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Introduction

In the paper [10], L. Nachbin discovered and exploited the basic connection that
exists between intersection properties of balls and extension properties of linear operators.
This connection has been most strikingly revealed in the paper [8] by J. Lindenstrauss.
For the aim of the present work, we want to exhibit the following result of that paper: We
say with Lindenstrauss that a normed space 4 has the n, k intersection property if for
every collection of n balls in 4 such that any k& of them have a non void intersection,
there is a point common to all the = balls. If A has the =, k intersection property for any
n=>k, then 4 has the finite k intersection property. It is then proved in [8, Theorem 6.1 and
Theorem 5.5] that for a real Banach space A, the following three properties are
equivalent.

(i) The dual A* of 4 is isometric to an L, space.

(ii) The space A has the 4,2 intersection property.

(iii) For any 3-dimensional normed space ¥ and any 4-dimensional normed space
X> Y such that the unit ball of X is the convex hull of the unit ball in ¥ and a finite
number of additional points, there exists for every linear opeator T: ¥Y—~A a norm
preserving extension 7: X—A4.

We remark that it is essential in this characterization that the space 4 is a real Banach
space. Already the space C of all comples numbers shows that (ii) can not be valid in the
complex case.

The starting point of the present work was the observation that it suffices in
property (iii) to take just one space Y and just one space X, namely X =I{(R) and
Y ={(x,) €ElR): = z;=0}. In fact, what we observed was that a normed space 4 has
the n, 2 intersection property if and only if every linear operator T from the space

H*(R)= {(x,) €IMR): éx, = 0}
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into 4 admits a norm preserving extension 7': I}(R)->4 (see Corollary 1.11). With this
observation at hand, we define for a given integer »>1 that a complex Banach space 4

is an E(n) space (where E stands for extension) if every linear operator 7' from the space
H" (€)= {(zj)elf(0>:glz,=0}

into A admits a norm preserving extension 7: I7(C)—>A4. And if every T: H™C)->4
admits for any £>0 an extension 7" I}(C)—~>4 such that ||T]| <||T'||(1 +e), then we call 4
an almost E(n) space. Finally, if 4 is an E(n) space for any n =1, then we say that 4 is an
E space, and similarly we define an almost E space. We can then formulate our main
result (see Theorem 4.9) as follows: If 4 is an almost E(7) space, then the dual A* of 4 is
isometric to an L, space. And conversely, if the dual of 4 is isometric to an L, space,
then 4 is an E space. For the proof of this result, the following intersection property of
balls has been very usefull: A finite family {Bl(a;, r,)} of balls (we denote with B(a,r)
the closed ball with center a and radius r) has the weak intersection property if for any
linear functional ¢ with norm <1, the family {B(g(a,),r,)} of balls in € (or in R)
has a non empty intersection. We prove (Theorem 4.9) that the E spaces are just the
complex Banach spaces where any finite family of balls with the weak intersection
property has a non empty intersection. ‘

 Every finite family of balls such that any three of them have a non empty
intersection will have the weak intersection property. This is a consequence of the
Helly theorem on intersection of convex sets, but it also follows from the description of
the extreme points of the unit ball of H*(C) given in Theorem 3.6. The converse is not
valid. In fact, we get the most important example of families with the weak intersection
property as follows: Let 4, X and ¥ be normed spaces with Y < X, let x€ X\ ¥ and let
T: Y—~A be a linear operator with norm <1. Then any finite subfamily of the family
{B(Ty, |x~y]|): y€ Y} has the weak intersection property (sce Lemma 2.1), whereas it
can happen (We give an exampie in section 5) that three balls from this family have an
empty intersection. These facts explain on the one hand why we are able to get extensions
of compact operators into an E space (Theorem 2.3). On the other hand, they clearify
why such extensions have not been established for spaces that have the finite 3 inter-
section property. We show (Corollary 4.7) that every E space has the finite 3 intersection
prbpérty. It is an unsolved problem whether the converse is valid.

The present work leans heavily on the ‘paper [8]. Tt is a pleasure at this point to

acknowledge the great influence of that fundamental memoir on the paper at hand.
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Notations and preliminaries
We will use the following notations.
N: the set of all integers n=>1.
R: the set of all real numbers.
C: the set of all complex numbers.
K: either C or R.
{ey, ..., €,}: the standard base in K"
2 = (z;): the generic element of K”.

H" = H"(K) = {z€K™ z 2, =0}

We let r=(r;)ER" denote a multi-radius which means that r,>0, j=1, ..., n. On K" we

introduce a norm | ||, defined by
n
el = 2 1217,
=1

and we let (K", || ||,) denote the space K" equipped with the norm || ||,. The notation
(H™, || ||,) has a similar meaning. Observe that if r=(1, ..., 1), then (K", ||||,) is just the
ordinary I1(K) space. We let 4 denote a complex or real normed space, and we denote the
norm in A with ||||. As noted in the introduction, B(a, R) denotes the closed ball in 4
with center ¢ and radius R>0, that is B(a, R)={p€A: ||p—al|<R}. When deemed
necessary, we shall also use the notation By(a, R) for this ball. An operator will always be
a bounded linear operator. We follow [3, p. 94] and say that a Banach space B.is a
D: space if for every normed space Y and every normed space X= Y there exists for
any operator T: Y- B a norm preserving extension 7: X B. We say that a Banach space
is an L, space if it is an L;(u) space for some measure . It was shown by A. Grothendieck
[6] that if 4 is a real Banach space, then the dual A* of A4 is isometric to an L, space
if and only if the bidual A4** of 4 is a P, space. It follows from results of S. Sakai [11]

that this theorem is also valid in the case of eompletha,na,ch spaces.

§ 1. Extension of cperators defined on (H", || ||.)

In the first pa,rt of the present section we show how extension propertles of a linear
operator T: H” ” ]],)»A can be expressed by intersection propertles of n balls in A.
We use this result to give a quantitative criterion for n balls in A to have the weak
intersection property (as defined in the introduction). In particular, we get a quantitative
condition for # balls in C to have a non empty intersection. We finish this section with
Proposition 1.13, which states that if 4 is an almost E(n) space, then any family of

n balls in A with the weak intersection property has almost a non empty intersection.
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LEMMA 1.1. Let A be a normed space over K, let n=>1 be an integer and let r=(r,)

be & mullti-radius. Let £¢=0 and let a,, ..., a,€A. The linear operator
T:(H X), | . "’Ai(zz)"j;ziai
admits an extension T: (K*, ||||,)—>4 satisfying
17N <[TH(+e), (1.1)

if and only if the family {B(a,, ||T||(1+¢)r))}i-1 has a non empty intersection.

Proof. Assume that a €A satisfies
la—aj| <|T|(Q+e)r;; j=1, .., n (1.2)

Let the operator 7' be defined by
T: (B~ ||l ~>4:(=z)~ j;z,(a,~a).

Then 7' is an extension of 7', and it follows from (1.2) that if z€K", then

12:0< 3 l5lla,~all < |71+ &) ).

Hence (1.1) is valid. Assume conversely that 7' admits an extension 7: (K", | ||,)~4

satisfying (1.1). Put a=a, — T¢;, Then

T(z)= iz,(a,—-a); z€K™.
1

=1

(1.3)

For any k=1, ..., n we have ||r; ¢/, =1. It therefore follows from (1.1) and (1.3) that
Ireac—a)| = | Tt el <ITU <N T} (1 +2).
This means that a belongs to the intersection of the family {B(a;, | T'|| (1 +&)7,)}]-1.
ProrosIiTION 1.2. Let A be a normed space over K and let £>0. Let n€N and assume
that r=(r;)€R"™ is a multi-radius. Then the following two properties are equivalent.
(i) Buery linear operator T: (H™(K), || [l,)~A admits an eatension T: (K", |||,)—~>A4

such that | T|| <||T||(X +e).
(ii) If a, ..., a, €A satisfy the condition
z€ H"(K), ™

n
< 2yl
51

n
2 2,
=1
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then ﬁB(a,, (1+e)r)+2. (L

Proof. (i) = (ii). Assume that a,, ..., @, €A satisfy the (*)-condition. This means that the
linear operator

T (HYK), |l ~ 4: () *’]_; 207

has a norm ||7|| <1. It therefore follows from Lemma 1.1 that (1.4) is satisfied.

