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§1. Introduction

Let @ be a second countable locally compact group and I a discrete uniform subgroup
(I™\\G compact). Then the quasi-regular representation G xL*(I™\ G)—~L3I'™\G) de-
composes into a direct sum of irreducibles @;.;n,7;, each with finite multiplicity. If G
is a simply connected nilpotent Lie group, the problem of determining the spectrum
{m;} =@ and multiplicities n, was first discussed by C. C. Moore [13]; later, L. Richardson
[16] and R. Howe [6] independently gave closed formulas for calculating the spectrum and
multiplicities in this situation. Recently, Auslander and Brezin [1] and R. Howe [19]
have developed inductive proceedures for determining spectra and multiplicities in solv-
manifolds.

In this paper we given a construction of intertwining operators between induced re-
presentations, reminiscent of a construction of Weil [18], which generalizes Mackey’s
theorem [8], [10; p. 122-130] on intertwining operators between induced representations
of a finite group. Recall that if H, and H, are subgroups with unitary representations s,
and m,, and if o;=Ind (H, { G, =), then for any finite group @ Mackey’s formula gives the
intertwining number for ¢, and ¢,. In fact, Mackey constructs all intertwining operators
explicitly. We employ a different construction and prove that it yields all intertwining
operators in the case when @ is second countable, H, is normal in @ and o, irreducible,
Hy\ G is compact and m, finite dimensional, and H, n H,\ H, is compact (Theorem 3.7
below). This theorem plus some additional work yields the Howe-Richardson results, but

it also applies in other situations.
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QOur construction is similar to those found in Weil [18], Richardson [16], and Auslander-
Brezin [1], though it applies in a more general setting. Our proof that the operators are
well defined is different because of the more general context in which we work; it is quite
elementary. To show that we have all the intertwining operators we use a simple case of
the Mackey subgroup theorem, but in our situation the direct integral can be (and is)
written out quite explicitly. We also use the notion of weak containment, especially as it
applies to CCR representations. We do not invoke any of the more advanced aspects of
the Mackey machine. One main result is the following analog of Mackey’s intertwining

formula (see 3.7 below).

THEOREM. Let G be a second countable locally compact group and K, I" closed subgroups
such that (1) K is normal in G, (ii) I'\ @ is compact and has finite invariant volume, (iii)
K0 I'\K is compact (hence has finite snvariant volume), (iv) K™\ KT is discrete. Let 7 be
a finite dimensional representation of K such that o =cU" is irreducible, let o be any finite

dimensional representation of I', and let v =_,U°. Then
Hom(cU™, sU% = @ yex\oir Homppx(n-y|I' N K, o] N K).

Here 7-y(k) =n(yky") and Hom (...) is the space of bounded linear intertwining operators.
The direct sum is an algebraic direct sum since Homg (U”, U?) must be finite dimensional
if nontrivial, in this context. If 7z is not finite dimensional, there is still a useful intertwin-
ing formula which is a less direct analog of Mackey’s formula for finite groups (see Theo-

rem 3.4 below, and the commentary with equations (5) and (6)).

§ 2. Preliminary remarks

Throughout sections 2 and 3, G will be a second countable locally compact group;
K, I will be closed subgroups such that (i) K is normal in G, (ii) "\ @ is compact with a
finite G-invariant measure, (iii) I' § K\ K is compact. Note: If T" is discrete and '@
compact it is easy to see that ¢ is unimodular, and there is a finite invariant measure on
I'™G. Also, (i) ... (iii) imply that I' N K\ K has a finite K-invariant measure. [Pf: First,
I'n KK compact = KT' closed. By an elementary theorem [15], both KI™\ G and
I'\XT have finite volume. But the map (I'N K)-k—>I"-k is a K-equivariant homeomor-
phism from I'n KN\ K to I\ KI'.]

If 7 is a representation of a subgroup M, its Hilbert space will be denoted by ().
We let ;U*=Ind (M 4G, n) be the induced representation. If L is another subgroup,
L< @G, then 7|L is  restricted to L; thus, (U”|L is % induced from M to ¢ and then re-
stricted to L. If z€@G and = is a representation of a subgroup M, the conjugate n* or w-x
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is the representation of x~-1Mx modeled in (m) such that a®(g) =m(zgz1) for g€x1Mx.
Usually M will be normal. If &z, p are representations of M, then Hom,, (7, ¢) is the space
of bounded linear intertwining operators from H(x) into H(p); we omit the subscript M
when no confusion will resulf.

Next we establish a few lemmas. The first is a formal property of the induction pro-

Cess.

LemMa 2.1. Let K be normal in @, M a closed subgroup such that KM =@G. If w is a
unitary representation of M, then ;U”| K = (U™ME0M That i3, the diagram in Figure 1 com-

mutes (1 =1induction, r =restriction).

Proof. The Hilbert space of U™ is made up of measurable functions f: G- }(x) such
that f(mx)=m(m)f(x), all m€M, x€G. Such a function is determined by its values on any
set meeting each M\ @ coset at least once, such as K. Moreover, the action of K on fis
determined by what happens on f| K, and the spaces M\ G and M n K\ K (which are
naturally isomorphic) have the same quasi-invariant measures. Now it is not hard to show
that f—f]| K gives the isomorphism desired. Q.E.D.

The next lemma will be used to make some final reductions in our work. A detailed

proof is given in Moore [12].

LemMa 2.2. Let T' be a discrete subgroup such that I"™\ @ is compact, and let 7 be
a finite dimensional representation of G. Let o be an irreducible representation of U'. Then
Homyg, (77, U%) @Homy (7|T, p).

In fact, the equivalence is given as follows. If A€Homr (z|T', o) define B: F(zm)~
H(U?) by Bu(g) = An(g)v; the map 4— B is the desired isomorphism. It maps onto because,
if 7, is & subrepresentation of U? equivalent to 7, then m, is realized on a space of continu-
ous functions. Given B we get the corresponding 4 by taking Av = Bu(e).

Next we prove lemmas which show that all representations we deal with are type 1.
In our applications to nilpotent groups, all representations are known to be type I, and
these lemmas are unnecessary. However, they are needed to establish the intertwining

theorems in the generality given here.
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LemMa 2.3. Let K be a normal subgroup of G and I' a closed subgroup of G such that
'@ and I' N K™\ K are compact with finite invariant measures. Let o be a finite dimensional
representation of T', A=, Ut=Ind (I' 4 KT, p), and consider the restriction A|K. Let S =
{n-x€K*: 2€Q and n any irreducible representation of K occurring in A|K}. Then S is a
closed set in the hull-kernel topology of K*.

Proof. By Lemma 2.1, | K= U?T¥ If I'n K is discrete it is well known that the
latter is a direct sum of CCR irreducibles [5; section 2], each with finite multiplicity.
Actually [17], the result is true for any subgroup M < K (discrete or not) such that M\ K
is compact and has finite invariant measure. The spectrum 7' of this representation, the
irreducible CCR representations {r,} < K~ occurring in it, form a discrete, closed, Haus-
dorff subspace in K~ [4; Theorem 1.8]. Also, 7' is invariant under the action of I" on K~
because xrU®? > prU® for y€T. Let C be a compact set in @ such that @=T"C. Let {x,}
be any net of elements in § which converges to an element 5z € K*. Each 7, is of the form
Lo, with {,€T and x€@G. Because T is I'-invariant we may choose the {, and z, so that
x,€C for all . By passing to a subnet we may assume that z,—~x€(C. But the map K~ x
G—K" is jointly continuous. [From Fell’s description of the topology of K~ in terms of
positive definite functions on K [4; Theorem 1.5], this is easily seen by examining limits
(uniform on compacta) of positive definite functions associated with representations in
K.] Thus {,=m, x"1-n-x~L Since T is discrete the {, must eventually all be the same
element (€T, so that #,—~-2z€8. Q.E.D.

