 0<6<z. Choose E with | E| =20 so that (9a) holds with 4,% in place
of u. Then

0< (dsu)?* (re®®) — u*(re®) < f (Asuy —uy) (re*)de + f (Asuy— uy) (re*)dw
E

EC

< f (g — ) (re™) deo + f (Ayty — ) (re®) deo

= N(r, Asuy) — N(r,u) -+ N(r, Asus) — N(r, uy) (10)
I claim that lim N(r, Agu) = N(r,u) (i=1,2) (11)
550

uniformly for r€(R,, R,). This, together with (10), shows that «* is the uniform limit as
0~ 0 of (4;%)* in the upper half of R, <|z| <R,. Since A;u, and A;u, are continuous for
each §, the same is true of (4;u)* and hence of u?*.

Let v stand for «, or u,.. Then

/] 1 &3
N(r, Asv)= ;t%,f tdtf d()f v(re? + te") de (12)
0 -7 -
Now

T £ T
f v(re® + te'%) dp = J v(re'? + 1P P) dgp = J v(re®® + te'®* ) + v(re® + te'® ) dyp

o - 0
So, for 0< <34,
J def v(re®® + te'?) dp = J d(pf [W((r + te*?) e®) + v((r + te~ ') €)1 6
- —n 0 ]
=f N(lr+te®], v) + N(|r+te™*|, v) dp < 2w sup {N(s,v), |s—r| <t}
1]

<2 sup{N(s,v): |s—r| <d}.
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Substituting in (12), we find
N(r, Ayv) <sup {N(s, v): |s—r| <d}. (13)

Since N(r,v)<N(r, A;v) and N(r,v) is uniformly continuous on [R;, B,], the desired
statement (11) follows from (13). This completes the proof of continuity.

For the proof of subharmonicity we need a result about subsets of the unit circle T'.
As usual, we identify 7 with the quotient of the real line modulo the subgroup 2nZ. For
EcT let E, denote the translate of E by &.

LEMMA. Let E be a measurable subset of T', with 0<|E| <2n. Then there exists 6>0

such that
|E.0E_|<|E|-2 (14)
for 0 <g<4.

Proof. If E is an interval, or differs from an interval by a null set, then equality holds
in (14) for all sufficiently small ¢. In the contrary case, there are points a, <b; <a, <b,<
a, +27 such that a, and a, are density points of E° and b, and b, are density points of K.
We may assume 0 <a, and b, <2n. Choose ¢ with b, <c<a, and let y denote the charac-

teristic function of E. Then, for £>0,

b

1 (4
x(t—s)dt+f X+ e)de

b

fcx(z+e)x(t—e)dt<fa'x(t+e)dz+f
0

0 a1

c by by
=f Z(H-s)dt—-f Z(H—s)dt-i—f Xt —e)dt
0 1 1

a a

c a1+8 bite
= f X+ eyde+ f (@) dt— f x(t)dt.
0 e

a— bite

Choose § >0 such that 0< e< § implies

aite bit+e
f 1 de<s, f x(t)dt>358.

a;— bi—¢

Then

C

fcx(t+s)x(t—e)dt<f X(t+e)dt—e (0<e<d). (15)

0 0
Similarly, using

asg b

] 2n
xlt—s)dt+f A+ e)dt

b

x(t+s)dt+f

as

27
f x(t+ e)x(t—‘e)dtéf

c [
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we obtain (with perhaps a smaller §)
2n

fznx(tﬂ-e)x(t—e)dtsf Xit+e)dt—e (0<e<d).

[ ¢

This, combined with (15), yields, for 0 < ¢< 4,
27

2
|EenE45|=f X(t+e)x(t—s)dt<f X(E+e)dt—2e= | E,| — 2e,
(1] 0

and the lemma is proved.
Now we can prove that »” is subharmonic. For fixed r and g, 0< ¢ < r, define r(y)
and c(y) for p real by

()= |r+oe¥|, aly)=arg(r+pe"), (larg|<g).

Then r+ e =r(y) e W,

Note that r{y) = r(—) and a(y)= —a( — ). For any function » we have

wu(re® + ge®ydy= | u(re’ + g V)t y(re!® + g V) d
. 4 44 o e Y Y

= [[utrr oo+ agrgy e ay. (16)

0

Lei u be as in the statement of the theorem. Fix re’ with r,<r<r, 0<f<z. Asin
(9a) there is a set £ with |E| =20 such that

u*(re®®) = f uy(re*)dew + f wy(re*) dow (17)
E F

where F=E°. Since u, and u, are subharmonic we have, for sufficiently small ¢ and
i=12, ' ‘

T

u,(rei“’) < %f u;('r(’l[)) ei(w+a:(np))) + u;(r(’([)) ei(w—az(w))) dw

0

We put these inequalities in (17) and reverse the order of integration. The result may be

. 1 7
u*(re’®) < 2—~f [f o+ f uy(r(y) €') dw] dy
T J0 L Eyyy I E_aqp

1 [ | , ]
= ) deo | dv. 18
=l fw+ [, wemenia)ay a®)

written
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Let 6 be associated with ¥ as in the lemma. We assume that ¢ is small enough so that
0<a(y)<d and 0+ a(y) <z for 0 <y <z. Fix such a y. By the lemma, we can choose a set

C with ‘
C(Eppy U E_o(y) — (Bpy N E_gi)

such that if 4=(£,,,N E_,,) U C then
A =|B| —2a(y) = 2(0 — a(y)). (19)
Let B=(Ea(w) Y E—a’(w)) —C. Then

AUB=EypUE_yy, ANB=Eu N E_yy). - (20)
Since lAI +IBI =|AﬂB| +|A UBI :IEE(V)I +IE'—¢(W)I =40
it follows that
| B = 2(0 + (y))- (21)

By (20), for every integrable function g we have

Lol [ o] oo
A B Eutpy E_atp

A similar identity holds with 4 and B replaced by their complements and E,,, £ _.y,
replaced by Fuq,, F_u). Thus

[
Eatyy E

=f uy(r(p) ) doo + f us(r(p) e) dw+f wy(r(p) ) doo + Lcuz(r(w) ¢)do>
A A€ B

uy(r(y) e*’) doo + f + f uy(r(y) ") dw
‘ Fa(y F_aty)

—a(y)

< u*(r(yp) €0 W) 4 u*(r(y) 'O+, (22)

The inequality follows from (19) and (21). Substituting (22) in (18) and recalling (16), we

obtain
o4

u*(re'®) < §ly_zf u*(re® + pe'*) dy,

—~7

which proves the subharmonicity of «”.

