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The infinitesimal transformations of a Lie pseudogroup, acting on a manifold X, are

solutions of a linear partial differential equation R, which is a Lie equation in the tangent

bundle 7" of X; the space R, , of formal solutions of B, at a point € X is a topological Lie

algebra and, if the pseudogroup is transitive, it is a transitive Lie algebra in the sense of
Guillemin-Sternberg [13].

(1) This work was supported in part by National Science Foundation Grants MPS 72-05055 A 02
and MPS 72-04357.
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Using the theory of Lie equations elaborated by Malgrange, Kumpera and the second-
named author (see [22], [19] and [18]) and the results of Guillemin and Sternberg on
transitive Lie algebras (see [13] and [12]), the first-named author initiated, in preceding
papers (81, [9] and [10], a program (announced in [7]) of investigating the relationship
between Lie equations and transitive Lie algebras in order to show in what way certain
properties of a formally transitive and formally integrable analytic Lie equation R, depend
only on the transitive Lie algebra R, , of formal solutions of R, at x€X and to what
extent the classical theory of finite-dimensional Lie groups and their Lie algebras can be
generalized to Lie equations and transitive Lie algebras. In [10] it was shown, in parti-
cular, that the graded Lie algebra H*(R,), = @ ;50 H'(R;), of linear Spencer(}) cohomology
at £€X of an analytic Lie equation depends, up to an isomorphism, only on the topol-
ogical Lie algebra R, .. On identifying two graded Lie algebras of cohomology which are
isomorphic, there is associated to every transitive Lie algebra L a graded Lie algebra
H*(L)=® ;50H'(L) of linear Spencer cohomology with the following properties:

(1) the graded Lie algebra H*(L) depends only on the isomorphism class of L as a topological
Lie algebra;

(ii) @ graded Lie algebra H*(L, I)= @ ;5o H’(L, I) of linear Spencer cohomology can be de-
fined for a closed ideal I of L such that H*(L, L)=H*(L) and it depends only on the isomor-
phism class of (L, I) as a pair of topological Lie algebras;

(iii) to each exact sequence

0 I L¢L” 0

where I is an ideal of L and ¢: L—L" is a continuous homomorphism of transitive Lie algebras,

there corresponds an exact sequence of linear cohomology

woi—— HY(L, I) H/(L) H'(g) H’(L”)——ai»Hf“(L, Iy——....

One of the purposes of the present paper is to extend these results to the non-linear
Spencer cohomology HAYR,) of a formally integrable Lie equation R,. In general, the
notion of a structure associated to a Lie equation can be defined as well as the notions of
equivalence and integrability of such structures. Then H(R,), is the set of equivalence
classes of germs at € X of formally integrable R,-structures; it is a set with distinguished
element 0 and we say that it vanishes if it is equal to 0. We write AY(R,) =0 if AY(R,),=0
for all 2€X. The vanishing of HY(R,) expresses that the integrability problem for R,-

(*) Despite the misgivings of the second author, we employ a terminology adopted in preceding
papers.
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structure is solvable, namely that an R, -structure which satisfies the requisite compati-
bility conditions is in fact an integrable Ry-structure. We now list most of the known re-

sults about the integrability problem and the Spencer cohomology of Lie equations.

(I) If B, is of finite type, that is if there is an integer /, >0 such that E,,, is isomorphic
to Ry, for alll>1,, where R, is the I-th prolongation of the equation Ry, then H(R,)=0
for j >0 and the integrability problem for R, is solved. This is a consequence of Frobenius’
theorem.

(IT) If R, is analytic with respect to a real-analytic structure on X, then, in the category
of analytic manifolds and mappings, we have H/(R,)=0 for >0 and H!(R,)=0. This
result is a consequence of the Cartan-Kéhler theorem.

(IIT) If R, is elliptic and is either analytic with respect to a real-analytic structure on X
or formally transitive, then H’(R,)=0 for j>0 and A'(R,)=0. The vanishing of A'(R,)
for equations R, which are elliptic and analytic was proved by Malgrange [19], generaliz-
ing an earlier theorem of Newlander-Nirenberg which asserts the solvability of the in-
tegrability problem for complex-analytic structure. In [9] it is shown that Malgrange’s
result implies that a formally transitive, elliptic Lie equation is analytic with respect to a
real-analytic structure on X.

(IV) The integrability problem for flat Lie pseudogroups has been studied and, in a con-
text different from the present one, partial results have recently been obtained by Buttin-
Molino [2] and Pollack [20]. For example, let g< gl(n, R) be a Lie subalgebra. If (21, ..., 2")
are the standard coordinates on R™ and & =37, £0/0a is a vector field on an open subset
U of R", the differential equation (0&/(x)/ex*)€q for all €U is a flat Lie equation R (g)
of order 1.

(V) Guillemin and Sternberg [15] have given an example, based on H. Lewy’s counter-
example to the local solvability of partial differential equations, which shows that the

integrability problem is not always solvable.

We say that two non-linear cohomologies are isomorphic if they are connected by a
bijective mapping sending 0 into 0, and we shall identify two cohomologies if there is an
isomorphism of cohomology between them. In the case of a formally transitive and form-
ally integrable analytic Lie equation R, on a connected manifold X, the cohomology
H(R,), is then independent of the point € X and we show that its vanishing depends only
on the transitive Lie algebra R, ,. We associate to every transitive Lie algebra L a non-

linear cohomology H(L) with the following properties:

(i) The cohomology HY(L) depends only on the isomorphism class of L as a topological Lie
algebra.
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(ii) A non-linear cohomology HYL, I} can be defined for a closed ideal I of L such that
HYL, L)=HY(L) and it depends only on the isomorphism class of (L, I) as a pair of topological
Lie algebras.

(iii) Let ¢: L—-L" be an epimorphism of transitive Lie algebras and 1< L, I"<L" be closed
ideals of L and L" such that $(I)=1"; let I' be the closed ideal of L which is the kernel of ¢:
I-1". If AL, I')=0 and AYL", I"y=0, then HYL, I)=0; if ¢: I->1" is an isomorphism,

we have an isomorphism of cohomology
Avr, ny— Ay, 1.

In particular, if J is the kernel of ¢ and HY(L, J)=0, ANL")=0, then HY(L)=0.
(iv) Let R be a formally transitive and formally integrable Lie equation on a manifold ¥

and let y€ Y. If the transitive Lie algebras L and RZ , are isomorphic, then we have a bijective
mapping
H\(L) > H\(RY),.

This last property together with the third fundamental theorem (Theorem 7.1) re-
duces the computation of the non-linear Spencer cohomology of formally transitive Lie
equations to the case of analytic equations.

The systematic study of transitive Lie algebras, a program which was initiated by Guil-
lemin and Sternberg in their paper [13], resulted in the fundamental paper [12] of Guille-
min in which a Jordan-Hdlder decomposition is constructed for a closed ideal of a transi-
tive Lie algebra. This decomposition is an outgrowth of & program outlined by Guillemin
in the introduction of [12] which is motivated by the integrability problem. Our results
{see § 10) reduce the integrability problem to the vanishing of the non-linear cohomology
of the quotients of successive ideals in Jordan-Ho6lder decompositions. In particular, con-

sider the following three conjectures:

1. Let L be a transitive Lie algebra and I o non-abelian minimal closed ideal of L. Then
H/(L, I)=0 for >0 and HYL, I)=0.
II. Let L be a transitive Lie algebra and I a closed ideal of L. Let
I=1>02.21;=0

be a Jordan-Hdolder sequence for (L, I), that is, a nested sequence of closed ideals of L such
that, for each §, where 0<j<k—1, either I,/1, ; is abelian or there are no closed ideals of L
properly contained between I, and I,.,. If for each § for which I,/I,, is abelian, where
0<j<k—1, we have H\L|1,,,, I,/1, ,)=0, then H{L, I)=0 and HYL, I)=0.

IXY. Let L be a transitive Lie algebra and I a closed ideal of L. If there exist o fundamental
subalgebra L° of L, closed subalgebras A, B of L such that A is abelion and
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L=I+41B,
[4, B]=0, [B, I]=0,
then H'(L, I)=0 for >0 and HY(L, I)=0.

We prove (Theorems 13.1 and 13.2) that I implies IT and IIT and we outline a proof
of I which is basged on Guillemin’s structure theorem for a non-abelian minimal closed ideal
of a transitive Lie algebra (Theorem 2 of [12]), on the classification of infinite-dimensional
simple real transitive Lie algebras, the Newlander-Nirenberg theorem, and on theorems
of [10] and § 10 of this paper. Conjecture IT implies that the solvability of the integrability
problem for formally transitive and formally integrable Lie equations is reduced to the local
solvability of overdetermined systems of linear partial differential equations. We have the fol-
lowing consequence of III (see § 13):

Assume that X is connected. Let R,<J,(T) be a formally transitive and formally
integrable Lie equation and N,< R, a formally integrable Lie equation such that N ,
is a closed ideal of R, , for all a€X. Let x€X; if there is a fundamental subalgebra L°
of R, , and an abelian subalgebra 4 of R, , such that

R, ., =L'®A4,
then
Hj(Nk)a =0, Hj(Rk)a =0, ﬁl(Nk)a =0, ﬁl(Rk)a =0

for j>0 and all € X.

In particular, ITT implies that the integrability problem is solved for all Lie pseudo-
groups acting on R” which contain the translations, a fortiori for all flat pseudogroups.

We now give a brief summary of the contents of this paper. In § 1 we recall certain
facts from the formal theory of linear partial differential equations, the constructions of
the “naive’ linear Spencer operator D, of various brackets and Lie algebras arising from
the study of jets of vector fields; we also give the fundamental formulas relating the
operator D to these objects. The corresponding non-linear theory is described in § 2,
namely the operations of jet bundles of diffeomorphisms on jets of vector fields, the non-
linear Spencer complexes, the fundamental formulas involving the “naive” Spencer opera-
tors D and D and the facts from the formal theory of non-linear differential equations
which are used in Chapter II. Although much of § 1 and § 2 is a reorganization of known
material, mainly from [19] and [18], with the purpose of fixing notation and terminology
which we nse throughout the paper, new results required in the sequel are also proved. In
particular, in § 2 we examine the relationship between the structure of affine bundle and

the structure of groupoid which certain jet bundles of diffeomorphisms possess, using the
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methods developed in [4] and expressing the relationship in terms of the operations of
these bundles on jets of vector fields. We usually do not prove facts whose proofs are
readily found in [19] or [18]. In § 3 we begin by recalling results of [6] concerning fibrations
and the naive operator D which we complement by Lemma 3.1. The remainder of the
section is devoted to the construction and properties of a generalization of the naive opera-
tor D (see Proposition 3.1) which is required in § 5 in order to define the structure equation
of an extension of the classical Cartan fundamental form. In the next section, § 4, a non-
linear complex for a bundle of Lie groups is defined in terms of the Maurer-Cartan form
and the exactness of the complex, a consequence of Frobenius’ theorem, is used at a cru-
cial point in the proof of the basic Theorem 9.1. In the following section, § 5, the extended
Cartan fundamental form mentioned above is defined on the bundle of (k+1)-jets of dif-
feomorphisms X —X and takes its values in the bundle of k-jets of vector fields; it is re-
lated to the form on this jet bundle described in [11] and its restriction to the bundle of
(k+1)-jets with fixed source (bundle of frames of order k+1) is the classical fundamental
form of Cartan. The structure equation for the classical fundamental form follows directly
from the Cartan structure equation for the extended form. The naive non-linear operator
D has a natural definition in terms of the extended Cartan form. Finally, the connection
between the theory of Lie equations of Spencer and Malgrange and the work of Guillemin
and Sternberg [14] is clarified. In § 6, the last section of Chapter I, using the extended
Cartan form, we show how a surjective submersion ¢ of X onto another differentiable
manifold Y induces a projection of the non-linear D-complex, restricted to sheaves of jets
of p-projectable sections, onto another complex which is a non-linear analogue of the
complex occurring in [6], whose linear operators are the exterior differential along the
fibers of p followed by a projection. The latter non-linear complex is related to the complex
of § 4. The essential purpose of this section is to construct a finite form of the linear theory

developed in [6]; its results are crucial in proving the main theorems of § 9.

In Chapter I we have considered arbitrary vector fields and diffeomorphisms; in
Chapter IT we consider vector fields and diffeomorphisms which satisfy respectively linear
and (in general) non-linear partial differential equations, namely so-called Lie equations.
In § 7 we begin by defining a linear Lie equation R, (of order k) for vector fields (infinites-
imal form) and a corresponding non-linear Lie equation P, (finite form). Next, under the
assumption that the prolonged equations R, ; are vector bundles for />0, the two non-
linear Spencer cohomologies of P, or R, are defined in terms of the naive complexes cor-
responding to the operators D and D and are shown to be isomorphie; hence they are
identified and denoted by H(R,), where HYR,)= U, .x AY(R,),. If R, is formally in-
tegrable, AIY(R,) is also isomorphic to the cohomology defined in terms of the sophisticated
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Spencer complex corresponding to the operator D. I two formally transitive and formally
integrable Lie equations are transformed one into the other by a section of a jet bundle,
it is shown that the corresponding cohomologies are connected by a bijective mapping
(Proposition 7.9); from the third fundamental theorem (see [9] and Theorem 7.1), we
deduce that the computation of the cohomology H(R,) of a formally transitive and form-
ally integrable Lie equation R, is reducible to the case where R, is analytic. The next sec-
tion, § 8, contains a proof, based on Frobenius’ theorem, that the non-linear cohomology
of a certain multifoliate Lie equation(!) vanishes; this fact is an essential step in the proof
of Theorem 9.1. The results of § 6-§ 8 are used in § 9 to prove non-linear analogues (finite
forms) of certain results of the linear theory of [6]. Theorem 9.1 establishes the key fact
that, if R, is a formally integrable g-projectable Lie equation on X satisfying the conditions
(I) and (II) of § 9, then its non-linear cohomology is isomorphic to the non-linear cohomo-
logy defined in terms of p-projectable sections. Under the same hypotheses an exact se-
quence of non-linear cohomology is constructed (Proposition 9.1) relating the cohomology
of Ry to the cohomology of a Lie equation R}, on ¥ and to the cohomology of a kernel Lie
equation R, on X. This sequence has the disadvantage that the equation E, is in general
not formally integrable. Under additional assumptions one can modify this exact sequence
and replace the cohomology of B, by the cohomology of the formally integrable Lie equa-
tion R;, obtained from E, by the technique of [5] or [6] (see Theorem 9.2). Finally Theorem
9.3 gives more precise results when R;, vanishes; in particular, the cohomology H(Ry),
of Ry at a €X is isomorphic to the cohomology HY R}, )y, of R}, at o(a). In § 10 the results
of §9, combined with results and techniques of [10] (and [9]), enable us to associate to
every transitive Lie algebra L a non-linear cohomology HY(L) with the properties briefly
described above. In § 11 we examine the structure of abelian Lie equations and prove
Conjecture III in the case where I is abelian (Theorem 11.5); the proof is based on the
theorem of Ehrenpreis-Malgrange, which asserts the local solvability of differential opera-
tors with constant coefficients (see Theorem 11.2). The stability under classical prolonga-
tion of the hypotheses of Conjecture III is established in § 12, and we remark that under
prolongation the subalgebra B, even if it is assumed initially to be zero, reappears and
contains a subalgebra corresponding to transformations along the fibers of a principal
bundle and the transitive Lie algebra L corresponds to a closed ideal of a transitive Lie

algebra. Thus in studying the cohomology of transitive Lie algebras, one is necessarily led

(!) The multifoliate Lie equation considered here is of a slightly different nature from that of the
ones defined in [17], which correspond to flat pseudogroups and are of the type R, (g) for appropriate
Lie algebras g.
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into examining the cohomology of closed ideals of transitive Lie algebras. The results of
the final section of the paper, § 13, have been described above.

We conclude this introduction with some short remarks on notation, terminology
and background. For the definitions and properties of fibered manifolds and jet bundles
as affine bundles, we refer the reader to [4]. Notation and terminology are the same as in
the papers [8], {9], [10], and essentially the same as in [19]. However, it is perhaps worth-
while to explain one piece of notation which might be confusing. Namely, if E, F, G are
finite-dimensional vector spaces, we always identify E*®@ F with Hom (E, F) and, if
u€E*Q@F, vEF*®U, we denote by vou the element of B*® G defined by composition.

CHAPTER I. DIFFERENTIAL EQUATIONS, FIBRATIONS AND CARTAN FORMS

L. Linear differential equations and vector fields

Let X be a differentiable manifold of dimension » and class C* whose tangent bundle
we denote by T'=1T 3. We write O for the sheaf of real-valued, differentiable functions on
X. If B is a fibered manifold over X, we denote by & the sheaf of sections of E, and by
E, (resp. £,) the fiber of F (resp. the stalk of £) at x€X; sometimes, however, we write
E(x) for the fiber E, of K at x€X. The bundle of vertical tangent vectors of E will be de-
noted by V(E)=T(£/X). We denote by J,(E) the fibered manifold of k-jets of sections of
E, by ji: E—J,(E) the differential operator of order k which sends a section s of E over a
neighborhood of z€X into the k-jet ji(s) of this section, and by m,: J; (E)—~J(E) and
7: J(E)—~X the natural projections sending j,,,(s)(x) into j.(s)(x) and ji(s)(x) into its

source x respectively. The natural injection
Ayt Jigi(B) =~ J (T (B)),

which sends () (®) into §,(j(s)) (), where s is a section of E over a neighborhood of
z€X, is a monomorphism of fibered manifolds. If F is another fibered manifold over X

and ¢: — F is a morphism of fibered manifolds over X, then
Jilp): Ju(H)—J(F)

is the morphism of fibered manifolds over X sending j,(s) (x) into j (@os)(x) (see [4]). We
shall always suppose that the fibers of a vector bundle are of the same dimension.