(ii) = (i). Let the linear operator T: (H™K), ||||,)~>4 be given. We can and shall
assume that T'+0. Put a;=T(e;—¢,); =1, .., n and let 2z€ H*(K). From the equation
z=X7 1 z,e;—e) we get Tz=X7_,z;a;, Hence in order to prove (i), it is, by Lemma 1.1.
sufficient to prove that the family {Bl(a,, |7 || (1 +¢)r;)}}-1 has a non empty intersection.
Let z€ HYK). Then

| 2 01| =hri-s izl < .

This means that the set {||T|~'a;:j=1, ..., n} satisfies the (*)-condition. Hence there
exists an a€4 such that

le—(1T)"e,| <@ +e)rs; j=1,..,b.
It follows that a|| 7| belongs to the intersection of the family {B(a,, I 7N +e)ry) ¥

Comment. If the family {B(a,, r,)};-; has a non empty intersection, then the (*)-
condition in Proposition 1.2 is always fulfilled. In fact, if a€A satisfies |a—a,|| <r,,
=1, ..., n, then we get for any z€ A*(K)

2. 2(a;— a)

n n
2 %0 < 2zl
j=1 -i=1

CoRrROLLARY 1.3. 4 finite family {B(u;,r;)}i-1 of balls in K has a non.empty intersec-
tion if and only if

n n
> 2| < D |z, z€EH"(K). (1.5)
j=1 j=1
First proof. By the Hahn-Banach theorem, the property (i) in Proposition 1.2 is fulfilled
for any n€N and with ¢=0.

Second proof. We think it is of some interest to give a proof independent of the
Hahn-Banach theorem. In fact, for the case K=C, such a proof, combined with the
Helly theorem for an infinite family of compact convex sets, can be used to give a direct
geometric proof of the complex Hahn-Banach theorem (confer section 2). The case
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K=R is easily handled. Indeed, let k, I€{1, ..., n}. Then, if we choose z=¢,—¢, in (1.5),
we get |u,—u,| <r,+r,. Hence any two of the » balls have a non empty intersection.
Since R has the =, 2 intersection property, it follows that the whole family has a non
empty intersection. Let us now assume that KX =0. We have to show that (1.5) implies
that the family {B{(a,,,)}}-, has a non empty intersection. By the Helly theorem (see
e.g. [5]), we can and shall assume that n =3. First we want to verify the following statement:
Let a, b, c €C be given. Assume that c¢ is between a and b in the sense that Arga <Argc<
Arg b and Arg b<m+Arga. Then there exist complex numbers u, v such that u+v=1
and such that
|ua +vb+c| =|ulla| +|v||b] +]c|.
In fact, putting a=Arga, §=Argb, y=Argc, it suffices to choose

=S£1(—ﬂ*ylei('y-a). ,v_Sin (7_ @) M-8

sin (f — ) * 7 gin(B—a)

As above, we get for any k, 1€{l, 2, 3} that |u; —u,|<r,+r,. In particular, the intersec-
tion S=B(u,, r,) N B(us, r,) is non empty. We have to prove that ry >dist (us, S). Let ¢,
and g, be the two points in € which satisfy the equations |u, —gq|=r,, |uy—q| =75 (The
case that no such ¢ exists is trivial). There are two possible cases: (i) For some j€{1, 2},
dist (ug, 8) < |ug—u,| —r,. (ii) For some j€{1, 2}, dist (uy, S)=|uz—g,|. Since |ug—u;| -
7;<ry, the first case is settled. As for the second case, we observe that then ug —¢;is between
¢;—u, and ¢,~u, in the sense defined above. Hence we can find complex numbers z,, 2, such
that 2, +z,=1 and such that

|21(gs = 1) + 200 —ws) tus — )] = 21| {g,— | + 22| | @y —wa| +]us—gy].
Using the definition of ¢,, we get from this equation and from (1.5)
J2o |t |2a| o+ |ug — g5 = |2y uq F2ous —ug| < |2y |1y + |20]rat 1.
Hence dist (ug, 8) =|ug—q,| <7

CoroLLARY 14. 4 family {B(a,,r)}}-1 of n balls in a normed space A has the
weak intersection property (as defined in the introduction) if and only if

n n
Suall< Y |ylr;  2€HM (*)
i=1 j=1 .

Proof. Assume that (*) is satisfied. Let p €A* and assume that ||@||<1. It follows
from (*) that if 2€ H", then ’
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n
< 2zl
j=1 .

lél‘zi?’(af) <[l “21 2,0y

Thus we conclude, by Corollary 1.3, that the family {B(p(a;), r;)};-1 has a non empty
intersection. Assume conversely that the family {B(a,, ;)}}-1 has the weak intersection
property. It then follows from Corollary 1.3 that for any p € A* with ||| <1, and for any

z€H™
1‘]7(2 ziai)
j=1

By the Hahn-Banach theorem, we conclude that (*) is fulfilled.

. n n
=| > 2p@)|< 2 |77
j=1 j=1

Definition 1.5. A family F={B(a;,r;)};e; of balls in A has the almost intersection prop-
erty if for any £>0 the family {B(a,, r;+¢)},; has a non empty intersection. If F has a
non empty intersection, then we say that F has the infersection property.

The almost intersection property is stronger than the weak intersection property.

In fact, we have the following

Lemma 1.6. If a family {B(a,, ;)}j-1 has the almost intersection property, then it has

the weak iniersection property.

Proof. 1t suffices, by Corollary 1.4, to show that the (";)-condition is satisfied. Let
2z€H" and let £¢>0 be given. Choose a€A4 such that

la—af|<r;+elzllit, j=L, . n.

(We can clearly assume that z0). It follows that

n n
2 2(a;—a) <i§1|zi| (ry+ellzlls ) = llell, + e

.
I
-

Since this holds for any £>0, we conclude that the (*)-condition is fulfilled.

For a complex Banach space A4 we defined in the introduction what it means that
A is an E(n) space or an almost E(n) space. In the case of a real Banach space we shall
adhere to the analogous definitions. We then have the following characterization of an

E(n) space.

ProProsITION 1.7. Let n€N be given. Then a Banach space A is an E(n) space if and
only if every family {B(a;, R)}}-1 of n balls with common radius R has the intersection
property whenever it has the weak intersection property. And A is an almost E(n) space if-
and only if every family {B(a;, R)}}-; of n balls with the weak intersection property has the

almost intersection property.
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Proof. If R=1, this follows immediately from Proposition 1.2 and Corollary 1.4.
And since the family {B(a;, R)} has the weak intersection property if and only if the
tamily {B(a,R-%, 1)} has the same property, the general case follows from the special
case R=1.

We shall now show that if the bidual 4** of a Banach space 4 is a D, space, then 4
is an almost E space. In fact, we shall show that 4 has the following formally stronger

property.

PRroPOSITION 1.8. Let A be a Banach space such that the bidual A** of A is a D, space.
Then every finite family of balls in A with the weak intersection property has the almost inter-
section property.

Proof. Let {B(ay, ;)}}-1 be a family of balls in 4 with the weak intersection property.
It then follows from Corollary 1.4 that the operator

n
T:H" || [)~4:2 "’leiai

has a norm [|T| <1. Since A** is a P, space, T admits a norm preserving extension
T: (K", || ||}~ A4**. Let >0 be given. According to the local reflexivity theorem of
Lindenstrauss and Rosenthal [9, Theorem 3.1], there exists an operator S: range 7' 4 such
that § is the identity on 4 Nrange T and such that ||S|| <1+e. Put 7'=So07. Since range
T< A, it follows that 7' is an extension of 7. Furthermore, [|7|| <||T||(1 +&)=|T|| (1 +¢).
Since ||T|| <1, we conclude from Lemma 1.1 that the family {B(a;, (1-+¢)r;)}}-; has a
non empty intersection.
If K is a convex set, we let Ext K denote the set of all-extreme points of K.