3. Some real variable results

Let g(z) be a real valued integrable function on [ — x, zr]. The distribution function of

g is the function A(¢) defined by
A) = |{z: g(x) > ¢}|.
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The definition of Lebesgue integral leads to the well known formula

fﬂ g= —Jm tdA().

In particular, two functions with the same distribution function have the same integral
over [ —r, 7).

We define now

g*(0)= sup fg 0<0< 7). (23)
E

|Ej=26

ProPOSITION 1. For each 0€[0, x) there exists a set E with |E| =20 for which the
supremum in (23) is attained.

Proof. This is obviously true for =0 and 6 =x. Take 6 €(0, ). There exists t €( — oo, o)
such that A(f+)=A() <20<A(t—). Let A={x:g(x)>t}, B={x:g(x)>t}. Then |A|=2(),
| B| =A(t—). Take E such that |E| =20 and A< Ec< B. Let F be any set with |F|=26.
Then

f g=f [g(x) —t]dax+ 20t < fﬂ [g(m)~t]+dx+20t=f [g(x)—t]dx+26t=f g.
F F - E

E

This proves the proposition.

The symmelric non-increasing rearrangement of g is the extended real valued function
G{(x), defined on [ —m, 7] as follows. If A(f) is continuous and strictly decreasing then G on
{0, ] is the inverse function of JA. In general,

Qx)=inf {t: A(t) < 22} (0<z< 7).

G(7) = lim G(x) = ess. infg.
L E=n—

We set G(x)=G(—=z) for ~x<2<0. Then G is non-increasing on [0, 7] and it is easily
verified that & has the same distribution function as g. (The reader should be aware of
the fact that in the literature the function we dre calling @ is often called g*.)

The relation between our functions @ and g* is given by the following formula.

ProrosiTIiON 2. For g€ [ —m, n],
6 N
g* ()= f Gr)dz (0L0<m). (24)
-8

Proof. For =0 both sides are zero and for f=x both sides equal the integral of ¢
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over [ —z, 7). Take 0€(0, 7) and let E and ¢ be as in the proof of Proposition 1. Then
g*0)= f g= J‘ g(x) — £]* dx+ 20t = J [G(z) — 1" dx + 262 (25)
E -5 —n

(The last equation follows from the fact that [g(z) —£]* and [G(z) —¢]" have the same dis-
tribution function.) Sets of the form {: G(x) >s} are intervals symmetric around the ori-
gin, and @ and ¢ are equi-distributed. These facts imply G(z)>t for |z| <0 and G(z)<¢
for |z| >6. Thus

7 (] 6
f [G(zx)—t]" dx+ 20t= f [G(z) — t]dx + 20t = f G(z)dx,
—n -0 -0
which, together with (25), proves (24).

Our next result asserts that inequalities between the convex integral means of two

functions are equivalent to inequalities between their * functions.

PrOPOSITION 3. For g, h€LY —n, 7] the following statements are equivalent.

(a) For every convex non-decreasing function ® on (— oo, o),
f :'(D(g(x)) dr< f :d)(h(x)) dz.
(b)‘ For every t€(— oo, o),
f :' [9(z) —¢t]" dx < f : [A(z) — 1] dex.

(c) g*(6)<h*0) (0<0<n).
This proposition is a variant on Exercises 249 and 250 of [10].

| Préof. (a)= (b) is trivial. For (b) = (c) we may assume 0 <0 <z and let ¢ =H(0), where

H is the symmetric non-increasing rearrangement of k. Then for any set E with | E| =20,
f g=f [g(x) — ) dz + 20t<f [g(z) — ¢ dw+ 26t
E E -n
< f [A(x) —¢]" dz+ 20t

7 0
= f [H(z) - t]* da + 26t = f H(z)dz=h*(0),
—n ]
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which proves (c). For (¢)=(b) we may assume {< ess. supg and choose § so that
GB—-)=t=Q0+) (For t<ess. infg take § = 7). Then

] 14 ]
, f [g(z) —t]* dx= f [G(x) —£]" dox= f [G(x) — t] dx = g*(6) — 260t < h*(0) — 20t
-n -7 -0

= fo [H(z)—tldx < Jm [(H(z)—t]" dz= Jw [B(z) — £]" dx,
-6 -7 -n

which proves (b).

Now we turn to (b)=(a). A simple limiting argument involving truncations of ®
shows that it is sufficient to prove the inequality in (a) for convex non-decreasing functions
® which are equal to a constant « on some interval (—oco, —M). Consideration of ¢ =
(® — )+« shows that there is no loss of generality in assuming a=0. Since @’ is non-
decreasing there is a positive measure y on (— oo, o) defined by u(—o°,8)=®’(s—). Then

3

(I)(s)=fs O'(t)dt = —fs @'(t)d(s—t)=j (s— t) dult).

—0

Thus

o0

O(s) = f (8=t dult) (—o0<s< o).
—00
The inequality in (a) follows at once from this representation together with hypothesis
(b) and Fubini’s theorem. This completes the proof of Proposition 3.
Using (a)<(c) we note that Theorem 1 may be succinctly restated as

(log [f])*< (log |E[)* (f€S)

The other theorems may be restated similarly.

4. Some properties of Green’s functions

A domain D in the extended plane is said to possess a Green’s function, or be of
hyperbolic type, if there exists a positive function on D which is harmonic in D except at
a point z,€ D where it has a logarithmic pole. The smallest such function is called the
Green’s function of D, with pole at z,. If there is a Green’s function of D with pole at z,
then there is a Green’s function of D with a pole at any other point of D.