If E is a vector bundle over X, we have the exact sequence of vector bundles

0—— S*T* @ B ——r J(B)-ZELs J,(B)——0 (1.1)
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which yields the exact sequence
" £ Ty
0 ——T* @,y (B) ——J (3 (B)) —— Sy 1 (B) —— 0.
We define a first-order differential operator
D: J (&) > T* @I (E)
by the formula
eDu =jy(m_u) —Au, uEJE), (1.2)

and obtain the Spencer complex, which is an exact sequence,
i D

0—— &t gye) L gr @, ()L AT DT (E) 2

e N T* QT (E)——0, (1.3)
where J,(E)=0 for k<0, by setting
D(w Au) = do Ayt +(—1Yw A Du (1.4)
for w€ NT*, u€ A T*QRJL(E). Then
<ENAn, Duy =& N Duln) —n N Du(§) —me_yu((é, 7)) (1.5)
for u€T*@J,(E) and all £, €.

LeMMma 1.1 (see [5], Proposition 6). If F is a vector bundle over X and ¢: E—~F is a

morphism of vector bundles, the diagram
jeT* D j+leps
NT*QJYE) ——— NTTT*®J,_1(E)
id ® (@) id®J,_1(p)

/\Jg*®t]k(;) ——l)—’ /\j+lg*®Jk—1(g)

18 commutative.

Proof. In virtue of (1.4), it suffices to show that the diagram is commutative for j=0.

From the diagram
D
TE)—— T*® S (E) —— T 1(J5-1(E))
(@) id®Jy_1(p) J1(e-1(9)

D
TP —— T*@J, (P —— i a(F),
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whose right-hand square is commutative (see [3]) and whose mappings ¢ are monomor-
phisms of vector bundles, we see that it is sufficient to show that its outer rectangle com-
mutes. By (1.2), we are now reduced to verifying that the diagrams

Te—1

T E) T2 g (&) — L Ty ()
J(®) Ji-1(®) J1(J-1(9))

Jk(g) ‘zk—_l’Jkﬂ (3) '—ll"Jl(Jk—l(g))

and

A
Jk(E)—l—’J1(Jk~1(E))
J () J1(J-1(9))
A
Jk(F)—l_’Jl(Jk—l(F))

are commutative; however this last fact follows immediately from the definitions of the
maps involved.
By (1.4), the restriction of — D to A'T*®e(S*T*® E) is Ox-linear and therefore comes
from a morphism
8 NT*QST*Q E ~ N T*@S1T*Q E

of vector bundles, and we obtain an exact sequence of vector bundles for k>0

0—~—>S"T*®E——§—>T*®S"“1T*®E——(?—-> AzT*®S"‘2T*®E——6—>

cee ™ AM*Q S Q@ ——0, (1.6)
where
S Au) = (—1Yw A du

for w€ NT*, w€ A T*Q@S"T*® E (see [3], [21]).

A vector sub-bundle R, cJ (E) is a linear differential equation of order k on E. A
solution of R, over an open set U< X is a section s of F over U such that j,(s) is a section
of R,, and we denote by Sol (R,) the sheaf of solutions of R, namely the sub-sheaf of £
of elements s satisfying j.(s) € R,. For =0, we associate to R, its I-th prolongation (R;),,<

Ji1(F) with possibly varying fiber, namely
(Bi)sr = Jicp1(B) 0 Ty RBy),

which we often denote by R, , when no confusion arises. Here we have identified J, (&)
with a sub-bundle of J,(J,(E)) by means of 1,. We set
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RBy=Hm R,,,.
——

Recall that, if (R;),; is a vector bundle, then the m-th prolongation of (R,),, is equal to

(Be) sctamy-
The following lemma is part of Proposition 5.1 of [3] and its proof will be omitted.

LeMMA 1.2, Let R,cJ(E) be a differential equation. For 1>1, let B, =J,(R,) be the
wmage of Ry, under the map A,: Jy (B)~>J (S (E)). If Ry ts a vector bundle, then

(R{)H = R,’ +1
for all 1>0.

Let R < J,(E) be a differential equation. If, for each [ >0, R, , is a vector bundle and
the projection 7, By, ;> By, is surjective, we say that R, is formally integrable. We
say that R, is ¢ntegrable if, for all 1>0.and u€ R, , with x € X, there exists a section s of
E over a neighborhood of « which is a solution of R, such that j,,,(s) (x)=u. If X is end-
owed with the structure of an analytic manifold and ¥ is an analytic vector bundle and if
R, is an analytic, formally integrable differential equation on E then, according to Theo-
rem 7.1 of [3] or the appendix of [19], R, is integrable. Let Ry,;=(Rx),; be the sheaf of
sections of R, (which determines R, if the latter is a bundle). An element u of J,,,,(J)
belongs to Ry, if and only if m, ,u€R,,; and Du€T*@R,,;. By restriction of (1.3),

we obtain the Spencer complex

D D D
0—R,——T*@R,y—— N T*®Rps—— ... — > A"T*® Ry, ——0, (L.7)
where R, =J,(HK) if m<k. The cohomology of (1.7) at A'T*@R,_; will be denoted by
H/(Ry),,_;. Moreover, let g,,= 8™T*® E be the sub-bundle with possibly varying fiber such

that the sequence

€ ] 7
0 gm Rm ml-Rm—l

is exact; then (1.6) gives by restriction a complex

0—>gm—6——>T*®gm_1—6——> /\2T*®gm_2—6> v A T*®g,_,—0, (1.8)
whose eohomology at A/T*®g,,_; we denote by H™ *i(g,). We say that ¢, is r-acyclic if
H¥* (g ) =0 for {20 and 0<j<r, and we remark that g, is always l-acyclic if k>1. We
say that g, is involutive if g, is n-acyclic. There exists an integer k> k, which depends only
on 7, k and rank E such that g, is involutive.

If the I-th prolongation Ry, of R, is a vector bundle for I>0 and if the mappings

T By~ Ry, are of constant rank for m >k, there exists an integer m, >k such that

8 — 762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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Tt H(Rp)ypy1— H(Ry)y is an isomorphism for m >m,. Then H’(R,),, is independent of m
for m>m, and we denote H/(R,),, with m>m, by H(R,), the j-th Spencer cohomology
group of R,; the group H%(R,) is the sheaf of solutions of . Here, as in the sequel, we al-
ways identify two cohomology groups if they are isomorphic (see [3], [5]).

We next turn to the consideration of vector fields and their brackets (see [18], [19]).
Let A be the diagonal of X x X and let pry, pr, denote the projections of X x X onto the
first and second factor respectively. A sheaf on X (resp. on A) will always be identified
with its inverse image by pr;: A~ X (resp. with its direct image by A—X x X). Consider
now the tangent bundle 7" of X, and identify J,(J) with the sheaf of vector fields on X x X
which are pr;-vertical, modulo those which vanish to order k on A. We call diagonal the
vector fields on X x X which are pr,-projectable and tangent to A, and we denote by
J(T) the sheaf of diagonal vector fields modulo those which vanish to order % on A. The
vector bundle over X corresponding to J,(J) will be denoted by J,(7'). The mapping which
sends a diagonal vector field on X x X into its pr,-vertical component yields, by passage

to the quotient, a vector bundle isomorphism
v: J(T) > J(T).
In the sequel it will be convenient to identify Jy(7") with 7'. The sheaf J(T) of vector fields

on X XX which are pr;-projectable modulo those vanishing to order &k on A corresponds
to a vector bundle J,(T) over X which is the sum of J(7T) and J,(7T), where

JYUT) ={E€TYT)|moé =0} = J(T) N J(T).

We denote by m: Jiui(T)~J(T) the natural projection. The projection pr, gives the

exact sequence
0> JW(T)~>J(T)=T >0 (1.9)

which enables us to identify 7™ with a sub-bundle of Ji(7T)*. The injection J(T)—~>J(T)
gives, by passage to the quotient, an isomorphism
T D)IYT) =T DT T).
Since the kernel of the projection my: J(T)~>Jo(T) is JYT), we obtain an exact sequence
0> J(T) ~>J(T)~ Jo(T) -0, (1.10)

which gives, by duality, an injection Jo(T)*~>Jy(T)*; we shall identify J(T')* with its
image under this mapping.
The bracket of vector fields on X x X gives, by restriction and passage to the quoti-

ent, a bracket
JuT) x g J(T) = J4(T) (1.11)
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which is defined fiber by fiber in the following way: if £, 7 are sections of 7' over a neigh-
borhood of z€X, then [ji(£) (%), §.(n) ()] =Fr_1([&. 1]) (%). It also gives the brackets

jk(g) Xxjk(g) _’jk(g)§ (1.12)
JuT) % x Tl @) > Jia(T; (1.13)
jk+1(g) X x Ji(T) = Ji(T)- (1.14)

We note in particular that J,(J) is a sheaf of Lie algebras. If £, €J,,(T) and &=v-1§,
#j=v"15, then
L)y = [£,m]+ER Dy, (1.15)
and
L(E)mn =9[m, & m 7)) +7 N DE. (1.16)
Write
T ) =lim J(T),  JofT)* =Tim JT)*,

and define similarly J(T), Jo(T), Jo(T)*, Jo(T)*. Then J(T) is a sheaf of Lie algebras
and J (7), J () are sub-sheaves of Lie algebras.

Following Malgrange [19], we next define a bracket on A J ol TV*®J (T). First, from
the bracket on J,(J) we obtain, by duality, an exterior differential d on A Jo(T)* which
is defined as follows. For f€0z= A%J (J)*, we define df to be the usual differential of f
which is identified with its image in J(J)*. For «€ J(J)*, we define da by the familiar

formula

<§ A, dd> = £(§) <77’ x— 5(77) <E, ay _<[£’ 77]’ a>’

where &, 7 €J (), and extend this operation as a derivation of degree 1 of A Jo(T)*. We
see, by a classical calculation, that d2=0. The natural injection pri: A JT*— A J(T)* com-
mutes with d, and hence the identification of A J* with its image under pr{ is justified.
For u=a®EE NS ((TPQJ o(T), BESH(T)*, we define a derivation i(u) of degree p—1
of AJ(T)* by i(u)f=eNi(E)B, where (&) is the derivation of AJ,(T)* of degree —1,
interior product with £, and extend this operation to arbitrary « by linearity. For
w€ NJ (T)*®J (T), we define the Lie derivative £(u) by the formula

L) =[i(u), d] = i(w)-d —(—1)"1d-i(u);
if u—a®& and fE€ A J(T)*, then
L(x®@E)f =a A LE)B+(—1)Pda N i(€)B. (1.17)

For u=oa®EE AP (TN QT o(T), v=BONE AT (T*®J(T), we define [u,v] by the
formula for the Nijenhuis bracket (see (18] and [19]), namely
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[x®&, O] = (2 AB)®[&, 1]+ La@& N —(—-1)LPen) a®E, (1.18)

and extend this definition to arbitrary «, » by bilinearity. Then [, u]= L(§)u, for & eJ (T),
w€ NS (TN QT o(T); if v€ AT (TV* @ o(T) and wE A J (T ®J (T), then
Llu, v] = [L(w), L(v)] = L(uw)o L(v) —(—1)"L(v)o L(«)
and Jacobi’s identity holds:
[w, [v, w]] = {[u, v}, w]+(—1)"[v, {u, w]].
Thus AJ 4 (T)*Q@J (T) is a sheaf of graded Lie algebras.
We obtain by restriction brackets on A Jo(g)*®jw(9'), ANT*®J o(T)and A T*RJ (),

which, for k>0, by passage to the quotient, induce on AJy(T)*®@Ja(T), A T*RJI(T)
structures of graded Lie algebras and a bracket

(NT*@Tpsy(TH (A T*@T o T)) = N T*@T(T).- (1.19)

In order to verify that AJy(F)*®J(T) is a sub-sheaf of graded Lie algebras of A Joo(TV*®
J (), it is sufficient, in view of (1.17) and (1.18), to verify that

Llax®@E) = ah LE)B, LE)BE AT(T)

for E€J(T), a€ AT (T)*, BE AT o(T)*. These assertions follow from the fact that Jo(T')*
is the annihilator of J_(7T) (a consequence of (1.10) by duality). Furthermore, £(£)8
depends only on 8 and the projection of & in J,(J) (see [19]). Hence, for k=1, AJ(T)*®
J(T) is a sheaf of graded Lie algebras, a quotient of the preceding. Since d preserves A J*
and, if £€J (), the restriction of i(£) to A J* is the usual derivation (&) of A J*, where
&, is the projection of £ in Jo(T) =T, we see that L£(&)f is the usual Lie derivative of §€ A T*
along &,€T. Hence A T*®J(J) is a sub-sheaf of graded Lie algebras of A J o TV @S o(T)
according to (1.17) and (1.18), and, for k>0, A T*®J(J) is a sheaf of graded Lie algebras,.
a quotient of the preceding. Finally, since T* is the annihilator of J(7T') (a consequence of
(1.9) by duality), formula (1.18) induces a bracket on A T*®J (T), defined fiber by fiber
by the formula
[x®é, BON] = (x ABYBE, 7],

where «, € A T*, & n€J (T), and a quotient bracket (1.19) defined by the same formula
with &, 9 €J . (T).

In [22] and [18], another bracket on A J*®J (T) is introduced; it can be obtained by
transport of the bracket on A Jy(T)*®J o(T). Namely, one defines

[%, ] = (* ®id) [(p*1@id)u, (*1®id)v]

for u, v€ A J*®@J (J); this bracket does not coincide with the bracket on A T*RJ (T)
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obtained above by restriction from the bracket on A J(T)*®J(T), but is related to it
(see formula (3.13.2) of [19], and [18], p. 115). However, in this paper, we shall not use these
brackets on A T*®J (T).

We note that, if w€ ATy (T*@J(T) (resp. N2T*@JT)), v€ AT (T *@JT(T) (resp.
ANT*QRJ(T)), where k>1, and if u and v satisfy nmyu=0 and myv =0, then s [u, v]=0.
This can be seen from (1.18).

We list two formulas which are direct consequences of the definition of the brackets

and which will be used in the sequel:
Ly NGy, [, ] =[C N w, L N 0] [ A w, §y ) (1.20)

where u, v€ET*®J,(T) and {;, (€T,

Cu Aoy Tu, v =18 R, G R o] = [Ca N, & o] — (LG N u)l) R
(LU AR u) ) N o— (L A v) i) Ru+ (LN o)l Au (1.21)
where u, vE€EJW(TV*QJ(T) and £, {,€J(T). A formula analogous to (1.21) holds for w,
vET*®J(T) and {,, £,€T, namely formula (3.3) of [9].

We shall identify S*J(T)*®J,(T) with the kernels of the projections 7;_y: J(T)—>
Jia(T) and gy J(T)—~>J,_(T); this identification will not lead to difficulties when we

have to consider diagonal automorphisms of X x X. Then — D gives by restriction a mor-

phism of vector bundles
NT*QST(TVYFRJ(T) ~ N T*RS* 1TV @Jo(T)
which we shall denote by 4. Denote by # the isomorphism
*@v: ATV @I (T) > A T*QJ(T)
and by D the differential operator
7o Do ATy (T *@J(T) > AJ(TV*RJ_1(T).
Then — D gives by restriction the morphism of vector bundles
8: NIWTY @Sy TYRJo(T) — N TV @82 o( Ty @Jo( T).
Consider the sheaf N of vector fields on X x X which are pr;-projectable and pr,-

vertical modulo those which vanish to infinite order on A. Then H is a sub-sheaf of J ()
and . . .

JolT) =HOIT),  JolT) =HDI(T).
The two projections of J(J) onto H parallel to J(J) and J () respectively, by the
exactness of (1.9) and (1.10), are determined by maps T—>J(T), Jo(T)>Jo(T), and
therefore by sections y of T*®J(T) and 7 of Jo(T)*®@J (T) respectively. In fact
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z=(*1®id)y
and
yomy =id —v: J o(T) ~>JT o(T),

g0y = v1—id: J o(T) > o T).

We shall also denote by y and ¥ the sections of T*@J(T) and Jo(T)*®@J(T) correspond-
ing to m.oy and 7,0 respectively. We have the formulas (see [19])

Du =y, u]l, for € AT*QJH(T}; (1.22)

Du=[y,ul, for u€ AJWT)*®J (T (1.23)
Set
B, = NI Ty @I T)[5( N3 TV @S T @Jo( T))

and B,= @ ,B}. We remark that By is a sheaf of graded Lie algebras for the bracket which
is the quotient of that on A Jy(T)*®J(T), and D induces a differential operator

b: B3> Bt

The “sophisticated’” Spencer complex

j D D
0 gt g B. B! 0, (1.24)

where ;,c:v‘lojk, is acyclic.

The differential operators D, D, D are compatible with the corresponding brackets,
namely for w€ NWT*RJ(T), v€ NT*QJ(T), @=(*1@vVu, 5=(""1®» " )v, we have,
if £>2,

Dlu, v] =[Du, m,_yv]+(—1)[m,_yu, Dv]; (1.25)
Dia, 5] = [Da, m,_y T} + (=1 [mer &, D7), (1.26)
and, for u€RBY, v€BL. it k>1,
Dlu, v] =[Du, v]+(~1)[u, Dv]. (1.27)
Thus By is a differential graded Lie algebra for each k>1. These formulas are direct con-
sequences of (1.22) and (1.23) by use of the Jacobi identity.

For u€Jy(T)*QJ(T), we set 4= (1*®id)u€T*Q@JI(T), uy=muEJ(TV*®T and =
gt ET*RT.

LemMmA 1.3. Let u be a section of Jo(T)*®J4(T). Then

Du—3my[u, u] =0 (1.28)
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tf and only if, for all £}, Lo€J(TF), Ey=v"1L,, La=v"1,, we have
(21— (1) T2 — Bo(Ea)] = (id ~ do) {[C1, Eal — ¥ H(L(w(S1)) Lo — L(w(E5)) §1)3- (1.29)
Proof. By (1.5) (with k=1) and (1.21) for {;, {3€Jo(T), {1 =v"1L;, E=v"1,, we have

&AL, Du - dmlu, ul> =47 E’L"(Cz) LR Du(fﬂ - ’17'0([51, L — ["10(51), g(E2)]
+ (L(u(81)) §a) N ug — (L(u(L5)) &1) 7 . (1.30)

Next, using (1.16), we have

[Zl - 'ﬁo(Zl), Zz - ao(zz)] = [Cla Zz] + [’do(zl), 720(52)]
+ v‘l{C(u(Cz)) &1 — L(u(&y)) Ly—GA Du(Cg) +&A D“(Cl)~

Substituting from this last identity into (1.30), we obtain

&y N Gy, Du— toglu, uld>= — [Z1 - ’ﬁ'o(Z],): Zz - do(Zz)]
+ &1 Lol — do[z'l: Zz] - {E(u(cﬂ) LR (”_1 = ug) — L(u(Cy)) E N ("’_1 - uo)}a

and so the vanishing of the left-hand side of (1.30) is equivalent to (1.29).