LeEMMA 2.4. In the situation of Lemma 2.3 the restriction of ;U=Ind (I't G, ) to K

s type I, as are all of its subrepresentations.

Proof. Let S=T-G as in 2.3. As noted, the elements of 7' (hence also 8) are all CCR
representations of K, and 8 is closed in K~. Let A(K) be the group C* algebra of K; then
I=hull (S) ={a € A(K): m(a) =0, all wES} is a closed two sided ideal. The C*algebra A(K)/I,
has 4~ =ker (I)=48. Since all elements of 4~ are CCR, A4 is type I. By Mackey’s subgroup

theorem, the restriction of 7=,U? to K can be written as
®
1|K=f (A|K)-zdu(x) (where A= gpUC2 (UeTNE),
ET\@

For each z€Q, (A|K)-x=(®ngw,)-x is a direct sum of irreducibles in §, and so
(A|K)-x)a=0 for all a€l, x€G. By the direct integral decomposition of 7|K, we get
7(a) =0, all a€I; thus, 7 is the liftback under A(K)—~A(K)/I of a representation of the
CCR algebra 4, and is type I. Q.E.D.
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We note one other straightforward fact. If z is a representation of a normal subgroup
K such that o =,U" is irreducible, and if x€@, 2 ¢ K, then % and -z are inequivalent, so
that the stabilizer of 7 under the action of @ on K~ is Stabg (7) =K. This follows from
Mackey’s theory, but there is a short direct proof. [Since o=, U”" is irreducible, so are 7
and m-x as representations of K. If 4 €Homy (7, w-x) then the operator B: H(g)— H(o)
defined by Bf(y)=A(f(xy)) is well defined, for if k€ K we get

(Bf) (ky) = A(f(xky)) = An(vkz=) f(xy) = 7(k) Af(zy)-

Clearly B€Homg (g, 0) and cannot equal a scalar multiple of the identity operator if
A =0 and z¢ K. Since o is irreducible, 4 =0.]

§ 3. Conmstruction of intertwining operators

Throughout this section we consider a system (G, K, I'; 7, g) of closed subgroups and

unitary representations such that

(i) K is normal in @

(ii) I\ @ is compact and has finite invariant measure

(iif) K NnI™\ K is compact (hence has finite invariant measure)
(iv) K\ KT is discrete

(v) mis a representation of K such that ¢ =;U”" is irreducible

(vi) o is a representation of I'.

It follows that K N I"™\I"= K\ KT is also discrete. Later we will add a finite dimension-
ality condition on 9. We write t=;U%

Suppose that A€Hom (z|'n K, o|I'n K). To justify Mackey’s formula (for finite
groups) we should try to write down, formally at least, a corresponding element B=
JA €Homg, (o, 7). Recall that o operates on a space of measurable functions F: G— H(x)
such that F(kx)=n(k)(F(x)) if k€K; likewise for v with respect to g. A little thought re-
veals that the following averaging process should produce an intertwining operator from

A"
(BF) () =2yernr\r 0¥ ") A(F(y2)), (1)

the sum taken over any set of coset representatives for I' N K\ I'. This makes sense as a

sum over representatives, because if we replace y by y,y (y,€I' N K) we get
e((Yoy) ™M) AF (yoyz) =o0(y)Molys") An(y,)) Flyz) = o(y) " AF (y2).

Next observe that (BF)(y,x)=0(y,)(BF(x)) for y,€T (simply replace y by yyi' in the
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sum). Clearly, if we .can show that the.sum converges for almost all x, and determines a
bounded operator,.then B€Homo, 7). We start the proof that B is bounded with two
lemmas.

Let u, v€ () and let y €I". The map K—C defined by k—{An(k)v, o(y) L An(yky—)w)
is constant on I' N K-cosets in K: if 9,€I' N K (which is normal in I') then

CAn(yok)v, o(y)* Anlyyoky ) w)
={o(ye) Ar(k)v, o(y) o(yyey ) Anl(yky " w) =< Azn(k)v, o(y)~ An(yky ) w).
LumMa 3.1. Let (@, K, T; 7, 0) be-as above. If y ¢I'nN K, y €T, then
[ canthye, oty ywy =0
TnK\E
for all v, w€ W(w).
Proof. Define T H(w)—~ H(z) by

(T, w>= (An(k)v, o(y) An(vky ) w) dk.

I'nK\K

Routine estimates show that 7' is bounded. If k,€ K, then

{Tr(kg) v, w) = {An(kky) v, o(y) " An(yky Y w) dk

I'nE\K

= L e (An(k)v, o(y) *An(ykke 'y ) w) dE

= f (An(k)w, oly)  An(yky ™ ) a¥ (k) w) dk
InE\K

= (T, (ki ) w) =<7 (key) T, w).

Hence T€Hom (7, -y). Now apply the remarks about Stab, (%) at the end of section 2
to conclude that T'=0if y€I'~(I'N K). Q.E.D.

LeMma 3.2. Let F: G— H(m) be continuous, satisfying F(kx)=n(k) F(z) for all k€K,
x€Q, such that || F(x)|| =||F(Kz)| has compact support in K\ G. For each x€G let S,=
{y €Tl :yx€supp (F)}. Then there is an integer ny independent of x€G such that S, is the

unton of at most n cosets of ' N K.

Proof. As noted, K n I\I'= KX KT is discrete. Clearly 8, is a union of K n I'-cosets.
Choose compacta C,, 0,< @ such that supp(F)< K- C, and G=T"-0,. Then T N K\ KO, 05"
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is compact since K NI'\ K is compact, and hence meets the discrete set I' N K\ I" at
finitely many points. Let » be the number of points. To show that this » works, consid-
er. any z€G and let x=yx, (yEI', 2,€C,). Then 8, y-2,=8,-x<supp (F)cK-C;, so
that S,y<KC,C;'. Of course we also have (I'nK)S,-y<T. Hence I'N K\ S,yc
(' n KNI n (I n K4S KC,C5Y) has at most » elements. Thus T' N KNS,y and I' n KNS,
have cardinality at most n. Q.E.D.

Among other things, this observation shows that the sum over I' 0 KN\I' defining

BF in (1) has at most ny nonzero entries for each x €@, and so is well defined.

TuroreM 3.3. Let (G, K, T';7, 0) be as above and let A€Hom (z|I'N K, ¢|T' N K).
For oll continuous functions F. G— H(x) satisfying F(kx) =7z(k) F(x) oll k€K, z€G, such
that || F(x)|| has compact support in K\ @Q, define. BF(x) as tn (1). Then BF € H(U¢) and B
extends uniquely to a bounded linear oﬁemtor B: U™ - WU®. In fact, BEHom (U*, U?)
and the map J: A~ B is injective.

Proof. Write 0 =,U" and 7=,U? Since B is defined on a dense set, the uniqueness of
any bounded extension is clear. From what has already: been said, only the boundedness
of B and the fact: B=0=4=0 require proof. First we compute ||BF| (afterwards we
will justify our use of Fubini in interchanging integrals over I’ ﬂK\G" with sums over

I'n EK\T).