LeMMA 1.9. A family F={B(a,, r;)}}-1 of n balls in the normed space A has the weak
intersection property if and only if

<1l;  2€Ext{z€H":|]2||,<1}. **)

n
2. %0,
i=1

Proof. The family F has, by Corollary 1.4, the weak intersection property if and only

if the operator
T:(H"| [,) ~>4: ) —>121z1a;

has a norm ||7'||<1. Now the number ||| is the maximum of the function z— || 7'(2)||
on the unit ball of (H", ||||,). That unit ball is, however, the closed convex hull of its
extreme points. Hence it follows that ||T|| <1 if and only if the condition (**) is satisfied.



INTERSECTION PROPERTIES OF BALLS 291

CororLrLaRY 1.10. If A is a real normed space, then a family {B(a;, r,)}}-1 of n balls
in A has the weak intersection property if and only if any two of the balls have a non empty

indersection.

Proof. It is well known (confer section 3) that the set of extreme points of the unit
ball of (H™R), ||||,) consists of all points of the form (r,+r,)~1(e;—e,), where k! and
where k,1€{1, ..., n}. Hence the condition (**) of Lemma 1.9 means that ||a, —a,|| <r.+r,
whenever k=l and k,1€{], ..., n}. But this is just the condition that any two of the n

balls have a non empty intersection.

Comment. Another (and even simpler) proof of Corollary 1.10 proceeds as follows:
Since R bhas the finite 2 intersection property, the family {B(p(a;), r,)}}-1 has for a given
@€A* a non empty intersection if and only if -

|pla—a)| = |pla) —pla,) | <rp+r; kB 1E{L, ..., n}.
It follows from the Hahn-Banach theorem, that {B(a;,r;)} has the weak intersection
property if and only if ||a,—a,)| <r,+7, whenever k, 1€{l, ..., n}.

CorOLLARY 1.11. Let n€N be given and let A be a real Banach space. Then a is an
E(n) space if and only if A has the.n, 2 infersection property.

Proof. It follows from Proposition 1.7 and Corollary 1.10 that 4 is an E(n) space if and
only if every family {B(a,, R)}\-, of n balls in 4 with common radius R has a non empty
intersection whenever any two of the balls have a non empty intersection. This property
is what Lindenstrauss has defined as the restricted n, 2 infersection property, and he has
shown [8, Theorem 4.3] that this property is equivalent with the n, 2 intersection property.

The complex analogue of the theorem of Lindenstrauss just referred to would be a
theorem stating that in a complex E(n) space every family of n balls with the weak inter-
section property has the intersection property. The next lemma is the first step toward
a result of this kind.

LeMMaA 1.12. Let A be a complex Banach space and let a,, ...,a,€A. Let r=(r;,) ER"
be a multi-radius and let ¢>0. Assume that

0 B(a,, r,+ &)= D. (1.6)

i=1

Let R be a number such that R>max {r;: j=1, ..., n}. Then there exist n elements by, ..., b,
in the unit ball of 4 such that

‘ ﬁB(aj+(R—rj)b,,R+§)=®. (1.7)
j=1
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Remark. If we diseard the ¢/2-term in (1.7), then the lemma above is contained (in
the case of real Banach spaces) in [8, Proof of Theorem 4.3]. As remarked in that paper,
the basic idea of the proof is due to O. Hanner [7]. The proof we are going to give is just

a modification of that given in [8].

Proof. We shall construct the elements by, ..., b, inductively. Let j€{0,1, ..., n—1},
and let us assume that we have constructed elements b,, ..., b; in the unit ball of 4 such
that

( N B(ak,rk+s)) n ﬁB(ak+(R—rk)bk,R+-;-)=®. (1.8)
k=1

k=jt+1

(This means, by convention, that if =0, then (1.8) is the same as the condition (1.6),
and if j=n, then (1.8) is the same as the equation (1.7).) Starting from (1.8) we shall
construct an element b,,, in the unit ball of 4 such that (1.8) is valid with j+1 instead
of 5. We define

K,=(kﬁ B(ak+(R—rk) bk,R+§)) NN Blayrete) (1.9)
=1

k=i+2

Thus (1.8) means that K; and B(a,,,, 7,,; +€) are disjoint. By the separation theorem,
there exists a continuous linear functional f on 4 with Re f+0 and such that

s= sup {Re f(z): € B(a,+y, 7541 + €)} < inf {Re f(z): 2 €K }. (1.10)

Let 8 be the supremum of Re f on the unit ball of 4. Then 8>0, and for any ball B(a, r,)
in A we have the equation

roS+Re f (@) = sup {Re f (z): z€B(a, r,)}. (1.11)

In particular, the equation '
(r;yte)S=s—Re f (a;,,) (1.12)

is valid. Let 6>0 be a number to be fixed later. Choose b€ B(0, 1) such that
Re f(—b) = 8-, : (1.13)

and put y;,,=a,,,+(B—r,,)b. Let x€ B(y,,,, B+¢/2). By the definition of y;,; and by
(1.11) and (1.13), we get (R+¢/2)S=Re f(x—y;,1)>Re f (x—a;.4) +(BR—rp,)(S—0).
It follows from these inequalities and from (1.12) that

Re f(z)< (R + g) S+Re f(@:1)+ (R—1,1) (6—05)

= (et 8)_1((7'j+1+ ’;) s+ ; Re f(a/ﬂ)) +O(R = 1514)- (1.14)
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Since it follows from (1.12) that s>Re f{a,,,), we can choose é so small that the right
hand side of (1.14) is less than s. With this choise of 6 we put b,,, =b. It then follows from
(1.10) and (1.14) that

£
B (a,-+1 + (B —7541) byiq, B+ 5) NK;=0,
and this is exactly (1.8) with j+1 instead of j.

ProrosiTion 1.13. Let n€N, let A be a complex Banach space and assume that A is an
almost E(n) space. Then any family of n balls tn A with the weak intersection property has the
almost intersection property.

Proof. Let {B(a,,r,)}j-1 be a family of n balls in A4 with the weak intersection
property. Assume that there exists an ¢>0 such that

n
N Bla;, r,+¢e)=0. (1.15)
j=1

Put R=1-+max {r;:j=1, ..., n}, and choose, by Lemma 1.12, elements b, ..., b, in the

unit ball of 4 such that
n
nB(a,-+(R~r,-)bj,R+§)=®. o (L16)
i=1

We now show that the family {B(a;+ (R —r,)b;, R)}}-, has the weak intersection property.
In fact, let z€ H*(C). Then, by Corollary 1.4,

gl z;(a;+ (R—7,)by) j;z} a,||+

=1

<

i 2 (R— rj)b,“

n n n
< 2lgln+ 21zl (R—r)= 7 |2|R.
=1 751 i=1

This proves, by Corollary 1.4, our assertion, It follows from Proposition 1.7 that (1.16)

can not be valid. This contradiction shows that (1.15) can not be true.

§ 2. Extension of compact operators

From now on, every normed space will be a complex normed space.

We have defined an almost E space as a Banach space 4 with the property that if
n€N, then every operator T: (H" ||||,)>4 admits for any ¢>0 an extension 7:I}—>4
such that ||T||<(1+¢)||T||. Since H™ has codimension 1 in I, we say that 7' is an
immediate extension of 7'. In the present section we shall show that this immediate
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extension property remains valid whenever 7' is a compact operator from an arbitrary
Banach space into an almost E space. From this result, together with a theorem of
J. Lindenstrauss, we get our first main result, namely that the bidual of an almost &
space is a ], space.