Following Malgrange [19], we set X3=X x X x X, let pr;: X3 X be the projection on
the i-th factor (i=1, 2, 3), and pr,;=(pr;, pr;): X3>—>X x X be the projection onto the pro-
duct of the i-th and the j-th factors. We denote by J** the ideal of O generated by
prizJ® +prisJ®, where J is the ideal of functions of O, x which vanish on the diagonal A
of X x X. The support of the sheaf 0 x/J¢!**1 is the diagonal A, of X3. A sheaf on X
(resp. on A,) will be identified with its inverse image by pr;: A;—~X (resp. with its direct
image by A,—~X3). We identify J,(J,(J)) with the sheaf of vector fields on X3 which are
Prio-vertical, modulo J¢+1-¥+D_ A vector field £ on X3 will be called bidiagonal if it is tan-
gent to pr3;(A) and pry,-projectable with prige(£) diagonal on X x X. We denote by J; ,(F)
the sheaf of bidiagonal vector fields on X3, modulo J***+1 and by J 4(T) the cor-
responding vector bundle over X. The mapping which sends a bidiagonal vector field on
X3 into its prj,-vertical component yields, by passage to the quotient, a vector bundle

isomorphism

. j(l,lc)(T) g Jl(Jk(T))'

We identify J,(J,(J)) with the sheaf of vector fields &£ on X3 which are tangent to przs(A)
and are pr,,-projectable with prisy(£) pr;-vertical on X x X, modulo J¢+1*+1,

The bracket of vector fields on X2 gives, by restriction and passage to the quotient,
brackets



120 HUBERT GOLDSCHMIDT AND DONALD SPENCER

Tl T) % xd .0 T) > T 1.10(T)s (1.81)
JUTR(T)) x xI (J(T)) = T (S a(T)), (1.32)
Jl(jk(T)) XXJl(jk(T))_)Jl—l(jk(T))' (1.33)

The brackets (1.32) and (1.33) are defined fiber by fiber in the following way: if &, n are
sections of J(T') over a neighborhood of x€ X and £=v"¢, ) =»-1), then

(&) (@), :(0) (#)] = 7.([&, 1]) (%), (1.34)
&) @), 5.7) ()] = jia([&, 7)) (), (1.35)

where [£, 77] and [&, 7] are defined in terms of the brackets (1.11) and (1.12) respectively.
For k>1, the diagram

Jirt(T) X g er(T) Ji+1-1(T)

(A1, 4) A (1.36)
T TT)) % 2 ST (T)) — J1(Je-(T)),
whose horizontal arrows are given by (1.11) and (1.32), is commutative. If

X Tl T) = I (T )
is the composition

A Ji(v™)

Jk+l(T) "——>J1(Jk(T)) Jl(jk(T))s
the diagram
T i(T) X x T i(T) Jier1-1(T)
(Zl’ Zl) Zl—l (137)

JUTT)) X x Ty (1)) —— J 11 (J(T)),
whose horizontal arrows are given by (1.11) and (1.33), is commutative. With the bracket
(1.31), J;.1»(F) is a sheaf of Lie algebras. If
A (1) > J 1o T)

is the canonical injection equal to »~1o4,0%, the corresponding sheaf map is a morphism
of sheaves of Lie algebras. The mapping j,: J o T)=J 1.1(T) defined by »—1oj,0v is also a

morphism of sheaves of Lie algebras.

Lemma 1.4. Let B, N, S; be formally integrable differential equations in J (T'). If
[Rii1, Ny 1< Sy, then for all 120
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[Beris1s N1l < S (1.38)
and

[Sol (R,), Sol (Ny)]<Sol (Sy). (1.39)
Proof. The bracket (1.32) induces a bracket
Ji(Byeiq) X 2 1(Niega) = J1(S);

since we have By, =(Brn)sts Nirrra= Vi) and Siy;=(8e)4, from the commuta-
tivity of (1.36) we deduce (1.38). If & is a solution of R, and # is a solution of N, then

Use+1(E)s Grea ()] = Gl €, 711)

and so [£, ] is a solution of ;.

LevMA 1.5. Let Ry, N, be formally integrable differential equations in J,(T'). Then,

if Ry,;=v" Ry, for 10, the following assertions are equivalent:

(@) [Riyr> Vel < N

) [Bririrr Nyl S Niyr, for all 1> 0;
(©) [Rua il M

(d) [Rerrsrr Mers]< Hiyr,  for all 1>0.

Proof. The equivalence of (a) and (b) follows from Lemma 1.4. Since 7, ;* Nyy iy > Niyy

is surjective, the equivalence of (a) and (c) or of (b) and (d) is deduced from (1.15).

2. Jets of transformations

Consider £=X x X as a bundle over X via the projection pr; and identify a map f:
XX with its graph f: X—>X x X and the k-jet 7,(f) (%) of f at = with the k-jet j,(f) (x) of
f at x. In accordance with the usual terminology, we call f(x) the target of j(f)(x). If
F =) ®), G=7g)(a) EJ(E), where f: XX, g: X—>X are maps defined on neighbor-
hoods of b and a respectively satisfying g(a)=b, then F-G'=j.(fog)(a) is a well-defined
element of J,(E).

Let @, be the open fibered submanifold of Jy(E) of jets of order k of local diffeomor-
phisms X—+X; in fact, @, =mn7"¢,, for k>1. We consider, unless it is explicitly stated to
the contrary, @) to be a bundle over X via the projection “source” z: @,~X. The multi-
plication on J {E) defined above determines a structure of differentiable groupoid on Q.
Let @y(a) (resp. Qi(a, b)) be the set of jets of order & of @, with source a (resp. with source
a and target b).
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Consider mappings F: X x X—+X x X of the form (f°, f), where f: X xX—~X and /"
X — X is defined by *(«) = f(x, x) for x€ X. These mappings preserve A and are pr;-project-
able; moreover, we shall say that F is diagonal if, in addition, for each 2€X the germ at
x of the mapping #'—f(x, z') is invertible. To the diagonal mapping F, we associate the
section of @, whose value at z is equal to the jet of order k at x of 2'+>f(z, «’). Two diagonal
mappings F and G determine the same section of @), if and only if F and ¢ have the same
principal part of order k, that is to say if they coincide on A together with their partial
derivatives of orders not exceeding k. We shall regard a section of ¢}, as the principal part
of a diagonal mapping; such a section F =(f°, f) is invertible if and only if /° is invertible.
We denote by dk the sub-sheaf of Q, of invertible (éfales) elements of Q,. Let Aut (X) be
the sheaf of local diffeomorphisms X — X if f€Aut (X), 7,(f) is the principal part of order
k of the germ of diagonal mapping (z, 2" )—(f(x), f(z’)) (see [19]).

Let Q. x, be the bundle of jets of order ! of sections of Q. The composition of jets
assigns to it a structure of groupoid and we denote by d(,_k) the sheaf of invertible (étales)
sections of @, ;,- The mapping j;: led(,'k) induced by j;: Qx—J,(Qy) is a homomorphism
of groupoids; the natural inclusion 4;: @, ;—>Qq.x, is @ homomorphism of groupoids.

The action of diagonal automorphisms of X x X on vector fields gives, by passage to

the quotient, for each section F of Q. the following mappings:

F: I Ty~ T Ty (2.1)
F: jk+1(T)a"’ Jk+1(T)zn (2.2)
F: Sl 1o > Tl T (2.3)

where a € X and b —=target F(a). The mapping (2.1) depends only on F{a), while the map-
pings (2.2) and (2.3) depend only on §,(F) (@) €@y ryy- Thus (2.2) gives us a mapping
Qa.m % xJul(T)~ JT)
sending (H, £) into H(); if F€Q,,(a,b), then the mapping Ay F: Jo(T),~J(T), is given
by (see [19], formula (6.2))
WEE) =vIF0E),  E€J(T). (2.4)

However the restriction of (2.2) to J3.1(T)=Jy(T) N I 4i(T) does not depend on the
1-jet of F Edkﬂ but only on F(a); thus we have a mapping

Qi X x JUT) > JUT).
We have a canonical section I, of @, over X sending x€ X into I,(x), the k-jet of the

identity mapping of X at . If F, is a one-parameter family of sections of Q. with Fy=1I,,
then &=dF [dt|;o €T(X, J(T')) where the sections of Ji(T) are regarded as diagonal vec-
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tor fields on X x X; every section of J,(T') can be written in this way locally. We can also

regard &(x) as a vector tangent to Q,(x) at I,(x); hence we have an isomorphism
jk(T)z — Vlk(z) (@)

which enables us to identify these two spaces. In fact, if f, is a one-parameter family of
local diffeomorphisms of X defined on a neighborhood of z with f,=id, and &=df,/dt|,-,
is its infinitesimal generator, then the image of 7';(5) (%) under this map is the tangent vec-

tor dj(f,) (x)/dtltxo to Q.
If G€Q,(a, b), then the mapping Q.(b)—>@Qy(a) sending F into F-G is a bijection.

Therefore we obtain an isomorphism

Te(Qu(d)) > T5.6(@x(a))

or

Vi(@e) = Vir.o(@)
sending & into &- (. Taking F = I,(b), we obtain the isomorphism
J Ty = Vol@ila)).

If 2eT(X, J4(T)), the vector field 7,(Z) on @, whose value at F€Q, is Z(b)- F, where b=
target F, is clearly invariant under this right action of ¢,. Moreover 1, is a morphism of
Lie algebras from I'(X, J,(T)) to the algebra of vector fields on @,.

Let G be a section of Q. For € X the map @, (a) >0, (a) sending F into G(b)- F, where
FeQ(a) and b=target F, is an automorphism of ¢,(a). Therefore we obtain mappings

Tr(@) = T ey 7(Q1)s
Ve(@r) ~ V ey r(@)

sending £ into G&; this left action on V(@) commutes with the right action defined above.
These mappings depend only on H =4§,(G){b) €Q\; 1, and we write HE=QE, for £€T(Q,).
Taking F = I{(a), we obtain the isomorphism

J W T)a=> Vea(@r)

which depends only on the 1-jet of G at a, and a mapping

Qo X xS T) = V(@)
sending (H, &) into H&. The isomorphism (2.2) is given by
F(§) = F-& Flay™ (2.5)
for FEQ,, £€J,(T),. We therefore obtain, by (2.4), the formula
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MFE) =M F-&m F L =y 1F(vE) (2.6)
for F€Q,.1(a), EETT), (see [19)).
For x€X, we have an isomorphism

Jai (M Viap Qo) (2.7)

which enables us to identify these two spaces. In fact, if F, is a one-parameter family of
sections of Q, over a neighborhood U of «, with Fo=1I,, then £ =dF,/dt|;.o€T\(U, J(T)),
and (2.7) sends 77,(5) () into the tangent vector dj,(F,)(x)/dt]s—o to Q. x. If FEQ x and
Fy=n,F€Q,, with source F,=a, target F,=>, the mapping Q, 1,(0)—=>@. (@) sending G
into G- F is a bijection. Therefore we obtain an isomorphism

T Q1. 1(0)) = Ta.p(Qar,15(@))
or

Vel@a.x) = Ve.r(Qa,w)-
Taking G =7,(I;)(b), we obtain the isomorphism

j(l,k)(T)b > Ve(@u,1y)-
If FEQ,,, with b=target F, it is easily seen that the diagram

jk+l(T)b Ve(Qx+1)

I yom (2.8)
oDy — Vir(Qun)s

whose horizontal arrows are given by the right action of F on @, and of 4, F on Q,
respectively, commutes. If ZED(X, J (7)), the vector field 7, 4)(Z) on @ .z whose
value at F€Q ,, is E(b)- F, where b=target 7y F, is clearly invariant under the right ac-
tion of Q.. Moreover, 7, is a morphism of Lie algebras from T'(X, J; (7)) to the
algebra of vector fields on Q; 4,

If FeJ(E) and f: X->X is a mapping defined on a neighborhood of 2€X such that
F =j.f) (%), we denote by

F*: TI . Tﬂk‘lF(Jk—l(E))

the map ji_,(f)4; in fact, F, depends only on 7 and determines F' uniquely. If k=1, then
Fo: Ty Ti0y(E) =T, x Ty, is the graph of the map f=f,: T ~> Ty, the differential of
f at z, which is given by (2.2) when f is a local diffeomorphism. The map F: Jo(T),~
Jo(T)szy sending & into F&=p(fr—1£) is the map (2.1) when k=0 and f is a local diffeo-
morphism. We remark that F€Q, if and only if f: T,— T, is invertible.
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According to Proposition 5.1 of [4], J,(Z) is an affine bundle over J;_;(Z) whose as-
sociated vector bundle over J, (%) is induced from the vector bundle
ST* Q5 V(E) = (pr1'8T*) @ (prz ' T)
over E, since V(E) can be identified with prz 7. If k=1 and 4,(f) (x) €J(E), €T3 ® Ty,
then o }
GuD @) +u)s & = (& fE+u(8)), EE€T.. (2.9)

Hence j,(f){(z) +u belongs to @, if and only if f+u: T,— Ty, is invertible.

We now examine the compatibility relations between the multiplication on J (&)
and the operations on Jy(E) given by its structure of affine bundle over J,_,(E). We as-
sume that k>1.

Prorosition 2.1. Let F, G€J (E) where source G=a, target G=b=source F,

target F=c.
(@) If ueS*T71T,, then

F-(G4u)=F-G+{id®vLom, For)u, (2.10)
where (iId@vlom, For)u€S*Ta®T,.

(i) If we€S*TrRT,, then

(F4u)G=F -G+ (v om Gor1®id)u, (2.11)
where (v*om, Gov* 1Qid)ueSTix T,
(iii) Let wES*TER T, and assume that GEQ,. If k>1, then G +u€Q, and
(G+u)t =G —(prom, G rorv*i@rlom, G lor)u, (2.12)
where (v* o, GLov*1®@v~lom, G Lov)u€S* TR T,. If k=1, then G+u€Q, if and only if
G +vouoy: Jo(T'),—Jo(T), is invertible; if this condition holds then
(G+u)yt=G1-[r*oGlov* Ry Lo(G +rvouov-ylovlu, (2.13)
where [v*oGroy* 1@y 1o (G +yvouor-)y Loy u€Ti®T,.

Proof. (i) Let f: X—+X be a map such that j.(f)(b)=7F. Consider the morphism of
fibered manifolds J,(f): Ji(E)—>J () over X sending H into §,(f) () - H, with x = target H;
in fact, Jy(f) is the k-th prolongation of the map id x f: E—E over X, and J(f)H=F-H
when target H =b. Hence, by Proposition 5.6 of {4), J,{f) is a morphism of affine bundles

over Jy_(f): Jy_y(B)~>J_1(E) whose associated morphism of vector bundles is induced
by the endomorphism id®f of (pri8*T*)® g(prz* T') over the map id x f. Therefore

Jul) (@ +u) = () F+([id®f)u
which gives us (2.10).



126 HUBERT GOLDSCHMIDT AND DONALD SPENCER

(ii) Tt is sufficient to verify (2.11) when w€S*Ty®@T, is of the form &Y, (h) (b)®E
where h is a local real-valued function on X satisfying j,_,(h) (b) =0. Let F =j4,(f)(b), G =
Jx(g9) (@), where f, g are local maps X—X; let f: U xR—X be a one-parameter family of
maps of a neighborhood U of b into X such that f(x, 0) =f(z), for €U, and df(b, t)/d¢|,-o =&.
Then according to Lemma 5.1 and Proposition 5.1 of [4]

F +u =ji(f(x, h(x))) (b)
and
(F +u)-& =jdflg(x), Hg@))) (@) =ju(fog) (@) + e x(hog) (a) ®E,
since the local map ¢ =fo(g xid): X xR—X is a one-parameter family of maps XX
defined on a neighborhood of a such that g(z, 0)=f(g(z)) and de(a, t)/dt|;_o=&. Since
&Y (hog) (a) =g*c1j,(R) (b), we obtain (2.11).
(iii) We suppose first that £>1. We have by (2.10)

L(a)=(G+u)y 1 (G+u)=(G+u)1-G+ (id®vlom, Glor)u.
Hence
(G+u)t =[I(a) — (Id®vlom, Glov)u] -G,

and therefore, by (2.11), we obtain the formula (2.12). We now consider the case k=1;
then G 4-u: Jo(T'),—J4(T), is given, according to (2.9), by

(G+u)t = (G+rvouor-1)é

for £€Jy(T),. Hence G+u€Q; if and only if this map is invertible. Assume that this is

the case; the mapping
(@ +u)y= Jo(T), > Jo(T)e
is given by
(G+u)t= (G+vouor1)~L (2.14)
By (2.10),
I(@) = (@+u)-(G+u) = (G+u) -G+ (1d®vto(G+u)tov)u

and hence
(G+u)t = [L(a) — (i[d®vto(G+u)Tor)u]-G-1 = G-1— (4*0GLor*-1@v~10 (G +u) " or)u,

by (2.11). Substituting into this formula from (2.14), we obtain (2.13).

Assume that £>0. By Proposition 5.1 of [4], J,(@,) is an affine bundle over ¢, whose
associated vector bundle is T*®gq, V(@y), and @,k is an open submanifold of J(Q).
Identifying @, with E =X x X, then J,(m,): J1(Qx)—~J1(E) is the map sending j,(F)(x) into
jo(mo F) (), where F is a section of @, over a neighborhood of z. If f=m,F, then j;(F)(x)
belongs to Q. if and only if 4,(f) (x) €Q,, that is if f: T',—> T, is invertible. Thus @ 4=
@, and Q »,=J () 2@, If F€Q,, with source F =a, target F =5, let
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T2‘®=7k(T)o > Te@ V(@)

u—>ul

be the isomorphism sending «®% into «® (nF). If HEJ(Q,) with myH=F and w€T,®
J(T),, then the affine bundle structure of J,(Q,) over @, gives an element H +ulF of
J (@) with my(H +uF)=F. We examine the compatibility relations between the structure
of affine bundle of J,(€),) over §), and the structure of groupoid of @ ,.