IBFI= fr‘\c Znernr\r Zysernmr (1) AF (1 2), 0(ya) T AR (yp)) dé
= fr\c Zyz- PseTAK\T <9('}’1)_1AF('}11 x), Q(Vf1y§l) AF(pyy, %)) dit

[ SheraneCAF@), oty AR
TnE\G
Fix y4; then

| caF@), o) ARGy d
T'nE\G
[ ARt ot AR by e di
E\G JInk\K

= f f (An(k) F(x), olys) " An(ps kys") Fys @)y de dé=0
KE\G JI'nkK\K

unless y, €' N K, by Lemma 3.1. Hence by Fubini,
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1BEI = [ car, arapas<ial| [ jrwiracas
I'nk\G KE\G JTnE\K

=l 4P| Z|}* - volume (I' n K™\ K) (2)

Thus || BF|| <+ and B is bounded. If A is nonzero then for some F€ (o), AF(x)is
nonzero on a set of positive measure and so, by (2), || BF|| +0.

To justify our use of Fubini, we show that
L\G Znmernmr| <o) T AF (p ), (ys) T AF(y, 2)) | di

is finite. By 3.2, this expression is dominated by

f o yseTNE\T "A"2"F(71 x)""F('}’z m)"dx
\éG
B[ GoeramaelPor ) Goeram PGl a2

<|l4frnt f P2 dé < + oo QED
e

We note two facts about this construction. Let I'y=T"N K. First, if y €G then equation (1)

determines a map
J :Homp, (7 - y | Ty, 0| [y) ~ Homg(U™?, U®). (3)

But U"=U"" under the isometry I': }(U™)~>H(U™") given by I'F(x)= F(yz). This in-
duces an isomorphism ®Y: Hom (U™¥, U?)~Hom (U”, U?) if we take (QYTYF=T(I'F).
Thus, for each y€G, we may regard the map (3) as carrying Hom (z-y|T'y, ¢|I') into
Hom (U”, U®) by replacing J with J=0%J. Now if k€K, y€I, routine calculations
show that R:A-g(y)1A4n(k)™ is an isomorphism between Hom (s-y|Ty, 0|T,) and
Hom(n- kyy | Ty, 0| To). Further calculations show that the maps in Figure 2 commute. Thus
the J-image of Hom (z-y|T, o|T'y) in Hom (U”, U?) depends only upon the K\ G/I' =G/KT

double coset to which y belongs. In this manner we obtain a linear map
J: ®yex\or Hom (z-y|T' n K, o|T' n K)>Hom (U", U?). (4)

We do not yet know if J is injective or surjective, though it is injective when restricted to
each subspace in the direct sum. We shall examine these questions in a slightly different
context. Second, if B;=JA,(i=1,2) and if 4, and g(y)4, have orthogonal ranges for all
y€L\TI, then B, and B, have orthogonal ranges (as a computation like that in Theorem
3.3 easily shows).

Given the system (G, K, I'; =, ¢}, Mackey’s formula has as its most direct (formal)
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Hom(U™¥, U?) Hom(U™ ", U?)

\Di DLy

7 Hom(U™, U?) 7

AN

Hom(7 - y|Ty, ¢|T) % » Hom(z - kyy|To. 0| To)

Figure 2. Here I',=T N K.

generalization the statement
Homg(U", U®) = @ yex\ar Homgar(n-y|T' 0 K, ¢|T N K). (4)

However, we may form the related system (@, K, H; 7, A), where H=KI" and i=,U®,
which also satisfies properties (i) ... (vi) as noted below. For this system Mackey’s formula
says (formally) that

Hom(U™, Ul) = @ yex\orp Homg(m -y, 4 l K). (6)

But it is obvious that Homg (U”, U?) @Hom, (U”, U?), and by an earlier lemma we know
that 4| K = ,U?T"E | so that for all y we have

Homg (7-y, 4| K) @Homy (7-y, fU?TNF),

If 7 is finite dimensonal then formulas (5) and (6) are equivalent by C. Moore’s formula

(Lemma 2.2), because

Homy (n-y, (U ) =Hompx (n-y|T' N K, o|T' N K),

so either formula could be taken as the generalization of Mackey’s formula in this case.
If dim 7= + oo formula (5) breaks down, but formula (6) remains valid, so it should be
regarded as the correct generalized intertwining formula. In our later applications we will
use both formulas, though we lean most heavily on (6).

Let H =KT'; compactness of K N I"™\ K insures that KI" is closed. Obviously H\ G
is compact, and in fact has an invariant measure. [Lift the G-invariant measure on 1™\ ¢
over to A\ @ under the continuous, onto, G-equivariant map I'z—Hz.] Furthermore,
K\ KH =K~ KT is discrete. Thus if 1=,U ‘we may carry out the preceeding construc-
tion using the system (G, K, H; z, A) in place of (G, K, I'; , p); this transition amounts to
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assuming that ['2 K in that discussion. Now for each y €@, J maps Homg (z-y, 1| K) into

Hom (U™ ¥, U* and J is a linear map,
J: @ yecn Homg (-y, A|K) > Homg, (;U”, cU). (7)

This map is injective. In fact, if y and 2 are in different G/H = K\ G/H cosets, then - (yy~1)
and 7-z are inequivalent in K~ for all y€I'. Hence, if 4, €Homy(n-y, 1| K) and 4,€
Homg(r-z, | K), then p(y)A4, and A, have ranges in 7¥(4) which correspond to distinct

irreducibles and are therefore orthongonal, which makes (7) an injection.

THEOREM 3.4. Let (G, K, ', m, 0) be as above and suppose that o is finite dimensional.
Then

Hom(U", U?) =~ Hom(U™, U;“)
= Dyer\cin HomK(n.y’ MK)
~ @yex\am HomK(n ‘Y, KUQIl"nK)’

where 4 = 1 U®.

Proof. By 2.1, | K = (U%T"E, By induction in stages, (U* 2 ;U¢, so it suffices to show
that the map J in (7) is an isomorphism. We already know it is injective, so our whole
problem is to show it surjective: that our construction produces all possible intertwining
operators. Here we need 1| K type I.

Let 6=;U™ and 1=,U". We need explicit descriptions of the direct integral decom-

positions of ¢| K and 7| K, whose existence is guaranteed by the Mackey subgroup theorem
(91,
® ®
oth—'.f 7 zdm(2), IIK;f (A| K) -z du(#). (8)
E\@ H\G

We want to compare these decompositions.

Let C= @ be a fixed measurable transveral for A\ @G. If p is the invariant measure
on H\G we may regard p as a measure back on C, and identify the spaces (H\ G, u)
and (C, u). Likewise, we identify (K H,v) and. (D, ») indiscriminately, where D is a
(discrete, countable) transversal for K™\ H and » the counting measure.

We begin with the decomposition of 7| K =U%| K. Using the transversal ' we may
identify F € H(U*) with a field of vectors F~={F;: 2€(C} defined by taking F; (h)=
F(hx), all h€H. Then F; € J,, where we set X, — H(A) for all z€C, and we may identify

@D
H(U") = LAHN\G, p; H(A)) = LC, p; H(2)) = L K. du(). (9)
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In this concrete setting, U4|K decomposes into the concrete representations (1| K)-x, all
modeled on H(A),

7|K = f@ (A| K) - zdu(=). (10)

The verifications are obvious, following Mackey’s proof of the subgroup theorem.

We want to compare t|K with U¥|K for various y €G. The decomposition (8), cor-
responding to the scheme K 4G | K, is not convenient; it will be easier to compare de-
compositions over the same base space. To this end we set n'(y)=,U"Y=Ind (K } H,
7-y). Then we decompose (U™ ?| K over H\ G=C as follows. First decompose

<]
rnw“)%f K.du() (where X;=H(zU™?), all z€C) (11)

by identifying a vector FE€J(U™?¥) with the field of vectors F~={F;:x€C}, where
F7(h)=F(ha)€ U(zU™¥). It is easily verified that changing the representative of ¥ affects

the equivalence class of F; only on a null set in C, that

[, Iraiani~ [ 1#:1p dute
K\G C

if Haar measure m on K\ @ is suitably normalized, and that the vectors {F~: F € (U™ )}
span a dense set in §& X du(x), so that (11) holds. The corresponding decomposition of

U™Y|K is
® (@]
UK L (zU™7) - zdp(x) = f n'(y) - x du(x). (12)

c

Applying the construction of Theorem 3.3 to the system (H, K, H;x-y, A), we define a
map J': Homg (-y, A|K)>Homg (#'(y), A). If FEH('(y)) is continuous on H with
supp || F|| compact modulo K, and if 4 € Homg (7w-y, 4| K), then (1) gives

(J'A)F(h)=2yep-r\u My) "4F(yh) all hEH.