We will sa,y that D has a classical Green’s function if each Green’s function u(z) tends
to zero as z approaches the boundary of D. A sufficient condition for D to posses a clas-
sical Green’s function is that every boundary point of D be contained in a continuum

which is contained in the boundary.
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In this paper whenever a Green’s function exists it will be extended to the whole
Riemann sphere by setting it equal to.zero in the complement of D. Thus, if u is a classical
Green’s function with pole at z, then u is continuous on the sphere, except at z,. At a
point in the complement of D u is obviously < its mean value on circles centered at that
point, hence u is subharmonic on the sphere, except at z,.

The proofs of our ‘theorems about integral means of analytic functions f(z) involve
transferring the integrals from the z-plane into the image plane. The transfer is accom-

plished via the following result.

ProroSITION 4. Let f be holomorphic in |z| <1 and D be the range of f. Assume D
has a Green’s function and let. u be the Green’s function of D with pole at f(0). Then for
0<p<ce and 0<r<l,

10 &
J‘ + Mre )|d0<f [u(ge“”)+logr]4r dp + 27 log”* Lg)l (27)
1f f is univalent then equality holds.
Proof. For 0<r<1 and { complex consider the function
r
N(r,{)=N(r, ¢, /)=210g+m ; - (28)
i

where the sum is taken over the roots 'z,- of f(z)=( in |z| <r, cbunted according to multi-

plicity. Cartan’s formula ({14, p. 214]) asserts that
f log* | f(re'®)|d6 = f N(r,e")dg + 2r log™ |f(0)]. (29)

The function u(f(z)) +log |z| is superharmonlc in |z| <1 and has non-negative bound-

ary values. Therefore C
u(f(z)) > —log |z| (lz] <. : (30)

For 0<r<1 let D,={(€eD: u(C)> —log r}. By (30) we have f(|z| <r)< D,, thus N(r, {) =0
for ¢ ¢D "Lehto [17] has shown that N(r, {) is a subharmonic function of , except for a
logarithmic pole at ¢ =f(0). Thus u(() +log r — N{(r, {) is superharmonic in D, and has non-
negative boundary values. It follows that N (r, £) <u() +log r'in D,, so that

N(r, £) < [u(¢) +log 1]* 31)

for all Z€C. Putting this inequality in (29) we obtain the desired integral inequality (27).
If f is univalent then the Green’s function  is given by ()= —log |f~1({) |. Compar-
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ing with the definition (28) of N(r, {) we see that equality holds in (31); and hence in (27).
This completes the proof of Proposition 4.

The extremal functions in our theorems about integral means all have,the property
that their associated domains D coincide with their circular symmetrization, that is, D = D*.
The next result provides some explanation as to why this is so. Let D be a domain with
a classical Green’s function and let u be the Green’s function of D with pole at z,. We as-

sume z, is finite, the case z,= oo requiring only obvious modifications. Then we can write
u(z) = u,(2) —log |2=z,|
where u, is subharmonic in the whole finite plane. If 2,40 then, by Theorem A’,

uw*(re®®) = u*(re®®) + f log|re® — zq|dy (82)

is subharmonic in the upper haif plane. If z,=0 then u is subharmonic in 0 <|z| <o so

that «* is subharmonic in the upper half plane.

ProrosiTioN 5. Let D and u be as just described. Suppose that D= D* and that z,=
79=>0. Let D*=D N (Im z>0). Then

(a) u*(2) ¢s harmonic in D+, when ry=0,

(b) u*(z)+2m log™ l—:—l 8 harmonic in D+, when ry>0.
0

Proof. Consider-case (a). Define A by

9
h(re®) = f u(re®ydy (0<0<m,r>0).
Since u is harmonic in D— {0} and D contains a neighborhood of the arc{re’: |y| < 0}
whenever it contains re’ we have, for re € D*,

&b Ot (P P
&logr? (re”) = f_o Bllogr* (re")dy = f ) ot (re®) dy

ou ou, o%h
R — 5é (mw) + 8_6 (’fe ‘ie) —_— . 8__62 (Tew).
Thus % is harmonic in D+, and is continuous in the closed upper half plane, except at the
orgin. If ref ¢ D+, with r>0, 0 <6 <, then, since » >0 everywhere and » =0 outside D,
it follows from the the definition of w* that w*(re'?)=h(re'?). From u(z)=u,(z) —log |z|

with «; harmonic in a neighborhood of 0 it follows that

lim [u*(z) — h(2)] = 0.
2->0
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The same relation holds as z— oo, since u is continuous at co.

We have shown that «*—% is subharmonic in D™, continuous and bounded on the
closure, and equal to zero on the boundary. Thus »*<h in D*. But the definition of »*
shows that u*>h. We conclude that «* =k, and hence that «* is harmonic in D+.

Turning to the case r,>0 we observe that »*—h is still continuous in the closed ex-
tended upper half plane and equal to zero outside D*. (The simple proof that u*(z) —k(z)—+0
as z—>7, is left to the reader.)

Since u(z) +log |z —7,| is harmonic in D it follows that

0
hy(re®) = f [w(re') + log | re™ — rol 1dy
-8
is harmonic in D*. Define

8
uy(re'®) = u*(re') + f log|re® —rq|dy.
-8

Comparing with (32), we find

7~

0
u*(re'?) — uy(re'?) = f olog |re’™ =¥ — 1y |dy. (33)
+

-

The function on the right is a harmonic function of re' in the upper half plane. Since u*
is subharmonic in the upper half plane the same is true of u,. Thus u,—h; =u*—h is sub-
harmonic in D*. As in ease (a) it follows that u* = h throughout the upper half plane,
and hence that u,=h, there. The harmonicity of kb, =u, in D* implies, in view of (33),

that of w* there. Evaluating the mean value in (32), we find
u*(re'®) = u*(re'®) + 27 log™ ; + log 7y,
0

so that u* +2x log* (r/r,) is harmonic in D+, as claimed.