ProrosiTioN 2.2, Let F€Q, with source F =a, target F=b.

(1) Let HEQ , with myH =F and J,(7y) H=74,(f)(a), where f is a local diffeomorphism
of X defined on a neighborhood of a. If w€TERJ(T),, then H+uF belongs to Qq i, if and
only if f+mqu: T,— T, is invertible.

(ii) Let HEQy x, with mgH =F, and w€ Ta@J(T),. If H+uF €Qy 1, we have

(H+uF)(€) = HE) +(mof) N u (2.15)
for all E€J(T),.

(iii) If H,,HEQq i, with moH,=n H=1F, then H,=H if and only if H(&)=H(&) for
all £€J(T),.
(iv) If F,€Q, with source F,=Db, target Fy=cand H,, H€Q, ;, withwoH,=F,,ng H=TF,
then
Hy-(H+uF)=H,-H+[(d®H,)u]F,-F
for w€TE®RJ(T), such that H+uF €Q, 1, where in the second term of the right member
H, is the map J(T),~J(T),; furthermore

(Hy+vF,))-H=H,-H+[(foid)v] F,- F
for vETsRJI(T), such that Hy+vF,€Qq 1
Proof. (i) We have H+uF€Q ,, if and only if Jy(7,) (H +uF)€Q,. By Proposition
5.4 of [4], J\(m,): J1{@)—~J1(E) Is & morphism of affine bundles over z,: @, — £ whose as-

sociated morphism of vector bundles T*®gq, V(Q)—>pri' T*®gpr:'T sends uF into
(1A ®@mos) (uF) =myu, if w€Ta@J(T),. Therefore

J 1) (H +uF) = J, () H + (id ®@7ps ) uF = 5;(f) (a) +7pu,

and H +uF €@ 5 if and only if §,(f)(a) +7ou €Q,, from which we deduce (i).
(i) If H,=H +uF €Q, , then, by formula (2.4) of [8], we have for £€ Jo(T)gs

H,(£)— H(E) = (meé) N (Hy—H) F1) = (moé) N,

since H, —H =uF€T:® Vp(Q), from which the identity (2.15) follows.
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(iii) We can write H,—H +uF for a suitable u€ Ti@J(T),. If H,(§)=H(&) for all
E€J(T),, we conclude from (2.15) that w =0 and hence H,=H.
(iv) If u€Ti®@J(T), and H +uF €Qy 1, then for £€J,(T), we have by (2.15)

Hy((H +wF)(£)) = Hy(H () +7o(§) N w)
= H\(H(&)) + Hy(mo(&) A u)= (Hy H+[(1[d@Hy)u] Fy - F) (£).
I veTERJ(T), and H, +vF,€Qy 1 then for &€E€J(T), we have by (2.15)

(Hy+vF,) (H(E)) = Hy(H(E)) + (o H(E)) N v
= Hy(H(£)) +(mé) N [(f®id)v] =(H, - H+[(f®id)v] Fy - F)(E).
From these two identities and (iii) we deduce the formulas of (iv).

Assume that £>1. Let v(Q,) be the sub-bundle of vectors of V(@) whose projection
in V(Qx_,) vanishes. Then, for a€X, we see that v, (@) is identified with S%Jo(T);®
Jo(T). when we identify V, (@) with Ji(T),. The structure of affine bundle of J,(E)
over Jy_,(E) gives us an isomorphism for G€Q;, with source G =a, target G'=>5,

w(@): ST T, v5(Qe)
sending w into d(G +tu)/dt|;_o, where ¢ER. One verifies easily that, for a €X, the diagram

SkT: ® Ta M(Ik(a’))

— vlk(a)(Qk)

1@y (2.16)

8¢ To(T)a ®@Jo(T)a
is commutative, where the vertical arrow is the natural identification. If G€Q),, with

source]G =a, target G'=b, then the diagram

ST @ T, u(G)

V(@)

Yom GRv'  |@Q (2.17)

ST @ To(T)y—> i)y
is commutative. Indeed, if w € ST ®T,, we have by (2.11)
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-1 d -1 d *® -1 *—1 s
(@) u)G = % (G+itu)- G iop= gl—t(Ik(b) +t(*om G lov* 1 ®id) u)|s-0
= u( () (Fom G o r* ' ®id)w,

and so the commutativity of (2.17) follows from that of (2.16).

ProrosiTioN 2.3. Assume that k>0,
(i) Let F€Qy.y, with source F =a, target F=b, and w€S** ' T @ Ty; if F +u€Qy,y,then,

MWEF +u) =2, F+oG, fork>1, (2.18)

where @ =m, F and v=(1id®7;, GLov*10v)0u€ TF QST o(T)s @I (T, and for EET(T),
(F+u)§ = FE+(myé) N (v 1@m, GLov*1@v)du, for k=1, (2.19)
(F+u)é = FE+EN (v*1@v)u, for k=0. (2.20)

(ii) If F,, FE€Q,,,, with source Fy=source F=a, target F,=target F=>b, then F',=F
if and only if F &= F¢ for all £€J,(T),.

Proof. (i) First assume that k>1. According to Proposition 5.6 of [4], A;: Jy 4 (E)—~>
J(J(E)) is a morphism of affine bundles over J,(Z) and

A(F +u) =2, F + ([d@u(@)du

for F€Q,.,, with source F=aqa, target F=b, and w€S*'!'TE®T,, where G=mF and
ueT RS T @ T, Now (2.18) follows from the commutativity of (2.17) and, using (2.4),
we see that (2.19) is a direct consequence of (2.18) and (2.15). For k=0, by (2.4) we deduce
(2.20) from (2.9).

(i) Assume that F,, F €@, satisfy F,§=F¢ for all £€J,(T),. We prove that ¥, =F
by induction on k. Let k>0 and suppose that, if £>1, our assertion holds for k—1. If
k=1, we have m,_, F, =m,_, F by our induction hypothesis. Therefore we can always write
F,=F+u, with u€S*T*@T,. From (2.20) if k=0 and (2.19) if k>1, we conclude that
#=0 and that F,="F.

For k>0, let Q%,, be the bundle of the G€Q,,, satisfying m G = I (a), where a=
source . Assume that k>1. The bundle Q. is an affine bundle over X whose associated

vector bundle is 8¥*17*® T'; it possesses a canonical section I, ,, which induces a bijection
Qi > S*QT
sending G€Q¥, (a) into G — I, ,,(a). Composing this mapping with
vy -1Qv: SFIT*Q T - SF T (T ®@J | T),

9 — 762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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we obtain a bijection
8: Qf 1~ STV * @ J(T)

which is an isomorphism of bundles of Lie groups over X, by Proposition 2.1, (i) and (ii).
For GEQL, ,(a), we have

G — L a(@) st To~ vg00(@x)
and
Gy —Iiy(a)y = 600G, (2.21)

by the definition of o (see [4], § 5).
For k>0, let @Y., be the set of the G€Q,, ;) which project in @, onto I;. The bundle

Q0,1 has a canonical section §,(I;) =4,(1,,) over X and we therefore obtain the injection
8: Q> T* ® Ji(T)
sending H €QY )(a) into H —j,(1,){a), whose image is, by Proposition 2.2, (i),
(T*@J(TY = {u€T*®J (T)|id +mou: T - T is invertible}.
By (2.18), for k=1 the diagram
Ay

Qi1 Qu.n

2 o (2.22)

S"“JO(T)*®J0(T)—LT*®J,6(T)

is commutative. For k=0, A,: @3~>QP, ,, is a bijection and we define 2: Q1 J(T)*®J(T)
50 that the diagram (2.22) is commutative, where 6 =7*®»~%. Then (2.21) holds with £=0.

We now list fundamental formulas which will be used in the sequel (see [19], [18]).
We have the following non-linear Spencer complex, a finite form of the initial portion of

(1.3) (with T replacing £ and k-1 replacing &):
D

Aut (X) Jir Qrir (:7*®Jk(:7,))A—31—»AZfJ*@Jk-,(g) (2.23)

which is exact, where (finite form of (1.22))

DF = x—F () €T*@J(T), (2.24)
) DF = FY(v) —v€J(T)*@J(T), (2.25)

for FE€Qy,4, and
Dyu = Du—3}u, ul, we€T*®RJ(T), (2.26)

and
(T*RJ (TN ={u€T*@J(T)|vr+mou: T - Jo(T) is invertible}.
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We have (finite form of (1.2))

(A )ty F)] = (A®vy 1) DF,  FEQu 2.27)
and hence also

(08) ADF = (4 F) i, F-£~E),  EETT), FEQus- (2.28)
If GeQl,,, then since j,(I,) =2, I;.1, We have by (2.27)
(1, 6)t = (1A @) DE,
where DGE€T*®JYT) if k>1, and by (2.22)
(A, G) = 94, G- = §OG-.

By Proposition 2.1, (iii), we therefore have for GEQE,,

DG = —dy, itk>1, (2.29)
DG = —(id+g)togoy=[(id+g)t—idlow, if k=0, (2.30)

where g=0G. If u€(T*®J(T))y» FE€Quus ., With (o F) (¢) =y, we define
uf = FYw)+DF. (2.31)

This right operation of élc+1 on J*®J(J) conserves (T*@J (TN
LeMMA 2.1. Let FEQ,,1, tg, us € (T*@J(T)) . Then uy=uF if and only if
M F (i (1) +v~Louy) = jy(m F) + (v Lou,of) g, F
as elements of Qg ) where f=my F and (vou,of) (@) € TERJT(T)nay, [(vLou,0f) 7, F(a)€
T2® Vo riar (Qu)-
Proof. Tt follows from (2.28) that u, =47 if and only if we have, for all £€J,(T),
Ug(70&) = V(L F) ' F & — &) + FH(uy0/) (08)),
i.e., by (2.6) and (2.5),
E+vtouymyé) = F1om F Lo F-1m F 4+, FY(vou, of) (7,8))
=0 F Y, F-£-0, F + (vou,0f) (7, &)
=2 F1(js (e F) () + (v~ Louyof) (7€)
According to (2.15), this equation is equivalent to
(ulLe) +vToug) (§) = A FH(jomwe ) + (v~ ouy 0 f)om, F) (£));
hence, by Proposition 2.2, (iii), the equation %, =u{ holds if and only if
G L) +v T ouy = 4y F-1- (i (o5 F) + (v-Lou, 0 fymy, F),

which implies the desired assertion.
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Next, the non-linear Spencer complex

D

Aut (X) ?""*hdm <Jo<f7>*®fk<ff))“—m~A“’Jo(ﬂ)*@ JeilT)  (2.32)

is exact, where (finite form of (1.23))

DF =5 — F-Y(x) eJy(T*@Ju(T), (2.33)
DF =v1-F1(o1)eJ (TN @J(T), (2.34)

for F E(j;C .1 and
Dyu = Du—}my[u, ul, w€J(TF@JILT), (2.35)

and
(T TV @T T ={u€Jy(T)*®@J(T)| v~ —mgu: Jo(T)~>T is invertible}.

The analogues of (2.27)-(2.30) are:

o ) (4 F)] = — (0*®id)DF,  FE€Qu.s; (2.36)
(729E) A DF =&~ F-1- (3, F)-&§,  E€J(T), FEQps; (2.37)
DG = -8y, k=1, (2.38)

DG = —([d®@vY)yg, if k=0, (2.39)

where g =2, for GEQL, 1. I u€(Jo(T*®JT(T)),» FEQupy., With (7, F) (z) =y, we define
uf = F-Yu)+DF. (2.40)

This right operation of FEQ,,; on Jo(T)*®@J(T) conserves (Jo(T)*@J(T))" and the
action of F-1 on AJ(T)*®J,(T) depends only on m, F if k>1; hence, if £>1,

uF = (7, F)(w) + DF.

We have the following important identities whose analogues are also valid for the operators
D, Dy and A T*QJ(T); if FEQuur. s GFEQprs,, With (71, F) (x) =y and (7, &) (2) =2, then

D(F-G) — GY(DF)+DG, (2.41)
uFe = (uF)C, (2.42)
and _ _
D, uf = F- (D, u), (2.43)
for u € (Jo(TV*@TT)),-
There is a canonical bijection
(T*@TTH* ~ (Jo(T)* @J(T)* (2.44)

sending the element u € (T*@J,(T))" into @ € (Jo(T)*®J(T))"*, which is defined as follows.
Let w€(T*®J(T))"; then
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v+uomy: JT) = Ji(T)
is invertible since
id +vlowosmy: J(T)— J(T)
is invertible by Proposition 2.2, (i), with H =j, I, =A, I, ,, and u replaced by »~lou. Let
4 be the element of J,(T)*®J(T) which is defined by »—! —i = (» +uom,)~!; we have
id = (v —@)o(v+uomy) =id —doy + (¥ —d)ouom,
and hence
oy = (v —i)ouomy: J(T) = J(T).
Since wuom, vanishes on JYT)<J(T) and » is the identity on JYT), we conclude that
@ vanishes on JY(T'); hence 4 =dom, where 4 €(J(T)* @JT)" and 4 is the image
of u in (2.44). Since T*< J(T)*, J(T)*< J(T)*, we can drop 7, and define @ by

v = (v +uy: J(T) = J(T).

LeMMA 2.2 The following assertions are true for the mapping (2.44):

(iy Let B, be a sub-bundle of J{T) and R =v-1R,, and let w€(T*QJ(T)". Then
w€T*® Ry, if and only if ﬁEJO(T)*@)ék.

(i) If w€(T*RJL(T)", then

af =uF,  for FE€Quy-
(iil) We have L )
DF =DF, for F€Qy,.

(iv) If w€(T*@JL(T))", then Dyu=0 if and only if D,%=0.

Proof. We have

id=(v1—ajo(v+u) =id—do (v +u)+rlou,

and hence
v-lou =do(v+u): J(T) > J(T). (2.45)
Similarly
id=(¥+u)o(y1—a) =id —vot+uo(y* —a),
and hence

vod =uo (v 1—a) J (T)— J(T). (2.46)

Assertion (i) follows immediately from (2.45) and (2.46).
It u€(T*RJIT))", FEQy,1, We have by (2.25)

v+uf = FYy+u)=Flo(y+u)oF,
and hence

y1—uf =(y+uf)r = Flo(v+u)2oF = F-lo(v1—d)oF

=yl (y-1— FYp 1)) — F-Ya) = v~ — (DF + F-Y(&)) = v — ¥
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by (2.34), that is to say, (ii) holds. Taking »=0 in (ii), we obtain (iii). Finally let €
(T*Q@J,(T)"; then, by the exactness of (2.23), D;u =0 if and only if u=DF, Fea'm and
hence by (iii), @=DF, which, by the exactness of (2.32), is equivalent to Z_)l'ﬁ,r—O.

LEMMA 2.3. Let u be a section of Jo(TY*@T over X and f: X—-X a mapping. Let F be
the section §,(f) — fouov of J,(E). Then:

@) FE=»(f(v1—w)é),  for E€J(T);

(i1) F is a section of dl if and only if v1—w: Jo(T)—T is tnvertible and f is an immer-
ston;

(iii) i F s a section of Qy, we have DF =u.

Proof. According to Proposition 2.1, (i), we have
F =ji{f)- (L1 —uov), (2.47)

so (i) holds since I, —uop: Jo(T)—>Jo(T) is equal to id —you. Hence F is a section of Q if
and only if fo(y—1--u): Jo(T)— T is invertible, and so we obtain (ii). Applying D to (2.47)
we obtain, by (2.41) and (2.39),

DF = D(I, —uov) —u.

Finally let BY be the set of the u € B}, whose projection myu in Jo(T)*® T satisfies the
condition that v~ —myu: Jo(T)~>T is invertible. The operator D: (:Z,C (T *RJ(T) in-
duces a differential operator D: dk—> @%C for k>1 and, for w€B., let ﬁlu =Du—}[u, u]€B3.
We thus obtain the “sophisticated” version of (2.32)

~

D,

D, B (2.48)

Aut (X) e, @,

which is an exact sequence for k>1. Let F €Q, where k>1; the action of F2on A J, ol IN*®

J(T) gives by passage to the quotient an action on B, and we define
uf = F-Yu)+DF, (2.49)

for u€Bj, ,, FEQ,,, with (7, F)(x) —y. This right action of Q; on B, conserves B and the
analogues of formulas (2.41)—(2.43) hold for the operators D, f), and the sheaf By.

We conclude this section by recalling the definition and some properties of a non-
linear partial differential equation. A (non-linear) partial differential equation P, (of order
k) in Ji(E) is a fibered submanifold of n: J,(£)—~ X. The l-th prolongation of P, is the sub-

set of J, (E),
(Pr)s1 =4 " Py) N A(Jie1(B))),

where 1, is the injection Jy,,(B)—J (J,(E)). A solution of P, is a mapping f: U~ X de-
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fined on an open set U< X and satisfying 4.(f) (x) € Py, for all € U; then jj, ,(f) is a section
of (P;);, over U, for all 1>0. The mapping 7, ;: Jy,1,1(E)~>J;,(E) induces a mapping
Fert: (Pe)sasn= (Pr) - Following [4], we say that Py is formally integrable if for all >0,
7: (P)y—~X is a fibered submanifold of z: Jy (E)—>X and syt (Pr)oqen ™ (Pr)yr 18 @
fibered submanifold of 7,;: Jiy141(E) ey, ,~ (Pi)41- According to Proposition 7.1 of [4],
if P, is formally integrable, then =, ;: (Py)iqip—(Pi)y: is an affine sub-bundle of
Tertt Jerra (B, (Pr)r- We say that Py is integrable if, for all >0 and p€(Pr)p1. 0
there exists a solution f of P, on a neighborhood of x such that j,_,(f) (x) =p. If X is endowed
with a structure of an analytic manifold and P, is an analytic, formally integrable dif-
ferential equation in Jy(E) then, according to Theorem 9.1 of [4] or the appendix of [19],
it is integrable.

