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1. Introduction

We write T,, for the number of different graphs on » unlabelled nodes with just ¢
edges. We shall find an asymptotic approximation to 7,, for large » and determine the
exact range for ¢ for which it holds good. In the graphs we consider, every pair of nodes
is joined by just one undirected edge or not so joined, though our method can clearly be
extended to other types of graph. If the nodes are labelled, there are N possible edges,
where N =n(n —1)/2, and the number of graphs with just g edges is

N!
F = -
" (1;) N -qV

the number of ways of selecting ¢ objects out of V.

All our statements carry the implied condition ‘““for large enough »”’. The number g is
subject to bounds depending on 7. We use C for a positive number, not always the same at
each occurrence, independent of » and ¢. The notations O( ) and o( ) refer to the passage
of n to infinity and each of the constants implied is a C.

We shall prove

THEOREM 1. The necessary and sufficient condition that

T oo~ Fogfnl (L.1)
as n—> oo is that

min (g, N —¢q)/n — (log n)[2 > oo. (1.2)

Pélya [2] proved (1.1) when | 2¢ — N | =O(n), though he appears never to have published
his proof. Recently Oberschelp [4] proved (1.1) under the condition that |2¢—N|<
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0.84n%2, My contribution here is to prove (1.1) under the wider condition (1.2), which is
equivalent to

n{log n+2y(n)}/2 < q¢ < N-—-n{log n+2yp(n)}/2

where (n)— oo as n— oo, and to prove also that this condition is necessary as well as suf-
ficient.

My proof requires one simple result from complex integration, viz. that, if m is an

fﬂ emttdt={27‘ (m=0), (i.3)
id 0 (m#O).

integer,

Otherwise the proof is “elementary”.

Most of the complications of my proof of Theorem 1 arise from the “‘best possible”
nature of the result. The following theorem, a little weaker than Theorem 1, but a consider-
able advance on the previous results, can be proved much more simply. We require only
§ 2 and a simple variant of § 4 of the present paper.

THEOREM 2. The necessary condition for (1.1) is (1.2); a sufficient condition is that
3nlogn <q < N-3nlogn. (1.4)

We write S, for the symmetric group of permutations of degree n, i.e. the group
of all permutations w of the = nodes labelled (say) by the numbers 1, 2, ..., n. The permu-
tation @ has p; cycles of unit length, p, of length 2 and so on; it induces a permutation of
the possible N edges joining each pair of these nodes. The latter permutation belongs to
Sy and has P; eycles of unit length, P, of length 2 and so on. Then

P1+2py+3pg+ ... top,=mn, (1.5)
P, +2P,+3P;+...+ NPy,=N. (1.6)
N
We write G,=G,(X)=TI(1+ X"
j=1

and use [G], to denote the coefficient of X?in the polynomial G = G(X). There is a famous
theorem due to Pélya [5] which tells us [1, 3, 4, 5] that

N
n! Z anqu Z Gtu(X)’
g=0

WESy

so that 2l The= 2 (Gl (1.7)
€S,
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R, is the set of those w for which p, =n—a. We write H,=3 [G,),, where the sum is
over all w in R, so that (1.7) takes the form

n To= 5 H, (1.8)
a=0

If a =0, w is the identity I and Hy=[G,],=F,,. There is no w for which a =1 and so the set
R, is empty. If a =2, w is one of N permutations for each of which

Pr=n—2,p,=1,P,=N-2n+4,Py=n—-2, py=p,=...=P3=P;=...=0
and [Golo=[(1+X)¥ 241 + X3)"2) =¢, (1.9)

(say). Hence H,=Nc,.

If wER,, the effect of w is to change just a of the nodes and to leave the remaining
n—a unchanged. There are n!/al(n —a)! ways of choosing these @ nodes. The effect of w
on the set of a nodes is isomorphic to one of the permutations of §,, which has just a!

members. Hence the number of members of R, is at most
al(n!/a!(n—a))=n!/(n—a)! <n®
If we write ¢, =max [G,],
weR,
we have H, <n’c,.
We shall prove more than (1.1), namely
TasoreM 3. If (1.2) is true, then
! Ty~ Fpy~Hy=Ney~NF, B 2™ = o(F,,), (1.10)
where A=gq/N, B=224+(1-27% y=41(1-2)(1—-24%82%
To prove the first part of (1.10) it is enough, in view of what we have just said, to
prove one or other of ’
n n
S Hy=o(Hy), 3 n*?c,=olc,). (1.11)
a=3 a=3
Since there is complete symmetry between ¢ and N —gq in all we have said so far, we
may, without loss of generality, suppose henceforth that
0<g¢<N/2, (1.12)
so that 0<A<1/2, 1/2<1-1<1 and (1.2) becomes