Lemma 2.1. Let A, X, Y be normed spaces with Y<X. Let T: Y >4 be an operator,
let x€XN\Y and let y,, ..., Yy, €Y. Then the family

{B(Ty,, | T\ Iz —y,l): §=1, . m}
has the weak intersection property.

Proof. Let z€ H". Then

S utu|=|r(350)|<1m| 222

< 2 51171 = - wl-

Hence the desired conclusion follows from Corollary 1.4.

We shall say that a family F of balls in 4 has the finite almost intersection property
if every finite subfamily of F has the almost intersection property. Similarly we define the
finite intersection property. It was proved in {8, Theorem 4.5] that if 4 is a real Banach
space with the finite 2 intersection property, and if F is a family of balls in 4 with the
finite intersection property, then F has the intersection property provided the centre set
of F is relatively compact. In the next lemma we prove that if we are given such a family
F in an arbitrary normed space 4, then F will always have the almost intersection
property. We prove this lemma with the same “modification of radii’” technique as was
used in [8] and in [2].

LemMA 2.2. Let A be a normed spwoe and let F={B(a;, 1;)},e; be a family of balls in A
such that F has the finite almost intersection property. Assume that the centre set {a,: j€J} of
F is relatively compact. Then F has the almost intersection property.

Proof. Let F be a finite, non empty subset of J and let £>0. Then, by assumption,

the set
I .= NBa,r;+¢)

jeF
is non empty. For any a€A4, we put
rr. (@) =inf {||z—al|: z€I¢ }.

Then
‘ [77.@) ~77.(b)] <|la—b]; a,bEA 2.1)
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and
B(a, rp Jfa)+0)N Iz +Q; a€d; 6>0. (2.2)
Let a€A. We then observe that if d<e, then rp 5(a) > 75 (a). Since for any x€I,, and

any jEF
r7,6(0) < ||z —al <r;+et|a;—al,

we conclude that the limit

rp(a)=1im rp . (a) - (2.3)
&—>0
exists. Hence, by (2.1),
|re(@) ~7p(0)| <||la—b]|; a,bEA. (2.4)
Define
r5(a) = sup {rp(a): F a finite subset of J}. (2.5)

Let j€J and let £>0. Then, by assumption, B(a,, r,+¢) N Ip .+ @, and therefore
17 o(a;) <r;+e. Hence
re(a;) <r; (2.6)

and so

rs(a;) <1 (2.7)
We now add the ball B(a,, r;(a;)) to the family F, and denote this new family F(j).
We then claim that F(j) has the finite almost intersection property. Indeed, let F be a
finite non empty subset of J, and let §>0. Choose £>0 such that £<d and such that
7. o(a;) <rp(a;) +(8/2). It then follows from (2.2) that

@+B (% Trela) + g) 0 Ip.< Bla;, r5(a)+6) N Ip s,

and this proves our claim. Since the set {a;: j€J} is relatively compact, we can choose a
sequence {j,}i-1<J such that

{a,:j€J} ={a,,: kEN} (2.8)

Let R,=r5(a;) and let F,= F(j;). Then F, has the finite almost intersection property,

and it follows from (2.7) that
R, <r;,
Inductively, we define for £>2
Rk= r:!k_l(a’lk)
and

3}; = 3k._1U {B(ajk, Rk)}‘
Then every F, has the finite almost intersection property, and from (2.7) we conclude that

R.<r, k=12, .. (2.9)
Finally, we put

Jo=FU{B(a,, R,): kEN}.
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We then note that F,, has the finite almost intersection property. Let ¢>0 be given. By
compactness, it follows from (2.8) that there exists a natural number n(e) such that

n(e) V ‘
{a,:j€J}c U B (a,k, f) . (2.10)
k=1 4/

Since F,, has the finite almost intersection property, we can find an element

n(e)

aenB(a,k,R,,+E). @11
k=1 4 ro ’

Let j€J be given. Choose, by (2.10), k<n(e) such that ||a;—a, [| <e/4. We then get from
(2.11) - ' /
£

5 (2.12)

lla=as| <lla—ay |l +llas, —a,ll < Bt

By the definition of R, we can find a finite subset ¥ of the index set of the family F,_, such
that Ry <rs(a,)+(¢/4). It follows from (2.12), (2.4) and (2.6) that

lle —all < 7s(a;) +3e < |rela;) —rela))| +re(ay) + fe <||la, —a,l| +r,+Ee.
However, by the choice of j;, ||a,, —a,|| <¢/4. We therefore get
||a—-a,”<r,+e4 j€d. y
TaEOREM 2.3. The bidual A** of an almost E space 4 is a P, space.

Proof. 1t is sufficient, ‘by [8, Theorem 2.1, proof of (4)=(1)] (this proof is equally
valid in a complex Banach space), to prove that 4 has the following property: For every
pair of Banach spaces X, Y such that Y<X .a,nd dim X/ Y =1, for every éompact
operator T: ¥ —~A and for any £>0 there exists an extension T: X—>4 of T such that
||| <@ +e)||T||. Let then X, ¥, T and & be given as above. We can and shall assume
that ||7] =1, and that ¢<1. Choose x€X\ Y such that |z]]=1. The operator T
admits, by a basic lemma of Nachbin (see [8, Lemma 5.2]), an extension T: X4

satisfying ||7|| <1 +¢ if and only if
nyB(Ty, lz—yl| (X +e))+2. (2.13)
ye

The family {B(Ty, |« —y||)},cy has, by Lemma 2.1 and Proposition 1.13, the finite almost
intersection property. Let M >2 be given. Since the set {T'y: ||y|| <M} is relatively compact,
the family {B(Ty, ||z—y|): |ly]| <M} has, by Lemma 2.2, the almost intersection
property. Let R=inf {||z—y||: y€Y}. Then R>0. Hence we can find an a, €4 such that

llase— Ty|| < ||z —y|| + Be < |jx—y||(1 +¢); y€By(0, M). (2.14)
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In particular, if we choose y=0, then ||ayl| <2. Let y€Y be such that |jy| > M. Then
lz—yl| =llgll —1 and |lay—Ty|| <2+||y|. Hence

e =yl = lase— Tyll < (ol =D (fly|l +2) < (M —1)2(M +2). (2.15)

Therefore, if we choose M so large that (M —1)-1(M +2)<1+e, then it follows from
(2.14) and (2.15) that (2.13) is valid.

Remark. The final part of the proof above is almost the same as in [8, Theorem 5.4,
proof of (a)= (b)].

§ 3. The extreme points of the unit ball of (H"(C), || ||-)

The need for finding the extreme points of the unit ball in (H™(C ) [[||-) stems from
Lemma 1.9. In clear contrast to the real case, we show in Theorem 3.6 that the set of all
extreme points of the unit ball in (H3C), ||||.) is “almost” the surface of that ball. In
general, roughly said, a pomt on the surface of the unit ball in (H™C), ||{|,) is an
extreme point if and only if at most three of its coordinates are different from zero. We
finish this section with some. applications to .E(n) spaces.

Fix n€N. For a given multi-radius r=(r;)€ER", we define the followmg hyperplane
in C™

H,—H— {zEC" P _o}. (3.1)
Furthermore, we let r~! denote the multi-radius (7%, ..., 7;!). The following lemma has

an obvious proof.

Lemwma 3.1. The linear map
e (Ha, || ) = E L) @) > 57 2)
ts an isometry onto H™.

Hence, in order to find the extreme points of the unit ball in (H", || ||,), it suffices

to find the extreme points of the unit ball in (H7, || 1)

LeMMA 3.2. Let n>2 and assume that z€(C", || ||;) has @ norm ||z||;=1. Assume that
2=§(p+q), where p, €C" satisfy ||p||s, ||g]|s<1. Then there exist n real numbers t,, ..., t,€
[—1, +1] such that

p=(1+tj)zi}_ j=1,...,n. (3.2)

g=(1-t)z)

Proof. Since 1=||z||; <}(||p]ls +|la]l) <1, we must have
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lgll, = ll2}l =1. (3.3)
Put
;= P;—2;; j=1, weey Mo (3'4)
Since 2z=p+q, we get
gi=z—ay; j=1,..,n (3.5)

Hence, by (3.3),
n n n n n
Slatol+ 3lg—al=2=32|z|< |+ al+ 2 |z~ a.
i=1 j=1 j=1 j=1 i=1

We therefore conclude that
|2+ o5} + |25~ 0y =2[2]; §=1,..., 7.