If P,c@, and k=1, then a solution of P, is necessarily a local immersion X—X;
furthermore, if J,(Py) =J,(Py) N Q1) We have

(P =4 T (PN A @i 1))

where A, is the mapping Q. ;~> Q. -

3. Jet bundles and fibrations

Let Y be a differentiable manifold, whose tangent bundle we denote by Ty, and let
9: XY be a surjective submersion, V=T(X/Y) the integrable sub-bundle of 7'=T of
vectors tangent to the fibers of g. If g =p,: T— T, is the differential of g, then

0 14 72 01T y——0

is an exact sequence of vector bundles over X. Let B and F be fibered manifolds over X
and Y respectively and ¢: E—> F a morphism of fibered manifolds over 9. We denote by
F, F; the sheaves of sections of F over Y and of g~1F over X respectively. We say that a
section s of E over Uc X is g-projectable if ps(a) =@s(b) for a, b€ U whenever p(a) =g(b).‘
Then the section ¢s of F over o(U), which sends y€o(U) into ps(a) where a €U, o(a) =y, is
well-defined. We denote by &, the sheaf of sections of £ which are g-projectable and by
Ju(E; )= J(E) the set of k-jets of sections of €,. If p: B~ F has constant rank, J(E; ¢)
is a bundle and if, moreover, B, F are vector bundles and ¢ is a morphism of vector bund-
les, it is a vector bundle; the sheaf of solutions of Ji(E; @) is E,. If Ji(F; ¥) is the bundle

of k-jets of sections of F over Y, we have a mapping
@: Ju(B; p) > J(F; Y). (3.1)

We now assume that E, F are vector bundles and that ¢: E—~F is a morphism of
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vector bundles. If K is the kernel of ¢: E—p~LF and if this mapping is surjective, then
J(K) is the kernel of the mapping (3.1).

Let Fi*)(g) be the sub-bundle A/T*®e*( A'T¥) of AMIT™ for j=0; we set Fit/(p)=
Fitlo) for j<0. Then Fif{(o)< Fi*’(g) and Fi(o)= A'T*. We define, for j =0,

FP(J(B); ¢)={u € NYT*QJ(B; 9)| (1d® @) u€F(0)® x Ju(F; Y)}

and, for j <0, we set

FiJUE); )= ANHT*®J,(K).
Then

Fi(JE); @)= NT*@J(E; @),

F:i{(Jk(E’)’ p)< Fi(J(B); ®),
and
Fio)@J(B; 9y < FIH (T (E); 9).

We suppose henceforth that ¢: £->p—1F is surjective. Then the sequence
0——> FEA(E); §)—— FLHT(B); ) —T— N V* @ x (NI} @ Jy(F; Y))——0

of vector bundles is exact for >0, where ¢ sends w€ Fi*/(J (E); ¢) into the element gu
defined by the formula
(Qu) (G A NEQTA AT = @lu(E A AEG AT A AT))

where &,, ..., E,€V, 1y, ..., ;€T and 7,=p(y,) € Ty for 1 <I<\i. In particular, we have the

exact sequence

0— /\iT*®Jk(K)————>F3(Jk(E);(p)-—(p—>9_1( AMT @I (F; Y)——0
and
FYT(E); )= NT*@J(K)+o*( AN TY)QIW(E; @)

We denote by ( A'T*®@J,(E; ¢)), the sheat of p-projectable sections of Fi(J,(E); @) we
then have the mapping

@ (AN T*QTLUE; )y~ NTFRJ(F; 7).
According to Proposition 3 of [6],
D(FT(E); ) = FiT (T (E); @),

and so, in particular,
D(JE; )= T* @I (E; 9)-

For k=1, the sub-bundle J,(E; ¢) of J,(E) is in fact a formally integrable equation whose
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I-th prolongation is J,, (¥; ¢) (see [6], Corollary 3). Furthermore, if
dX/y: Aj‘lﬂ*@?x g /\“’1?.9*@;){

is the exterior derivative along the fibers of p: X~ Y, then the diagram

FITLE): ¢) D FI((E) 9)

@ @
X . -d .
NU*®( NTE@T(F; V) gl Y, j P @ (AN TE@ T, o(F; T))x

commutes. In particular, we have the commutative diagram

NT*@JWE; @) ANLT*@J,1(E; )

@ @ (3.2)

NG @JF; 1)yt Y, (1Y@, (F; Ty
The following lemma complements Proposition 4 of [6] and will not be used in this
paper.
LeMMA 3.1. Assume that : E—~o=LF is surjective and let w€J,(E; @); then u€J(E; )y
if and only if Du€(T*@J;_1(E; @),

Proof. By Proposition 4, (ii) of [6] we know that, if u€J,(E; ),, then Du€(T*®

J51(E; 9)),. We now prove the converse. We have the following commutative diagram:

FiJys(B); ) — 22— TE @ J,_y(F; T)

&€ &€

Ty er(B; 9); @) —— Jy( ool F; ¥); Y)
[ [
J (B ) 4 J(F; )

all of whose vertical arrows are injections. The mappings ¢, 4, in the left column are re-

spectively the restrictions of the mappings
& T*Q@Jy 1(E; @) ~ J1 (1 (E; @), Ay J(B) = J (1 (B)).

We remark that the commutativity of the upper square of the diagram follows from the
fact that, if s is a @-projectable section of J,,_,(E) and f is the pull-back to X of a function
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on Y, then f-s is also g-projectable. Let u €J,(E; ¢) and suppose that Du € (T*®J_,(E; ¢)),.
By the commutativity of the lower square of the diagram, u is g@-projectable if and
only if 4,u is g-projectable. By Proposition 4, (i) of [6], we know that m,_, u€J; 1(E; @),
and hence §;(m, ;%) €J(J_1(E; @), Finally, we infer from formula (1.2) that A,u is ¢-
projectable if and only if eDu is g@-projectable and the g@-projectability of eDu follows
from the commutativity of the npper square of the diagram.

LemMMa 3.2. Let x€X with y=g(x). Al linear maps
Dy Jy(F; Y)x, . > Tr @I (F; Y),

satisfying the following two conditions are equal:

(i) for s€F,,
D, (ji(s)og) = 0;
(ii) for f€0x, . u€JL(F; Y)x, 0

D(fu) = (df @7t w) () + () D, .

Proof. Suppose that D,, D, are two such maps satisfying these conditions. Then for
s€JF,, we have by (i)
(D;~ Dy) (jxls)op) = 0.
By (ii), for f€0x,q» u€J(F; Y)x o

(D, — D:)(fw) = f(x) (D, — Ds)u.

Since Jy(F; Y)y,, is generated as an Oy ,module by the elements of the form jy(s)op,
with s€J,, these two relations imply that D,~ D, =0.

We now construct a generalization of the differential operator D of § 1.

ProrosIiTION 3.1. There exists a unique linear, first-order differential operator
D: J(F; Vx> T*®Jpa(F; Yy (3.3)

satisfying one of the following equivalent conditions:

(i) For all sections s of F over Y,
D(ji(s)e) =0 (3.4)
and
D(fu) =df®@m,_yu+fDu, {3.5)
for f€0x, u€Jy (F; Y)y.
(ii) If B=p=*F and @: E—>g~\F is the identity map, the diagram
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JE; @) T*@Jy(E; )

@ d®g (3.6)

D
ch(:;§ Y)y—T*® Jk—1(3§ Y)x
commutes.

(iit) If u€JW(F; ¥)x, . and w(@)=Ji(s) (0(x)) for $€Fyey,
(eDu) (@) = j1(Te_y %) (%) —F1(jx—1(s) 00) (%) 3.7

(iv) If T is any section of o: XY defined on a neighborhood of y€Y and t(y) ==, then
for all sections u of J(F; Y)y over a neighborhood of x and E€T,,

<&, Dudy=<&—14048, Axyy 1 u) +{04&, D(uot)), (3.8)
as elements of J,,_,(F; Y),, where the operator
D: J(F ¥) > Ty @Ja(F; ¥) (3.9)

on the right-hand side is the one defined in § 1.
(v) If T is any section of g: XY then, for all sections u of J(F; Y)x,
(r*®id)(Du)ot = D(uoT) (3.10)
as sections of TYQRJ(F; Y) over Y, where v T~ T%, 4, for y€Y, and the operator D on
the right-hand side is the one defined in § 1, namely (3.9), and

(Du)IV =7tk—1'dx/Yu- (3.11)

Proof. If D is a linear operator (3.3) we define, for x€X,
D;: Iy F; Y)x,o > Te @I F; Yoy
by setting D,u={(Du){x), for u€J(F; Y)x,,; then D satisfies the conditions (i) if and only
if the operator D, satisfies the conditions of Lemma 3.2 for all x€ X. In particular, this
permits us to deduce from Lemma 3.2 the uniqueness of an operator D satisfying the

conditions (i). We begin by proving the existence of an operator D satisfying (i). Let
E =¢1F and ¢: B>~ 1F be the identity map; then

¢ Il E; @) > 07 n(F; )
is an isomorphism and sends j,,(sog)(x) into j,(s) (e(x)), where z€X and s is a section of
F over a neighborhood of p(x). Therefore there exists a unique map (3.3) such that the

diagram (3.6) is commutative; it remains to verify that this operator satisfies (i). I sis a

section of F over Y, we have

D(ji(s)00) = (id®@¢) Dp~i(ji(s)og) = (id @) Djy(sog) =0,
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and for fEQy, u€J(F; Y)x, by (1.4),
D(fu) = (id@¢) Dg~(fu) = (id@¢) D(fp~'u)
= (i[d®¢) (@f @, ¢ u + fD{@~u)) = df @7,y u+ (id®@p) D(g~u) = df @y u -+ fDu,

which gives us the existence of an operator D) satisfying (i) and shows that (i) and (ii) are
equivalent.
Let x€X, v a section of g: X~ Y defined on a neighborhood of y€Y with z(y) ==z,

and let
D;’ D;’ Jk(;’ Y)Xa:'") T:®ch(F: Y)y

be the mappings defined by setting D, equal to the right-hand side of (3.7) and <&, D u)
equal to the right-hand side of (3.8), for w€J,(F; ¥)x,, and EE€T,, with w(x)=7,(s)(y) and
$€F,. We now show that these mappings satisfy the conditions of Lemma 3.2, from which
it follows by Lemma 3.2 that (3.7) and (3.8) hold and that assertions (i)-(iv) are equiva-
lent. If s€3F,,

eD;(ji(s)00) = J1(r17i(8) 00) () —T1(fie~v(s)00) () =0
and, for £€T,,
<&, Dz(ju(s)00)) =<p4&, D(ji(s))> =0,

since dy{($)00) =0 and 5,(s)000T ~jyls). It [€0x,. UEIE V)., With ulz) =jels) (y)
where s€F,, we have (fu) (x) =f(z)j,(s)(y) and
eD;(fu) = jolmmyy fu) (@) ~11(f(2) iy (5) 00) ()
= 5 ((f — (@) 7Ty ) (@) -+ F() (7151 ) (&) — F{) J1(Jo-1(8) 00} (%)
= &(df @1 %) (%) +f() e D; w.
On the other hand for £€ 7T, since (fu)ot =7*f+(uo7) and £ — 7,045 € V,, we have by (1.4):

& Di(fu)y = <E—1404& Axiy(fme_yu)) +{esé, D(*f-(wot))>

= & 14046, Axyy fOM 1 w) +<E—Tu04E, fdz)y Ty >

+ <04, AT @My (wot)) +{osk, T+ D(uoT))
= & —Tx04&, APy u(@) + [(2) (§ — 7404, d iy Ty u)

+ <046, T ey ulT(y)) + (*f) () <ex&, D(uot))
= <&, (df @mp_y u) (%)) — {T404&, )70y u()

+ H(@)<E 1404 &, Dxiy Ty u) + {5048, ATy u(@) + f(2) {05, D(woT))
= (&, [df®m_yu) (@)) +{(2) <&, Diu).

Thus D; and Dj satisty the conditions of Lemma 3.2.
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To complete the proof of the proposition, we now show that (v) implies (iv) and then
that (i) implies (v). Let 7 be a section of g: X - Y defined on a neighborhood of y€Y and
x=1(y). Assume that D satisfies (v) and let £€T,; then £—7,0,£€V, and, by (3.10)
and (3.11), if u€J(F; Y)x,

<&, Dup =<E—Tx0x, Dup +<{vy04&, Duy
= {E—T40x&, My A xiy w) + <046, (v*®1d) Du(z(y)))
= (E—T404&, dxyyme_yu) +<0x€, D(uor))
and thus (iv) holds. Finally, to show that (i) implies (v), we take u =j,(s)og in (3.10) and
(3.11), where s is a section of F over Y; then both sides of each of these equations vanish

by (3.4) and the facts that Dj,(s) =0, dxy(jy(s)og) =0. If €O and u €J(F; Y )y then, by
(1.4) and (3.5),

(v*®id) (D(fu))oT — D{(fu)oT)
= (v*®1d) (df @,y u) 0T + (fo7) (v* ®id) (Du) o7 —d7*f @y uov —7*f+ D(uo7)
= (for)[(v*®id) (Du)ot — D(uoT)].

Similarly, if £€V, we have by (3.5),

<&, Dfu) —me_ydxyv(fu)y = & Af@meyu+fDu—dxy fOm 1t —f - 1 dxy up
= <&, (Du—mmp_yd 3y u)).
Since Jy(F; Y)x, . is generated as an Oy ,-module by the elements j,(s)og, where s €Fy.),
for all € X, we obtain the identities (3.10) and (3.11).

We now define

D: NT*QJUF; YV)x~> N T*@J o (F; Ty
by setting

Dla@u) =da®@m_yu+(—1)a A Du

for a€ A'T*, u€J(F; Y)x; this is a well-defined operator because of (3.5). The operator
D: AT*QJ(F; Vx> AT*@J4(F; Yy (3.12)
satisfies

D(acAw) = do Ay u+( — 1Y A Du, (3.13)

for € N*T*, w€ A T*QJ(F; ¥)x, and

for &, €T, ueT*RJ(F; Y)x. Since D2=0, as is easily seen, we obtain a complex
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0 9—13 & Jk(:;; Y)XL9*®Jk—1(3§ Y)X—P_’

e > AT R, W (F Y)——0

where the map j; is induced from j: F—>J(F; ¥) by o. This complex is not exact at
NT*@J,_«(F; Y) for i >0; however, the corresponding complex with %= co is exact.

If E=¢~'F and ¢: E—~p~'F is the identity mapping, it follows from (3.6), (1.4) and
(3.13) that the diagram

D ,
NT*QJUE 9) —— NTT*@J,1(E; @)
d®g id@g (3.15)
D
NT*@J(F; ¥)g——— N T*®@J(F; Vg

is commutative, where the vertical arrows are isomorphisms, generalizing assertion (ii)
of Proposition 3.1.
Let i: V7T denote the natural inclusion. Combining diagrams (3.2) and (3.15), we

obtain the commutative diagram

D

Aij*@Jk(:;? Y)x /\i+]g*®Jk—1(;; Y)x

*®id 1* ®id (3.16)
s90% . e By r10x .
AN RQJF; ¥)y———" AR J, 1(F; Yy

which generalizes relation (3.11).

If 7 is a section of g: XY and y€ Y, and if u is a section of A*T*®J(F; ¥)x over a
neighborhood of z=1(y), let 7*u be the section of N'T3RJL(F; ¥) over a neighborhood
of y defined by

(T*u) (@) = (t*®@id)u(z(a)), fora€?, (3.17)
where T¥ on the right-hand side is the map
™ A TR~ AT,
Then, by (3.10), (3.13) and (1.4), we see that
*Du = Dt*u, (3.18)

where the operator D on the right-hand side is the one defined in § 1, namely (3.9). The
relation (3.18) generalizes (3.10).

We now give a construction of the operator (3.12) similar to the one given by Malg-
range [19] for the Spencer operator D of § 1. Let Ay y be the subset X x , Y of X x Y. Let
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pryi: X x Y—>X be the projection onto the first factor. We shall identify a sheaf on X
(resp. on Ay, y) with its inverse image by pry: Ay y—+X (vesp. with its direct image by the
inclusion Ay y—X x Y). Let J¥'! be the sub-sheaf of Oy, y of functions which vanish to
order k on the diagonal Ay of ¥ x Y. Let J%'3 be the inverse image of this sheaf by ¢ xid:
X xY—-Y xY.If 1, is the trivial line bundle over Y, we see that Oy, y/J %3 is the sheaf

of sections of p~1Jy(1y; Y) over X. Furthermore
Jk(:;) Y)X= (OXxY/j}}C(T%)Q@pr;loypr;l:;: (319)

where pry: X x Y=Y is the projection onto the second factor. Lifting differential forms
on X to X x Y by prf, we may regard elements of

/\g* ® g'X(OXx y/j);,*‘l}'

as germs of differential forms on X x ¥ modulo J%';. The exterior differential operator on

X x Y with respect to the first factor X gives by passage to the quotient a map
D: AT*®05(0x-v/I%7) > AT* @, (OxxrI%.1). (3.20)
Since D is pry'Qy-linear, by applying the functor
®pryl0, prz'F
to (3.20) and using (3.19), we obtain an operator

.D: A g*®Jk(3, Y)X_-) A g*®Jk.._1(g; Y)X

which is none other than our operator (3.12), as it is easily seen that it satisfies conditions
(i) of Proposition 3.1 and (3.13).
Finally, the operator (3.20), or more generally (3.12), is easily written in terms of

local coordinates. For simplicity of notation, we shall consider only the case
D: Oxxy/jlggil"”g*®ox(0xxyljl§{x)-

We introduce on X the local coordinate (v, y), where v=(v1, ..., v9) is the coordinate along
the fiber of p: X— Y and y=(¢!, ..., y™) is a local coordinate for Y. If u represents a germ

of Ox.y/J%3, we have in the usual multi-index notation,

w=S ayo,y LY (mod U’;:%),

Jal<t ol

where a=(x;, ..., ), @ —y) =G —y) ... @™y, al=(!)(e!) ... (@n)), |a|=
oy +...+a,, and (y, y') are respectively the coordinates along the first and second factors
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of Y x Y. Then we have

: 0 | & (y’ —y)y 1
Duy= mgc—l {gl w'® ﬁ + jgl dy’® (é;’ - aﬂh‘-l])} ! (mod ’?—Y s
where 1, denotes the multi-index with 1 in the j-th position and 0 elsewhere. This for-

mula should be compared with (3.8).