We next consider the constant operator field B,=J'4: H(x'(y))—> H(A), all z€C, which
induces a bounded operator B= (¢ B du(z) from

WUy = f.‘x;dy(x) into WUH= fmdﬂ(x)-

Lemma 3.5. Let y€G and let A€Homy (n-y, A|K). If we decompose H(U™") and
H(U?) as in (9) and (11), then the operator JA € Hom(U™ ¥, U?) is decomposable
. ®
74~ [ ar.due (13)
()

where (JA),=J A: K.~ K, for all x€C (the constant operator field above).
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Proof. It suffices to show that JA4 = B on a dense set of vectors F € H(U™?). Consider
F which are continuous, such that supp || F|| is compact modulo K. Then for any H-coset
Hg,, Hg, N supp || F|| =supp || F|Hy,|| is compact modulo K. [Indeed, writing supp || F|| =
XK for some compact set X<@, we have Hg,N XK =(Hg,N X)-K since K is normal.]
Under our map (11), F corresponds toafield F~ ={F, :x€C} with F, (h) = F(hx) € H(,U™?)
a continuous function on H such that supp || F, || is compact modulo K. Thus the point-
wise formula (1) applies both to (J4) F and to (J'4) F;. For z€C we get

(JA), F;(h) = ((J'A) F3) (h) = Zye p-m\u Ay) AF; (ph);

BF corresponds to this field of vectors in [ X, du(x). On the other hand, if Q=(JA)F
and if g=hx for h€H, x€C, then

Q(hx) = ((JA) F) (k) = Zye p-x\uMy) ' AF (yha).

But Q corresponds to @ ={Q; } in [© . du(z), where Q; (h) =Q(hz). For y—a.e. t€C we

get
Q= (h) =2 exru My) " AF (yhz).
Clearly then, (JA)F =BF as required. Q.E.D.

Let H; be the subspace of F#{U%) spanned by the ranges of all the “standard” inter-
twining operators JA€Hom(U~#, U4) obtained from A€Homy (n-y,A|K) under the
map (7). For each y€@, JA=0¥JA)=JAoIl¥ (recall Figure 2). Clearly J4 and JA4
have the same range in F(U?), so we may determine J, by examining the operators
JAEHom(U™Y, U%) for each y€Q@ separately. From our decomposition (13) it follows
that 3, has the form

@®
H= fc (Koh du(x)

where (X,); = X, =closed span of {J'A(H(zU™")): y€G, A€Homy (n-y, A|K)}< H(A). All
fibers are the same. Let X,=Xi in #(A), and set (X,),= X, for all 2z€C; then =
HU» o N, decomposes

U= f ® (K)o dp(z), (K)o=X, forall z. (14)
o)

The subspaces H,, H, are UX@)-invariant. The following important observation follows

from the definition of X;.

There cannot be a y€G and 4 +0 in Homg (5-y, A| K) such that range (J'4)< X,.

(15)
Otherwise J4 would intertwine (U™ ¥) and ,.
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Now we are ready to prove J surjective: First, suppose T €Hom (U=, U%) has range
(TY= ‘H,. We show directly that T is in the range of J in (7). The idea of the proof is simple,
though somewhat obscured by the notation needed to write it all out.

LeMMaA 3.6. Let (G, K, ;7 ) be as in Theorem 3.4; let H=KI" and A=4U®. Then
the range of J, the space of linear operators

X= J(®yex\aix Homg(m: y, “ K)) <= Hom(U", Ul),

is finite dimensional. If W, is defined as above and if T€Hom (U=, U*) has range in’ Wy,
then TEX.

Proof. Notice that U™ has finite (or zero) multiplicity in U4~ U¢; since J is injective,
dim X< +co. Now let X'=span {range (JA4): 4 €Homy (z-y, A|K)}. These U*G)-in-
variant subspaces are identical for y in the same G/H coset (see Figure 2); they are ortho-
gonal otherwise, as we have remarked in connection with (7). Hence 2{1— @{X"yeq/H }
Moreover MK UQIF nK contams at most a finite number of direet sum copies of z-y, so
that HomK (n y, 2K ) CE®.. @CE’ where the E; are isometries onto pairwise ortho-
gonal ME)-invariant subspaces in ‘}(2) on which AlK acts like -y. Let E;=J (E‘j), write
range (E,) = XY< X¥. We assert that the B, ; are isometries into XY with pa1rw1se orthogonal
ranges such that ¥ =X!®..® X%. Infact, if A =¢, By + ... +¢, EHomK {or- v, ZIK) then
by (2) (replacing (G, K, INE o) with (@, K, H; 7, A) in that calculation) we get

@~ [ jaF@pane - [ 150 EE@i ane

=S laf)- [ Ira@ltane) - 4 |F)? o)
K\G
for all F €J(U). Similarly,
B4 T4 - [ (4, F @), 4, F @) dmio),
K\G

so that B,=J(E]) are isometries with orthogonal rangeé: The inclusion (X¥Y<...) follows
because Homy (7-y, Z.IK @CE,.

Thus, ¥, = @N,xa where {xa} {x¢: yEG/H 0<7<m(y)} Let P,: #,~ X, be the
projection. Suppose that TEHom( U", U* has range in 2{1 Then P, T also intertwines,
and if P, T +0, then it and the “standard” isometry E,=J(E.) both map H(U™) to X,
By irreducibility, P T~c(oz)E for c(oz)EC 50 that T = ZaP T=%c¢a)E,isin X. QE. D.

Let P, P, be the projections onto ¥, H, in U=, &H,. If T€Hom (U”, 04
has range (T) ¢ N,, then P,T is a nonzero intertwining operator with range in ,:Since
19— 762908 Acta mathematica 136. Imprimé le 8 Juin 1976
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U~ is irreducible, there must be an intertwining isometry 7’ with range in ;. We complete
the proof that J is surjective by showing that (15) is violated in this situation.

Now T intertwines ¢ =U" with 7,, the subrepresentation of 7=U?* on the subspace
3, so we may identify ¢ as a subrepresentation of 7,. Moreover, 7| K is type I on K, by
2.4, hence 80 are 7y| K and o| K. Let A,=1| K restricted to the K-invariant subspace X,
defined in (14). The decomposition A|K = @ ;¢ ;77 induces a decomposition 1,= @m, x,,
0<m;<mn, so that sp (i) ={m; m;+0}csp (1] K)={n}; both spectra are discrete sets in
K* consisting of CCR representations. Thus S, = U {sp (1,):9: € G} is a closed set of CCR
representations in K*, by exactly the same reasoning as in 2.3 and 2.4.

Consider the direct integral decomposition corresponding to the scheme K4 G| K,

®
o|K= 72 dz.

E\¢
As noted at the end of section 2, the 7z are inequivalent in K~ since Stabg; (n) =K. Let
R=n-@, the orbit in K*. Now R and 8, are G-invariant in K*. If BN 8,+© we obtain a
contradiction because there would be a 7;€sp(4,) and z,2€@ such that 7-227,-2, or
7zt 27y, <Ay <A| K; i.e. there would be a nontrivial operator 4 € Hom (7 -22~%, 1| K) with
range in J{,, violating (15).

