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w 1. Introduction 

Let G be a second countable locally compact group and 1 ~ a discrete uniform subgroup 

( F ~ G  compact). Then the quasi-regular representation G •  de- 

composes into a direct sum of irreducibles ~ : n t ~ z ~ ,  each with finite multiplicity. If  G 

is a simply connected nilpotent Lie group, the problem of determining the spectrum 

{~r~} _ G ̂  and multiplicities n~ was first discussed by C. C. Moore [13]; later, L. Richardson 

[16] and R. Howe [6J independently gave closed formulas for calculating the spectrum and 

multiplicities in this situation. Recently, Auslander and Brezin [1] and R. Howe [19] 

have developed inductive proceedures for determining spectra and multiplicities in solv- 

manifolds. 

In  this paper we given a construction of intertwining operators between induced re- 

presentations, reminiscent of a construction of Weil [18], which generalizes Mackey's 

theorem [8], [10; p. 122-130] on intertwining operators between induced representations 

of a finite group. Recall that  if H 1 and H2 are subgroups with unitary representations ~z 1 

and ~r2, and if ai = I n d  (H i ~ G, ~) ,  then for any finite group G Mackey's formula gives the 

intertwining number for al and a2. In fact, Mackey constructs all intertwining operators 

exphcitly. We employ a different construction and prove that  it yields all intertwining 

operators in the case when G is second countable, H1 is normal in G and al irreducible, 

H 2 ~ G  is compact and z~ finite dimensional, and H 1 f~ H ~ H  1 is compact (Theorem 3.7 

below). This theorem plus some additional work yields the Howe-Richardson results, but  

it also applies in other situations. 
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Our construction is similar to those found in Weil [18], Richardson [16], and Auslander- 

Brezin [1], though it  applies in a more general setting. Our proof tha t  the operators are  

well defined is different because of the more general context in which we work; it is quite 

elementary. To show tha t  we have all the intertwining operators we use a simple ease of 

the Mackey subgroup theorem, but  in our situation the direct integral can be (and is) 

written out quite explicitly. We also use the notion of weak containment, especially as it  

applies to CCR representations. We do not invoke any of the more advanced aspects of 

the Mackey machine. One main result is the following analog of Mackey's intertwining 

formula (see 3.7 below). 

T R E O R ~ .  Let G be a second countable locally compact group and K, F closed subgroups 

such that (i) K is normal in G, (ii) I ~ G  is compact and has/inite invariant volume, (iii) 

K N F ~ K  is compact (hence has finite invariant volume), (iv) K ~ K F  is discrete. Let ~ be 

a/ ini te  dimensional representation o/ K such that (~ = GU" is irreducible, let ~ be any/ini te  

dimensional representation o[ F, and let T =GU q. Then 

Hom(~U ~, GU Q) ~ (b y~tc\ a/r H o m r n K ( ~ ' y ] F  N K, D]F N K). 

Here ~-y(Ic)-Te(ylcy -1) and Hom (...) is the space of bounded linear intertwining operators. 

The direct sum is an algebraic direct sum since ttOmv (U ~, Ue) must  be finite dimensional 

if nontrivial, in this context. I f  z is not finite dimensional, there is still a useful intertwin- 

ing formula which is a less direct analog of Mackey's formula for finite groups (see Theo- 

rem 3.4 below, and the commentary  with equations (5) and (6)). 

w 2. Preliminary remarks 

Throughout sections 2 and 3, G will be a second countable locally compact  group; 

K, F will be closed subgroups such tha t  (i) K is normal in G, .(ii) F ~ G  is compact with a 

finite G-invariant measure, (iii) F N K ~ K  is compact. Note: I f  F is discrete and F ~ G  

compact it is easy to see tha t  G is unimodular, and there is a finite invariant  measure on 

F ~ G .  Also, (i) ... (iii) imply tha t  F n K ~ K  has a finite K,invariant  measure. [Pf: First, 

F N K ~ K  compact ~ K U  closed. By an elementary theorem [15], both K F ~ G  and 

F ~ K F  have finite volume. But  the map (F N K ) . k ~ F . k  is a K-equivariant  homeomor- 

phism from F N K ' ~ K  to F ~ K F . ]  

I f  z is a representation of a subgroup M, its Hitbert  space will be denoted by  ~4(7~). 

We let a U = = I n d  (M ~ G, 7c) be the induced representation. I f  L is another subgroup, 

L___ G, then z i L  is z restricted to L; thus, aU~]L is z~ induced f r o m M  to G and then re- 

stricted to L. I f  xEG and ~ is a representation of a subgroup M ,  the conjugate xe x or z . x  
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Figure  1 

is the representat ion of x~lMx modeled in ~(~)  such tha t  ~(g)=~z(xgx -1) for g Ex- lMx.  

Usually M will be normal. I f  ~, ~ are representations of M, then H o m  M (7~, ~) is the space 

of bounded linear intertwining operators from ~(~z) into ~(~.); we omit the subscript M 

when no confusion will result. 

Next  we establish a few lemmas. The first is a formal property of the  induction pro- 

cess. 

LEMMA 2.1. Let K be normal in G, M a closed subgroup such that K M = G .  1] ~ is a 

V:Z unitary representation o / M ,  then a I K ~ KU ~IKnM. That is, the diagram in Figure 1 com. 

mutes ( i = induction, r = restriction). 

Proo/. The ]-Iilbert space of aU ~ is made up of measurable funct ions/ :  G-* ~4(~z) such 

tha t  ](mx)=~(m)](x), all m e M, x e G. Such a function is determined by  its values on any 

set meeting each M ~ G  coset at  least once, such as K. !Y[oreover, the action of K on / is 

determined by what happens on ]IK, and  the spaces M ~ G  and M n K ~ K  (which are 

naturally isomorphic) have the same quasi-invariant measures. Now it is not hard to show 

t h a t / ~ / ] K  gives the isomorphism desired. Q.E.D. 

The next  lcmma will be used to make some final reductions in our work. A detailed 

proof is given in Moore [12]. 

LEMMA 2.2. Let F be a discrete subgroup such that F ~ G  is compact, and let ~z be 

a ]inite dimensional representation of G. Let  @ be an irreducible representation o / F .  Then 

Hom~ (~z, cU e) ~ H o m  r (~z Lr, e). 
In  fact, the equivalence is given as follows. I f  A EHomr  (~zlF, @) define B: ~(3z)-~ 

~(Uq) by  Bv(g) =A~z(g)v; the map A ~ B is the desired isomorphism. I t  maps onto because, 

if ~z 0 is a subrepresentation of U q equivalent to ~, then z0 is realized on a space of continu- 

ous  functions. Given B we get the corresponding A by  taking Av = By(e). 

Next  we prove lemmas which show tha t  all representations we deal with are type I. 

In  our applications to nilpotent groups, all representations are known to be type I,  and 

these lemmas are unnecessary. However, they  are needed to establish the intertwining 

theorems in the generality given here. 



278 L.  C O R W I N A N D  F . P .  G R E E N L E A F  

L~M~A 2.3. Let K be a normal subgroup o] G and F a closed subgroup o/G such that 

F~.G and F N K ~ K  are compact with/inite invariant measures. Let Q be a/inite dimensional 

representation o/ F, 2=rK Ue=Ind (F ~ KF, ~), and consider the restriction 2]K. Let S= 

(g.xEK^: xEG and ~ any irreducible representation o / K  occurring in 2]K}. Then S is a 

closed set in the hull.kernel topology o / K  ̂ . 

Proo/. By Lemma 2.1, 21K~=KU qwnK. I f  F (1K is discrete it is well known that the 

latter is a direct sum of CCR irreducibles [5; section 2], each with finite multiplicity. 

Actually [17], the result is true for any subgroup M_~ K (discrete or not) such that  M ~ K  

is compact and has finite invariant measure. The spectrum T of this representation, the 

irreducible CCR representations {~,}_ K ^ occurring in it, form a discrete, closed, Haus- 

dofff subspace in K ̂  [4; Theorem 1.8]. Also, T is invariant under the action of F on K ^, 

because KrUq~=KrUq for ~,EF. Let C be a compact set in G such that  G=FC. Let {~}  

be any net of elements in S which converges to an element ~ E K  ̂ . Each ga is of the form 

$~.x~ with $~ E T and x E G. Because T is F-invariant we may choose the ~ and x a so that  

x~EC for all ~. By passing to a subnet we may assume that  x~-~xEC. But the map K ̂  • 

G--->K ̂  is jointly continuous. [From Fell's description of the topology of K ^ in terms of 

positive definite functions on K [4; Theorem 1.5], this is easily seen by examining limits 

(uniform on compacta) of positive definite functions associated with representations in 

K.] Thus ~a=~a.x-l-~ye.x -1. Since T is discrete the ~a must eventually all be the same 

element ~ET, so that g ~ . x E S .  Q.E.D. 