But these equations tell us that every «, is located on the degenerated ellipse with foci
in z; and —z;. Hence there exist ¢, ..., {, €[ —1, 1] such that «;=t;z; for any j=1, ..., n.
When we combine this result with (3.4) and (3.5), we get (3.2).

The next lemma is crucial for the development in the present section.

LeMma 3.3. Let n>>3 and let r=(r;)ER" be a multi-radius. For any z€C" and any
j=1, ..., n, we define
Ry(z) =(|z], r; Re z;, ; Im 2;) ER3,
and we put
J(z) ={jEN: j<n and z,+0}.
Let z€H} and assume that |z||,=1. Then z is an extreme point of the wnit ball of
(H?, || l2) o and only if the set {R,(z): j€J(2)} is linearly independent in R3.

Proof. Assume that z is not an extreme point. Then there exist p, ¢ € H? with p=+q
and with ||p|l,;=|lq/;=1 and such that z=4(p+g¢). By Lemma 3.2, there exist
ty, ..., 1, €[ —1, 1] such that

=(1+¢

s ’)z’}; j=1,...,n. (3.6)
g; = (1l —t)z

Hence

1 =;§1(1 +t,)|z,|=1+]§1t,|z,|.
It follows that
n
0=72 t;]z]= 3 tlz]. (3.7)
i=1 jel(2)

Furthermore, since z, p € H7, it follows from (3.6) that

n n n
0= rp,= D rz+ 2 ritz,= > 412
i=1 j=1 j=1 jeJ(®
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Taking real parts and imaginary parts in this equation, we get

0= > t,;r;Rez,= > 4r,Imz;. (3.8)

jel(@) jeJ(@
Since p +¢, we conclude from (3.6) that at least one #,4=0. Thus, by (3.7) and (3.8), the set
{R;(z): j€J(2)} is linearly dependent in R3. Assume conversely that this set is linearly

dependent in R3, say
2, tiRy(2)=0; (3.9)

jel@
where at least one #;40. By dividing this equation with max {[¢;|}, we can and shall
assume that each ¢,€[ —1, 1]. Put £;=0 if j€{1, ..., n}\J(2), and define p=((1 +#,)2;)}-1
and ¢=((1—¢,)2;)}~1. Then 2=}(p+gq), and since it follows from (3.9) that Z}_,¢,7,2,=0,
we conclude that p, g€ H}. Furthermore, since, by (3.9), X7-1¢;]2,] =0, we get

n

loll= 2 @ +8) 2] =l = 1= lgll-

Finally, since at least one t;==0, we must have p +q. Hence z can not be an extreme point
of the unit ball in (H7, |||,

COROLLARY 3.4. If z€H} is an extreme point of the unit ball in (H?, ||||.), then the se
J(2)={j: 2;%0} can at most contain three elements.

Proof. Obvious.

LemMA 3.5. Let r=(r,)€ER3 be a multi-radius and let 2€H3. Let R,(z), =1,2,3 be
defined as in Lemma 3.3. Then the set {R;(2): j=1,2, 3} is linearly independent in R? f2
and only if z, and z, are linearly independent in € (when we consider € as a linear space over R).
And if 112y + 12, =0 and |2,] +|2,| >0, then R,y(z) and Ry(z) are always linearly independent
in R3.

Proof. Since 1,2, +7,2, +7323=0, we get
Ry(z) = (r3 |12, 1a2,|, —Re (1125 Hra25), —Im (1,2, +752)).

An easy calculation then shows that if z, and 2, are linearly independent, then so are
Ry(z), Ry(2) and Ry(z). And an even easier calculation shows that if r,2; +7,2,=0 and
|21+ |22| >0, then R,(z) and Ryz) are linearly independent. Conversely, if z; and z,
are linearly dependent, then we can assume that there exists a real number s such that
25=82;. Since Ry(2)=0 if r; +7,5=0, we can and shall assume that r; +7ys=0.

If r, +7y8>0, put
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ty= —re8—rg|s|, ty=rytry lg=ry(ry+ry8)(ras—ry|s]).
If r,+7,6<0 and r, =7, put
ty=rg|8| —res, ty=ry—r5, 3 =ry(r,+1r8)" (ry]8] —159).
And if r,+7,8<0 and r,=r,, put
L=1, t,=0, t3=rg{r,+rys)L
In any of these three cases, we get
1, R, (2) +ty Ry(2) +15 Ry(2) = 0.

TaEOREM 3.6. Let n>3 and let r=(r;) ER" be a multi-radius. Then the set of all extreme
points of the unit ball in (H7, ||||,) consists exactly of all points z of the form

2= (Tl —Tely) TU(Tne;—71€y), (3.10)

where k, 1, m€{l, ..., n} are mutually different, and where the complex numbers w, and w,

satisfy the equation
’m(luk'+|uz|)+|"kuk+’zuzl =1, (3.11)

and where furthermore w, and wu, either are linearly independent or r,u, +r,u;=0.

Proof. Let z€H} be an extreme point of the unit ball in (H?, || [). Then ||z||1=1,
and there exist, by Corollary 3.4, three different elements k, I, m€{l, 2, ..., n} such that
2;=0 whenever j is different from £, ! and m. We can and shall assume that 2, and 2, are

different from zero. Then z,= —r,(r,2,+7,2;) and hence
= ~1 = p-1 - ~1 -
2=zt 20— 10 (N2 112 € = T 2Ty — Tilm) + 1 2P €~ 718p)-

If we let u,=r,'z, and u,=r;'2, the equation above gives us (3.10), and (3.11) follows

from the equations
1=|z| + 2] + |2n] = rm(u]| + |@]) + [rew+ ]

Assume that 7w, +ru,40. This means that z,,+0, and hence J(z) ={j: 2,0} ={k, |, m)}.
It follows from Lemma 3.3 that R,(z), B,(z) and R,(z) are linearly independent, and we
therefore conclude, by Lemma 3.5, that z, and z, are linearly independent. Hence u, and
u; are linearly independent.

Assume conversely that z is given by (3.10), and that the requirements following
(3.10) are satisfied. Then z€H?, and it follows from (3.11) that ||z|l,=1. Therefore, in
order to prove that z is an extreme point of the unit ball in (H7, |||l,), we have, by
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Lemma 3.3, to prove that the set {R;(z):2€J(z)} is linearly independent in R3. Now
{k, }=J(z)<={k,1, m}, and we note that the requirements posed on u, and u, imply that
2, and z; either are linearly independent or r,z, +r,2,=0. Since this equation is satisfied
if and only if J(z)={k, I}, we get, by Lemma 3.5, that {R,(z): j€J(z)} is linearly inde-
pendent in R3.

CoroLLARY 3.7. A finite family of at least three balls in a normed space A has the
weak intersection property if and only if any subfamily of three balls has the weak intersection
property.

Proof. We have only to prove the if-part. Assume therefore that {B(a,, r;)}}-, is a
family of = balls in A such that any subfamily of three balls has the weak intersection
property. By Lemma 1.9 we have to prove that ||Z z;a,| <1 whenever z is an extreme
point of the unit ball in (H", || ||,). But if z is such a point, then it follows from Lemma
3.1 and from Theorem 3.6 that the set J(z) ={j: z;40} can contain at most three elements.
By assumption, we therefore get

1% 2 a,f| < 2]l =1.

Comment. The Corollary 3.7 can also be given a simple proof with help of the Helly
theorem on intersection of convex sets. On the other hand, if we start with Corollary 3.7
and choose 4 =C, then we get, by Corollary 1.3, a proof of the Helly theorem (but only
for closed balls in €). We find this connection between Theorem 3.6 and the Helly

theorem to be of some interest.