4. A complex associated with Lie groups

Let G be a bundle of Lie groups over Y; the multiplication map @ x y @G is a mor-
phism of fibered manifolds over Y. Let T(G/Y) denote the bundle of vectors tangent to
the fibers of G— Y. If €@, the mappings G,—~ G, sending  into g+~ and k-g respectively
induce isomorphisms 7',(G,)~> T 1 (G,), Tw(G,)— T, (@,) sending £ into ¢g-& and &g respec-
tively for all #€G,. Let I be the section of & over Y sending y € Y into the identity element
I{y) of the group G,. The Lie algebra g of G is the vector bundle over Y whose fiber g, at
YyEY is Ty, (/Y ) =T, (G,). If £€g, and gEG,, then we write

Ad g.é =g-§.g-1.
The bracket on g is a morphism of vector bundles over ¥

49484,
which, when restricted to the fiber g,, is the usual bracket defined in terms of left-invariant

vector fields on @,. The Maurer-Cartan form of G

w: T(@[Y)—+g
ig defined by
& awy=g*§&  for EET(GY);
if y€Y and g€G,, its restriction to 7,(G/Y)=T,G,) is the left-invariant Maurer-Cartan
form of the Lie group &, with values in g,.
We define a bracket

(THX] )@ NRTHX| V)@ x9) > NTX]Y)® x4 {4.1)
by the formula
[“®§’ ,3®77] = (“/\;8)@)[5’ 77]’

for o, BETHX]Y), &, n€g. Then the Maurer-Cartan form of G satisfies the equation
dg/yo + 3o, 0] =0, (4.2)

where the bracket is given by (4.1) with X replaced by G.
For i>1, let N'UY*®xq denote the sheaf of sections of A'V*® xg. We introduce the

differential operator



ON THE NON-LINEAR COHOMOLOGY OF LIE EQUATIONS. I 145

Dxv Gz W®xg,
which sends ¢ €Gy into ¢*w EV*® xg. If ¢ is a section of G over U< X, then

& Dxird> =&, w) = $(a)$4&, (4.3)
for all §€V,, a€U, where ¢, & €Ty, (G/Y) and ¢(a)~t: Ty, (G/Y)—g. Hence

Dx/y ¢ =¢*0w =0if and only if $,&=0forall ZET. (4.4)
We have, for 4 €,

Ax1¥(Dx/v$) = dxr($*®) = $*(dgyw) = —§d*o, 0] = = "o, $*o]

by (4.2), i.e.,
dx/¥(Dx/x $) + 3 Dx/y 6, Dx/v ] =0. (4.5)
Therefore defining
D1,x;yf W*@xg - ANV*Ry g
by the formula
Dy xixv=dxyv+iv,v], v€W¥Qxg,
we obtain the complex

-1 Dixy

I g S Uz Dz V*® xg —= NU*@xg. (4.6)

This complex is clearly exact at Gy in view of (4.4).
If w€ A V;®g,, where z€X and p(z) =y, and g€G,, we define

g(u) — ([d® Ad g)u.

If 4, p are sections of G over an open set U< X, we obtain a section ¢+ of Gy over U by

setting

(-9} (@) = ¢(a) p(@), a€U.
Then

Dx/y(¢-9) =y (Dx/y ) + Dy - (4.7)
Indeed, if £€V,, a€U,

(6-9)aé = bud p(a) + $(a) &
and so, according to (4.3),
<& Dxyx(d-y)) = ($(@) (@) Hbx b p(a) + d(a) - ps§)
=yp(a) - $la) b & p(a) +p(a) 1 pud = (@)Y, Dayy $)) +<& Dayy)

which gives (4.7). Replacing v in (4.7) by ¢, we obtain

Dxjy¢7' = —¢(Dxiv 4). (4.8)
I u€W®xq, d€EGx, we define
u® = ¢ u)+ Dy ¢ (4.9)

91 — 762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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Then, if €y, we have by (4.7)

u?? = Y Uw)) + Dx/y($-9) =y~ (w) + Dxy 8) + Dxyr s
ie.,
u ¥ = (ud). (4.10)
We have
Dy, xiyu® = YDy, x/yu), for u€V*®g, €Gx. (4.11)

To establish (4.11), we first make the following digression.

Let ¢ be a section of G over a neighborhood U of a point ¢ € X and let z; be a curve
in U with z,=a and g(x;) =p(a)=y; set dx,/dt|,_=E€V,. For simplicity, we write ¢,=
¢(x;); then, for L€g,, we have the formula

d
224 $u- Clio=Ad $(a) - (<5, Dy 2, €D (4.12)

In fact, we have

Ad e L=o-{da" e~ L bi' do} o’ =Ad do- Ad (ho" - )&

and hence

O%Ad by Clieo=Ad ¢y-ad (d%qsgl.,/,t]t:o) -f=Ad ¢, ([d%¢51.¢t|t=m C]),

since the differential of Ad at the identity of the group G, is equal to ad (see [16], p. 118).
Since, by (4.3),

d

@95—](“) “Bele-o=9 @) pE=<&, Dy >,
we obtain (4.12).

Next, if £€V, and { is a section of p~1g and ¢ is a section of (jx over a neighborhood

U of a, we have

£ (Ad ¢-{) = Ad ¢(a) (§-0) + Ad $(a) (K& Dx/y4>s {(@)]). (4.13)

For let x; be a curve in U as above with dz,/dt|,_,=&, and write {;={(x,), $,=H(x,); then
d d
£ (8dg-0)= T (Ad gy L)leo=Ad $(a)- (- D)+ 3, Ad - L(@) o

and we obtain (4.13) by substitution from (4.12).
We obtain, for u €W ® xq, $€Gx,

Axry $7Hw) —dHd gy u) = d"H[Dx/y $7% w))- (4.14)
In fact, let & 5 €V; then
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EAN, dyyyd~Mu) — N dx/y u)>
=&-{, M)y =9+ <&, M w)) — <[€,m], 47 (w)) — Ad $=HE S, wp —1-<Eup — <[, ], w))
=& (Ad ¢, up) =7+ (Ad $7KE, wp) — Ad &<, w)) +Ad ¢~(n <€, w)),
since Ad ¢—1([, 5], up> =<[&, n], $*(u)> and the two terms of this form cancel. By (4.13),
with ¢ replaced by ¢~ and with £ replaced by <3, %), <&, u)>, we obtain
ENT, dyyy $7Hw) =~ dxpyw)) = Ad $7H[<E, Dxyy 675 <, w1 [0, Dxyy 675, <&, w))

= Ad $"HE AR, [Dyvd™, u]D)
and this is (4.14).
We now prove {4.11). In fact, for € W*® 1 g, $ €Gx, we have, using (4.5},

Dy, xv4® = Dy, xyv($74(w) +Dysx $)
=dyyy $7Hw) + 3 (w), $7HW)] +[Dx/v 4, 7 (w)]
= ¢ M dyy u+3u, u]) + 67 ($(Dx/r ¢), w]+[Dx/r 67 u])
by (4.14). Since ¢(Dx/y )= — Dy/y ¢~ by (4.8), we obtain (4.11).
Prorosition 4.1. The complex (4.6) is exact. Moreover, suppose that there is given a
section v of V*® xq over a neighborhood U of a point 2,€X satisfying D, x,vv=0, a local

section s: ¥ —~X mapping o(U)Y into U such that s(o(xy)) =y, and a local section ¢y ¥ —@G
defined on o(U). Then there are a neighborhood U’ < U of z, and a unique section ¢: U’

satisfying D x;y$ =v and $(s(y)) = Po(y), for all y €o(U"). If v(xg) =0 and $o=1I, then jy($) (%q) =
J1{Log) (2,).

Proof. Consider the fibered manifold G;=X xy G over ¥; let pry: Gx—> X, pry: Gx—G
be the projections onto the first and second factors respectively, which are morphisms of
fibered manifolds over Y. Let v be a local section of V*® 4 g over X; set

@ =pr; 0: T(Gx/Y)~g,

S=pryv: T(Gx/ Y)~>g.
Let ¢ be a local section of G over X; if §: X > X x y @ is the graph of ¢, which sends x€ X
into (z, ¢(x)), then pryod =id, pryod =4, and hence

v ¢t =F*(prlv—priw)=§*(5— @), (4.15)
Therefore ¢*w =v if and only if §*(#—®)=0 where
F—&: TG/ YY)~ g. (4.16)

Let K be the kernel of pr,,: T(G4/Y)~>T(X]Y).

10— 762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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LeMMma 4.1. Let v be a section of V*® xq over X. Then ker (5 —®) is a distribution on
Gx such thai
Kaker (1—0) = T(Gg/Y); (4.17)
if Dy, xyv =0, it is integrable.

Proof. If y is the image in ¥ of g€@, then w: T, (F/Y)->g, is an isomorphism, so
§—&: T,(Gx)—g, is surjective and @: K,—q, is an isomorphism, for all z€G; whose pro-
jection in Y is y. Since §jz=0, it follows that ker (§ —®) is a sub-bundle of T'(Gx/Y) of
rank equal to dim X —dim ¥ and K nker (§—&)=0. By a dimension argument, we see
that (4.17) holds. Next, we have

Qo y/y® + 35[0, B] =
and, if D, x,yv =0, we have also
A v+ 310, 7] =0,

where the brackets are given by (4.1) with X replaced by G'x. Hence
doygi3(F—0) = H[®, &] [0, 7]) = — 46—, T+d]-
Let &, 7 be sections of ker (5 —@) over G. Then

<[§1 7]]! '5’_(;)> = 5<7]7 ,5_66> _n'<$s 6’—(I)> _<§/\7]’ de/Y(ﬁ—d'))>
= —ENY, dggyy(F—B)) = 3([(5—&) (&), (F+8) ()] —[(5—&) (1), (5+&)(£)]) =O.

Hence [, 1] is a section of ker (# —®), i.e., ker (§ —®) is an integrable distribution.

Let us return to the proof of Proposition 4.1, and let v, s, ¢, be as described in the
proposition. Since ker (§—@) is an integrable distribution, Frobenius’ theorem asserts
that, through each point of U x y G lying over y€9(U)< Y, there passes a leaf of the cor-
responding foliation lying in U, x G,. Because of (4.17), if U is replaced by a possibly smal-
ler neighborhood U’ which, for simplicity, we again denote by U, then there exists a
morphism of fibered manifolds ¢: X -G over Y defined on U, which is a section of the
fibered manifold pry: Gy~ X and therefore the graph of a map ¢: U—@G, such that $(U,)
is the leaf of the foliation containing the point (s(y), ¢,(¥)), for all y €g(U). Then ¢*(5 —d) =0
and hence, by (4.15), ¢*w=v. If ¢,=1, then $(x,)=1I(o(x,)) and the equality j,(¢) ()=
J1{d 0g) (%) is equivalent to

¢.E=Top)E  forall£€T,. (4.18)

We write T,=V, ©H,, where H, =5,Ty ., Suppose that v(z,)=0. If £EV,,, then
$xE=0 by (44), and (Jop),E=1I,0,E=0. If £€H,, then E=5,, with {=0,5€Ty o0,
and

bub = bussl = Il = L1048 = (Log)é.

Thus (4.18) holds under our assumptions on ¢, and v(z,) and we obtain the desired equality.
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5. Cartan fundamental forms
As in § 2, we regard F=X x X as a bundle over X via the projection pr;. We begin
by recalling the definition of the fundamental form on Jy,(E) given in [11], namely the
mapping
0: T'(Jy1a(£)) = V(Ju( B)),

which is a morphism of vector bundles over m: J, (E)—>J(E). If FeJ, . (B),
€T (I 1(E)), the form o is defined by the formula

&, 0> =mb— Fymyé, (5.1)

where F: T, T, p(J(E)) and (& 6> €V, (Ji(E)). I u'is a section of J;,,(E) over
X, then u*o is the V(J (&))-valued 1-form on X defined by

<§9 u*a> = <’LL*§, (7>, for fET.

Then, according to Propositions 1.1 and 1.2 of [11], a section u of J, (&) over U< X
satisfies w*o =0 if and only if it is equal to §,,(s), where s =myu.
The Cartan fundamental form on @, with values in J,(7') is the mapping

@ T(Qryy) > Ji(T),
which is a morphism of vector bundles over n: @y, —~ X defined by
& w) =v(A, F)E, 0> (5.2)

for F €@y, EE€ETp(Qrrn)- In fact, <&, w) belongs to J(T), if £€Tr(Qy,4), Where a=znF. If
F =4, 4(f) (@), where f is a local diffeomorphism of X defined on a neighborhood of a, the

mapping
(WP F T~ TIk(a)(Qk)
sends # into Ji(f) - j4(f) xn = Irsn. Therefore, by (5.1) and (5.2),
& ) = (4 F) 7.8 — Lia 704 £). (6.3)
The restriction

oy V(@riy) > J(T)
of w to V{Q,,,) is given by
& wy) = v(dy FY Ly, & (5.4)

for F€Qy.q, £ € Vi(Qx.1). The further restriction of w or of wy, to the fiber @y, ;(a), the “bundle
of frames of order k-1 with source a”, is the fundamental form of Cartan on the principal
bundle @,,4(a) with values in J(7T'), (see [14]).
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I F is a section of @, over X, then F*w is the J,(T)-valued 1-form on X defined by
&, F*o) = (F L& w), for £€T,
which we shall also consider as a section of T*®J,(T') over X.

ProrositioN 5.1. The fundamental form w on @y, has the following properties:
(i) If E€JT 4 1(T)yy GEQyyq, with target G =0,

&G, w) = G HmE). (5.5)
(ii) If F is a section of Qy., over U< X, then F*w =0 if and only if F=j,,(f), where

f: U X is an immersion. If F is a section of Qy,q, then
DF = . (5.6)

(iii) If F is a section of dk 41 over U< X, then

(F-&@,w)—<EQ o)y =0Y(n ADF), (6.7)
for E€dy1(T),, GEQy,, with target G=bEU; furthermore
(FE o) =& o), (5.8)

for all €T y(Qy,,), GEQ,,, with targets lying in U, if and only if F=j,4(f), where f: U=X

18 an 1mmersion.

Remark. Let ¢ €X and € be the restriction of w or of wy, to @y, (). Some of the asser-
tions of Proposition 5.1 are related to properties of Q given in [14]. Namely, the equi-
variance of () corresponds to {5.5). Furthermore, if b is a diffeomorphism of ¢, (a), then
the operator h>h*Q —Q is connected to D by formula (5.7) and the conditions of [14] for

the vanishing of A*Q —Q are analogous to the second part of (iii).

Proof of Proposition 5.1. (i) We have £G € V(Qr,,) and
EQ, 0) = v(4, ) ' me(EQ) = v(A, Nt m € - G = G (v £),
according to (2.6).

(ii) We have F*w =0 if and only if F*¢=0. From the properties of o, it follows that
the latter condition is equivalent to F=j, ,(f), where f: U-X is an immersion, because
7,0 F is a section of @,. If ¥ is a section of dk over Uand a€U, thenl, F(a)™j,(m, F){(a) €
Q% 1, and we have by (5.3), for £€T,,

v F &, 0) = (A F(@)) s Foe— Lis) &
= ML F(@) G170 F) (@) — 2 Li) (@) ) €
= (A F(a)™tju(m F) (@))s — 1 (L) (@) 4) €

=EN I Fla)™?jy(mc F) (@) = v HEADF)
according to (2.27).
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(iii) By (i), (5.3) and (2.6), we have
(F-£-G,0)—<E G, 0) = v(I(F(0) @) mys(F - - G) — G (v )
=93, G 14 F(b) L F-mp £, G — G (v, £))
= G (4 F)™ 70, F 70, & —m,£)) = G(7y &) A DF)
according to (2.28). If (5.8) holds for all £€ V(Q.,), then by (5.7),
G ADF)=0, foralln€T,, b=+target G,

and (DF)(b)=0; hence if (5.8) holds for all £€ V(@Q,,), G €@, Whose targets lie in U,
then DF =0 and F =4, ,,(f), where f is a section of Aut (X) over U. Conversely, if f: U—>X
ig an immersion, € T¢(Qy,,) and G €0, ., with target lying in U, then by (5.3)

(D€, @) = v (1) (B) - GV N e & — Liose s frora(F) - )
= (A &) 21O (D) (0)) Y5 ) Tt — Ly 04) €
= Y((AL &))" ) e — Ly T04) & = <&, ).

If £ is a vertical vector field on @, which is the infinitesimal generator of a one-para-
meter family of diffeomorphisms @, of @, defined on an open set W <@, and satisfying

mo®,=n, ®y=id, we define the Lie derivative L(§)w of w along &, which is a section of
T*(Qrs1) @y, Ju(T) over W, by the formula

d
<C, 2(5) 0)> = (Tit <(Dt* C: CO> |t=0a

for €T ¢(Qr11), GEW. We set
§u= <‘§’ ko+1/xu>

for u €Ji(J)q,,,- Then, if { is a vector field on ¢, the usual type of formula holds, namely
K& L)) =& wp—<[&, L], w). (5.9)
Now let £ be a vector field on an open set U< X and write &, =Tp,1(jcs1(E)), that is
Eeri() = 1sa(E) (0) G€ Vol Qus),
for G'€Q),,, with target G=0b€U. From Proposition 5.1, (i), we see that

CEera( D), 0> = G (E) (B)). (5.10)
If £ is the infinitesimal generator of a one-parameter family of diffeomorphisms f, of X de-
fined on U’'< U, with f,=id, then by Proposition 5.1, (iii),

= d . d
&, Ll )= (22‘ Greralfe) = &, w>lt=o = t_i-t <&, w>lt=0 =0,
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for £ € Te(Qy4,), with target G€ U’; hence

C(Slﬂ—l)w =0. (5.11)
Next, we define brackets

(T*(Qk-H)®Qk+1Jk(T))®(T*(Qk+1)®0k+1 Ju(T)) - AZT*(Qk+])®Qk+1 Ji-AT),

(V*(@k41) ® 0y, T TN @V H(Qio11) @y TulT)) = NV @41 Oy -l T),

by the formula
[x®¢&, fOn] = (A B)®LE: 1],

for o, BET*( Q1) o V¥(Qsa), & nE€JW(T). Regarding w as a section of T%(Q11)®q,, T)
and wy as a section of V*Qy1)®q,,,Ju(T) over Q. We thus obtain sections [w, w] of
N T (@r11) By, Tra(T) and [y, ] of AzV*(Qk+1)®Q,,+1Jk—1(T) over @, satisfying

[o, w]IA’V(Qk_H) =[wy, Oy].