LEMMA 2.4. In the situation o] Lemma 2.3 the restriction o/GU q = I n d  (F ~ G, ~) to K 

is type I, as are all o/ its subrepresentations. 

Proo/. Let S = T. G as in 2.3. As noted, the elements of T (hence also S) are all CCR 

representations of K, and S is closed in K ̂ . Let A(K) be the group C* algebra of K; then 

I = hull (S) = (a E A(K): ~(a) = 0, all ~ e S} is a closed two sided ideal. The C* algebra A(K)/1, 

has A ̂  = ker (I) = S. Since all elements of A ̂  are CCR, A is type I. By Maekey's subgroup 

theorem, the restriction of T=cU ~ to K can be written as 

~ I K =  (2lK).xd/~(x) (where ~=KFUO~KUqIFnK). 
F \ a  

For each xEG, ( 2 ] K ) . x = ( ~ n ~ ) . x  is a direct sum of irreducibles in S, and so 

((,~lK).x)a=O for all aEI, xEG. By the direct integral decomposition of ~]K, we get 

v(a) =0, all aEI; thus, v is the liftbaek under A(K)-+A(K)/I of a representation of the 

CCR algebra A, and is type I. Q.E.D. 
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We note one other straightforward fact. I f  r~ is a representation of a normal subgroup 

K such tha t  (~=aU ~ is irreducible, and if xEO, x q K ,  t h e n ~  and z . x  are inequivalent, so 

tha t  the stabilizer of :z under the action of (7 on K ^ is Staba (g) =K.  This follows from 

Mackey's theory, but there is a short direct proof. [Since a = a U  ~ is irreducible, so are 

and :z.x as representations of K. I f  A EHomK (re, ~r.x) then the operator B: ~4(~)~4(a)  

defined by  B/(y)=A(/(xy))  is well defined, for i f / cEK we get 

(B]) (ky) = A (l(xky)) = Ag(xkx -1) l(xy) = g(k)A/(xy). 

Clearly B EHoma (a, a) and cannot equal a scalar multiple of the identi ty operator if 

A = 0  and x t K .  Since a is irreducible, A =0.] 

w 3. Construction of intertwining operators 

Throughout this section we consider a system (G, K, F; g, Q) of closed subgroups and 

unitary representations such tha t  

(i) K is normal in G 

(ii) F ~ G  is compact and has finite invariant  measure 

(iii) K N F ~ K  is compact (hence has finite invariant measure) 

(iv) K ~ K F  is discrete 

(v) ~ is a representation of K such tha t  (~ =aU ~' is irreducible 

(vi) ~ is a representation of F. 

I t  follows tha t  K N F ~ F  ~ K ~ K F  is also discrete. Later  we will add a finite dimension- 

ality condition on ~. We write z = a  Uq. 

Suppose tha t  A Et Iom (~IF N K, q IF N K). To justify Maekey's formula (for finite 

groups) we should t ry  to write down, formally at  least, a corresponding element B =  

J A  EHom a (a, T). Recall tha t  a operates on a space of measurable functions F: G-~ ~4(g) 

such tha t  F(kx)=~(]c)(/V(x)) if kEK; likewise for ~ with respect to Q. A little thought  re- 

veals tha t  the following averaging process should produce an intertwining operator from 

A, 

(BF) (x) = ~v~rnK\r  ~(Y-1)A(F(~'x)), (1) 

the sum taken over any  set of eoset representatives for F N K ~ F .  This makes sense as a 

sum over representatives, because if we replace ~ by  ~0~ (~0 EF N K) we get 

e((yoy)-l) AF(yoyx) = ~ ( ~ ) - 1 ( ~ ( ~ 1 ) A g ( y o )  ) F(~x) = e(y)-l AF(yx) .  

Next  observe tha t  (BF)(y lx)=~(yl ) (BP(x))  for y l E F  (simply replace ~ by  yy;1 in the 
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sum). Clearly, if we can show t h a t  the sum converges for almost all x, and determines a 

bounded operator,, then I B E Hom,(~, v). We start the proof that  B is bounded with two 

lemmas, 

Let  u, v E 74(~) and let 7 E P. The map K-+ C defined by/c  =+ (A~(k) v, Q(7) -1A~(yk7 -~) w~ 

is constant on F N K-cosets in  K: if 70EF N K (which is normal in F) then 

(As  (70 k) v, ~ (7)-~ A:z(770/c7-1) w) 

= (P(70) A~(]c) v, 9(7)-~9(7707 -~) As(ykT-~) w) = (As(k) v, p(7)-!A~(7/c7-1 ) w). 

L]~MMA 3.1. Let ,(G, K, F; ~, ~) be as above. I / 7  t F  N K, 7EF, then 

frnK\K (As(lc) ~(y)-~As(7]c 7 -~) w)  d]~ = 0 V, 

/or all v, w E ~(Te). 

Proo/. Define T: 74(~)-~ :U(s) by 

<Tv, w> = <As(k) v, e(7) I ~A ~ ~ ~ ~ 7+ -1 ) W~ d]~. 

Routine estimates show that  T is bounded. If/c o E K, then 

(T~(ko)v, w} = ~ (As(kko)v,  ~(7)-lA~(Tk T-1) w} d~ 
,iF nK\K 

= f r~ \~  (An(k) v, ~(7)-1A~(7~17 -1) w) dk 

= frn~\K (A~(k) v, e(~)-lA~(Tk 7 -1) ~(~1) w) dk 

= <Tv, ~(ko ~) w) = <~(]r Tv, w).  

Hence T E H o m  (z, ~'7)- Now apply the remarks about Stab a (7~) at the end of section 2 

to conclude that  T = 0  if 7 6 F ~  (F N K). Q.E.D.' 

Lv=MMA 3.2. Let F: G-+~(~) be continuous, satis/ying F(Icx)=z(k)F(x) /or all /cEK, 

xEG, such that IIF(x)II=IIF(Kx)II has compact support in K ~ G .  For each x e G  let Sz= 

(TEF: 7xEsupp (F)}. Then there is an integer n F independent o] x EG such that Sx is the 

union o/ at most n cosets o / F  N K. 

Proo/. As noted, K N F ~ F  ~ K ~ K F  is discrete. Clearly Sx is a union of K N F-cosets. 

Choose compacta C1, C2--- G such that  supp (F) ~_ K.  C 1 and G = F.  C~, Then F fl ~ K C 1 C ~  1 
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is compact since K N F ~ K  is Compact, and hence meets the discrete set F n K ~ F  at 

finitely many points. Let  n be the number of points. To show that  this n works, consid- 

er any xeG and let x=$x~ (~EF, x~qC~). Then S~.$.x~=S~.x~supp(F)~_K.C~, so 

that  S ~ K C ~ C ~  ~. Of course we also have (FNK)S~-~_~F. Hence F A K ~ S ~ ? g  

( r  N g ~ r )  A ( r  N K'~KC1C~ i) has at most n elements. Thus P N K~'~S~Z and P N K'~S~ 

have cardinality at most n. Q.E.D. 

Among other things, this observation shows that  the sum over F N K ~ F  defining 

BF in (1) has at most nv nonzero entries for each xeG, and so is well defined. 

T ~ E O a E ~  3.3. Let (G,K,F;~,O) be as above and let A e H o m ( ~ [ P N K , ~ I F N K  ). 

For all continuous /unctions F: G - ~ ( ~ )  satis/ying F(kx)=~(]c)F(x) all keK,  xeO, such 

that II F(x) ll has compact support in K ~ G ,  de/ine. B F(x) as in (1). Then B F E ~4( U e) and B 

extends uniquely to a bounded linear operator B: ~( U~)~ ~( UO). In [act, BEH o m  (U ", U ~) 

and the map J: A ~ B is  in~ective. 

- U" and v=eU e. Since B is defined on a dense set, the uniqueness of Pro@ Write a - a  

any bounded extension is clear. From what has a l ready been said; only the boundedness 

o f  B and the fact: B = 0 ~ A ~ 0  require proof. First we compute [IBF[[ (afterwards we 

will justify our use of Fubini in interchanging integrals over F N K ~ G  with sums over 

r n K \ F ) .  

f r \ a  ~r,. r. ~ r n ~ \ r  (Q(~'i)-IAF(~'I x), D()~i- 1~,~ 1) A g ( r  a ~)1 X)} d& 

= f ro  o ~ "~ o(r3)- x)>d2 

Fix 73; then 

frn~:\~ (AF(x), ~(~a)-IAF(:~a x)) d~ 

unless 7aEFN K, by Lemma 3.1. Hence by Fubini, 
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HBFII ~= f rnK\ a (AF(x), AF(x) ~ di: < IIA [I~ f K\ a f rnK\ K iiF(kx)]l 2 d]~ di~ 

= IlAll llPII �9 volume (r n K~K) (2) 

Thus  IIBFII < § oo and B is bounded. If A is nonzero then for some FE ~(a), i F (x ) i s  
nonzero on a set of positive measure and so, by (2), ]]BF H 4 = O. 