We point out a consequence of the equation u* =h established above.

CoroLLARY. Under the hypotheses of Proposition 5, (%) =u(z) for all z and, for every

r>0, u(re'®) is a decreasing function of 0 on [0, 7.

Proof. It this were not the case we could find an r and 0 such that

0

u*(re'?) > f u(re'¥) dy,

which violates «*=4.
For certain simply connected domains D with D= D* the above result was proved by
Jenkins [15].
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5. Proof :of Theorem 1.
Let f€8 and k& be the Koebe fl.lneti‘c;;l. 'Using (b) = (a) of Proposition 3 with g(f)=
log | f(re'®)|, h(B)=log |k(re')| and t=log ¢ we see that the inequality of Theorem 1 will
hold provided we can show that

: jm log* Mde < J‘n log* M a6 34
. 0 ) - e
for all r€(0, 1) and all p>0.

Let %{Z) and »() be the Green’s functions, with pole at £ =0, of the ranges of f and &
respectively. These Green’s functions are classical, in the sense of § 4. Thus, when defined
to be zero outside their original domains, 4 and v are subharmonic in 0 < |§ | <oo.In view

of Proposition 4, inequality (34) is equivalent to
f [u(oe®) + logr]" dp < f [v(0e™®) + log r]*de.
—-n -

By (¢)= (b) of Proposition 3, this inequality will follow from the inequality
u*(ge'®) <v*(ge") (0<g <o°,0 <@ <m). (35)

By Theorem A, u* is subharmonic in the (open) upper half plane: The range of k is
the slit plane € —(— oo, —1), so, by Proposition 5, v* is harmonic in the upper half plane.
Fix £>0 and define the function ¢ by

Q(0e*) =u*(0e'?) —v*(ge™) —‘é<p (0 <p <o0,0 <@ <a).

Then @ is subharmonic in the upper half plane, and, by the continuity statement in Theo-
rem A’, is continuous in the closed upper half plane except at the origin.
Let d be the distance from the origin to the complement of the range of f. Then d >}

We can write
w(l) = —log |} +uy(() - (36)

where u, is harmonic in |{| <d. From f'(0)=1 it follows that u,(0) =0, and from this it

follows that ]
u*(pe”) = —2m log g +o(1)

as ¢—0, uniformly in ¢. The same relation holds for v*. Thus

lirrz_s:})lp Q()=0. (37)

11 — 742902 Acta mathematica 133. Imprimé le 27 Janvier 1975
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Since #({)->0 and v({)—~0 as {— oo the same is true of »* and v*. Thus

lim sup @(¢) = 0. (38)
>0
From the definition of the * function, we have
Qe) =0 (0>0). (39)
From (36) we obtain
u*(ge) = f u(pe®)dp= —2nloge (0<p<d). (40)

Define », by
1 o) = ~log [¢] +0,(2).

Then v,(0) =0, v, is harmonic in || <}, and v, is subharmonic in the whole plane. Thus

n

v*(ge'™) = f v(ge®)dp=—2n logo+ f

-

v(ee®)dp> —2nlogp (0<p< o). (41)

Comparing (40) and (41), we see that
Qloe'™) <0 (0 <p <d). (42)
Let M be the supremum of @ in the upper half plane. We want to show that M =0.
Let {{,} be a sequence such that Q((,)—>M. A subsequence of {{,} converges to some point
{y in the extended closed upper half plane. Since @ is subharmonic, we may, by the maxi-
mum principle, assume that {, is a boundary point. If {y= oo or if {, is a point of the real
axis in [ —d, o°] then, in view of (37), (38), (39) and (40), M =0.
The remaining possibility is {,=p,e"", with d <g, < oo. Then

Qoo™ —Qleoe”) =0 (0 <g <=). (43)

Let G be the symmetric non-increasing rearrangement of the function g—wu(gye™). The

continuity of u implies that @ is continuous on [ —z, ]. By Propositon 2,
ou*
o (00e”)=2G(p) (O<gp<n).

The circle || =g, intersects the complement of the range of f. Thus inf, u(oye'*) = G(m) =0.

Hence

*
lim o (00€®)=0.
grn— O
The same is true with u* replaced by v*. Hence

im %2 (5 ey = —
,,E:l_atp(eoe ) £



INTEGRAL MEANS, UNIVALENT FUNCTIONS AND CIRCULAR SYMMETRIZATION 157

In view of the mean value theorem this is inconsistent with (43). We conclude that
—oo <f,< —d is impossible, and thus have shown M =0. Hence @ <0, and, since ¢ was
arbitrary, (35) is established and the proof of the inequality statement in Theorem 1 is
complete.

We prove now the statement in Theorem 1 regarding equality. The notations used are
the same as above. Suppose f is not the Koebe function or one of its rotations. Then d > }.
If gy > £ then v can not be harmonic in any annulus g, < || <g,, since v achieves its mini-
mum value zero at the interior points ge'®, g €(g,, o). It follows that v,({) = —log |¢| +v({)
fails to be harmonic in || <g as soon as g>}. Let & be harmonic in || <g and equal to
vyon |{| =op.