On the other hand, we have already noted in (9), (10), and (12) that

®
‘MK%J Ay xdu().
(o]

Let I,=hull(8,) in the group C* algebra A(K); thus S,=ker (I,) since S, is closed in K~
Let {a,:n=1,2,..} be a norm dense set in I,; clearly n'(a,)=0 for all #'€8,. Since
sp (A;)- £ 8, (A7 2)a, =0 for all » and €C. Thus (v,|K)a,=0 all », which implies that
(¢|K)a,=0 for all n. But then

(0|K)a,,=f® (- 2)a,dm(z) =0

where X is a measurable transversal for K\ @ and m =Haar measure on K\ @ identified
with a measure on X. For each n there is a null set N »< X such that (n-2)a,=0allz€X~ N,
which means that (7-2)a,=0 all » and all zEX~N where N= U%-; N,. By norm con-
tinuity of representations, we get (7-2)a=0 all a€A(K), 2z€ X ~N. This means precisely
that {m-2: 26 X~ N} is weakly contained in 8, (in K*). Since S, is hullkernel closed, we
must have {#-z: 2€X~N}<8,. Hence S;N R is nonempty. This completes the proof of
Theorem 3.4. Q.E.D.
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By applying Lemma 2.2 we get the analog of Mackey’s intertwining formula for finite

groups, if 7 is finite dimensional.

CorOLLARY 3.7. If in the situation of Theorem 3.4 the representation s is finite di-

menstonal, then
HOm(Un, UQ) jos @_’UEK\G/F HoanK(n 'ylF N K, g l P ﬂ .K). (17)

§ 4. Algebraic preliminaries on nilpotent Lie groups

In discussing a simply connected nilpotent Lie group N we use the rational structure
corresponding to a given uniform discrete subgroup I'. The subgroups H such that H 0 1™ H
is compact turn out to be the rational subgroups of N. We use the folldwing basic facts,
see [2; Appendix] for further details. Define ng=0Q-span {log (I")}. This is a Lie algebra
over Q by the Campbell-Hausdorff formula and Ng=exp (11q) is'a dense subgroup in N.
A closed connected subgroup H< N is rational if H=(H N Ng)~; equivalently, HN I\ H
is compact. A real linear functional f€n* is rational (f€ng) if f(ng)<=Q, or equivalently
fogI"'= Q. If H is a closed connected subgroup and IV =H N I is uniform in H, then the
rational points Hgq it determines coincide with H N\ Ng.

In the following, a number of our previous notational conventions are inoperative.
We shall use general facts about Kirillov theory; see [7] or [14] for an account. Kirillov
theory associates to each irreducible ¢ € N~ the Ad’(N)-orbit O of some f€n*; o=’ is ob-
tained by inducing /~ (exp X)=¢**/* from any maximal subordinate subgroup M, up
to N. If O contains a rational element f€1ng, then there are rational maximal subordinate
subalgebras m;, and furthermore the normalizer {X €n: [X, []<[} of any rational sub-
algebra [<u is rational and properly contains [ unless [=n; see {2; Appendix]. Thus
we get rational subalgebras ni=m,Sn,<S..Sme=n such that n; is a proper ideal in
LVSSTR LVRSR (7R

If $€n* is a Lie algebra homomorphism of n, then ¢-n=Ad'(n)¢ is equal to ¢ for all
n€N; thus the orbits (f+¢)-N and {- N are equal for any f€n*.

LeMma 4.1. Suppose f, f €En* are both rational and lie in the same Ad’(N)-orbit O.
Then there is an x€Nq such that ' =f-z.

Proof. Let m, be a rational maximal subordinate subalgebra for f. From the proof of
the theorem in [14], Part II, Ch. 1, Sec. 3 it follows that one can choose rational elements
{X;, ..., Xg}Eng (d=n—dim m,) spanning a real subspace transverse to 1, and a basis
of rational elements {e, ..., ¢,} S n* with the following properties. Let t=(¢,, ..., {;) ER* and
write

g(t)=Ad'(exp (8, Xy) - ... -exp (5, X)) f= D1 Qs{t) e .
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Then

(i) t—g(t) is a homeomorphism of R? onto Q.
(ii)) The @; are polynomials with rational coefficients.
(iii) There exist indices 1 <4, <... <j, <n such that @, (t) =¢, + (polynomialin ¢, ..., _,),

and for j <j,, @,(t) is a polynomial in ¢,, ..., f;_,.

Now pick t such that g(t)=f'. If ¢, is the first irrational component of t, then Q;(t)e; is
not a rational function, contradicﬁng rationality of /. Hence t€Q? and the Campbell-
Hausdorff formula shows that exp (£, X,)- ... exp (,X ) =exp (X)=2z for some X Eng.
Then f-z=f. Q.E.D.

COROLLARY 4.2. Suppose f En* is rational and 1, is a rational ideal in n which contains
a maximal subordinate subalgebra m for f. If yEN is such that {-y is rational when restricted

to g, there exists an x €N g such that f-y=f-x on n,.

Proof. Let f,, f;€n* and assume that n, contains a maximal subordinate subalgebra

m for f,. Then

If f, and f, agree on 1,, they are in the same Ad’(N)-orbit in n*. (18)

In fact, m is clearly subordinate to f,. The characters f;'(n) = exp [274(f,, log n)] agree on
M, soInd (M 1N, f7)=Ind (M N, f;)isirreducible. By [7; Theorem 5:2], m must be maximal
subordinate to f,. Moreover, since f,, f, give the same jrreducible representation of N, they
are in the same Ad’(N)-orbit. Now let j'=f-y|t,. Clearly ;< Ad(y)m lies in 1, since
fiy<itt, and is maximal subordinate to f'g on 1. Let I be any rational extension of f’ to 1
(exists since 1, is ré,tional). Since f-y and 7 agree on 11, they lie in a single Ad’(V)-orbit and
so do f, I. By 4.1, there is an Z€Nq such that f-x =1, so f-a:=f-gfon Tlp- Q.E.D.

We will deal with the decomposition of ,U¢ where g is an arbitrary one dimensional
representation of I'."'We need a few facts which are' trivial, or redue to tho preceeding
lemmas, when p=1. Given ¢ we cannét in ‘genmeral find an element f€n* such that
o (exp X) = exp [27i{f, XD] for X €log " and f is a Lie algebra homomorphism. We say
that f€n* is p-rational if f€ ¢ +n§, where €n* is a homomorphism such that &™¢|T'=p
on a subgroup of finite index in T (<.€¥™*/p is a root of unity, all vyEl",;since I'is finitely
generated [11]. We thank Prof. Wolf Beigelbock for the present definition in, place of our
original, more.cumbersome version. Although ¢ is not uniquely determined, if it exists, any
other y differs by an element in 1§ because
exp [2ni<¢, X)) o(exp X)
exp[2midy, X>] plexp X)

exp 2mild —yp, X)]= is a root of unity,



INTERTWINING OPERATORS AND INDUCED REPRESENTATIONS 291

all X €log [. Thus, all g-rational elements may be associated with the same homomor-
phism ¢; they comprise the set ¢ +ng< n*. Obviously if p=1 the p-rational elements reduce
to ng.

LemMma 4.3, Let I be a discrete uniform subgroup in N, p a one-dimensional representa-
tton of T, and let f€n* be g-rational. Let ng be a rational ideal containing a maximal subordi-
nate subalgebra m for f and set Uy=T" 0 Ny, 0o=0|Ty. If there is a yEN such that f-y is oy
rational on 1y, then there is an x€Ng such that f-y=f-x on n,.