To justify our use of Fubini, we show that  

f p \ a  v, ernK\r [ (O(~I)-IAF(~, x), 0(~2)- 1AF(~2 x))  Idx 

is finite. By 3.2, this expression is dominated by 

IIAII \ ~  IlPll d  < + oo. QED 

We note two facts about this construction. Let  Fo = F N K. First, if y E G then equation (1) 

determines a map 

J : Homro(Z~ �9 y [ Po, e [ F0) -~ Homa( U ''~, UQ). (3) 

But U ' ~  U "'~ under the isometry IV: 74(U') -~ ~ ( U  ~'y) given by IyF(x ) = F(yx). This in- 

duces an isomorphism qby: Horn (U ~'~, U~)-+Hom (U ", U Q) if we take ( r  
Thus, for each y EG, we may regard the map (3) as carrying t Iom (z-y[ F 0, ~] F0) into 

Hom (U ", U e) by replacing J with J=gPYoJ. Now if kEK, ~,EF, routine calculations 

show that  R:A~o(7)-IAz~(k)-I is an isomorphism between Horn (~.YiF0,01F0) and 

Hom(~. ky 71F0, 0 ] F0). Further calculations show that  the maps in Figure 2 commute. Thus 

the J-image of Hom (~. y ] F0, e [ P0) in H o m (  U ~, U ~) depends only upon the K ~ G / F  -- G/KF 
double coset to which y belongs. In this manner we obtain a linear map 

J: ~ K \ a / r  Hom (~ .y lF  N K, 0IF N K)-~Hom (U',  UQ). (4) 

We do not yet  know if J is injeetive or surjective, though it is injective when restricted to 

each subspace in the direct sum. We shall examine these questions in a slightly different 

context. Second, if B, = JA, (i = 1,2) and if As and O(7)A~ have orthogonal ranges for all 

7 e F 0 ~ F ,  then B~ and B,  have orthogonal ranges (as a computation like that  in Theorem 

3.3 easily shows). 

Given the system (G, K, P; g, ~), Mackey's formula has as its most direct (formal) 
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generalization the statement 

Homa(U ~, UQ) ~ (~yEK\a/r HomKnr( zt "Yl F fl K, q] F f3 K). (5) 

However, we may form the related system (G, K, H;~ ,  2), where H=KF and ]L=~U ~, 

which also satisfies properties (i) ... (vi) as noted below. For this system Mackey's formula 

says (formally) that  

Homa( U ~, U ~) -~ (~ y e K \  G/ H Hom~(7~. y, ~IK). (6) 

But it is obvious that  ttoma (U ~, Uq)~Homa (U ", U~), and by an earlier lemma we know 

that  X IK =~ ~U QjrnK, so that  for all y we have 

Horn K (~.y, 21 K) = H o m  K (ze.y, KuqlrnK). 

If z is finite dimensonal then formulas (5) and (6) are equivalent by C. Moore's formula 

(Lemma 2.2), because 

HomK (~.y, EU qlrn~) ~ HomrnK (z 'y]  P f3 K, q] P f) K), 

so either formula could be taken as the generahzation of Mackey's formula in this case. 

If dim ~r = + ~ formula (5) breaks down, but  formula (6) remains Valid, so it should be 

regarded as the correct generalized intertwining formula. In our later applications we will 

use both formulas, though we lean most heavily on (6). 

Let  H =KF;  compactness of K fl F ~ K  insures that  K F  is closed. Obviously H ~ G  
is compact, and in fact has an invariant measure. [Lift the G-invariant measure on F ~ G  

over to H ~ G  under the continuous, onto, G-equivariant map Fx~Hx.] Furthermore, 

K ~ K H = K ~ K F  is discrete. Thus if 2=HU 'we may carry out the preceeding construc- 

tion using the system (G, K, H; zt, 2) in place of (G, K, F; ~, ~); this transition amounts to 
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assuming that  F ~_ K in that  discussion. Now for each y E G, J maps Hom~ (z. y, 2 [ K) into 

Hem ( U '  v, U ~) and J is a linear map, 

J: ~v~GmHOm~(g .y ,~ lK)~Homa(~  ,~U~). (7) 

This map is injective. In fact, if y and z are in different G/H = K~.G/H cosets, then ~.  (yv-1) 

and ~.z  are inequivalent in K ^ for all ~EF. Hence, if A1EHom~(g.y,~IK ) and A~e 
Hom~(z.z,  21K), then O(v)A~ and A~ have ranges in Y(~t) which correspond to distinct 

irreducibles and are therefore orthongonal, which makes (7) an injection. 

TH]~ORE~I 3.4. Let (G, K, F, ~, Q) be as above and suppose that ~ is/inite dimensional. 

Then 

Hom(U ~, U ~) ~ Hom(U' ,  U ~) 

�9 v e K\ e/H H o m K ( z  �9 y ,  )~ [ K )  

(~yeK\G/H HomK(z-y,  KUolrnK), 

where ~t = gr UQ. 

Proo/. By 2.1, ~IK ~ ~U elrnK. By induction in stages, ~U ~ ~ aU% so it suffices to show 

that  the map J in (7)is  an isomorphism. We already know it is injective, so our whole 

problem is to show it surjective: that  our construction produces all possible intertwining 

operators. Here we need )t]K type I. 

Let  a = a U" and v = a U a. We need explicit descriptions of the direct integral decom- 

positions of a I K and T ] K, whose existence is guaranteed by the Mackey subgroup theorem 

[9], 

f; L a ] K ~  ~.zdm(~), zl K'~ (~]K) .xdl~(~ ). (8) 
\a \a 

We want to compare these decompositions. 

Let  C~_ G be a fixed measurable transveral for H ~ G .  If/~ is the invariant measure 

on H ~ G  we m a y  regard/~ as a measure back on C, and identify the spaces (H~.G, I~) 

and (C, ~u). Likewise, we identify ( K ~ H ,  v) and: (D, v) indiscriminately, where D is a 

(discrete, countable) transversal for K ~ H  and v the counting measure. 

We begin with the decomposition of z ] K - - U a I K .  Using the transversal C we may 

ident i fy  FE  ~4(U ~) with a field :of vectors F ~ ={F~: xEC} defined by  taking F;(h)= 

F(hx),all hEH. Then F [  E~x , where we set ~ x =  ~4(~t)for all xEC, and we may identify 

L~(H\ G, #; ~(]t)) = L2(C, #; ~()0) = I | :Kzdla(x). (9) ~4(u% 
de 
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In this concrete setting, UX I K decomposes into the concrete representations (21K).x, all 

modeled on ~(2), 

j-c ~ (21K) �9 xd/z(x). (10) K 

The verifications are obvious, following Mackey's proof of the subgroup theorem. 

We want to compare T IK with U~'~IK for various y E G. The decomposition (8), cor, 

responding to the scheme K t G ~ K, is not convenient; it will be easier to compare de- 

compositions over the same base space. To this end we set re'(y)-~H U~'~ = I n d  (K ~ H, 

~ 'y) .  Then we decompose ~U~'~IK over H ~ G  = C as follows. First decompose 

~4(U ~'y) ~ f ;  X'~d#(x) (where X'x = ~4(nU~'V), all xEC) (11) 

by identifying a vector Fe:H(U "'~) with the field of vectors F-={F; :xEC) ,  where 

F;  (h) = F(hx) E ~(AU'" u). I t  is easily verified that  changing the representative of F affects 

the equivalence class of F ;  only on a null set in C, that  

if Haar measure m on K ~ G  is suitably normalized, and tha t  the vectors {F ' :  F E ~(U~Y)} 

span a dense set in ~c :~d,u(x), so that  (11) holds. The corresponding decomposition of 

U ~'~ IK is 

l g f :  . f :  ='(y) . (12) 

Applying the construction of Theorem 3.3 to the system (H, K, H; z .y ,  2), we define a 

map J': Homg (g.y, 21K)-~Hom ~ (g'(y),2). If  Fe~(~z'(y)) is continuous on H with 

supp HFll compact modulo K, and if A eHom~ (~.y, ~IK), then (1) gives 

(J'A)F(h)=~,~D~:\~ 2(~,)-~AF(yh) all h e / / .  