Then

7T

1
0=00<30 =5 | wiedp (0>

Thus (see (41))
v*(ge™) > —2nloge (} <g <oo). (44)

The function * —v* is subharmonic in the upper half plane. We showed above that it
is continuous and bounded in the closed half plane, and is <O on the real axis. By (40)
and (44) it is strictly negative on the interval (—d, —}), hence is strictly negative in the

open upper half plane.
That is, ' u*(0e'?) <v*(ge?) (0 <p <o, 0 <@ <m). (45)

Fix r€(0, 1). I claim there is an interval J < (0, o) such that g €J implies

Jw [u(o€®) + logr]" dp< fﬂ [v(g €¥) + logr]" dep. (46)

For u(f)= —log |{| we may take J =(r, r +¢), where £ >0 is sufficiently small (direct veri-
fication, using v = —log |k~|.) Any other u has the property

infu(g ¢*) < supu(p €*)
9 o

for all ¢ <d. The inf is a continuous function of g, equals zero for p =d, and tends to o as
0—0. We take for J an interval such that '

inf u(g e®)< —logr< supu(pe®) (o€J).
@ 14

Let E(p) ={p: u(pe’?) +log r>0}. Then 0< | E(g)| <2 for g€J.
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Hence
f (u(p ey +logr)tdp= f (u(ge®)+logr)dy
- JEe

<u*(pe'F@2) + 1 E(o)|log r< v*(ge/'F@V2) + | E(g)|log,

where the strict inequality is by (45). The right hand side is, by an obvious argument, <

f (v(o€®) +logr)* dep.
-n
Thus we have proved (46).
In view of Proposition 4, inequality (46) may be written as

.1 7] n i6
f log+%)—l-d0<j log+|—k(%)ld6 (0€J). (47)

-

Let @ be a non-decreasing strictly convex function on (— oo, oo). (By strictly convex,
we mean @ is not linear on any interval). Let J' be the interval log J. We may assume
J’ is a finite open interval. Let s, be a number lying to the left of J', and decompose @ as

follows,
O=0,+0,,

where @, coincides with ® on (— 0, g,] and is linear on [s,, o) with slope ®’'(s, —). Then
®, and @, are non-decreasing and convex on ( — 20, o), and @, is strictly convex on (s,, °°),

D,(s) =0 for s<s,. We may write, as in the proof of (b)= (a) of Proposition 3,
Dy(s) = f (s=t)" du(t) (48)

where u is a positive measure. Since @, is not linear on J', we must have
u(J’) >0. (49)

“ From the inequality statement of Theorem 1 we have -

fﬂ (log|f(re®)| —t)* d6 < J‘" (log|k(re'®)| —t)* b

for all ¢, and by (47), we have strict inequality for t€J’. Using (48), (49), we denote

f " ¢2(10g|}(re*°)|)de< f " @,(log| k(re'%)| ) 6. (50)

Since Jm D, (log | f(re'®)|)dO < f i @, (log | k(re'®)|) db,

and @ =0, +®,, (50) remains true when ®, is replaced by ®, and we are done.
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6. Complements and extensions of Theéorem 1.

THEOREM 2. For f€8 and ® as in Theorem 1

n 1 a 1 '
1 log —— 0 1).
L‘D("gm i) 9= f.nd’(%lk(rewn)de (O<r<)

If equality holds for some.r€(0, 1) and some strictly convex @, then f(z) =e™““k(ze™) for

some-real o.

Proof. Assume f is not the Koebe function or one of its rotations. As in the proof of

Theorem 1, it is sufficient to prove for all >0,

NN ¢ !
[ Jos ey o= [ oe olk(re®] el

with strict inequality for ¢ in some open interval. By Jensen’s formula and the fact
that f€8," - :

f “log (| f(re'®)|) d6 = 2n(log o — log 7).
Thus

n

fn lo;ng(glf(re“’) |) @0 = 2n(log o —~log r) + f log™ (52)

1
olf(re "’)I
and the same is true when f is replaced by k. By Theorem 1, the left hand side of (52)
does not decrease when f is replaced by k, and is s’orlctly increased for g in the reciprocal
of the interval J of (47). Thus (51) holds, a,nd the theorem is proved

We turn our attention now to an analogue of class S for functions univalent in an
annulus. For E>1 let A(R) denote the annulus 1 < |z| < R and let S(R) denote the class

of all holomorphic univalent functions f in A(R) which satisfy
|fz)] > 1 for.2€A(R), |f(z)|=1 for |z|=1.

Thus f maps A(R) onto a ring domain in the {-plane whose bounded complementary com-
ponent is the disk |(| <1. There is a unique function k,€S(R) which maps A(R) onto the
exterior of the unit disk with & slit along the heéaﬁve real axis from some point —d(R)
to —oo, and which satisfies ky(1)=1.

THEOREM 3. For f€S(R), ® as in Theorem 1, and 1 <r <R,

f " ®(loglf(re|) o <f " ®(log|x(re®) ) b, ()
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7 1 £ / 1
I o{oe ) 0= [~ 0 ) ®

If equality holds for some r€(1, R) and some strictly convex @, then f(z) =" kp(2¢') for some
real o and f.

From the theorem it follows that for each fixed z€ A(R) the quantity |f(z)| is maxi-
mized and minimized over S(R) by rotations of k. This distortion result was proved
first by Groetzsch [8], who used the method of extremal length, and has also been proved
by Duren and Schiffer [6] by means of a variational argument.

To prove part (a) of Theorem 3 it suffices, as in the proof of Theorem 1, to prove

14 i6 &3 10
f log* Lf(jeiﬂ o< f log* '—k”"?e—)-' df (53)

-7

for 1<r<R, p>0 and fES(R). As before, the first step is to transform the proposed in-
equality into an equivalent one involving integrals of the inverse functions. Suppose g is
holomorphic in A(R) and has a continuous extension to |z| =1. If g has no zeros, then,
for1<r<R

f log|g(re*®) |df = f log|g(e*®)|d6 + 2 B log r (54)

where B is the winding number of the curve g(e?) around the point {=0. This is easily
deduced from the fact that the mean value on the left in (54) is a linear function of log r.
If g has exactly one zero z,€ A(R) and no zeros on |z| =1 then (54) holds provided we add
27 log™ (r/]2,|) to the right hand side.

Let f€S(R) and D=f(A(R)). Define u by

u(;/:),=0 for |C]<1
= —log | )| for (€D
=—log B for (¢D, |]|>1.