(g/n) —(log n)/2 > oo (1.13)

as n—» oo,
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We remark that 1/2<8<1, y=0(1)=0(1) and C<e™*<C. If gq satisfies (1.12) and
(1.13), we have 4> (log n)/(rn—1), and '
nlog < —2nA(1—-2) < —ni< —~log n. (1.14)

We have P, ={p,(p,—1)/2} +p, (see, for example, [¢4]) and, by (1.5), since p, =n—a,
we must have p,<a/2. Hence

P, >(n—a)(n—a-1)/2, (1.15)
P, <{(n-a)(n—a—1)+a}/2 =N —a(2n—a—2)/2, (1.16)
N-—P, >a(2n—a—2)/2. (1.17)

Again, by (1.6) and (1.15),
!gzy'P,=N—P1 <3{n’—n—(mn—a)+(n—a)}<2an,
and so Pi<an (§=2). (1.18)
A well-known result that we use several times is that

F .~LM(2n)}, (1.19)
where L={}1-2"%Y, M={Nix1-A)} L (1.20)

2. Proof that (1.2) is necessary for (1.1)
Let us write p(n) = (g/n) — (log n)/2 2.1)
and suppose that y(n) does not tend to infinity with ». Then there is an infinite sequence
of values of n such that p(n) <C. In this section we suppose n confined to this sequence, so

that ¢ <Chn log n.
We have now by (1.8) and (1.9)

Ty — Fry> Hy = Neg = N[(1 + XYV 274 (1 + X3 > N[(1 + X)¥-2"+4], = g F,,

N—-2n+4 N “‘1(N~2n+4—s)
e o= (V) /() - B (S
q-1 — a—1 ‘
and so log n=1log N+ > log (I—M)— > log (1 ——s~)
§=0 N §=0 N

=log N—2gN ' (n—2)+ 0N 2{g® +n?})
= —4y(n)+0(1)=0(1),

by (2.1), so that %> C. Hence, for this sequence of n, we have 2!T,,> (1 +C) F,,, and (1.1)
is false.
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3. Approximation to c,
LrMma 1. If g o0 as n—> oo, then ¢y~ Fp 277
We write
e=(n—-2)/N, ©=2(1-20)/8, X,=21+eD)/(1-2).
I we put X=X e and write 7'=¢~%" and
=Xt =(N—-2n+4)log (1+X)+(n—2)log (1+X2%)—qlog X,
we have, by (1.9) and (1.3),

1 T
2n62=f O =J,+J, J;= f e dt.

-T

We consider first J;, so that -7 <i<T and t=0(T)=o0(1). We have
1-DX =(1-)Xpe' =21 +eD)e" =A1 + 0oy + ),

where a=¢+|t|=0(1), a; =e® +1t =0(a) and a2%0(a2). Hence (1 —A)(1 + X)=1+A4o; +Aay
and (1 —A)*(1 4+ X%) =f+24%x, +O(A%x%). We have then

N1y =(1—2¢) log (1+ Aoy + Aatp) + € log (B + 242, + O(A%a2))
—Alog A—(1—-2)log (1 —A)—Alog (1 +a; + ),
N-Yx —logL) — elogf = (1 —2¢) (Aay + Aatg — $A%03) + (2420, / B) — Aoty — Aoty + 3A0f + O(Ac®)
= 2edo;(A—B)/B + 3 Aai(1 — A) + O(Aa®).
Now g—24=0F(1 —1)/2 and so
N-Y(x —log L) —¢ log B =%a; A(1 —4) (oy —2eD) + O(Aod®) = — A(1 —4) (2D? +-12) 4 O(Aa?).
Again ANo®<Cg=1/5, Ng?=2+0(n1), A(1—1) P2=y and so
x(t) =log L +(n—2) log f —y — %%+ O(q~1/5), (3.1)

where §2=AN(1-1)/2, Cq<d82<Cg and 28*M2=1 by (1.20). Hence x(t)=2x(0)—0%+
O(g~1/5) and

T 3T
Iy~ O f e dt =57 e1<°>f e du~ 81V,

-T -67

since 02T2> Cqt > oo as g— oo, Hence

Jy~ V2 Mer® > Cqt eX® (3.2)

13 -T 4
Now Jy= f + f Odt < 2f |ex®] dt.
T -n T
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When 7 <t< 7w, we have
[1+X 2= (1+Xg)2—4X, sin? (#/2) <(1 4 X,)2e %7, (3.3)
where &=X(1+X,)2>CA. Hence
€26 | =] (1 4+ X)¥~20+4(1 4 X2)P 2 X 0| < r®-CENT*  gr®-CaT* _ gx®=Ca'" _ (] )
by (3.2). Hence J,=0(J,) and
co~ J,[(27m) ~ (270) "t MeXP ~ F, B" e~y

by (3.2), (3.1) and (1.19).