We next consider the constant operator field B::=J'Ai ~(~ ' (y) ) -~(2) ,  all xs which 

induces a bounded operator B =,~ B,d,u(x) from 

e , 74(  *) = 
~(U~'~)= Je  ~ i / # ( x )  into 

L ~ A  3.5. Let yeG and let A~Homg(ze.y, 2[K). 'I] we decompose ~(U "'~) and 
~ ( U ~ ) as in (9) and (11), then the operator JA  ~Hom(U ~'~, U ~ ) is decomposable 

~- j ~  (JA)~gI~(X) (13) JA 

where (JA)z =J'A: ~ ~z /or all x e C (the constant operator field above). 
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Proo]. I t  suffices to show that  J A  ffi B on a dense set of vectors F E ~(U~'~). Consider 

F which are continuous, such that  supp [[F[[ is compact modulo K. Then for any H-coset 

Hgo, Hg o t3 supp [1~'1[ =supp [[FIHgol I is compact modulo g .  [Indeed, writing supp I[F[[ = 

X K  for some compact set X~_G, we have HgoflXK=(Hgof3 X ) . K  since K is normal.] 

Under our map (11), F corresponds to a field F ~ = {F~ : x E C} with F~ (h) = F(hx) E ~H(zU ~" Y) 

a continuous function on H such that  supp [[ F :  [1 is compact modulo g .  Thus the point- 

wise formula (1) applies both to ( J A ) F  and to (J 'A)F[ .  For xEC we get 

(JA)xF'~ (h) = ( (J'A ) F ;  ) (h) = ~,~ D=K\H )'(y)-~AFx(yh); 

B F  corresponds to this field of vectors in ~c $ :Kxd/x(x). On the other hand, if Q= (JA)F  

and if g = hx for h EH, x E C, then 

Q(hx) = ((JA) F) (hx) = ~ DffiK\H Jt(7)-~AF(yhx). 

But  Q corresponds to Q~ ={Q~*} in ~c :Kxdp(x), where Q;(h)=Q(hx). For~t -a .e .  x E C w e  

get 
Q~ (h) = ~ r  ~ K \H 2(y)-IAF(yhx) �9 

Clearly then, (JA).F = B.F as required. Q.E.D. 

Let  ~ be the subspaee of ~ ( U  ~) spanned by the ranges of all the "standard" inter- 

twining operators JAEHom(U% U ~) obtained from A Ettom~ (g.y, ,~lK) under the 

map (7). For each yEG, $A=~P~(JA)=JAoI  ~ (recall Figure 2). Clearly JA and J A  

have the same range in ~(Ua), so we may determine ~ by examining the operators 

J A E H o m ( U  "'~, U~) for each yEG separately. From our decomposition (13) i t  follows 

that  ~ has the form 

~'~1 = I -~ ( ~ ) 1  d#(x) 
Jc 

where (X~)I = Xt  =closed span of {J'A(~lt(s~U"'u)): yEG, A EHomK (~r.y, ~IK)}~ :H(2). All 

fibers are the same. Let  3 ~ = 3 ~  in ~4(~), and set (~x)2=SE~ for all xEC; then ~/2= 

~H( U ~) | ~/1 decomposes 

:H2=[~(:K~)~d/x(x), ( :K x )~=~  for all x. (14) 
de 

The subspaces :H1, ~H2 are U~(G)-invariant. The following important observation follows 

from the definition of :El. 

There cannot be a yEG and A ~=0 in HomK (~r.y, 2]K) such that  range (J'A)~_ ~ .  

(15) 
Otherwise J A  would intertwine ~H(U ~'~) and ~'/2- 
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Now we are ready to prove J surjective, First, suppose T EHom (U ~, U ~) has range 

(T)_ ~41. We show directly that  T is in the range of J in (7). The idea of the proof is simple, 

though somewhat obscured by the notation needed to write it all out. 

LE~MA 3.6. Let "(G, K, F; ~, Q) be as in Theorem 3.4; let H = K F  and 2=~U Q. Then 

the range o/J, the space o/linear operators 

= J( Q ~ ~ g\am Hom~(~ �9 y, 21K)) _ Hom(U ", Ua), 

is/inite dimensional. I t  ~tl is de/ined as above and i/ T e H 0 m  (U ~, U ~) has range in ~l, 

then T E ~. 

Proo]. Notice that  U ~ has finite (or zero) multiplicity in Ua ~ U~; since J is injective, 

dim J~< + ~ .  Now let :?~=span {range (JA): A eHom~ (z.y, 2]K)}. These U~(G)-in- 

variant subspaces are identical for y in the same G/H coset (see Figure 2); they are ortho- 

gonal otherwise, as we have remarked in connection with (7). Hence ~1 = G { ~u: Y G G/H}. 

Moreover, 2IK ~-KU r contains at most a finite number of direet sum copies of ~-y, so 

that  HomK (~. y, ;~ [ K) = CE~ | ~ C E '  m where the E; are isometries onto pairwise ortho- 

gonal 2(K)-invariant subspaees in ~(2) on which ~IK acts like ~.y.  Let  Ej = J(E~); write 

range (E~) = :~]_~ X ~. We assert that  the E~ are isometrics into ~u with pairwise orthogonal 

ranges such that  ~ = ~ | | ~ .  In fact, if A = c~ E~ +...  + Cm E~n E Homx(~" y, 2 [ K), then 

by (2) (replacing (G, K, F; g, ~) with (G, K, H; g, 2) in that  calculation} we get 

for all F ~ ~(U~), Similarly, 

(JA~ (F), JA2(F)) = f K\v (A~ F(x), A2 F(x))din(x), 

so that  E~=J(E~) are isometries with orthogonal ranges. The inclusion (~u~ ...) follows 

because Hom~ (u 'y,  21K) = ~ CE~. 

Thus, ~4~= ( ~ : ~  where { ~ } = { ~ :  y~G/H, 0<i<m(y)} .  Let Pa: ~x--->:~a be the 

projection. Suppose tha t  T ~ Hom(U -, u a) has range in !~4r Then Pa T also intertwines, 

and if p~T+O, then it and the "standard" isometry Ea=J(E~) both map ~(U ' )  t o ~a. 

By irreducibility, P~Ts for c(~) eC,"so that  T = ~ P ~ T = ~  c(a) E~ is in ~. Q.E.D: 

Let Pa, P~ be the projections onto ~4~, ~ in ~4(U~)= ~ t ~ |  If T ~ H o m ( U  ", U a) 

has range (T)~  ~a, then P~ T is a nonzero intertwining operator with range in ~ '  Sine~ 
1 9 -  762908 Acta mathematica 136. Imprim6 le 8 Juin 1976 
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U" is irreducible, there mus t  be an  intertwining isometry T with range in ~s. We complete 

the  proof t ha t  J is surjeetive b y  showing tha t  (15) is violated in this situation. 

Now T intertwines a = U" with ~s, the  subrepresentat ion of ~ = U~ on the subspace 

~ ,  so we ma  F identify a as a subrepresentat ion of vs. Moreover, ~ [ K  is type  I on K, by  

2.4, hence so are vs[g  and ~[ g .  Let  2s = 2 [ g  restricted to  t h e  K- invar iant  subspace :Ks 

defined in (14). The decomposit ion )l[ K = ~ ~E intg~ induces a decomposit ion 23 = (~m~ ~ ,  

O<~m~<~n,, so t h a t  s p ( 2 s ) = { ~ :  m~=0}_~sp(2[K)=(Te~); both  spectra are discrete sets in 

K ^ consisting of CCR representations. Thus S~ = (J {sp (~t~)'g: g E G} is a closed set of CCR 

representations in K ^, by  exact ly  the same reasoning as in 2.3 and 2.4. 

Consider the direct integral decomposit ion corresponding to the scheme K~ Gr K, 

a [ K =  g . z d L  
\a 

As noted at  the end of section 2, the g .  z are inequivalent in K ^ since Staba (~ )=  K. Let  

R=:~.G, the orbit  in K ^. Now R and S~ are G-invariant in K ^. I f  R N $2~=121 we obtain a 

contradict ion because there would be a ~fEsp()ts) and x, zEG such tha t  : ~ ' z ~ , . z ,  or 

~" zx -1 ~:~ <~2s ~<~]K; i.e. there would be a nontrivial  operator  A E H e m  (~. zx -1, 2]K) with 

range in ~s ,  violating (15). 

On the other  hand,  we have already noted in (9), (10), and (12) t h a t  

"r~lK "" f :  2s" xdl~(x) �9 

Let  I s = h u l l  ($2) in the group C* algebra A(K);  thus S s = k e  r (Is) since S s is closed in K ^. 