Taking X =@y, Y=X, F=T and p=m:Q;;—~X in §3, we obtain a section Dw of
NT*( Q1) @y, T T) satistying

(Do), NVQpyp = Tt " d@,m/xwv {6.12)
by the commutativity of diagram (3.16).

ProPOSITION 5.2. The jundamental form o on Q. regarded as a section of

T*@r1)®aq, JilT) over @ satisfies the Cartan structure equation
Dw — 3w, w] =0. (5.13)

The form wy regarded as a section of V*(Qy1)®q,,,Ju(T) over Qy satisfies the Cartan struc-

ture equation
Tl * dokﬂ/xwv — 3wy, wy]=0. (5.14)
Remark. Formula (5.14) is given in [14].

Proof of Proposition 5.2. We show first that De —%[io, w] vanishes on A2V (Q),.,); the
proof is similar to that of the formula (5.14) given in [14]. Let &, 7 be vector fields on an

open set U< X, and let &, =T41(Gesa(8)), T =Tusa(iesa(7). Then
(€125 iera] =Tk+1([;k+1(§)’ 7;:—1—1(77)]) =Tk+1(;k+1([§, 7)) =& s (56.15)

We have by (5.12), (5.9) and (5.11),
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<§k+1 Afesrs Doy = CEjepa A No+1s -1 ko+1/x wyy
= 7'Clc—1(§k+1 {1 O ~ Tt <§k+1’ w)— <[§-k+1) g1l ©))
= nk—1(<[§k+1’ Terads @) = [Fu1s §k+1]: wy—~ <[§k+1: Terls 0)) = ﬂk—1<[§k+1’ o1l .

It follows from (5.10) and (5.15) that, for G €@, with target @=5b€U,

1 Mz, 3o, 0DG) = s N jiia, 3oy, 0y D)
= [KEis1s @, (Tlaa, 031 = [G-H(xlE) (B)), G-10l7) ()] = 7 G ([dE) (B), (7)) (B)])
= . G-y (1€, 7)) (B)) =70y (G2GlIE, 71) (B1)) = 731, Thpesr, D (&)
= - 1l[Ers1s Tlesa)s @) ().

Therefore ;
{&iet1 N i1, Do — 3w, ©]> =0. (5.16)

Since V(Qy,4) is generated by vector fields of the form &,,, this proves that Do —}[w, w]
vanishes on A*V(Qy,1)-

Next, let 7 be a section of 7,12 @ o> @y, defined on an open subset W of @, and
let £ be a vector field on zW; we define a vector field { on W by the formula

&) =t(@)lln), GEW.
Then m, {(GF) =L(nG) and, by (5.1),

L, ex(Gh = Wk*T(G)*Z(T‘G) -Gy, i = G*Z(ﬂG) — Gy, 0 =0,
80
&, 0wy =0. (5.17)

Assume that the mapping “target’: @,,,—~X sends W into U. Then by (5.9), (5.17) and

(5.11),
LEin O ) = =&, L)) =0. (5.18)
We have by (3.14)

<§k+1 N, D) :§k+1 A D, wy—CA D<§k+1, w) ”‘ﬂk_1<[§k+1s {], o (5.19)
where the first and last terms on the right-hand side vanish in view of (5.17) and (5.18)

respectively. Now let GEW and let ¢ be a local diffeomorphism of X defined on a neigh-
borhood of a € X such that 7(F) =ji,.(g) (a); by (3.8) we have

LA N Dy 0 = CUE) —frear(@) 704 LG, oy Ay xCEiesns 0D
+ T4 (@), D(<Eyys 0D0]14a(g)))-

The first term on the right-hand side of this equation vanishes since
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UG) =1(F)s L) = fies2(9) 74 L.
We now examine the second term; we have by (5.10)
({Eir1s @ 00141(9)) (®) = Jieaa(9) (@) (D) (91(2))) = Gl E") (),

where & is the vector field on X given by

E'(x) = g, Elg ().
D(C&iry> 0D 00ia(9)) = DjilE) =0
C /_\ D<E}c+1> (,l)> = 0;

(e ANE, Doy = 0.

Hence
and it follows that
therefare, by (5.19),

By (5.17),
<§k+1 A, do, @]) = [<‘=Ek+1’ w>, <, wy] =0,

and so
<§k+1 AE, Do — 3w, o] =0. (5.20)

Finally, let 7’ be another vector field on W and ¢’ the vector field on W given by
L&) =t(@)'(nG), GEW.
Let G€ W and assume that 7(G) =, 4(g) (a); then
AL, Doy () = (iesa(9)4 $(@) A iia(9)4 ' (@), D)
= esal@)4(EN L), Doy (@) = AT, felg)* Do) (@)
=AL, Dirn(gyo)) (@) =0
by (3.18) and Proposition 5.1, (ii). By (5.17)

AL, o, o)) = [w(l), ()] =0
and so
LA, Do —}w, ]y =0. (6.21)

Since T'(Qy4) is generated by vector fields of the type &, and ¢, we deduce (5.13) from
(5.16), (5.20) and (5.21). Formula (5.14) is a consequence of (5.12).
From (5.13) we derive the identity

D, DF = DDF —}{DF, DF] =0, for F€Q,,,
(see § 2). Indeed, if F is a section of C:)k +1, then by Proposition 5.1, (ii), and (3.18)
DDF —}[DF, DF] = DF*w — 3} F*w, F*w] = F* Do — } F*{w, w]
= F*(Dw — [w, w]) =0.
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The form wy on @, is the natural generalization of the Maurer-Cartan form on a
Lie group. In fact, let

Q%1 ={F €Quir |7 F = Ifa), a=nF}.

The fiber Q2.,(a) of Q5,, over a€X is equal to @, ,(a, a). Thus @, is & bundle of Lie
groups over X and J3,,(7), is identified with the Lie algebra V,Hl(a)(Qg“) when we
identify J, (T, with V1, 1@(@kr1). The bracket

Tert(T) @ J5a(T) > Jia(T), (5.22)

which is obtained from the bracket on J, (), gives a structure of Lie algebra on the vec-
tor bundle JY,,(7T) over X. If £€J4.(T),, the vector field 7, ,,(£) on @), ,(a), whose value
at FEQY, (a) is &+ F, is a right-invariant vector field on this Lie group. Since the mapping
Tt from T(X, J;,(T)) to the Lie algebra of vector fields on @y, is a morphism of Lie
algebras, we can identify the Lie algebra Jy.(7T), with the Lie algebra of right-invariant

vector fields on @Y, (a). Therefore the natural identification
Sria(T)a> Vi@ (@) (5.23)

is an anii-isomorphism of Lie algebras. Using this identification, we regard the Maurer-
Cartan form of @3,, of § 4 as a mapping
@ V(@4 11)~> Jona(T);
equation (4.2) becomes
dng+1/Xw0 - %[wo’ w°]=0, (5.24)

where the bracket is given by (4.1) with X =Q%,;, ¥ =X and g=J},,(T) considered as a
Lie algebra with the bracket (5.22). The restriction of w, to @y,, is equal to the composi-

tion of the Maurer-Cartan form «° of Q2,, and the projection m, of J%,(T) onto JYT').

6. Jets of projectable vector fields and transformations

Consider the mapping g: T—¢~'Ty, whose kernel is V; taking =T, F=Ty, p=p
in (3.1), we obtain a projection
o: Ji (T 0) I {Ty; Y).

We note that, for £>>1, the sheaf of solutions of J,(T'; g} is J,, the sheaf of sections of T’
which are g-projectable, and that ,: Ji(T'; 0)+Jo(T) is surjective. We have the exact

sequences

11— 762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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0——Jy(V) T (T 0)—2—0 M, (Ty; Y) ——0, (6.1)

0—— J(B) T T; 0)—2—0"(Ty; ¥) ——0. (6.2)

We set
JT; 0) = vATLT; 0), J(V) =v"1J(V),

and thus obtain a projection
0: Ju(T; 0) > T Ty; Y).
We have (see [10])
[Via(T; @), Ju(B) = T(V), (6.3)

and conversely if £ €J,,,(T) satisfies [£, J,(VW)]< J(V), then E€J, (T; 0)-

Lemma 6.1. Let B,<J(T) be a formally integrable differential equation, with k=1.
Assume that R, =m, R, is a vector bundle and R,<(R,) 4y Let By J(T), By < Jpa(T)
be differential equations with By, 1 < (By).1. If 7y By —~>Jo(V) is surjective, mo(B) < Jo( V)
and [Ry,q, B, 1< Ju(V), then B,=J(T'; o).

Remark. If R, =mn, B is a vector bundle and R, is integrable, then B, < (R,), _1)-
Proof of Lemma 6.1. Let £€R,,,,, n €Byy; then if =21, by (1.15),
L&) men =[5 1]+ (7o) A D €J (V) + By
Hence since R, is a vector bundle and mo(B,) < Jo( V), we have
Lory Ergn €Jo(V)

and [Ry, Jo(®)] < J (), where B, = »~'R,, which implies that R, < J (T 0). As B, = (Ry), ge_1)s
we have R, < (J(T; 0)) 0. oF By (T, p).
The following bracket relations hold:
WilT; @) Tl T @)1= Jea(T @),
[JT: @), Ju(T; 0= (T 0), (6.4)
[esa(T: @), Tu(T; @)1= Ii(T; 0)-

It &, n€J(T; ¢), then

ol&, n] = [0&, on], (6.5)
which implies that

[Ju(T; 0), J(V)I=Tpa( V). (6.8)
If £, 1€J(T; g),, then [£, 7] €JLT; o), and
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Moreover, if %' =vm,_,%, then [£, n']€J,_4(T; ), and
el&,n'1=[e& en'l. (6.8)
Let u€ FH(J(T); 0), vEF2"(J(T); 0); then it can be verified, by use of (6.6), that
[, o] € P30 (T4 (T); 0).
In particular, we have for u€Fi(J(T); 0), vEFIJI(T); o),

(v, 9] €EFIH(-1(T); 0) and  olu, v]=[ou, ov], (6.9)
where g is the mapping

g: Fg(Jm(T)5 Q) nd /\pTalg’@Jm(TY; Y)’

with p=74 or § and m=Fk, or p=¢+j and m=k—1, and where the brackets are given by
(1.19). From (6.9) it follows that if u€(A'T*QRJLT; 0Ney vE(N T*RJWT; 0))ps then
[u, v]€(AT*®J,1(T; 0)), and
olu, v] = [ou, gv]. (6.10)
We have the bracket
(NV*@xIil(Ty; V(N V*@ xJ(Ty; Y)) > Ai+iV*®XJk——1(TY; Y) (6.11)

defined by the formula
[e®&, BRn] = (e AB)BIE, 1],

for € A'V*, BENTV*, &, n€J(Ty; Y). T w€ AT*Q@JIUT; 0), v€E NT*QRJ (T, 9), then

by (6.5)
Q[’LL, 7)] = [@ua @”]7 (612)

where g is the mapping
: NT*Q@J (T; 0) > ANV*Q ¢ (Ty; Y),
with m=Fk or k1.
Writing Jo(Ty) =Jo(T'y; Y) and

(NI D*@J(T; 0))e = (P*- 1@y ) (N T*@JUT; 0))s
we have the mapping

0 (N TN*@TT; 0))e—> NI o(Ty)*®@T(Ty; T).

I w€( ATV @JT; @) vE(NIT*@TT; 0))ps then [u, v]E( ATV @I(T; o))

and
olu, v] = [ou, gv]. (6.13)
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Let Qy(¢) be the bundle of invertible jets of order k of gp-projectable mappings X —X
(i.e., which induce mappings Y —Y). The automorphisms of X which are solutions of
Qxle), k=1, regarded as a differential equation in J,(¥), where E=X x X is viewed as a

bundle over X via pr;, are the g-projectable automorphisms of X. Let

0: Qulo) ~ Qu(Y) (6.14)

be the natural projection of Q,(o) onto the bundle @.(Y) of invertible jets of order & of
mappings ¥Y—Y; it is a homomorphism of groupoids over g: X—Y. The sub-bundle
Qi(V) of Qu(p) of jets, whose image by g in @,(Y) is equal to the jet of order k of the identity
mapping ¥ -7, is a sub-groupoid of Q,(g).

Let dk(g) be the sub-sheaf of Q(p) of invertible elements and let dk(g)q be its sub-
sheaf of p-projectable sections. The mapping g: Qi(0),~>Qu(Y) gives by restriction a map-
ping . .
0: Qilo) ~ Qu(Y).

We denote by Q,1)(0) the bundle of I-jets of sections of dk(@)g; it is a sub-groupoid of
Qu.y- Let @ (Y) be the bundle of Il-jets of sections of ék( Y). The mapping p:
J1(Qul0); @)~ J1(@u(Y); Y) induces a mapping

0: Qu,i(0) > Quw(Y);

it is a homomorphism of groupoids since (6.14) is, and the diagram

Q@) —2> Qul0)
Q 0
Qu(¥)—2>@( )

commutes. The inclusion 4;: Q.. (0)~>Q1.mle) induced by A;: Q.1 ~Q1.x) i & homomor-

phism of groupoids and the diagram
A
Qe+1(0) — Qa1 (0)

e 0 (6.15)

Qi T) —2s Qu ()
is commutative.
For a€X, it is easily seen that J,(T'; o), is identified with V 1(a)(@x(0)) when we iden-
tify Jo(T), with V,(,)(@,) and that the diagram
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JT; 0)a

Vi (@l0)
0 0« (6.16)

jk(TYS Y)g(a)‘—’sz,k(gm))(Qk(y)/ Y)

is commutative, where Iy ,(y) is the k-jet of the identity of ¥ at y€Y. Since Qo)
is a groupoid it follows that, for F€Q,(o) with target F=b and £€J(T; )y We have
EF € Va(Q(0)); furthermore, if @ is a section of Qk(g) over a neighborhood of b€X, for
EE€T,(Q.(p)) the mapping &+ G¢ induces isomorphisms

Tr(@il0)) = T ooy r@ile))s

Ve @(0)} = V ey (@il0))-

In particular, taking ¥ = I,(b), we obtain the isomorphism

jk(T§ ) > ¥V ey(@ile))s

which depends only on H=§,(@)(}) and sends & into H-£=G@G-&; hence we have a cor-
responding mapping
Qa.mle) X xJul(T; 0)~ V(o)
(H, &) HE. (6.17)
From these considerations and (2.5), we conclude that the mapping (2.2) induced by G

restricts to give a mapping
G: J(T; )y > Tl T5 @)

where ¢=target G(b), which in turn determines a mapping

Qa.w(e) X x T T; 0) = J{T; o)
(H, &) H(£). (6.18)
From (2.4) we deduce next that if F €Q,(0), a =source F, b=target F, then the mapping
(2.1) restricts to give a mapping
F: Ji(T5 0)a > I3 (T5 @)

Since the mapping (6.14) is a homomorphism of groupoids we see, by the commuta-
tivity of (6.16), that the diagram
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jk(T; o) Ve(@cl0))
0 or (6.19)
J(Ty; Y)e(b)'i’TGS(Qk( Y)/¥)

is commutative, where ¢ =pF €Q,(Y), with target ¢ =g(b), and F, ¢ operate on the right.
Since (6.14) is a homomorphism of groupoids, if @ is a g-projectable section of dk(g) over
a neighborhood of b and ¢ =p@ is the corresponding image section of dk( Y) over a neigh-
borhood of g(b), the diagram

G
Te(@0)) — T oy r(Qil0))

0s Os (6.20)

T (@l Y))_?‘“*Twmwn-ko(Y))

is commutative, where @, p operate on the left. From the commutativity of (6.20) and
(6.16), it follows that the diagram

jk(T9 o) Vew (@rl0))
0 o (6.21)
TelT5 ¥ )otoy— > Toigeon (@ TN )

is also commutative, where G, ¢ operate on the right, as is the corresponding diagram

Qa.w(0) Xx jk(T§ 0) V{@x(0))
exe Ox (6.22)
Q. (Y) XYJk(TY; Y)——T(Qu(Y)/Y)

whose top horizontal arrow is (6.17). From the commutativity of (6.19) and (6.22), it fol-
lows by (2.5) that the diagram

Qa1 () X xJ(T 0) J(T; 0)
oxe 0 (6.23)

Q1o (Y) Xy /(T Y)———J(Ty; Y),
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whose horizontal arrows are induced by the mapping (2.2), is commutative. From (6.23),
we deduce that dk(@)g operates on J(T; o), and J,(V), and that the diagram

dk(@)g X x W T; 0)e — Ju(T; o),
exe 0 (6.24)
dk(Y) Xy o(Tys Y)——J(Ty; ¥)

is commutative. From the commutativity of (6.15) and (6.23), we see by (2.4) that the
diagram

Qk+1(9) Xz W(T; )

exe e (6.25)

J(T; 0)

Qi Y) Xy W (Ty; Y)—J(T'y; Y)

is commutative, where the horizontal arrows are induced by the mapping (2.1).

Let
Qi1(0) = {F €Quas(0)|m F = I1(a), if a =source F},
and
G5 0) = {uESHI (T @I (T)|E T Su€ S o(TY* @J4(V) for all £€J,(V)}.

One verifies easily that

9: Q%+1(0)~ gr+1(T; 0)
is an isomorphism for k>1.