CoROLLARY 3.8. Let >3 and let A be a Banach space. Then A is an E(n) space if
and_only if for any a,, ..., a,€A there exist a€A, k, I, m€{l, ..., n} and u, vEC such that

and JultJol +]uto] =1, } (3.12)
max {[la~ o[} = llu(@. —a.) +v(a, ). '
If (3.12) holds, then either
max {Jla— |} =max {} fla, ~ o]} - (3.13)
or o
max {lla - ali} =lla — all = la - aiff = lla — an. (3.14)

Proof. By Proposition 1.7, the space A4 is an E(n)-space if and only if for any ¢, ..., a,€4

there exists a €4 such that
]

max {[la - a ||} < |7 = max {| 27 0| : 2€H" and [zl <1}.

20— 742909 Acta Mathematica 132. Imprimé le 24 Juin 1974
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But the maximum on the right hand side of this inequality is attained in an extreme
point of othe unit ball in (H", || ||;) (confer the proof of Lemma 1.9). Hence it follows from
Theorem 3.6 that there exist indices k, I, m and complex numbers w,» with
|u] +|v| +|u+v] =1 such that
7| = ||wlon —am) + (@, —an)-
Now we observe that if €A and if z€ H*, then
2205l = 122 (@ — apll < [lzllx ms’zx {lla —a)]|}.

Hence we always have ‘
I7)| < max {la—ayfl}; a€4. (3.15)
i

Thus we have proved the first statement of the corollary. As for the second statement,
we note that if u, v€C, then '
st — am) + 0y = )] < || @ =a] + [o] lay=al| + |u-+0] o —a]
<(|u|+|v| + |utv|) max {|la—a,|: j=F, I, m}.
Hence it follows from (3.12) that if w-v-(x+v)+0, then (3.14) must be valid. And if
u - v(u+v) =0, then it follows easily from (3.12) and (3.15) that (3.13) is true.

Comment. The equations (3.13) and (3.14) correspond to classical - properties of
triangles in the complex plane.

§ 4. The characterizations of the E spaces

In the present section we show that a Banach space is an E space if and only if its
dual is isometric to an L,-space. The main step in order to prove this equivalence is the
proof of Lemma 4.3. This lemma says (though we have not stated it in this way) that an
almost E(n+1) space is an E(n) space. Once we have established this result, the stated
characterization follows from the results of section 1 and section 2. ;

Let n>2 and let F={B(a;, r;)}}-1 be a family of » balls in 4 with the weak inter-
section property. If a €4, then there exists B >0 such that the family JU {B(a, R)} has
the weak intersection property. In fact, if z€C", then it follows from the identity

Sya=2E—n"2n)a+ 0T C) S
H i k k i
and from Corollary 1.4 that

”1221“1 - (;z,) aff < ; 2] 7, + ljzzzl (llall + n“(er,-}- "?:“1"»
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Hence R=|lalj+ 2 Cr+ 150l
7 7

will have the stated property.

We define : S
Ry(a) =inf {R>0: JU {B(a, R)} has the w.i.p.} (4.1)

(here w.i.p. stands for weak infersection property). We note that if 4 is a real normed space,

then, by Corollary 1.10,
By (a) = max; {{la —a,|| ~r;}.

In the complex case, the function a—> Ry(a) is much more involved. However, in the next
lemma we can show that it has an important continuity property.

Lemma 4.1. If the family F={Bla;, r,)}}-1 has the weak intersection property, then the

function
R;: A>R:a— R;(a)

has the following continwity property: For any £>0 there exists a §>0 such that if a€A
satisfies

le—a))|<r,+6, j=1,.., %
then R, (a)<e.

Proof. It follows from Corollary 3.7 that for any a€4
R;(a) =max {R,(a): < F and card ¥=2}.

We can therefore, without loss of generality, assume that n=2. Since F has the weak

intersection property, it follows that
lay —as|| <ry +r,. 4.2)
For any a€4 and any complex number u =+ —1 we define
fla, u) =|lay—a+(u+1)yap—ay)|| — |u+ 1] 2 (]u]|ry +ry). (4.3)
We then claim that
Ry(a) = max {0, sup f(a, u)}. (4.4)
uE-1

In fact, by Corollary 1.4, the family FU {B(a, R)} has the weak intersection property if
and only if ’
2100y —a) +z5(as —a)|| — |2} rs — |2a] 72 < 2y +25] B, 2€C2 (4.5)

Therefore, if (4.5) holds and if we choose 2, =4+ —1 and z,=1, then we get

sup f(a, u) <R, (4.6)
wg =1
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and thus

max {O,MS;;u_p1 f(a, w)} < Bs(a).
Assume conversely that R>0 satisfies (4.6). Letting |u| tend to infinity, we get
|la, —al} —r, < R; and this is the inequality (4.5) with z, =1 and z,=0. Since (4.2) implies
that (4.5) is always satisfied when z, +2,=0, we conclude that (4.6) will imply (4.5).
Hence, if sup,. , f(a, u) >0, then 0< R4(a) <sup,., f(a, ), and if sup,.._, f(a, ») <O, then
0<RB;(a)<R for any R>0. This proves (4.4). Therefore, in order to prove the lemma,

‘we have to verify the following statement.

(U) For any &>0 there exists a §>0 such that if a€4 and ||a—a,|| <r;+4§, j=1, 2; then
fla, v) <e for any u€C\ {—1}.
We note that it follows from (4.2) that

fla,w) <|la—ay|| +u+1|2(1—|ul)r,, a€d. 4.7

Now, given ¢>0, there exists a K >0 such that if |u|>K, then

&

-1 - _
[w+1]71(1—]|u))< 1+2r1

Therefore, if a€A satisties ||a, —a|| <r,+ (¢/2) and if |u| > K, then, by (4.7),

£ £
f(a,u)<r1+§+r1(— 1+-271) =e.

It is therefore, by a compactness argument, sufficient to prove (U) locally. At this point
we observe that if a€A4 and if w4 —1, then

fla, w) <|u+1]|Y(|u|(||a,—a] —r1) + ||az—a| —rs). 4.8)
Therefore, if >0 is given and if

le—a)|<r;+d, j=1,2; 4.9)
then for any <+ —1

fla, w) <|u+1]|1(|u] +1)0 <O(L+2|u+1]72). (4.10)

Let u,€C\{—1} and let £ >0 be given. Choose §=0(uy) = (¢/2)|up+ 1| (|%,| +1)~1. We
can then find, by (4.10), a neighbourhood V of %, such that if u€V and if a€4 satisfies
(4.9), then f(a, u) <e. It follows that the proof of (U) will be finished, once we have proved

the following statement.

(U,) For any £>0 there exists a 6>0 and a neighboﬁrhood V of —1 such that if
lla—a|| <r;+6, =1, 2; then f(a, w)<e whenever u€V\ {—1}.
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This statement shall first be proved in the case where (4.2) is a strict inequality,

that is in the case where
oy —a|| <ry+r, (4.11)

By (4.3), we get for any a€4 and any u€C\ {—1}
fla, u)<|lay—~al| + ju+ 1|1 (la, —ay)| — |u|r, — 7). (4.12)

Let t=4}(ry +7,— ||@, —a,)]). Thus (4.11) means that ¢>0. Hence there exists a neighbour-
hood V, of —1 such that

flays —ao)| =7 |u] —re < —¢, uwe€V,. (4.13)
Define V={u€Vy: |u+1]<t(r,+1)}.

Then V is a neigbourhood of —1. Let a€B(a,,r,+1) and let €V {—1}. It then
follows from (4.12), (4.13) and the definition of V that

fla, w) <r,+1—tju+1|-1<0.