Let  (an: n = l , 2 ,  ...} be a norm dense set in Is ;  clearly ~ ' ( an )=0  for all ~ ' E S  s. Since 

sp (2s). x ~ S~, 0is �9 x) an = 0 for all n and x E C. Thus (vs I K) an = 0 all n, which implies t ha t  

(a]K)a n =0 for all n. But  then  

(a I K) a n = f ;  (~. z) an dm(z) = 0 

where X is a measurable transversal  for K ~ G  and m = H a a r  measure on K ~ G  identified 

with a measure on X. For  each n there is a null set Nn--- X such t h a t  (~. z) an = 0 all z E X ~ Nn 

which means tha t  (~.z)a,~=O all n and all z E X ~ N  where N =  U~=l-Nn. By norm con- 

t inu i ty  of representations, we get  (z.z)a=O all aEA(K),  zEX, , .N.  This means precisely 

t h a t  {~. z: z E X ~ N} is weakly contained in S s (in K^). Since S s is hullkernel closed, we 

mus t  have { g - z :  z E X ~  N } _  S s. Hence S s N R is n o n e m p t y .  This completes the proof of 

Theorem 3:4. Q.E.D.  
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By  applying Lemma 2.2 we get the analog of Mackey's intertwining formula for finite 

groups, if ~r is finite dimensional. 

COROLLA~r 3.7. 11/ in the situation o/ Theorem 3.4 the representation ~ is/inite di- 

mensional, then 

Horn( U ~, U ~) ~ ~ ~ ~ ~\ g Jr I-Iomrnx(~r �9 y ] F f~ K, 01P N K). (17) 

w 4. Algebraic preliminaries on nilpotent Lie groups 

In  discussing a simply connected nilpotent Lie group N we use the rational structure 

corresponding to a given uniform discrete subgroup F. The subgroups H such tha t  H f) F ~ H  

is compact turn out to be the rational subgroups of N. We use the following basic facts, 

see [2; Appendix] for further details. Define nQ = Q-span {log (F)}. This is a Lie algebra 

over Q by  the Campbell-Itausdorff formula and 5rQ = e x p  (110) is a dense subgroup in N. 

A closed connected subgroup H E N  is rational if H = ( H  f3 NQ)-; equivalently, H N F ~ H  

is compact.  A real linear functional /~rt* is rational (/~It~) if /(lt~)~ Q, or equivalently 

/ (log F)_=Q. I f  H is a closed connected subgroup and F '  =H f3 F is uniform in H, then the 

rational points HQ it  determines coincide with H fi 1VQ. 

In  the following, a number  of our previous notational conventions are inoperative. 

We shall use general facts about  Kirillov theory; see [7] or [14] for an account. Kirillov 

theory associates to each irreducible a E N ^ the Ad'(N)-orbit O of some f E n*; a =a f is ob- 

tained by inducing ]~ (exp X) - e ~=~(r' x> from any maximal subordinate subgroup Mr up 

to N. I f  O contains a rational element /E~t~, then there are rational maximal  subordinate 

subalgebras mr, and furthermore the normahzer {XEn: [X, l]___|) of any rational sub- 

algebra l~_n is rational and properly contains [ unless [=II;  see [2; Appendix]. Thus 

we get rational subalgebras ms=ltl_cn2___...~n~=n such tha t  nj is a proper ideal in 

I f  CEil* is a Lie algebra homomorphism of 11, then r 1 6 2  is equal to r for all 

n f i l ;  thus the orbits ( f + r  and f . N  are equal for any  ]en*. 

L ~ M A  4.1. Suppose /, ['En* are both rational and lie in ~the same Ad'(N)-orbit O. 

Then there is an xeNQ such that/ '  =/ .x .  

Proof. Let ml be a rational maximal subordinate subalgebra fo r / .  From the proof of 

the theorem in [14], Par t  I I ,  Ch. 1, See. 3 it follows tha t  one can choose rational elements 

{X 1 .. . .  , X~} ~_ ItQ (d = n - d i m  mr) spanning a real subspace transverse to mr, and a basis 

of rational elements {% ..., en}--- n* with the following properties. Let  t = (tx . . . .  , td) fiR ~ and 

write 
�9 , o � 9  n ~ ~ g(t)=Ad'(exp(tlX1) .exp(taX~))/=~j=~Qr ( )e 
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Then 

(i) t-~g(t) is a homeomorphism of R d onto O. 

(ii) The Qj are polynomials with rational coefficients. 

(iii) There exist indices 1 ~< ]1 <...  < ~d ~< n such that  Qj~(t) = tk + (polynomial in t 1 ...... tk_~), 

and for ] < ]~, Q~(t) is a polynomial in t~ ..... t~_~. 

Now pick t such that  g(t)= ['. If  tk is the first irrational component of t, then Qjk(t)ejk is 

not a rational function, contradicting rationality of /~ Hence t~Q ~ and the Campbe]l- 

Hausdorff formula shows that  exp (tlX1). .exp (t~Xd)=exp (~X)=X for some XEllQ. 

Then [ .x=/ ' .  Q.E.D. 

COROLLARY 4.2. Suppose/Ell* is rational and 11o is a rational ideal in n which contains 

a maximal subordinate subalgebra Ill ]or [. I[ y EN is such that [ .y  is rational when restricted 

to 11o, there exists an xENQ such that [ . y = / . x  on 1to. 

Proo[. Let /1 ,  [2 E 11" and assume that  n0 contains a maximal subordinate subalgebra 

Ill for [ r  Then 

If /1 and/2 agree on 110, they are in the same Ad'(N)-orbit in 11". (18) 

In fact, m is clearly subordinate to/2.  The characters/7(n) = exp [2~i</j, logn>] agree on 

M, so Ind (M t N, /~)  ~ Ind (M ~ N,/~) is irreducible. By [7; Theorem 5:2], 11l must be maximal 

subordinate to [2. Moreover, since/1,/~ give the same irreducible representation of N, they 

are in the same Ad'(N)-orbit: Now let /'=]'YIllo" Clearly iltl Ad(y)In lies in n0 since 

no < n, and is maximal subordinate t o / .  y on m Let I be any rational extension o f / '  to n 

(exists since no is rational). S ince / .y  and 1 agree on no they lie in a single Ad'(N)-orbit and 

so do / ,  1. By 4.1, there is an XENQ such t h a t / . x = l ,  s o / . x = / , y  on no. Q.E.D. 

We will deal with the decomposition of NU e where ~ is an arbitrary onedimensional 

representation of F.  W e  heed a few facts which are ~ trivial, or reduce' to the preceeding 

lemmas, when ~=1.  Given ~ w e  cannbt in 'generglf ind an element /Ell*-such that  

Q (exp X) ~ exp [2~i</, X)]  for X Elog F and / is a Lie algebra homomorphism. We say 

that  /E 11" is Q-rational if /E r + n~, where r E 11" is a homomorphism such ,that e2~r F =Q 

on a subgroup of finite index in 1~ (~e2~r is a root of unity, all ~ E F, since Fis  finitely 

generated [11]. We thank  Prof. Wolf Beigelbock for s present definition inplace  of our 

original, more: cumbersome version. Although r is not uniquelydetermined, if it exists, any 

other y~ differs by an element in II~ because 

exp [2~i<r X>] ~(expX) is a root of unity, 
exp [2~ i<r  % X>] = exp [2~i<yJ, X>] ~(exp X) 
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all X etog 1 ~. Thus, all #-rational elements may  be associated with the same homomor- 

phism r they comprise the set r +11~___ 11". Obviously if ~ ~ 1 the ~-rationa! elements reduce 

to 11~. 

L ] ~ M A  4.3. Let F be a discrete uniform subgroup in Zg, ~ a one-dimensional representa- 

tion of [', and let tErt* be ~-rational. Let no be a rational ideal containing a maximal subordi- 

nate subalgebra m / o r f  and set F o ~ F  N N 0, Q0=~iF0 . I f  there is a y E N  such that ] .y  is ~o- 

rational on no, then there is an x E IVQ such that [ .y  =/ .  x on 11o. 

Proof. L e t / '  stand for/]1t0, all f E11": Let r be a homomorphism of 1t such tha t  the ~- 

ra t ional  elements are r + 11~; then the ~0-rational elements on no are r  (n0)~. Now ~- 

rationality of f ~,f-~b rational; ~0-rationality of [' .y = (/.y)' . * / " y - r  ( f - r  is ratio- 

nal on 11o. Clearly Ill is maximal subordinate to / - r  as well as t o / .  By  Lemma 4.2, there is 

an xehr~ such t h a t / . x - r 1 6 2  e q u a l s / . y - r 1 6 2  on no, so t h a t / . x = / . y  on 

1t0- Q.E.D. 