PropOSITION 6.1. Let a, b€X and FE€Q, ,(a, b).
(i) F belongs to Quys(0) if and only if FUI(V))=Ji(V),.
(i) F belongs to @Qy,1(V) if and only if p(a)=g(b) and oF =¢ as mappings

Jk(T§ Q)a,_)']k(TY; Y)e(a)'

Proof. (i) If FE€Q,,,(0), then the commutativity of (6.25) implies that F(J,(V),)=
Ji(V),. Conversely, we prove that this last assertion implies that F belongs to @Q,,(0) by
induction on k. First, let k=0 and F=j,(f) (@), where f is a local diffeomorphism of X de-
fined on a neighborhood of a; then F €@, (g) if and only if (pof),Z=0 forall € V,. By (2.4),
this last statement is equivalent to gF(£)=0 or F(§)EJ(V), for all £EJ(V),. Now as-
sume that £>1 and that our assertion is valid for k—1. Then n, F €@,(g) by our induction
hypothesis. There exists F,€Q,.(0) such that 7, F;~m F. Then G=Fi'- FE€Q, i(a) and
by (2.19)
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(&) X 00G = GE)—EEdy(V),

for all £€J,(V),. Hence 0G €9;..1(T; o) and GEQF1(0). Therefore F=F,-G€Q,1(0).

(i) If FE€Qy,(V), then pF =1y ,,,(0(a)) and so p(a)=p(b) and we have the equality
of the mappings o# and p by the commutativity of (6.25). Conversely if p(a)=p(b) and
oF =p as mappings Ju (T 0)e=>Jx(Ty; Ypay, then FEQ, (o) according to (i). Hence if
¢=0F €Q)4(Y), then by the commutativity of (6.25), ¢ acts on J(T'y; ¥ )y, as the iden-
tity map. By Proposition 2.3, (ii), ¢ =TIy ;,,(o(@)) and FE€Q, (V).

We now give criteria in order that an element H €@, ;, belong to Q (o), and we
examine the structure of @ )(0). However, before doing so, we require the following de-
finitions. For a, b€ X, let

0: Te@JuT; @)=~ Va®Ju(Ty; Yoy (6.26)

be the mapping sending % € T ®J,(T'; g), into the element pu defined by
(ou) (&) =po(u(§)), for£EV,.
Denote by F,(T:®J,(T; o),) the kernel of (6.26) and let
e: Fy(Te@JT; 0)) > Tr.0t0» © il T w3 ¥ )oeoy (6.27)

be the mapping defined by setting

(o) (7) = o(utn))
for n€T,, 7=0(n) €Ty, o) From (6.26), we obtain a similar mapping

0: Te®@J(T; )~ Ve®JT Ty Yooy

generalizing the map defined earlier in the case ¢ =b.

ProrosiTIiON 6.2. Let HEQ 4 with mgH = F €Q), source F =a, target F—=b.
(i) H €J1(Qxle)) sf and only if F Qo) and H(J(T; 0)o) =Ju(T; 0y
(ii) H belongs to Q@ o) if and only if F€Q,(0) and

HJIWT; 0)0) = Ju(T5 000 HIWV)a) = TV

(iii) If HE€Qy 1y(0) and Jy(my) H=1j,(f) (@), where f is a local diffeomorphism of X de-
fined on a neighborkood of a, and w€TERJ(T),, then H+uF belongs to Q. 1lo) if and
only if:

(a) f+meu: T,— T, is invertible;
(b) WEF (T ®J (T} 0)s)-
If H+uF €Qq 1y(0), then
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o(H +uFYy=oH +(pu)-oF (6.28)
as elements of Qu 1(Y), where gu€T% 0, ®J ATy ¥ Jocoy 48 defined by (6.27).

Proof. (i) It HE€J,(Q{e)), then we write H =7,(¢) (@) for some section G of Qk(g) over
a neighborhood of @, and for §€J,(T; o), we know that H(£)=G(&) belongs to J(T' o)y
Conversely if F€Q,(0), let G, be a section of dk(g) over a neighborhood of @ such that
Gy(a) = F. Then there exists u € T%5@J(T), such that H =4,(G,) (@) +uF. Assame now that
H(TT; 0)0) = I T 0y TE EET,(T; p),, then by (2.15)

(7008) A w = H(E) ~§)(Go) (@) () ET(T'; o)y

Since 7y J(T; 0)—>T is surjective, we deduce that w€Ti®J(T;0), and uFETE®
Vi(@ulo)). As J1(@i{e)) is an affine sub-bundle of J,(Q;)eue, it follows that §,(Gy) () +ul
belongs to J(Qy(e)) or that HE€J,(Q(0)). ,

(1) If H=14,(G)(a), where G is a section of (jk(g) over a neighborhood of @, then
HEQ s, 1(0) if and only if (goG),.£,=0 for all £,€V,,. Let G, be a section of ék(g)g over a
neighborhood of a such that Gya)=F. Since J,(@,(p)) is an affine bundle over Q,(p), there
exists % € TE®J(T; o), such that H=4,(G,)(a) +uF, where wF € V(@ o)), and

G o(7008) — Couly&) = (mo8) A uF = ((m€) Nu) F = (G(E) — (&) F
for E€J,(T),, by (2.15). Therefore, for £€J,(V),, by the commutativity of (6.19),

(00 @) (79 8) = 04 Gox( &) +04((G(E) —Go(£)) F) = (Q°Go)*(”o§) +0(G(8) —Go('f))°QF-

Since G, is a section of ék(g)g, the first term on the right-hand side vanishes, while oG (&) =0
by the commutativity of (6.24). Hence, we obtain

(o M) x(&) = p(G(£)) o F.

Therefore (0o @), &, =0 for all £, € V,if and only if o(G(&)) =0 for all €S (V),, i.e., H(J(V)) =
J(V)y. We conclude that HEQq o) if and only if H(J(V),) =J«(V),; from (i), we now
deduce (ii).

(iii) The first part of (iii) follows directly from Proposition 2.2, (i), (2.15) and (ii),
since 7y J(T; 0)—T is surjective. If H4+-uF€Q 1y(0), by the commutativity of (6.23)
and (2.15) '

(o(H +uF))(n) =o((H +uF)(§)) = o(H(E) +(mo§) N )

= (oH) (1) + (myn) 1\ gu = (H +gu-oF)(n)

for all n€J(Ty; Yoy and EE€J(T; 0), with o(£)=7. Hence by Proposition 2.2, (iii), we
deduce (6.28).
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From the map (6.17) and (5.2), we see that the restriction to @ ,4{p) of the Cartan

fundamental form w on ¢,,(p) is a map

@ T(Qr1a(0)) = Il T; 0);

from Proposition 5.1, (i), it follows that if Fedkﬂ(g), then DF€T*QJ(T; g). Further-
more, if wy is the Cartan fundamental form on @, ,(Y), the diagram

ow

T(Qr1(0)) J(T'; )

04 0 (6.29)
T(Qp i ¥)) —X o T (T3 ¥)

commutes. Indeed, if £€T':(Q;.,(0)), F €Qy,1{0),
<&, 0 = oy F) ™+ (& — Fa7vi &) = v(Aa(@F)) ™ 0aiescé — Fy704.8)
= VAo F)) 7 (Tex0 s € — (0 F)s7048) = (0uf, vy
by the commutativity of (6.22) and (6.15).

Definition 6.1. Let ék( Y)y be the sub-sheaf of Q,(Y)y whose sections are local map-
pings ¢: X>Q,(Y) such that sourceod=p and such that the composition f=targetod:
X —Y is a submersion.

If YY) is the sub-bundle of Q(Y) composed of the elements F such that s, F=
Iy ofy), with y=source F, then Q%{¥)y is the sub-sheaf of ék( Y)x whose sections ¢ satisfy
targetod =p.

The injection Qi ¥)~>Q{ Y)x sending ¢ inte dog induces an injection

Q) > QD). (6.30)

Indeed, if ¢ is a local section of Q,(Y) over Y, then targetodog is a submersion. We have

the mapping ) )
: Qule) > Qu(Y)x (6.31)

sending F into ¢ F, where oF =go F, since targetogF =gpon, F is a submersion.

Next, let ¢edk( Y}y and let f be a germ of a diffeomorphism X — X satisfying gof =
targetod; such an f exists by the implicit-function theorem. We define ¢;* Eék( Y)y by
the formula

$71 (@) = $(f M), 2€X. (6.32)
We have
targetod; ! =gof-1,
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b(x)-¢r (f(2) = Iy (0(f(@))), $7(F(@))-d(x) = Iy il0(x)),

for x€X. Finally, if Fe(j,,(g), then pF-1=¢;!, where f=my F and ¢ =pF.

We now define

Dy Qe Vx> WO (Tys V), (6.33)
sending ¢ into

DX/Y‘f’ = (¢*wy)|v-
If ¢ is a section of dkH( Y)x over U< X, then ¢4 E€T 4,)(Qa(Y)/Y), for €V, a€U and

<&, DX/Y = {$s&, wy).
By (5.3), we have the formula

K& Dxiy > = v d(a)™ (m$)sés (6.34)
for £€V,, a€U, where (m,¢)4& € Th g0)(@(Y)/ Y) and

218@): Tl Ty Yoty Typiar\ @i Y)/T)

is the left-action of @ 4(Y)(0(@)) on J{Ty; ¥)pa); therefore

(2 p(@)) ! (0 P)uE €T (Tys Y)g(a)'
We also have the mapping
Dxy: QuUY)x >V @JUTy; ¥ (6.35)

defined in § 4 in terms of the Maurer-Cartan form of the bundle of Lie groups @3(Y) over
Y, identifying JY(T'y; ¥) with the Lie algebra of Q%(Y) by the maps (5.23) (with X replaced
by Y and k+1 by k). The restriction of (6.33) to Q2,1(¥)x is equal to the composition of
(6.35) (with k-1 replacing k) and the projection id®@m, of V*@J%,1(Ty; ¥)x onto W
JUTy; Y.

LEMMA 6.2. For ¢ €Qu,y( ) we have Dyyd =0 if and only if m,d €Qu(T).

Proof. If ¢ is a section of dk+1(Y)X over U< X, then by (6.34), Dx/y ¢ =0 if and only
if (7, $)xE=0for all €V, a€U.
We define
Dy, xv W@J(Ty; Y)z—> W (Tys Y)x
by the formula
Dy, x/y¥ =Ty dxjyv—3[v, 0], €W RJ(Ty; ¥)x, (6.36)

where the bracket is given by (6.11); from the definition of Dy,y and the Cartan structure
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equation (5.14), we obtain
Dy, xv' Dxiy$=0, for ¢eék+1(y)X'

Since (5.23) is an anti-isomorphism of Lie algebras, the restriction of D, xy to ¥*®
JTy; Y)x is equal to the composition of the operator

D1 xv V*@JUTy Vx> NVP*@JUTy; Y
of § 4, if we identify JYT'y; ¥) with the Lie algebra of @2 by (5.23), and the projection
d@m_: MW RIUTy Vx> VR 1(Tn ¥y

Let Q, +1{ )% be the sub-sheaf of ék 1+1(Y)x composed of the elements ¢ satisfying m, ¢ € Q. Y).

Then we have the complex

D

ak+1(Y)Igf_—_)korl(Y)X'Mv*@Jk(gY; Y)x-“”“l"ﬂ" AZU*@Jk—l(gy; Y)x (6-37)

which, by Lemma 6.2, is exact at dk+1(Y )x- We also have the following complex, which
is obtained from (4.6) by replacing ¢ by @}(Y) and the Lie algebra g by JY(T'y; ¥),

QuY)— ?C(Y)Xgﬁz’v*®*7?c(g¥3 Y)x-p—l'—m—y* NI4Ty Y)x  (6.38)
and which is exact by Proposition 4.1.

PrOPOSITION 6.3. The diagram

D,

NT*@J,4(T; 0)

dk+1(9)

e 0 0 (6.39)

T*@J(T; 0)

dkﬂ(y)x—DX/—Y’ V* 0Ty Y)x M Ny y(Ty Vx

comamutes.
Proof. If F is a section of Q,(g) over a neighborhood of a € X, then for £€V,,

& o(DF)) =&, DF) =gl&, F*o) = o{Fy&, 0) =<{py&, 0y> = (&, Dxrd)

by (5.6) and the commutativity of (6.29). The commutativity of the right-hand square of
(6.39) follows from the commutativity of (3.2) and from (6.12).

LEMMA 6.3. Let ¢ be a section of Qu,,(Y)y over U< X; then

(¢°DX/Y $)(a)€ V:®Jk(TY; Y)targeﬂq&(a)’
for a €U, and oDy, v depends only on me.
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Proof. According to (2.6), we have for a€U, n€J( Ty Yiurgot (e
$(@) (v(Ay (@) n-m @) = w7
Taking in this formula = (7, ¢).& -7, $(a)?, where £€V,, we obtain
<& (o Dx/y $)(@)) = $(a) v(Ay (a)) ™'+ (med)sé = V() w & T (a) ™).
It FEQpalo), ¢=0F €Qpoa( )5, f=mo F and u€T*@J(T: o), then
o(u) = ¢ op(uof) + Dx/v ¢. (6.40)
This formula follows immediately from Proposition 6.3.

LEMMA 6.4. Let FE€Quu (o), $=0F and let u€T*@J(T; o). Then $op(u’) depends

only on m, F.

This lemma is an immediate consequence of (6.40), (6.32) and Lemma 6.3.
Let f be a germ of a diffeomorphism of X. Then f is g-projectable, that is, is the germ
of a p-projectable diffeomorphism, if and only if f preserves V.

LEMMA 6.5. Let Fedk+1(g), ¢=poF, f=my F and let w€T*QRJ(T; 0). If f vs p-project-
able, then o(u) =0 if and only if p(u")=Dyx/y -

Proof. By {6.40), we have since f preserves V

o(uf) = ¢; ' op(u)of + Dxy ¢. (6.41)

Now g(u)=0 if and only if ¢7'og(u)of=0, which is equivalent therefore to g(u”) =Dy .
If u€(T*QJ (T N Fi(J(T); 0), it is easily seen that pu€(T3@J(T'y; Y))*. Set

(T*®@JK(T; 0)); = (T*®JK(T; 0))e N (T*®JK(T))".

Therefore if u €(T*RJ{(T; 0))5, then pu belongs to (TFRJI(Ty; THA.

ProrosiTIiON 6.4. (i) Lel Feék+1(g); then Feé,,+1(g)9 if and only if
DFE(T*QJ(T; )

(ii) Let uy, us €(T*@J(T; 0))g and Fedk+1(9)' If uy=uf, then Fedk+l(@)&'
(iii) We have
Dy (T*®@J(T; )~ ( NT*®J4(T; ) (6.42)

and the diagram
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a~k+1(9)9 "P_’ (T*®J(T; 9))9"21—’ ( NET* ®J-1(T; 0))e

e 0 4 (6.43)

Gonrl¥) L T 0Ty V) — s N°TF 0T, (T T)
commaites. ‘
(iv) If w€(T*®T (T 0))e> F € Qusa(0)es then u” €(T*@T(T; 0)) and

o(uF) = (ou)*”.

Proof. We first prove that, if # Eék+1(g)g, then DF €(T*®J(T; 0)),- Take F, Gdk +2(0)
with 7, F, = F. Then, since g F' €Qy.1(Y), by Proposition 6.3 and Lemma 6.2

o(DF,) = Dxy(eF,) =0,
s0 DF, € F}(J511(T); ). We have

0= DI(DFl) = D(DF1) -%[DFl, DFJ,

where [DF;, DF,]€ FiJ(F); 0) by (6.9); hence D(DF,)€F3(J,(T); ). From Proposition
4, (i) of [6], it follows that DF €(T*QJ(T; 0)),

We next prove (ii). Let F be a section of Q. (o) over an open set U< X and f=um, F;
let u,, u, be sections of (T*®J(T; 0))2 over f(U) and U respectively. If u,—uf, then

uy = DF + FY(uy) = F-1(p) —+ F-3(un)
by (2.25). Hence, since o(mmyus) =0 and g(m,v) =0 as sections of V*® yJy(T'y), we have
0 = p(mo( F-1(») — v + F-w,)) = o((my F) o (v +1qu;)0 ) = (10 F) (v +0%:) )

by the commutativity of (6.25). Therefore the composition

v+ 7y uy
—

Ve f T}‘(a) o(T)ﬂa)——Q_’ O(TY)Q(f(a))

is zero for all € U. The mapping » +myty: Tyay->Jo(T)sa is invertible by hypothesis and
maps Vg, into Jo( V), since p(myu,) =0, and so we conclude that f(V,)= V), that is,
f preserves V. Now let us consider the corresponding germs of our sections; if F Eék o),
uy, U €(T*RJT(T; 0))g satisfy u,=uf, then we have shown that f=z, F is o-projectable.
By Lemma 6.5, it follows that Dy,y(oF) =0. From Lemma 6.2, we deduce that sz F' eék(g)g.

By Lemma 2.1, we have
W F = (jy(m F) + (v ouyo f)m, F) - (jo(1) +vlouy) .

To show that FE[),,H(Q)Q, it suffices by this formula and the commutativity of (6.15) to
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show that the two elements §,(m;, F) + (v You of)rm, F and §,(I;) +vtou, of Q) belong
to Q. 1)(0),- First, they belong to Q;,x(0) according to the criterion of Proposition 6.2,
(iii), since p(u,) =0, f preserves V and p(u,;) =0. From (6.28) we conclude that the former
belongs to Qq, (o), since nkFedk(g)g and u, € (T*®J(T; 0)),, and the latter belongs to
Qu.n(0), since u,€(T*RJ4(T; 0)),- Hence F€Qy41(0),-

If FEQy.(0) and if DF =07 belongs to (T*®@J(T; 9)),, (ii) implies that F belongs to
Qk 11(0)e, completing the proof of (i).

We now verify (iii). First, (6.42) and the commutativity of the right-hand square of
(6.43) are consequences of Proposition 4, (ii) of [6] and (6.10). As for the left-hand square
of (6.43), let F be a p-projectable section of ék 11(p) over an open get U< X and ¢ =0 F be
the corresponding image section of dk +1(Y) over pU< Y. Then for §€T,, a€U, by (5.6)
and the commutativity of (6.29)

&, 0(DF)) = 0<&, DF) = <&, F*w) = ol F &, ) = {04 F o, 0y
={(go Fyé, wy) = <(¢°9)*£, Wy = {p4(0§), wy) = <0é, D¢,
ie., o(DF)=D¢.

(iv) is an immediate consequence of (i) and (iii).
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