Proof. Let f' stand for f|n,, all f€n*. Let ¢ be a homomorphism of n such that the g-
rational elements are ¢ +1§; then the g,-rational elements on 1, are ¢’ +(ny)y. Now p-
rationality of f =f—¢ rational; g,-rationality of /-y=(f-y) =f-y—¢' =(f—¢) 'y is ratio-
nal on g Clearly m is maximal subordinate to f —¢ as well as to f. By Lemma 4.2, there is
an x€Nq such that fro—¢=(f—¢) x equals f-y—d=(f—¢)-y on n,, so that f-o=f-y on
1, Q.E.D.

Notice that if f is g-rational in n*, there exist rational maximal subordinate subal-
gebras for f since f and f—¢ (rational!) have the same subordinate subalgebras.

Finally, we show that g-rational functionals always exist. That is, we need to show
that there is a Lie homomorphism ¢ €n* such that ez”“”#g on a subgroup of finite index in
I", since I is finitely generated [11]. Then ¢ 41§ gives all the p-rational elements. To con-
struct ¢, consider the commutator subgroup N’ =[N, N]. As in [11; pp. 7-9], TN N’ =I"
is uniform in N’, so the quotient homomorphism p: N-N/N' carries I' to a discrete uni-
form subgroup in the vector group N/N'; p(I') is an additive lattice. Choose {zy, ..., ,} =T
so p(x;) form a Z-basis for p(I'), take X;=log (x,), and take s,€ER so that g(z;) =e*i.
Clearly, R-span {X,, ..., X,,} is a subspace in 1 transverse to [1, 1t]. Define f€n* so f=0
on [, 1] and {f, X,>=s,. Obviously f is a Lie algebra homomorphism and f~=¢**" isa
homomorphism of N. Let I';=[I', I']; then p=1 on T, and‘[N , N)/T'y is compact, so that
I'; has finite index in I" N [N, N]. Let I'; be the subgroup of N generated by [’y U {x;, ..., 2}
Now g(z;)=f"(x;) and g=f~=1 on I'y, so p={~ on I'y. But I'; has finite index in I, so we
may take ¢=f. [For some finite set F, ['N [N, N]=F-T',. But p(I";)=p(I"), so z€I' =
there are y€1',, n€T N[N, N] such that z=ny. In turn, n€ F-T,, so that z€ F-T,-T', =
F-T,.]

§ 5. The multiplicity formula for nilmanifolds

Now that we have cleared away the algebraic background, we are ready to apply
Theorem 3.4 to get the multiplicity formula for nilmanifolds ™ AN. Our proof is rather
different from those of Howe and Richardson. With 3.4 in hand there is no need to carry
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out inductions on dim N, or to separate out the case of one-dimensional center. Modulo
certain rationality questions based on the work of section 4, the multiplicity formula

emerges via straightforward calculations.

THEOREM 5.1. Let ¢ be a one-dimensional representation of discrete uniform subgroup
T" in a simply connected nilpotent Lie group N, and let T=,U?. Suppose that ¢ is an irredu-
cible representation occurring in T, ¢ <T, corresponding to the orbit O in n*. Then

O contains p-rational elements. (19)

Let f be any p-rational element in n*, m any rational maximal subordinate subalgebra (they
exist), and o =Ind (M t N, {~) where f~ (exp X)=e*"*"* on M. Then Homy (o, T) 18 iso-
morphic to

@ e\ wr Homy oy (f -2 |T N2 Mz, 0| T N2 ' Mz), (20)

where (*) stands for sum over the rational double cosets (those which meet Ng), and the x are

rational coset representatives.

Notes. Statement (19) generalizes Moore’s observation {12, Cor. 2], which applies when
¢9=1 and I' is a lattice subgroup (log I' an additive lattice in n). Formula (20) is essentially
Richardson’s formula [16], except that in his work the maximal subordinate subalgebras
M had to be chosen to satisfy certain technical requirements in addition to rationality
(without which the formula becomes meaningless on the right). These technical require-
ments are sometimes troublesome to verify; their absence in (20) leads to slightly easier
calculations. Howe’s procedure [8)] differs from ours in the preliminary necessary condi-
tion (19). In his proceedure one sorts out the orbits () which contain elements f which (i)

2mif _
=0

on I'N M. For these orbits there is a multiplicity formula similar to {20) intertwining op-

are rational on [11, n), (ii) admit rational maximal subordinate subalgebras such that e

erators are not discussed in [6]. Yet another approach to multiplicity formulas is given
in [2].

Proof of (19). As in section 4, there is a group homomorphism ¢~ =e*"* of N which
agrees with o on a subgroup I'; of finite index in I'. Then ¢’ =g/¢" is identically 1 on I,
so ¢’ very nearly reduces to the trivial character on I'. If { is any one-dimensional repre-

sentation of N, we note that
UCI®®™ ~ £ & U™ for any representation 7z on any subgroup A.

[Taking H((C|H)®n)=H(w) and H(ER U™ =HU™), the isomorphism is effected by
T: H(U™) > WU D®) where Tf(z)=L(x)f(x).] Let f€En*, let M be any maximal subordi-



INTERTWINING OPERATORS AND INDUCED REPRESENTATIONS 293

nate subgroup, and write f~ for ¢ restricted to M. Let [ =e "%, the conjugate of ¢~.
Then

U™ Ut UM = b U7 < toUex pirse.
But
U ®f =P on M,

{|IT®e=0/¢~ =0 onT,

and f€n* is p-rational < f—¢ is rational. Thus, proof of (19) reduces to showing that, for
heEn*,
T"" < U? = the orbit O(h) meets 1§. (21)

If ¢’ =1 this is well known [13; Cor. 2]. To prove (21) we exploit the fact that ¢’=1 on the
subgroup I'; of finite index in I'. Suppose that c=1Ind (M t N, h~) appears in 7=,U¢".
If we induce g; =o' |I'y =1|T'; to a representation 7; on N, then 7 is a subrepresentation of
7, and so ¢ <7 <7,. By Moore’s observation, Q(k) contains points rational with respect to
the rational structure determined by I';. Since [I': T";]< 4+ oo, these groups determine the
same rational structure Ng, so that Q(h) meets 11§. Q.E.D.

Before we prove (20) we need a refinement of the formula in Theorem 3.4, showing how

rationality considerations affect that formula.

LeMma 5.2. Let N, I', p be as in 5.1. Let f be a g-rational element in n*, m a rational
maximal subordinate subalgebra for f, Ny a rational normal subgroup containing M =exp (m),
and set 'y =T"N Ny, go=0|Ty. Let }~ =€*7 on M, 0,=Ind (M t Ny, /), o=Ind (M} N, }~),
To=Ind ([y 4 Ny, g0), and v=Ind (I'4 N, g). Then n the intertwining formula of 3.4, ap-
plied to the system (N, Ny, I'; 0, 0),

Homy(o, 7) = @y e npmr Homy, (o, ¥, 7o),
only rational double cosets (those meeting Ng) can contribute nonzero multiplicity.