Notice tha t  if / is ~-rational in 1l*, there exist rational maximal subordinate subal- 

gebras for [ since J and f -  r (rational!) have the same subordinate subalgehras. 

Finally, we show tha t  Q-rational funetionals always exist. That  is, we need to show 

tha t  there is a Lie homomorphism r E 11" such tha t  e ~ r  =Q on a subgroup of finite index in 

F, since [ '  is finitely generated [ l l ] .  Then r + 11~ gives all the Q-rational elements. To con- 

struct r consider the commutator  subgroup/V'  =[N, N]. As in [11; pp. 7-9], lP fl N '  = F '  

is uniform in N' ,  so the quotient homomorphism p: l g ~ N / N '  carries P to a discrete uni- 

form subgroup in the vector group N/N'; p(P) is an additive lattice. Choose {x 1 ..... x~} ~_ F 

so p(x~) form a Z-basis for p(F), take X j = l o g  (xj), and take sjett so tha t  #(xj)=e2:~J. 

Clearly, It-span {X1, ..., Xm} is a subspace in 1t transverse to [It, ii]. Define [ E 11" so ]-= 0 

on [11, 1t] and (/, Xj )  =sj. Obviously f is a Lie algebra homomorphism a n d / ~  =e  2~r is a 

homomorphism of N. Let  F~ = [F, F]; then # = 1 on P 2 and [N, lg]]P2 is compact, so tha t  

F 2 has finite index in P f/[2/, N]. Let  F~ be the subgroup of 2/generated by P 2 (J {x~ ..... Xm}. 

Now ~(xj) = [ ' (x j )  and e = [ "  ~ 1 on P,, so ~ ~ [ "  on F1. But  F1 has finite index in F, so we 

may  take r  [For some finite set F, P N [N, N ] = F . F ~ .  But  p (P l )=p(F) ,  so xEF  

there are y E 1~1, n E 1 ~ n [N, N] such tha t  x = ny. In  turn, n E F .  F 2, so tha t  x E F .  F 2. P 1 = 

Y. F r ]  

w 5. The multiplicity formula for niimanlfolds 

Now tha t  we have cleared away the algebraic background, we are ready to apply 

Theorem 3.4 to get the multiplicity formula for nilmanifolds F ~ N .  Our proof is rather  

different from those of Howe and Richardson. With 3:4 in hand there is no need to carry 
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out inductions on dim N, or to separate out the case of one-dimensional center. Modulo 

certain rationality questions based on the  work of section 4, the multiplicity formula 

emerges via straightforward calculations. 

T~]~OREM 5.1. Let ~ be a one-dimensional representation o/ discrete uni/orm subgroup 

F in a simply connected nilpotent Lie group N,  and let T =~U ~. Suppose that a is an irredu- 

cible representation occurring in T, (7 ~T, corresponding to the orbit 0 in 11". Then 

0 contains ~-rational elements. (19) 

Let / be any ~.rational element in It*, m any rational maximal subordinate subalgebra (they 

exist), and a = I n d  (M ~ N , /~ )  where /~ (exp X)  =e 2~/' x> on M.  Then ~IomN ((y, v) is iso- 

morphic to 

O*e M\Ntr Homx• x IF N x - l M x ,  e t F N x IMx), (20) 

where (*) stands ]or sum over the rational double eosets (those which meet NQ), and the x are 

rational coset representatives. 

Notes. Statement  (19) generalizes Moore's observation [12, Cor. 2], which applies when 

--- 1 and F is a lattice subgroup (log F an additive lattice in 11). Formula (20) is essentially 

Richardson's formula [16], except tha t  in his work the maximal subordinate subalgebras 

M had to be chosen to satisfy certain technical requirements in addition to rationality 

(without which the formula becomes meaningless on the right). These technical require- 

ments are sometimes troublesome to verify; their absence in (20) leads to slightly easier 

calculations. Howe's  procedure [6] differs from ours in the preliminary necessary condi- 

tion (19). In  his proceedure one sorts out the orbits O which contain elements ] which (i) 

are rational on [11, 11], (ii) admit  rational maximal  subordinate subalgebras such tha t  e 2~r =~ 

on F ~ M. For these orbits there is a multiplicity formula similar to (20) intertwining op- 

erators are not discussed: in [6]. Yet another approach to multiplicity formulas is given 

in [2]. 

Proof o/ (19). As in section 4, there is a group homomorphism r  =e  ~'~r of N which 

agrees with ~ on a subgroup F 1 of finite index in F. Then ~' =~/~" is identically 1 on F1, 

so Q' very nearly reduces to the trivial character on F. I f  ~ is any  one-dimensional repre- 

sentation of h T, we note tha t  

U <~lg)| ~ ~| U '~ for any representation ~ on any  subgroup H. 

[Taking ~( (~IH) |  and ~ ( $ |  the isomorphism is effeeted by  

T: ~ ( U ~ ) ~  ~4(U (~IH)| where T](x)=$(x)/(x).] L e t / e n * ,  let M be any maximal subordi- 
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nate subgroup, and wr i t e /~  for e 2~r restricted t o  M. Let  ~=e - ~ ,  the conjugate of ~ .  

Then 

U r" ~ U ~  U~l~| ~ ~ | U r" ~ ~ | U ~ ~ U~w| 

But  

I M | f~ -- e ~=~`I-~) on  M,  

$1F |162  * = Q '  o n F ,  

and ]en* is Q-rational ~ ] - r  is rational. Thus, proof of (19) reduces to showing that ,  for 

h~1~*, 

T h~ < Uq'~ the orbit  O(h) meets Tt~. (21) 

I f  ~'-~1 this is well known [13; Cor. 2]. To prove (21) we exploit the fact tha t  Q ' - I  on the 

subgroup F 1 of finite index in F. Suppose tha t  a = I n d  (M ~ N, h ~) appears in ~=NU ~'. 

I f  we induce Q'~ =~ ' IF1  = l IF 1 to a representation T 1 on N, then ~ is a subrepresentatioa of 

~1 and so a ~ T ~ .  By  Moore's observation, O(h) contains points rational with respect to 

the rational structure determined by F 1. Since IF: F1] < § r these groups determine the 

same rational structure NQ, so tha t  O(h) meets 11~. Q.E.D. 

Before we prove (20) we need a refinement of the formula in Theorem 3.4, showing how 

rationality considerations affect tha t  formula. 

L]~MMA 5.2. Let N, I ~, Q be as in 5.1. Let ] be a Q-rational element in 11", m a rational 

maximal subordinate subalgebra ]or ], No a rational normal subgroup containing M = exp (1It), 

and set F o = F N No, ~o = Q ] Fo. Let ] ~ = e ~ r  on M, % = Ind  (M ~ 1Vo, ] ~), a = Ind  (M ~ N, ] ~), 

T o = I n d  (F o ~ No, Oo), and T = Ind  (F ~ N, Q). Then in the intertwining/ormula o/ 3.4, ap- 

plied to the system (N, N o, F; %, ~), 

HomN(~, T) ~= (~ y r ~0\ N/r Homm(%" Y, ~o), 

only rational double cosets (those meeting NQ) can contribute nonzero multiplicity. 

Proo/. L e t / ' = / [ n o  (qo-rational in 1t~). For any yEN,  ao'y on N O is induced f r o m / - . y  

on y-lMy; thus ao" y is associated with the No-orbit O = (/" y)" No. I f  ao'Y <~To, it follows tha t  

there are Qo hyphen-rational points in O; there is an x EN o such t h a t / ' ,  yx is Qo-rational on 1t 0. 