Therefore, in the case ||@; —a,|| <7, +r,, we have proved a much stronger statement than

(U,). Hence it remains to prove (U,) in the case where we assume that
|lay —as|l =7y +r,. (4.14)
In this case we notice that the inequality f(a, 4 —1)<g is equivalent with the inequality
lla, —a—uYa; —ay)|| <e+ |u]-(|la; —ay|| +ry(|u—1] —1)). - (4.15)
Thus, if a€4 satisfies (4.9), then it follows from (4.10) that for any u=0
lay —a —uta, —ay)|| <61 +2]|u|-Y) + |u| (o, —as)| + 71 (Ju—1] —1)). (4.16)
Let t€¢0, 1], then we have for any #=+0 and any a€4
o, —a— (u) (0, ~ao)|| < ||lay —a—uYa, —ay)|| + (¢ —1)|u] - [|lay —ay.
Hence, if u satisfies (4.15), then |
lla, —a—(tu) (@, —ay)|| <e + |tu]1]la, —ayf| + || 2ry(ju—1] -1) -

=g+ |tu]1(||la; —ay| +ry(|tu—1] —1))
+ry(fu|tu=1] —1)— [tu]Y(jtu—-1]—1). (417
Therefore, if we can make the last term on the right hand side of (4.17) small, then tu

will satisfy the inequality (4.15), say with 2¢ instead of &, whenever it is satisfied by w.

We shall therefore have need for the following simple
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LEMMA 4.2. For every £,>0 there exists a 6,>0 such that if u is a complex number
with |u| =8, and if t€0, 1], then

[fu]=2(Ju—1] —1) = Jtu| 2 (Jtu—1] —1)| <é,. (4.18)

Let us assume that Lemma 4.2 is proved. Let £>0 be given. Let & =4eri* and
choose &, in accordance with Lemma 4.2. Let 6 =}e(1 +(2/6;))L, and let a € 4 satisfy (4.9).
Choose #€C such that |u|=4;. It then follows from (4.16) that

loy—a—u(a, —ay)|| <&(1 +2677) + [%] 2 (|lag —as)| +ry(Ju—1] —1))
=¢/2+ |w|(||ay —aq| +ry(|w—1] —1)).

This means that u satisfies (4.15) (with ¢/2 instead of ¢). Let t€ (0,1]. We then get
from (4.17) and (4.18)

llay —a — () (@2 — al| < 5 + || (llay — gl + 7y (1w~ 1| - 1)) +5
We have therefore proved the inequality (4.15) for any »€C such that 0<|u| <, and
for any a €4 satisfying (4.9). Thus we have proved the statement (U,).
Proof of Lemma 4.2. We define the function % on [—mn, 7] X [0, 1] by thé formula
R, t) =t(|te®—1] —1)

It is sufficient to prove that A is uniformly continuous, and hence it will suffice to prove
that 2 admits a continuous extension to [—_ﬁ:, 7] x [0, 1]. But we have

V1+¢(t—2cosf) —1 t—2cos b

. T Y1ttt —2cosb) +1°

and it is therefore immediate that » admits a continuous-extension to [z, n] x[0, 1].

h(0,t) =

The next lemma is crucial for the characterization of the E spaces.

Lumma 4.3, Let n€N and let A be a complex Banach space with the property that any
family of n+1 balls in A with the weak intersection property has the almost intersection
property. Then it is true that any family of n balls in. A with the weak intersection property
has the intersection property.

Comment. The hypothesis of this lemma concerns families of »+1 balls, whereas
the conclusion is about a family of only % balls. In the real case, Lindenstrauss [8] was
able to improve a result of Aronszajn and Panitchpakdi [2] and could show that the
conclusion above is valid for a family of n+1 balls. It follows from Proposition 4.8
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that if n>6, then this stronger conclusion is also valid in the complex case. It is
probably true that this holds for any #>1, but we have not been able to prave this.

Proof. Let F={B(a,,r;)}}-1 be a family of » balls in 4 with the weak interséction

property. If we choose ¢ =} in Lemma 4.1, we can find a 8, <} such that if a €4 satisfies
le=a||<r,+6y, i=L,..,n; (4.20)

then Rj;(a)<$}. Since J has the weak intersection property, it follows, by hypothesis,
that there exists an element a"'€A satisfying (4.20). Hence R;(@) < %, and so the
famlly F U {B(aV, 1)} has the weak intersection property. Choosmg £=2"%in Lemma 4.1,
we can find a 8, <272 such that if a€4 satisfies

le—all <rj+8s j=1,...,m; (4.21)

then Ry(a)<2-2. Since FU {B(a™, }} has the weak intersection property, we can, by
hypothesis, find an a®€A4 such that |a!® =a|| <4 and such that a® satisfies (4.21).

Let us assume that we have constructed a®, .., a® €A and positive numbers d;, ..., &,
such that
4] la®P —ad| <271+ 8y0y; t=1,...,k—1

‘ : ‘ (4.22)
(I1) - Ne® —al| <+, §=1,...,n; i=1,...,k. -

Let us also assume that every d; is less than 27! and that J, is chosen such that if

=2 in Lemma, 4.1, then the conclusion of that lemma is valid with § =6;. In particular,
we assume that the fa,mﬂy FU {B(a®, 27%)} has the weak intersection property. Choose
0r+1<27%1 guch that the conclusion of Lemma 4.1 is valid when é=27%"1 and with
0=0,+1. By hypothesis, there exists an a®**V€ 4 such that

"“‘Hl) = “(k‘)" <27 +5k+1
and

||a(k+1)’—aj"<1‘j+6k+l, j=1, ey M
We have therefore, by induction, constructed a sequence {a"};2;—A4 and a sequence
{6} of positive numbers such that §,<27% =1, 2, ..., and such that (4.22) is valid for any
1€N. In particular, we get, by (4.22) (I), that the sequence {a®};2; is a Cauchy-sequence.
Hence a=lim; ., a? exists in 4. From (4.22) (ii) we then get

le~all<r+limé=r; j=1,...,n.
) i~oo

This shows that a belongs torevery member. of the family F.
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COROLLARY 4.4. Assume that A fulfills the hypothests of Lemma 4.3. Then every familiy
of n balls in A with the almost intersection property has the intersection property.

Proof. This follows at once from Lemma 1.6 and Lemma 4.3.

COROLLARY 4.5. Let 4 be a complex Banach space such that the bidual A** of A
is a D, space. Then every finite family of balls in A with the weak intersection property has
the intersection property. In particular, the space 4 is an E space.

Proof. By Proposition 1.8, the hypothesis of Lemma 4.3 is fulfilled for any z€N.

Hence the desired conclusion follows from Lemma 4.3 and Proposition 1.7.

COROLLARY 4.6. Let n€N and assume that the complex Banach space A is an almost
E(n+1) space. Then every family of n balls in A with the weak intersection property has the
intersection property. In particular, the space 4 is an E(n) space.

Proof. By Proposition 1.13, the hypothesis of Lemma 4.3 is fulfilled. Hence the

statement follows from Lemma 4.3 and Proposition 1.7.

CoROLLARY 4.7. Let n>3 and let A be an almost E(n-+1) space. Then A has the
n, 3 indersection property.

Proof. Let F be a family of » balls in 4 such that any three members of F have a
non empty intersection. It then follows from Corollary 3.7 that F has the weak inter-
section property. Hence F has, by Corollary 4.6, the intersection property.

Let £>1 be an integer. We say that a Banach space 4 has the C), property if for any
family {B(a;, r;)}/-1 of k balls in 4 with a non empty intersection there exists for any
£>0 a >0 such that if

k
a € N B(a;, r;+9),
i=1

k
then dist (a, N B(a,, r,)) <e.
j-1

Every Banach space has trivially the C, property. When & >2 we do not know if it is true
that every Banach space has the C, property. However, if 4 is an almost E(k+2) space,
then it is true that 4 has the C, property. In fact, if 4 is an almost E(k+2) space, then
it follows from Corollary 4.6 that a family of k+1 balls in 4 has a non empty
intersection if and only if it has the weak intersection property. Hence, if F={B(a;r;)}}-1

is a family of % balls in 4 with a non empty intersection, then

k
R;(a)=dist (a, N B(a,, r,)) , a€A,
j=1
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where R; is the function defined by (4.1). It therefore follows from Lemma 4.1 that 4
has the C property.