Proof. Let ' =f|1n, (0p-rational in n§). For any y€N, go*y on N, is induced from /~ -y
on y~1My; thus g,y is associated with the Ny-orbit O = (f'-y)- N,. If 64y <1, it follows that
there are p, hyphen-rational points in O; there is an € N such that /' -y is gy-rational on 11,
Apply Lemma 4.3; we know f is g-rational and f-yx|n,={-yz is gy-rational. Hence there
is a 2ENg such that f-yx=f-2 on 1, Hence g, yx=04-2. Since Ind (Ny+ N, g,) is irre-
ducible, o, is stabilized by N, under action of N (remarks following 2.4), so that Nyyr=
Nyz and Noyl'= N (yey )yl =Nyyal'=Ny2[. Q.E.D.
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Proof of (20). Let m=n,=..Sm=n be the successive normalizers n;;;={X€n:
[X, n;]J=n,}, each a rational subalgebra with 1n;<n,,,. We write N,=exp (n,;), [';='n N,
o;=Ind (M 4 N, ) where 7 is the one-dimensional representation ¢** on M. For €N

we write
N(x) =x7IN,z, ox)=Ind (Mt N, n)-x,
I'yx) =T"nz1N;z, 7(z) = Ind (I';(x) + N,(), 0,(x)),
0s®) =¢|T'y(=).
If { is a representation on H< N we define {-2(h') ={(xh'x™) on H' =x~1Hz; thus o,(x)=

o, x is a representation on N,(x). We proceed by downward induction on j=k, k—1, ..., 1

to prove that
Homy(o, 7) = @7 wanr Homy (0 - @, 7,(2)), (22)

where the sum is taken only over the rational double cosets, choosing rational representa-
tives x. The result is obvious, saying Hom (¢, 7) @Hom (g, 7), if j =k. Assuming the result
true for indices k, ..., j+1 we wish to prove it true for index j. Because the general case is
a bit confusing notationally, we first give the simpler case j=%—1. Since &,_, <t N, Theo-
rem 3.4 directly yields

Hom(s, 7) = @« N\ Homy,  (0k_1-9, Te1) (23)

(without any rationality conditions on double cosets or their representatives). By Lemma
5.2, only rational double cosets contribute to this sum. Furthermore, for any y€N, N,_, =
Ny_1(y) since Ny_; <N, and Iy =TI'%_,(y); thus, g, =0x_1(y) and 7;_; =74 (y). Hence we

may rewrite (23) as
Hom(a, 7)== D7 v \wir Homy, 5(0k-1-4, Te-1(¥)); (24)

which is the desired formula for j=k—1.
In general we must grapple with notation, though the concept is simple. Assume the

result true for indices k, ..., §+1 so that
Hom(o, 7) = @7 Ny mir Homy, 0y(0y41 - 2, Ty11(2)). (25)

Consider a typical term on the right; we take x rational, so N,,,(x)=a"1N,, « is a rational

subgroup. Theorem 3.4 says that

Homy, (0541 %, T141(%)) = @ ¥ e wyon vy 1T @ HOMy 03((07 2) - 9, T()). (26)
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Note: (¢;°) y =0, xy. Again, 5.2 insures that only rational double cosets (with ratio-
nal representatives y) can contribute to the sum. For any y€N,, ,(x) we have N,(z)=
N,(xy) because N,;<qN;,,; thus, ['(x)=I;(zy), and g,(x)=pg,(xy), 7;(x) =7,(zy). Thus (26)

becomes

Homy, jof--) = @ye Nj@\ Ny 1@)ITy 410 HOM y 24)(05* Y, TH(wY)) (27)

for all rational x € Ng. We now combine (25) and (27). Let S< Nq be a set of representatives
for the rational double cosets in ¥, ,~\N/I'. We note that N o= U.es(V;1)e2l. [Inclusion
(2) is obvious. But if z€ Ny, then N;,,2I" is a rational double coset, equal to N, 2T for
some z €S; thus 2=nry and n =2yt €N N N,,, =(N,,;)q.] For each x€81et S, = (N ;,1)q
be representatives for the rational double cosets in NV (2)\V;,,(x)/T"; 1 (x). Since I'; ., (x) =
I'NN,,,(x) and N, () is rational, we again have (N,,(z))q = U {(IV;())qy';;1(x): y€S,}.
Thus,

No=U:cs{Nst1)oal'= Ugesz- (x_le+1x)QF
= Uzes Uyesxx(x_lex)Q?/FjJrl(x)F’: Uzes.yesz(Nj)QxyF-

These unions are disjoint, so the set {xy: €S, y€8,} is a set of representatives for the
rational double cosets in N, N\ V/I'. Therefore, combining (25) and (27), we get

Homy(o, )= @7 NANIT HomNj(w(O'j -2, 7,(%))
as required. Continuing the induction to j=1 we get

HOIIl(O', T) = @:e M\N/T Homx‘lMa:(f~ * &, Tl(x))‘
By Lemma 2.2,

Hom 1, (f~ -, 7(2)) @ Homsprzap(f~™ - 2| T N2~ Mz, o|T 0 x7 ' Mz).
Combining these remarks we get formula (20). Q.E.D.
The isomorphism in formula (20) can be written down as follows (see section 6 for

details). If
A€Homr g1 y.(f 2| N a7 "Mz, o|T 02 Ma),

we define B€Hom (o, 7) by letting
BF(y) =2y erna-maar Q(V)flAF(xVy) (28)

for continuous F with compact support modulo M. Of course 4 is a scalar here. In parti-
cular, if p=1 these formulas tell us how to set up orthogonal subspaces of functions in
F(U?) =L¥I™\ ), one for each xE(F\N /M)*, which span the ¢-primary subspace in L2.
This formula was first obtained in [16].
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§ 6. Computational details for (28)

We must unravel the isomorphisms used to obtain (20) to get the concrete isometries
I*: Hom (f~ -« |I' N ~1Mz, o|I' N *Mxz)~>Hom (¢, 7) we want. The details are the same
regardless of which x€(I'™\\N/M)* we consider, so we shall construct the isometry
LHom(f~|['N M, o|I'n.M)->Hom (0, r) and then indicate the simple changes which oceur
when we replace f~—f~-x and M-z 1Mx.

Define N, T';, 6, 0,, T; as above (setting x =e); then let

szFjN]—l’ l]=Ind (F] THj) Qj)’ fOr 2<j< k,
and
6;,=Ind (N;; + N,, 0,1), 7,=1Ind (H; 1 N, 4;).

These objects are related as shown in Figure 3, where rising arrows indicate induction,
and falling arrows restriction. Obviously ¢;~0; and 7,27, by induction in stages.
We obtain I by writing out explicitly the isomorphisms and “lift operations’ (indicated
by arrows) in the following scheme. Here, by definition, Hom (¢, |T';, o) =Hom (f~ |'n M,
o|' N M); the first = follows from Lemma, 2.2.

Hom (g, |I'}, o) *Hom (03, 7;) =2 Hom (0, 4,| N;)~
—Hom (6,, 7,) *Hom (0, 7,) 2 Hom (03, 45| Np)~
(29)
... 2Hom (03_s, Ax—1 I Nyo)~
~Hom (64_y, Ty,) = Hom (03_y, Tx_y) = Hom (oy_y, A | Nyy)—~>
-Hom (6, 7,) = Hom (03, 7;,) =Hom (o, 7).
Fortunately, things combine to give a simple formula at the end (and each time we reach
Hom (g}, 7,)). Within H(s,) let H(o;), be the continuous functions with compact support
modulo N, = M; likewise, let #(t,), be the continuous functions in H(z,). The isomorphisms
0,26, T,2 7, are given by isometries W,, T'; defined by specifying their actions on (o},
H(T))o- It fEH(0))os
(Wi{n)](n;4) = f(n;yn) n; ,€N; 4, n€N, (30)
defines a vector W,f(n)€ H(o;_,), which varies continuously in » €N, and has compact
support modulo N;_,, so that W,;f€ H(&,)o. If f€ H(T,)es
(T;f(m)])(h;) = f(hsn) h,€H;, n€N, (81

defines a vector T';f(n) € 3(1,), (continuous functions-on H; varying like g along I';-cosets)
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(0=0y, &%) N=Ny(t=1,7)

T>ka>

(O'k_.l, &k—l) N}c—l(rk—ly %k—l) FkEP (QkEQ)

o it \l

(Cr-2, Gr-2)  Np-o(Tig, Tr_g) . (07-1)