The argument in the proof of Cartan’s formula [14, p. 214] together with the above facts

about mean values leads to the formula

14 i6 n
J log+—lﬂ——zi|—d0=J. [u(oe®) +logr]"dg (0=1)

-

=2nlog£., _ (0<e<)
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Thus (53) is equivaleht to the-inequality
J [u(ge®) + log r*dp < f [v(oe®) +logr]" dop (65)

where v is obtained from kg in the same way that u is obtained from f. By Proposition 3,
(65) is implied by : ;
u*(0e?) <v*(pe'?) (0 <p <o0,0<g<m). (56)
For 0<p<1 both sides of (56) are zero, so it suffices or prove (56) for ge'” €H, where
H={C:|¢| >1, Im {>0}. u is subharmonic in |{| >1. Therefore u* is subharmonic in H.
The argument in the proof of Proposition 5 shows that »* is harmonic in H.

Let , be a point of smallest absolute value in the unbounded complementary com-
ponent of D=f(A(R)), and put d=|(,|. Then each circle |Z] =e with ¢ >d intersects the
complement of D. From well-known symmetrization results [16, Theorems 8.3 and 8.4] it
follows that the modulus of the ring domain D,={(: |{| >1, {¢(—o0, —d]} is > the
modulus of D, with strict inequality unless D, is a rotation of D. The modulus of D is the

same as that of

ka(A(R)) ={C: [£] > 1, C¢(— 0, —d(R))}.

Hence d = d(R), and strict inequality holds unless f is a rotation of kg.
For ¢ >d we have, as in the proof of Theorem 1,
u:(g e‘”‘) =vj(pe™)= —logR.
Also, % is harmonic in 1< || < d, so

u(pe?)dp=Alogo+ B (1<p<d).

“*(Qei")"f

B=0, since u=0 on |{| =1, while, by the Cauchy-Riemann equations

= § Qﬁ‘ L = — i i -1 ip = —
A f-haé (e)de J‘;naq) arg (f (")) dp= —2m.
Similarly, v*(ge™) = ~2xlogp (1 <p <d(R))

>—2nloge (d(R) <@ <°).

It follows that (56) holds for ge'” when 1<p <d and, if f is not a rotation of kg, strict in-
equality holds for d(R) <p <d. The proof of (a) of Theorem 3 and the accompanying equa-
lity statement can now be accomplished by an argument entirely analogous to that in the
proof of Theorem 1, except now the full upper half plane is replaced by H.
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Part (b) is obtained from (a) just as Theorem 2 was obtained from Theorem 1. This

time we use

fn log (o|f(re'®)|) 20 = 2n(log o+ log r)

for all fES(R) and 1<r<R.

Kirwan and Schober [27] have used the L! case of Theorem 3 to obtain bounds for
the coefficients in the Laurent expansion of f€8(R) which are better than any previously
known. ]

_The convex integral means of log | k| are in fact extremal for a class more extensive
than S(R). We state this as a corollary.

COROLLARY. Suppose./ is holomorphic and univalent in A(R) and that the bounded
component C of the complement of f(A(R)) is contained in || <1. Then (a) of Theorem 3
holds for f.

Proof. Let g be a conformal map of the complernient of C onto |w]| >1 with g(c0) = oo,
Then gof€ A(R), and Schwarz’s lemma applied to 1/g~(1/w) leads to the pointwise esti-
mate |f(z)| <|gof(z)|. Thus the corollary follows from Theorem 3.

We return now to functions holomorphie in the unit disk and will show that Theorems
1 and 2 extend to a class of functions which are.only “approximately’ univalent. Let p
be a positive integer. Following Hayman [11] we say that a function f holomorphic in
|z| <1 is weakly p-valent if for each g >0 either every point on the circle |{| =p is covered
exactly p times by f (counting multiplicity) or else there exists a point-on |{| =p which
is covered less than p times. This class contains the class of circumferentially mean p-
valent functions, but neither contains nor is contained in the class of areally mean p-
valent functions. These latter classes are studied in [12].

I do not know whether or not Theorem 4 below remains true for normalized areally
mean p-valent functions. Spencer [25] has shown that, for p=1, |a,| <2 holds in this
class, and also (unpublished) that there exist functions in this class with lag| >3.

THEOREM 4. Suppose f is weakly p-valent in |z| <1 and its power series expansion
has the form
f(z) = 2° + higher powers of z.

Then, if ® is as in Theorem 1and 0<r<1

' f i 'q>(lo‘g|f(ref0)|)do<f? D(log|k(re)|?)db, (a)
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I_,,@(??Iﬂre"’)l)dof f ‘D(l"glk( “’n”) . o ®

If equality holds for some r€(0,1) and some strictly convex ® then f(z)=(e” “k(ze™))* for

some réal o.

Proof. By Lemma 3 of [11], fA7is weakly 1-valent. Thus, it suffices to prove the
theorem. when p=1.Let D denote the range of f. By Lemma 4 and Theorem 1II of [11]
there exists a number d,>} such that D contains the disk || <d, but does not contain
any circle |Z| =g for ¢ >d,. If f is not the Koebe function or one of its rotations then d,> }.

Assume for now that f has an analytic extension to |z| <1. Then, by Lehto’s Theorem
(cf. proof of Proposition 4), .
(&) =N(1,¢,f)
is subharmonic in 0<|{| <.co. For this u, the inequality

u*(0e'?) <wv*(pe'?) (0<p <oo,0<g <m) (57)

with v as in the proof of Theorem 1 cah be pfoved by exactly the same argument as in
that proof. That the u here has all of the necessary properties for the argument to go
through follows from the above discussion together with some simple considerations which
we leave to the reader.

For 0<r<1 the 1nequahty N (r g, f)<[u(§)+log r]+ follows ea,sﬂy from the defini-

tions. So, using Cartan’s formula (29), ’
7T i0 7
f logf.M df < f [u(oe®) + log r]* dy.