Apply Lemma 4.3; we know / is Q-rational and/ .yx[11o= f .yx is ~oo-rational. Hence there 

is a zENq such tha t  / . y x = / . z  on 1to. Hence ao.yX=ao.Z. Since Ind  (N O ~N, ~o) is irre- 

ducible, ao is stabilized by No under action of N (remarks following 2.4), so tha t  Noyx= 

Noz and NoyF=No(yxy-1)yF=NoyxF=NozF.  Q.E.D. 
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Proo/ o/ (20). Let  1~=I1~__...__n~=1t be the  successive normahzers  n)~_l={X~: 
[X, 1t~]~ he), each a rat ional  subalgebra with 1tr nr247 We write N r  (~tr F r  N Nr 

o r  (M ~ Nr 7e) where g is the one-dimensional representat ion e 2~z on M. For  x ~ N  

we write 

N~(x) = x - ~ x ,  

Fr = F ~ x-~r  

er = e [ re(x) .  

o~(x) = I n d  (M ~ _Ns, ~).x, 

z~(x) = Ind  (F~(x) r N~(x), ~(x)), 

I f  $ is a representat ion on H g N  we define $.x(h')=~(xh'x -1) on H' =x-IHx; thus oj(x)= 
oj" x is a representat ion on .N~(x). We proceed by  downward  induct ion on j = k, k -  1, ..., 1 

to  prove tha t  

Htom~(o, v) ~ G*e N~\~/r HomNj(~)(o~. x, z~(x)), (22) 

where the sum is taken only over the rat ional  double cosets, choosing rat ional  representa- 

t ives x. The result  is obvious, saying Horn (0, v) =~ H o m  (0, ~), if ~ = k. Assuming the  result 

t rue for indices k, ..., ~" + 1 we wish to prove it t rue for index ~. Because the general case is  

a bit confusing notat ionally,  we first give the simpler case ~" = k - 1 .  Since 2r 1 <~ N, Theo- 

rem 3.4 directly yields 

Hom(o,  z) ~ @ ~E N,_~\N/r HomN,_,(Ok_l -y, Zk-1) (23) 

(without any  rat ional i ty  conditions on double cosets or their representatives). By  Lemma 

5.2, only rat ional  double cosets contr ibute to th i s  sum. Furthermore,  for any  y EN,/Vk_l = 

Nk_l(y ) since Nk-1 <l N, and Fk-1 =Fk-I(Y); thus, Qk-1 =~k-l(Y)and ~k_l =~k_l(y). Hence we 

m a y  rewrite (23) as 

I-Iom(a, T) - G*~ N~_I\N/r HHomNk_~(y)(ok 1 "Y, ~k-l(Y)), (24) 

which is the desired formula for j = k -  1. 

I n  general we must  grapple with notat ion,  though  the concept is simple. Assume the 

result t rue for indices k, ..., j + 1 so t h a t  

Hom(o,  ~) ~ (~*E N~+I\N/r I'ioml~i+l(X)(Ot+l'X, Tt+I(X))" (25) 

Consider a typical  t e rm on the right; we take  x rational, so Nt+l(X ) = x-lNj+l x is a rat ional  

subgroup. Theorem 3.4 says tha t  

HHomNi+l(x)(Oj+l �9 x, Tj+l(x)) = O * ,  ~j(x)\ Nj+l(x)/r~.+l(x) HtomN~(~)((os �9 x).  y, Tj(x)). (26) 



I N T E R T W I N I N G  OPERATORS AND, II~DUCEI)~ R E P R E S E N T A T I O N S  295 

Note: (a~ 'x) 'y  =a~'xy. Again , 5,2 insures tha t  only rational double cosets (with ratio- 

nal representatives y) can contribute to the sum. For any yEN~+l(X) we have h[~(x) 

N~(xy) because N j ~  N~+~; thus, F~(x)=F~(xy), a n d  ~(x)=~(xy) ,  v~(x)='rt(xy). Thus  (26) 

becomes 

Homg.+~(~)(...) =~ ~*~ N~(~)\N~+~(~)~P~+~(x) HomN~(~)(a~. xy, "~(xy)) (27) 

for all rational x E N o. We now combine (25) and (27). Let S_= NQ be a set of representatives 

for the rational double cosets in N j + I ~ N / F .  We note tha t  NQ = (J ~ e s(Ns+l)e xF. [Inclusion 

( _ )  is obvious. But  if zENQ, then Nj+lzF is a rational double coset, equal to Nj+lxF for 

some x E S; thus z = nxy and n = z~-lx -1 E NQ N N j+ 1 = (Nj+I)Q.] For each x E S let S~ ~ (Nj+I)Q 

be representatives for the rational double cosets in .Ni(x)~Nj+l(x)/Fj+l(x ). Since Fj+l(x) = 

F N/~j+l(X) and/V~+!(x ) is rational, we again have (Ns+l(x)) o = U{(Nj(X))QyFj+I(x): y eS~}. 

Thus, 

= U~o~ U~o~x(x-~Njz)Qyl)§ '= U ~ .  ~(Nj)QxyF.  

These unions are disjoint, so the set {xy: xES,  yESx} is a set of representatives for the 

rational double cosets i n / V j ~ N / I ' .  Therefore, combining (25) and (27), we get 

Homn(a, ~) ~ (~*~ N~\N/r HOmN~(x)(a~'x, "~j(X)) 

as required. Continuing the induction to ] = 1 we get 

Hom(a,  ~) =~ ~ , ~  M\N~r Hom,-1M,(/" �9 x, ~(X)). 
By  Lemma 2.2, 

Homx-,M~(/" �9 x, ~:~(x)) ~ Homx-~M:~r(f" . x] F (~ x-~Mx, e [ P  ~ x-~Mx). 

Combining these remarks we get formula (20). Q.E.D. 

The isomorphism in  formula (20) can be written down as follows (see section 6 for 

details). I f  

A EHomFnx-lMx(/~. X[ P N x-IMx,  ~lI  "~ N x - l i x ) ,  

we define B E Hom (a, ~) by  letting 

BF(y) = ~r~rn~-lMx\r ~(~) 1AF(xyy) (28) 

for continuous F with compact support  modulo M. Of course A is a scalar here. In  parti- 

cular, if Q--= 1 these formulas tell us how to set up orthogonal subspaces of functions in 

~/(U ~) = L ~ ( F ~ N ) ,  one for each x E (F '~N/M)*,  which span the a-primary subspace in L 2. 

This formula was first obtained in [16]. 
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w 6. Computational details for (28) 

We must unravel the isomorphisms used to obtain (20) to get the concrete isometrics 

V: Horn(/~ .x lF  fi x-lMx, ~IF ~ x-XMx)--->Hom (a, z) we want. The details are the same 

regardless of which x~(F~.N/M)* we consider, so we shall construct the isometry 

I:Hom (]~IF ~ M, ~]F ~M)-~Hom ((~, ~) and then indicate the simple changes which occur 

when we replace f~-->]~, x and M-~x-~Mx. 

Define Nr Fr ar ~j, ~r as above (setting x = e); then let 

and 

H~ = F~Nj_I, I~ = Ind (P~ l H~, ~), for 2 ~< j ~< k, 

~ = Ind (N~_ 1 l N~, a~_,), ~ = Ind (H~ l N~, i~). 

These objects are related as shown in Figure 3, where rising arrows indicate induction, 

and falling arrows restriction. Obviously aj ~a~ and ~j ~T~, by induction in stages. 

We obtain I by writing out explicitly the isomorphisms and "lift operations" (indicated 

by arrows) in the following scheme. Here, by definition, Hom (al I F1, ~1) - Hom (/~ I F N M, 

~IF N M); the first ~ follows from Lemma, 2.2. 

Horn (ql I F1, el) ~ Hom (O"1, TI) --~ Horn (al, i~ I N1)--> 

->Hom (52, ~2) ~ Hom (a:, ~ ) ~ H o m  (a~,).a]N2)---> 

... (29) 

... ~ H O E  (a~_~, 2~_~ I :V~_~)-~ 

->Horn ((~k-1, T k - - i ) ~ H o m  (a~_~, ~-1) ~ H o m  (~-1, t~[N~-I)-~ 

-~Hom (~z, ~ ) ~ H o m  (az, za)~Hom (0, ~). 

Fortunately, things combine to give a simple formula at the end (and each time we reach 

t tom (aj, Tj)). Within ~4(%) let 7/(aj) 0 be the continuous functions with compact support 

modulo N 1 = M; likewise, let 74(vj) 0 be the continuous functions in 74(vj). The isomorphisms 

aj ~ ~j, Tj ~ ~j are given by isometries W~, Tj defined by specifying their actions on ~/(aj)0, 

[ Wj/(n)] (n j_ 1) = / ( n  j_ 1 ~,) n j_ 1 ~ Nj_I ,  n ~ N]  (30) 

defines a vector Wj/(n)E~(~Tj_I) o which varies continuously in nENj and has compact 

support modulo Nj_I, so that  W j/E ~/(~j)0. If / E ~(~J)0, 

[Tj/(n)](hj) =/(hjn) hjEHj, nENj (31) 

defines a vector Tj/(n) E ~(ls) o (continuous functions on  Hj varying like Q along FFcosetS ) 
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(~r~,l, ek-1) ~r~_i(~_l, "~-1 ) -"Pk ~ F  (0k----0) 

(~-~, ~-~) ~ - ~ ( ~ - ~ ,  ~-~) ~-~ (0,"~-~) 
t 

((Y3, (~3) -]~3 1"4 (04) 

(~----e~) ~2 (h,'~) 1"3 (03) 

( / ~  O'1) M--~---- ---~ " 2 (02) 

\ / 
F n M--F1 (0~--0[F fl M) 

Figure 3. 
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which varies cont inuously with n E Nj, so tha t  Tj/E ~/('~J)o- The first isomorphism in each 

row of (29) maps A to T[IAWj. 
The second isomorphism is obta ined as in Lemma 2.1 via the isometry  Rj: ~(~j)-~ 

Rjr = ~(~j+l)r all hi+ 1 = ?,~+lnjEHj+I 

for CETt(vj) 0. Thus, an intertwining operator  A j E H o m  (at,~j) is identified with A~= 

RjA s E t Iom (~j, t t+l I Nt) 

(A'~/) (y~+l nj) = 0(7J+1) (A J) (nj) all hi+ 1 = 7t+l njEHj+z 
if / E ~-/(aj)o. 