T J

(03, G3) N, \ r, (94)
| mian |

P

(03=5,) N, (75 72) Ly (03)
T\H 2(4) l

i e

(f=0)) M=N, (=t ) T, (02)

(f[FﬂMEO‘1|F1) PnM=Iy (e1=0|T' n M)

Figure 3.

which varies continuously with n €N, so that T',f€ H(z,),. The first isomorphism in each
row of (29) maps 4 to T7'AW,.
The second isomorphism is obtained as in Lemma 2.1 via the isometry R;: ¥(z,)—~

y(ljﬂ‘Nj) = u(}‘jﬂ):

Biply;ang) =ely;n)dny) allhyy=y;,n,€H;,,
for $€U(z;)e. Thus, an intertwining operator 4;€EHom (o;, 7,) is identified with Aj=
R,4;€Hom (7), 4,41 | N;)

(A3 () = 0y (AsH) () all by =y, am,€H
it 1€ (0 )o.
The process of lifting A € Hom (0y|I';, ¢,) to an operator in Hom (g, 7) begins by using
the construction in C. Moore’s Lemma 2.2 to get- 4, €Hom (g, 7,): if v€ (o) (=0),

(4,v)(n,) = Aoy(n,)v  all n, EN,.

Inductively, given 4; , €Hom (o, ,, 7,_4) we lift it to 4,€ Hom (g;, ;) by first transform-
ing it to 4] ; =R, ; A, ;€Hom (0,.;, ;| N, ;). Next, lift 4] ; to 4,6 Hom (§,, T;), applying
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the standard construction of Theorem 3.3 to.the system (N, N,_;, I';; 0,1, A;) M fEHW(G ),
the pointwise formula (1) is valid, and takes the form

(Jif)(nj):ZVEI‘i_l\ijzi(y—l)A},—l(ﬂf(ynj)) all €N,

Finally, transform 4, to 4,=7T;'4,W;6€Hom (g,, 7;) to complete a full step in the process.
We assert that 4,f is given by the following pointwise formula for f€ H(o;)e, 1 <j<k:

4;f(n))=Zyerar, oy D A(f(yn) all n €N, (32)
If U is a compact set in N, only a finite number of terms in the right hand sum are non-
zero on U, so the function B;f(n,) defined by the sum is continuous on N,, and hence lies
in H(z))y if 1€ H(o;)e. Trivially, 4,f(n)=B,f(n), all n€N,. Assuming the formula true for
index j—1 we show it valid for § by showing that Ty(B,f)=T(4,f) in ;). Now, T B, )
maps N;— H(A,),: for n€N,,

(Ty(B;f) (n)] (h;) = B, f(k;n) = B, f(y,n1-17m)
=Zyerar, 0y ) A({yy;m-1m)) = 0(¥y) Zyerar; oy ) Af(yns-1m)

if h;=y;n,_€H, Onthe other hand, 4,/ =T;'4,W,f,s0T{A,f)=A4,(W,}). Since € H(c,),
it follows that W,f€ H(G,)e, so the pointwise formula for lifting 4}_; to A, applies:

AW, (1) =Zyer,_pr, 4y ) 4T(W;f(ym))  all n€N,
(finitely many nonzero terms). Since 4,(W,f)€ H#(%,), this is a function on H; for each
nEN; it hy=y,m, y,
LW, 1) ()] () = Z0 400~ Y) (A5-1(W; f(ym)))] (y)
= 2147 (W, flyn)] (hyy™")
= A (W fm) syt ymyay™)
=2, o) oty ) A1 (Wif(ym)] (yny_1y ™).
Since yn €N, ¢=W,f (yn) lies in H(0;_;)g, 50 the induction hypothesis applies,
=0y 2y 0(y™") 2y erar,_, ) TAWW fym)] (¢ ymy-a y ™)
=) 2y 0y V) A sy ym)) = @) Zyerar, 0y Alf(yny_m)),
as required. When j=k we get I(4) =4, =B,
Bf(n) =2, erar oly ) Af(yn) for fEW(o),

If x€(I\N/M)*, this discussion applies verbaitm if we substitute f—f -z, M—>z1Mz;
we get intertwining operators AZ€Hom (Ind (z—1Mx 1 N, f-), 7). These are to beidentified
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with operators I°(4)€Hom (o, 7) using ‘thé natural isomorphism f(n)—>f(xn) between
Ind (:..) and o. Thus we get

IF(A) f(n) = 2 erar o(y™?) Af(xyn)  for @ §€H(a),.

§ 7. Other examples

As another application, using Theorem 3.7 together with Mackey’s theory of induced
representations, let & be the group of Euglidean motions of the plane, and let I' be the
subgroup generated by translations by integers and rotations by multiples of /2. We can
regard @ as the semidirect product of K =C by the unit circle 7, where ¢’ €7 acts on C
by multiplication. We identify K~ with C by letting w. correspond tom,(z) =€*"'**“*) The
action of T’ on K* is still multiplication, so the T'-orbits in K~ are the c,ircles_’]z| =r, r=0,
If >0, the stabilizer of a point in the orbit is 1; for r=0 the stabilizer is 7. Thus the ir-
reducible representations of @ are given by ¢,=Ind (K t G, m,,;), >0, and by u,(2, ') =
"0 for n €2 (corresponding to r =0).

Now let g be the trivial representation on I, and let 7=1Ind (I" 4 G, ). The g, it
neatly into our theory, and we can apply 3.4 (or 3.7).‘ Since

fUOTNE =Tnd (Z+4Z 1 C, 1) Dyez+iz Ty

and. the T'-orbit, of m,, is just {7, 7,4}, it’s easy to check that ¢, appears in T<there is
a point in Z +4Z with norm r<-r? is the sum of two integer squares. Then

‘mult (o,) = } (total number of ways of writing 72 as m?+4-n2, m, n €Z)

=} (number of “integral points” on |z| =r).

The -p1,; being one-dimensional, appear in r<the,function g, is in L¥I™\ G); thus the
Uin(n€Z) appear, each with multiplicity 1

This result is not new; see [20; Thm 1], and ‘also [21]. Our method works, however,
on'the other Euclidean motion groups. For instance, let G be the Euclidean motion group
of R®and T the group generated by integral translations and rotations by 7/2 about the
coordinate axes. If K is the subgroup of all translations then K "NR?' the orbits are 2-
spheres about the origin, and the representation o, corresponding to the sphere ll|| = rof

tadius 7 >0 oceurs with multlphmty

4 (number of points in Z3 0 {: ”x" =r})

=1 (number of ways of writing r? = m?+n?-+p? with m; n, p€Z).

The details are straightforward.
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§ 8. Remarks on adelic groups

Finally, we make an application to adelic nilpotent groups. The main result is due to
Moore {13]; since we need much of his discussion to justify our arguments here, we merely
indicate how his final result is obtained by the above methods. Let Ng be a nilpotent al-
gebraic group over Q and let N =N 4 be its adelized version. Then Ng\ N 4 is compact, and
we are back in the general situation studied in this paper. All the arguments of the last
two sections go through, with one simplification: a one-dimensional representation g of
N g automatically extends to Na. However, the final formula in Theorem 5.1 simplifies
greatly. If two elements 7, ! in an orbit O are p-rational, they are in the same Ad'(Ng)-
orbit (because they are conjugate under arational element of N ). Hence only one M N{Ngq
double c‘oset can have rational elements. Thus Hom (o, 7) =C if 0= 0(0) has p-rational
elements, and is =0 otherwise. That is, the multiplicity of ¢ in 7 is 1 or 0 depending on

whether (O(c) has g-rational elements or not.
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