This, together with (57) and the arguments in Theorems 1 and 2, proves the 1nequaht1es
in Theorem 4 for f analytic on the closed dlSk For a genera,l f the mequa.htles may be ob-
tained by conmdermg R‘lf(Rz) and lettmg R—~1—

Because of the hmltmg process the argument just glven is not good enough to est-
ablish the uniqueness part of Theorem 4. Here is one way to obtain the uniqueness. For
de( i 1) there exists a umque funetlon g4€8 which maps | | <1 onto the plane minus a
clrcularly forked slit of the form

{: —oo< < —d}U{C: |E] =d, & <arg I <=}
If d<d;, where d, is as at the beginning of ‘this proof, then the argument in Theorem 1
shows that in fact the convex integral means of log |f] are dominated by those of log AR
For d >} the strictly convex integral means of log |g,| are, by Theorem 1, strictlv less
than those of log | %], and the uniqueﬁess in Theorem 4 readily follows.
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By considering L' norms in Theorem 4 we obtain the coefficient estimate |a,| <(e/2)n
for weakly univalent functions. The best previously known estimate in this case was a, =
O(n?). -

Netanyahu [20] studied the class S(d) of all functions f€8 whose image domain con-
tains the disk || <d. He proved, using the Schiffer and Julia variations, that |a,| is
maximized in this class by the function g,. As just pointed out, all the convex integral
means of log |f| for f€8(d) are dominated by those of log |g,|, and consideration of L2
norms leads at once to Netanyahu’s result. It is conjectured, but has not been proved,

that |a,| is-also maximized in this class by g,.

7. Proof of Theorems 5 and 6.

In Theorem 5 we assume from the outset that the Green’s functions u and v of D
and D* are classical, i.e. have continuous, hence subharmonic, extensions to the respec-
tive complements when set equal to zero there. The general case may be obtained from this
special case by an obvious approximation process.

Consider first the case when the pole 2, is at 0. Then, by Theorem A, u* is subhar-
monic in the upper halfplane. Let D% = D* N (Im z>0). By Proposition 5, v* is harmonic
in D%.

The argument that follows is in many respects similar to the one used in proving Theo-
rem 1. For £>0 let

Q(z) = u*(z) —v*(z) —€f (2 =re®d).

Then @ is bounded in the closed upper half plane, and is continuous, except at 0 and co.
Let M =sup {@(z): Im z>0}. As in the proof of Theorem 1 we want to show that M <0.
Let {z,} be a sequence in the upper half plane such that ¢(z,)>M and z,->2z’, where
2’ is some point of the closed extended upper half plane. Since @ is subharmonic in D
we may assume z' ¢ D%. If 2’ lies on the positive real axis then M =O~, as required.
Suppose next that 2’ ¢ D} and 2’ = Re'® with 0 <R < oo, 0<g <m. If the circle [z| =R
does not intersect D then w*(z') =v*(z') =0, so that M <0, which is impossible. If the circle
intersects D in a set of measure 2m, but is not entirely contained in D, then m <@ <n.
On this circle 4 and v are zero off a set of measure 2m, so, by Proposition 2 and the con-

tinuity of the non-increasing rearrangements,

ou* ov*
lim — (Re'®)= lim — (Re®®)=0.
mi 9(Re) un_ae(e)
Hence lim 29 (Re'®)= — <.

20
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By the mean value theorem, it follows that the maximum M of @ cannot be achieved at
a point 2’ of this sort.

Consider now the possibility that z’= — R with 0 <R <o, and the circle |z| =R lies
entirely in D. Let R, <|z| <R, be the largest annulus containing — R which is contained

entirely in D. Then  and v are harmonic in R, <|z| <R,, hence
27 27
Q(—r)= f u(re®®) do — f v(re®)d0 — en
0 0

is a linear function of log r for r€I=(R,, R,). If @ achieves its maximum at — R then
Q(—r) must be constant for r€ I. Either R, >0 or R, < co (perhaps both). Say E,>0. Then
Q(—R,)=Q(—R)=M. But the circle |z| =R, is not contained entirely in D, so, by the
preceeding paragraph, M =@(— R) is impossible. The case R,<cc is disposed of in the
same way.

The only remaining possibilities are 2z’ =0 or z’ = co. Consider 2’ =0. Let |z| <R, be

the largest disk centered at 0 which is contained in D. Then

u(z) = —log |z| +uy(2), w(z) = —log |z| +vy(2)
where u, and v, are harmonic in |z| <Rl. We hdve

Q(re’®) = (2u,(0) —2v,(0) —£)0 +o(1) = A6 +o(1)

uniformly in 6, as r—0. If A <0 then M =0. If 4 >0 then, since ¢(—r) is constant on
(0, R,), M = Anw=@Q(— R,). Since the circle |z| =R, is not contained entirely in D, this last
possibility does not occur, as noted above.

The case z’ = o< is split into the sub-cases o € D or o< ¢ D. If oo ¢ D then u(z) and »(2)
tend to 0 as z— oo, thus the same is true of u* and v* and we deduce M =0. If oo € D then
u and v are harmonic in some neighborhood |z| >R, of oo, and we deduce as in the case
2'=0 that M =0.

We have shown that @ <0 in the upper half plane. This implies

u*(re'd) < v*(re®) (0 <r < oo, 0 <6 <m),

and the integral inequality in Theorem 5 follows from Proposition 3.
In case the pole z,is at oo the desired result follows by inversion from the case z,=0.
For 0 < |z,]| < oo we write
u(2) = uy(2) —log |z — 2. (58)
Then u, is harmonic in D and subharmonic in the whole plane. By Theorem A’ and the
discussion in the proof of Proposition 5
u*(re'®) + 2n log* L

12,1
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is subharmonic in the upper half plane. By Proposition 5,

v*(re®) + 27 log* T

EM|
is harmonic in D% . Thus, once again,l
Q(z) =u*(2) —v*(2) —&f

is subharmonic in D% . The proof that @ <0 is accomplished just like it wasfor z,=0, except
for trivial modifications concerning the possibility z’=0. (Use the argument appearing
above for 2’ = o). We also point out that @( —r), which involves the difference of the mean
values of 4 and v, is still a linear function of log r in the appropriate intervals. This may
be seen by considering the decomposition (58) of » and the corresponding decomposition
of ». This completes the proof of Theorem 5.