The  process of lifting A E Horn (al[ F1, 01) to  an  operator  in Horn (~, r) begins by  using 

the construct ion in C. Moore's Lemma  2.2 to get A~ e H o m  (~1, ~1): if v E ~/(al) ( - C ) ,  

(A z v) (nl) = Aaz(nz) v all n z E N 1. 

Induct ively,  given As_ a E H o m  (aJ-1, Tj-1) we lift i t  to A j E H o m  (at, vj) by  first t ransform- 

ing it to  A~_ 1 : Rt_ 1 A t ,  1 E Horn ((~j• 1tiN J--z). Next ,  lift At~_a to  A1E H o m  (6j, ~j), applying 
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the standard construction of Theorem 3.3 to, the system (Nj, hrj_1, Fj-; as_ 1, i~) If  ] E ~/(dJ)0, 

the pointwise formula (1) is valid, and takes the form 

(~j[)(nj)=~r~r~_l\r~tj(y -1) A~_l(/(ynj)) all njEN~. 

Finally, transform ~ j  to Aj = T[1A~ WjEHom (gj, vj) to complete a full step in the process, 

We assert that  A j] is given by the following pointwise formula for [ e ~(aj)0, 1 4 ?" ~< k: 

Aj/(nj) = ~ r , \ r j  O(y-1)A(/(Ynj)) all njeNj .  (32) 

If U is a compact set in Ns, only a finite number of terms in the right hand sum are non- 

zero on U, so the function Bjf(nj) defined by the sum is continuous on/Yj, and hence lies 

in ~(vj) 0 i f / e  ~4(aj) 0. Trivially, A1/(n ) = Bl/(n), all n e Nv Assuming the formula true for 

index } -  1 we show it valid for i by showing that  T j ( B J ) =  T~(AJ) in ~4(}j), Now, Tj(Bj/)  

maps N~-~ ~/(1j)0: for n eNj, 

[Tj(Bj/) (n)] (hi) = Bj/(hi n) = Bj/(yj nj_ 1 n) 

= Zv ~r,\r, ~(Y-~) A(/(YYjn~-~ n)) = e(YJ) ~v,r,\r~ ~(7 -1) A(/(ynj_~ n)) 

if hj =7~nj_l eHj. On the other hand, A j] = TT~A~ W~ ], so T~(A~]) = A~( W~ ~). Since [ e ~/(a~)o 

it follows that  W J e  74(a30, so the pointwise formula for lifting A~_~ to ~ j  applies: 

A,(W,[) (n) = 5~er,_,kr, ,~,(~,-~)A';_t(WJ(yn)) all n62r 

(finitely many nonzero terms). Since -4~(Wj/)~ ~(~),  this is a function on H~ for each 

n~N~; if h~=y~n~_~, 

[~(W,/)  (n)] (h,) = ~[1~(~-~)(A'~_~(W~/(rn)))] (h,) 

= ~v[A~_:(W~f(yn))] (h~y -1) 

= ~v[A~_~(W~f(vn)) ] (~ -~ . ) ]n i_ l~  ,-~) 

= ~ e(r~)e(~ ,-~) [A~_~ (Wfl(rn))] (~,~_1~-~). 

Since yn~Y~,  r = WjJ ()~n) lies in ~(a~-l)0, so the induction hypothesis applies, 

= e(~J) ~ e(7 -~) ~ '  ~ r,\r~_~ e(~")-~A([W~/(rn)] (r'~n~-~ ~-~)) 

= ~,(~,) Z:,. ,,. e(r '~')- ~A ( l ( r ' rm-~ r -  ~- ~',,)) = e(r~) E~,, ,',\ P, e ( r -  b A (1(~,,,,~_, n)), 

as required. When ~'=/~ we get I (A)=A~= B, 

B/(n)=~,~r , \ r~(r -1 )A/ (~n)  for /e74(a)0. 

If x~ (F~hr /M)  *, this discussion applies verbaitm if we substitute [~[ .x ,  M-~x-~Mx; 

we get intertwining operators A ~ ~ Hom (Ind (x-~Mx ~ 2g, [. x), ~). These are to be identified 
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with operators I~(A)eHom (~,T) using ~the n~tural isomorphism [ ( n ) ~ ] ( x n )  between 

Ind (,.) and a. Thus we get 

I~(A)/(n)= 5 ~ r , \ r  e(r  -'~)Al(xrn) for le~(a)0-  

w 7. Other examples 

As another application, using Theorem 3.7 together with Mackey's theory of induced 

representations, l e t  (7 be t h e  group of Eu(~hdean motions of the plane, and let U be the 

subgroup generated b y  translations by  integers and rotations by multiples of n/2. We can 

regard G as the  semidirect product of K = C  by the unit circle T ,  where e~0E T acts on {3 

b y  multiplication. We identify K ̂  with C by :letting w. correspond . . . .  to~w(z)=e2=~ x~(z~) .The 

action of T on K "  is still multiplicatiqn, so t h e  T-orbits in K ^ are the circles: ]z] = r, r ~>0, 

If r > 0, the stabilizer of a point in the orbit is 1; for r = 0 the stabilizer~ i s  T. Thus the ir- 

reducible representations of G are given by ar = Ind (K i" G, zcr+i0), r > 0, and by  tin(Z, e ~~ = 

e ~n8 for nf iZ (corresponding to r=0) .  

Now let ~ be the trivial representation on F, and let v - - I n d  (F ~ G, ~). The a~ fit 

neatly into our theory, and we can apply 3.4 (or 3.7). Since 

KU Q~r~ = Ind (Z + iZ t' (3, 1) ~ O~z+~z x~ r, 

and~ the F=orbit of ~w is jus t  {~• zt• it 's e~sy t o  check t h a t  z~ :appears in ~ t h e r e  is 

a point in Z + iZ  with norm r ~ r  2 is the sum of ~wo integer squares. Then 

niult (a~) = �88 (total number of ways of  writing r ~ as m ~ +n2, ' m, n E Z) 

= ~  (number of "integral points" on ]z] = r): 

The  /x~, being one-dimensional, appear in ~ t h e . f u n e t i o n  :/t~ is in L~(F'~G); thus the 

tt4~(n E Z) appear, each with multiplicity 1. 

This  result is not  new; see [20; Thin 1], and~a]S0 [2i]. Our method works, however, 

on  the other Euclidean motion groups. For  instance, let G be the  Euclidean motion group 

of R a and F the group generated by integral translations and rotations by ~z/2 about the 

coordinate axes. If K is  the subgroup of all translations then K^~R~,  the orbits are 2- 

spheres about  the origin, and the representation a~ ~orresponding to the sphere [Ix[[ = r o t  

r~diUs ~>0 occurs with muitipiieity 

(number of points in Z a CI {x: [[XI[ ~- r}) 

= ~ (number .of ~vays o f ~ t i n g ,  r 2 = m ~ + n ~ + p  2 with m, n, p eZ). 

The details are straightforward. 
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w 8. Remarks on adelic groups 

Finally, we make an  application to  adelic ni lpotent  groups. The main  result is due to 

Moore [13]; since we need much of his discussion to  just ify our arguments  here, we merely 

indicate how his final result is obtained by  the above methods.  Let  2V 0 be a ni lpotent  al- 

gebraic group over Q and let N = NA be its adelized version. Then 2VQ~NA is compact ,  and 

we are back in the general si tuation studied in this paper. All the arguments  of the last 

two sections go through,  with one simplification: a one-dimensional representat ion 0 of 

NQ automat ical ly  extends to NA. However ,  the final formula in Theorem 5.1 simplifies 

greatly. I f  two elements l, l' in an orbit  O are 0-rational,  they  are in the same Ad'(NQ)- 

orbit  (because they  are conjugate under  a rat ional  element of NA). Hence only one Mx..~N/NQ 

double coset can have rat ional  elements. Thus H e m  (a, T)~ C if O ~ O(a) has 0-rational 

elements, a n d  is --0 otherwise. Tha t  is, the multiplici ty of a in ~ is 1 or 0 depending on 

whether  O(a) has 0-rational elements or not.  
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