Let n, k€N and assume that n>k. We say that a Banach space 4 (real or complex)
has the almost n, k intersection property if every family of » balls in A4 has the almost inter-
section property whenever any k balls of the family have a non empty intersection.
We now observe that almost exactly the same proof as in (8, proof of Theorem 4.1]

gives us the following

LeMMA 4.7. Let k22 be an integer and let n be an integer such that
n>3(4k—5+V3(k—1)2+1)2+1) (4.23)

Let A be a real or complex Banach space with the C,_, property. If A has the almost n, k
intersection property, then A has the finite k intersection property.

ProrosiTioN 4.8. If A is an almost E(7) space, then A is an E space.

Proof. It follows from Corollary 3.7 and Proposition 1.13 that 4 has the almost 7,3
intersection property. Since 7>4(7+1/33) and since 4 has the C, property, we get from
Lemma, 4.7 that 4 has the finite 3 intersection property. Now let F be a finite family of
balls in 4 with the weak intersection property. We then conclude from Corollary 4.6
that any three members of F have a non empty intersection. Thus F itself has a non empty
intersection.

We summarize the main results of the present paper in the following

THEOREM 4.9. Let A be a complex Banach space. Then the following properties are

equivalent

(i) The dual A* of A is isometric to an L, space.

(i) The bidual A** of A is a P, space.

(iii) 4 és an E space.

(iv) Every finite family of balls in A with the weak intersection property has the inter-
seclion property.

(v) EBvery family of seven balls in A with the weak intersection property has the
tnfersection property.

(vi) 4 is an almost E(7) space.

Proof. We remarked in the preliminaries that the equivalence of (i) and (ii) follows
from a theorem of S. Sakai [11].
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(ii) =(iii) Corollary 4.5.

(iii) =»(iv) Corollary 4.6.

(iv) =>(v) Trivial.

(v) =(vi) Proposition 1.7.

(vi) =(ii)- Proposition 4.8 together with Theorem 2.3.

§ 5. Some examples and open problems

We stated in the introduction that it is possible to find an example of three normed
spaces A, X and ¥ with Y< X and of a linear operator 7: ¥—A4 such that for some
ZE€EX\Y there exist y,, y,, ¥3€Y with the property that

3
N By (Tyy |71 - I~y =2 (5.1)

The following example may be considered as the complex analogue of an example in
{1, p. 125]. We want to thank Erik M. Alfsen for some suggestive remarks on this subject.

Evample 5.1. Let X=I4(C), let A=Y=(H*C), [||l) and let T: ¥4 be the
identity map. Furthermore, let y,=¢,—e,, j=1, 2, 3, and let x=e,. Then (5.1) is satisfied.

Proof. We note that ||T| =1. Let us assume that for some z€H* it is true that
lz=9ll: < llea—w,ll, 7=1,2,3. G

Since z,= —>3.; 2, it follows that

3
> lzkl+lz,+1|+|1 + Sal<1, j-123 53
k4.4 k=1

Adding these inequalities, we obtain

3

3 3
Z|z,+1|+22|z,|+3l1+ >z
i=1 j=1 H

<3. (5.4)

However, if j=1,2, 3, then

.
1<|21+1|+|z1|<|z1+1|+2|21|+l1+Zzi
=1

and the last inequality is a strict one if 2,0, It follows that if some 2,0, then

. 3 3 3
3< D |y+1+23 |z,|+3,1+ >z
=1 =1 i1
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By (5.4) we therefore:conclude that 2, =2, =2;=0. But (5.4) will not be satisfied with this
choice of 2z, 2, and z;. Hence (5.2) can not be valid for any z€ H4.
It follows from Corollary 4.7 that an £ space always has the finite 3 intersection

property. We pose the converse of this as the following

Problem 1. If a complex Banach space 4 has the finite 3 intersection property, does
it follow that A4 is an E space?

We remark that it suffices in'this problem to show that 4 is an E(3) space, or to
show thaf 4 is an Falmdst E(4) space.

We think, at least when A is a finite dimensional space, that the following example
gives some weight to a conjecture that Problem 1 has a positive solution.

In what follows, D is the closed unit disc in the complex plane C.

Example 5.2. Let §:10,1]-R be a concave, monotonely decreasing, non negative
Cl-function different from 0. Let

K = {(z), 2,): €D, 2,€C and |z,| <f(|%]|)}
Then K is the unit ball of a norm || || on C?, and if the space (C?, || ||) has the 4, 3 intersection
property, then f is a constant and hence (C?, ||||) is isometric to (€2, || [|«0)-

Proof. The first statement follows from the fact that K is a closed convex set with
interior points and with the property that uz€ K whenever 2€ K and » € D. Assume there-
fore that (€2, ||[|) has the 4,3 intersection property. First of all we remark that if

a=(0,, &) and a;=(oy ;, a,,;), =1, ..., r are given elements of C?, then

a€ N{K+a;}
j=1
if and only if
“16101{1)"' %, and “zejnlB(“z.pf(l%‘ o,4)))-

Now let t€[0,1] and A€ [O, g] be given. We define

% o=tsinl= —a,,; o, ,=étsinb=—oy 3
and Oy =0 5=0; oy ,=044=f(t)+f(t|sin 6 — cos B ).

We note that the point x=¢ cos § belongs to any of the three balls D+« 4, j=1,2,3,
and we find that |« =y .| =¢|sin6—~cosf| whereas |x—oy 3| =|2—¢ 4| =¢. Hence the

three balls B(ay, ;, f(|x—,4]), =1,2,3 have a non empty intersection. By symmetry
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we therefore conclude that any three members of the family {K+(«, ;, a5 ;)}{-1 have a
non empty intersection. Hence there exists, by assumption, a number p€ Nj-,{D+«, ;}

such that the family
{Bloa 5, (]2 — 2,5 N }1

has a non empty intersection. This means that
(&) +f(¢|sin 6 —cos 6])
<min {f(|p oy ,|), f(|p—,5])} +min {f(|p—ays]), f([p—ra])} (5:5)

Since p€ N {D+0ay ;}, it follows by a simple argument that the right hand side of (5.5) is
less or equal 2f(¢ sin 6). Hence f must satisfy the inequality

f&) +f(t|sin 6 —cos 8]) < 2f(¢ sin 6); t€[O, 1], O€[0, /2] (5.6)

We shall show that (5.6) implies that f is a constant. Let £€<0, 1> and let 0 €[m/4, 7/2).
It then follows from (5.6) that

F(&) — f(t sin 0) < f(t sin 6) — f(t(sin 6 — cos 0))

t—tsinf t—tsin 6
Hence we get
£ () < lim (~ f'(t sin 6) + '(¢(sin 0 — cos 6)) (1 + 2)‘; g)) : (5.7)
P :

2

If f'(t)<O0, then the right hand side of (5.7) is —oco. Since f'(f) > — oo, it follows
that f'(£)>0, and since f is decreasing, we conclude that f'(¢) = 0. Hence fis a constant. It is
then clear that (C2, ||||) is isometric to (C?, || ||o)-

In connection with Lemma 4.3, we remarked that it is probably true that the
conclusion of that lemma can be strengthened to a statement about z+1 balls. We pose

this as the following

Problem 2. Let n<6. If 4 is an almost E(n) space, does it follow that 4 is an E(n)
space?

This problem is akin to the following

Problem 3. What is the smallest natural number »<7 such that if 4 is an almost
E(n) space, then 4 is an E space?

We remark that problem 3 is closely connected with a problem raised by Lindenstrauss
in [8, p. 32], namely the problem whether 7 is the smallest number » with the property
that if a Banach space 4 has the 7, 3 intersection property, then 4 has the finite 3 inter-
section property.
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