. For the proof of Theorem 6, we let D =f(|z| <1). Our hypothesis that D* is contained
in a simply connected domain D, which is not the whole plane insures that D* has a
Green’s function, which in turn implies that D has a Green’s function. (One way of very-
fying the last statement is to consider an exhaustion of D by regular domains and use
Theorem 5). Let u,,v, and w be the Green’s functions of D, D*, and D,, respeétively. The
pole of  is to be at z, and the pole of v and w at |zy|. Since D*< D, we have v <w through-

out the plane. This, together with Theorem 5, implies,
f [u(oe”) +logr]* dg < f [w(ge') + logr]* de
-n =6 .

for.all pbsitive ¢ and r. From Proposition 4 we thus obtain

£ 4 i0) &1 i6
f log" If(r;,, ”d0<f Jog* I,F(rge )l o,

—n -n

So, by Proposition 3, all-of the convex integral means of log |f(re')| are dominated by
those of log | F(re')].

8. Circular symmetrization and harmonic measures
Let D be a connected open subset of |z| <1, and set
a=aDn(|z|=1), p=aDn(|z|<1).
We assume that both « and § are non-empty. Let u(z) be the harmonic measure of « with

respect to D. Precisely, u is the harmonic function in D, constructed by Perron’s method,

corresponding to the boundary function %o (x =characteristic function). An account of
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Perron’s method and of other notions and results from potential theory used in the sequel
may be found in [23].

Let v denote the harmonic measure of o* =8D* (| | =1) with respect to D*. Extend
u'and v to the whole open disk |z]| <1 by setting them equal to zero outside D and D*,

respectively.

THEOREM 7. Let ® be as in Theorem 1 and u and v be the harmonic measures just de-
scribed. Then

fn D(u(re’)) do < Jm (I}(v(re‘o)) dd (0<r<]).
In particular, . - sup u(re’®) < sup v(re’®) = v(r). , (59)

Haliste [9] proved the analogue of (59) for certain domains under Steiner symmetrization.
She gave two proofs, one based on Ahlfors’ distortion theorem and the other on the theofy
of Brownian motion. The Brownian motion proof may be adapted to prove (59) for sub-
domains of the unit disk. On the other hand, Haliste’s Steiner symmetrization result fol-
lows from (59) by means of a logarithmic transformation.

Haliste also proved inequalities of the type (59) for Steiner symmetrization in n-space.
C. Borell [5] has recently extended these results by proving the full analogue of Theorem
7 for this situation.

With D as in Theorem 7, let D** be the unit disk with the circular projection of 8
onto the negative real axis removed. Then D*< D** and, letting w denote the harmonic

measure of |z| =1 with respect to D**, we have v <w everywhere by D*. So by (59),

sup u(re') < w(r).
0

This inequality is the solution of the Carleman-Milloux problem found in {21, Theorem 1,
p. 107]. ;

For the proof of Theorem 7 we impose at first some restrictions on D. These are that
all points of § be regular points for the Dirichlet problem in D, all points of ﬁ*=6D*ﬁ
(]z] <1) be regular for the Dirichlet- problem in D*, and that f<(|z| <R) for some R <1.
Then « is the whole unit circle. The harmonic measures » and v are subharmomc in |z | <1,
continuous on |z| <1, equal to 1 on |z| =1, and equal to 0 at pomts of |z | <l outside D
and D*, respectively. The argument in the proof of Proposition 5 shows that v* is harmonic

in D* .= {z€ D*: Tm z>0}. Thus - |

Q(z) = u*(z) —v*(2) —£0
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is subharmonic in D% and continuous on the closed upper half disk, except at 0. Since
u*(e®) =v*(e') =20 (0<0<nm),

we have @ <0 on (8D%) N (|z] =1). A repetition of the argument used in the proof of Theo-
rem 5 now shows that @ <0, hence u* <v*, throughout the upper half disk, and thus the
convex integral means of w are dominated by those of ».

Next, we continue to assume that f is bounded away from |z| =1, but drop the as-
sumption about boundary regularity. (Of course, every point of |z] =1 is still regular).
Let {D,} be an exhaustion of D by domains which satisfy the hypotheses of the case al-
ready proved. Then, letting u, and v, be the harmonic measures of [z| =1 with respect
to D, and D3, it follows by a routine argument that w, 7« and v,/ v in D. The convex
integral means of each u, are dominated by those of v,, hence the same is true for « and v.

Finally, we consider the general case in which the inner boundary # may have limit
points on |z| =1. For 0< R<1let Dp=D U (R<|z| <1) and let u, and v; be the harmonic
measvyur‘es‘ of |z| =1 with respect to Dy and D%. The convex integral means of uy are do-

minated )by those vz, so, to finish the proof, it will suffice to show that
up(z) N u(z), va(2) \v(z) (€D, R—1).

The family of functions uj is clearly decreasing as R increases. Thus the u, converge
to a function u, which is harmonic in D. Since u;>w%, we have u, >u in D.

Let % be an upper function for the problem of determining ». Thus % is superharmonic
and bounded below in D, and, for each z,€«, z, €S

liminfh(z)>1, liminfh(z)>0.

2520 221

The function & —u, is superharmonic in D. Since 0<u, <1, we have, for z,€x,

lim inf (h(z) — u,(2)) = 0. (60)

Suppose 2, is a point of § which is regular for the Dirichlet problem in D. Regularity is a
local prdperty, 80 2, is also regular for the Dirichlet problem is Dy, as soon as B> |2o]-
Thus, for such R, uz(z)—>0 as 2>z, and hence u,(z) >0 as z->2,. Thus (60) holds for regular
2o€B. The set of irregular points is a countable union of compact sets of capacity zero,
and hence is a set of inner harmonic measure zero. We have shown that h(z) —u(z) has
non-neéative boundary values, except perhaps on such a set. By the extended minimum
principle, h—u, >0 in D. Since u is the lower envelope of the set of all upper functions, it
follows that u>u,, and hence u=1u,, in D. This proves that uz\u. The proof that vz v

is the same.
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