4. Proof that (1.4) is sufficient for (1.10)
If 0 <X, <1 and j is an integer greater than 1, we have (1 + X{)? < (1 + X3). Hence
[Gul, < X79G,(X) =X I+ X< X1+ X)) (1 + X3y -Foi2
7

by (1.6). If (1.4) is satiéfied we may, by (1.12) suppose that
3nlogn<g<iN, 6(n—1)"'logn<i<i. 4.1)

We now choose X, =q/(¥ —¢) =4/(1-2), so that we have
[G,], SA™ (1 — )T ¥pN-Pii2 _ [ gi-~Foi2

by (1.20). By Lemma 1, ¢,>CF,,8"* and so

¢,/ca = max [G,],/co < CLBF/F,, < Cnpr
Ww€ER,

by (1.19), where u={(N —P;)/2} —n+2. To prove (1.11), from which (1.10) follows, it is
then enough to show that
S ne 18k =o(1). (4.2)
a=3
We have
log B=log (1-2A(1 —A)) < =241 —A)< —A< —6n"'logn

by (4.1). Again, by (1.17), since e <n,

p={(N—P)[2}—n+2> {a@n—a—2)[4} —n+2 > (n—2)(a—4)/4.
Hence
log (n®~18¥)log n<a—1-3{(n—2)(a—4)/(2n)} < —(a/2)+8

n n
and so > ntlpES D b P <l n=0(1).
a=18 a=18
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If 3<a<17, we have u=>{(a—2)n/2} - C,

log (n* 1BF)flog n< —2a+5+0(1)< —1+0(1)

17
and so > n*'pE<Cln=0(1).
a=1

Hence (4.2) and so (1.11).

5. Proof that (1.2) is sufficient for (1.10)

We now turn our attention to those ¢ which satisfy (1.2) but not (1.4), i.e. those ¢
for which

n{log n+yp(n)}/2 < g <3nlogn, (5.1)

where p(n)—>co as n—>oco. We may suppose that p(n)=o(log n). We have g<Cnlogn,
A<On'logn and so )

—(n—2) log f =24(n —2) + O(A%n) = 4(g/n) +o(1). (6.2)
We write A =n—n?* (log n)'"* and consider first those o for which
2<a<A. (5.3)

We have [@u]e= %t f Qu(X,e") X3ttt dt < OJ, T,

where X,=q/(P; —q) and
Jy= 111 +X5)%, J4=X;“f |1+ X,ef|™di.
iz2 —n
By (1.15) and (5.3),P, > C(n— A)*> Ont log n. Again ¢ <Onlogn, so that X, <Cn" %
and, by (1.18),
log J3< > P, X, <Can 2 n < Ca.
i>2 i>2
By an argument similar to that of (3.3), we have
|1+ X,et2<e (1 + X,)%,

where &= X, (1+ X,) >=qP;?(P, —q). Hence

J,<X59(1+ Xz)"!f e CPER dt < OX39(1 + X,)P (P, E)*

-

= QP ig (P gy PN O (P 1)
q
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by a result similar to (1.19). It follows that

Ca Pl)
@< (7).

Hence, by Lemma 1,

[@u]o/cs < Ce®f>" (Pl) /(N) <Oepn (%1)«,

q q
that is log (¢,fes) < C + Ca— (n—2) log B+ q log (P,/N).

Now, by (1.18),

P,_(m—a)n—a—1)+a_( a\® at
S am-1) "(l 7») (1+<n—1)(n—a)2)'

By (5.3), (n—1) (n—a)*> C(n—1)nt log n>n® and so
log (P,/N)< —2a/n.

Using (5.2) and (5.5) in (5.4), we have

log (n® 2¢,/e,) < C + (a—2) log n+ Ca—2(g/n) (a —2)

=0+ (a—2){C+logn—2(qg/n)}<C+ (a—2){C—yn)}
by (5.1) and so
S HJH,< 3T n* %¢[cy<0e "™ =0(1).

3ga<4 3ga<A

Finally let us consider those w for which A<a<n For these a we

P, < Cnt log n by (1.16). Also, by (1.6),

> P,<(N~P)/2<N|2.
=2

We write Xy={q/(N—g@)}  <Cn ¥(ogn)t<1.
We have then [Quly < X5 °Qu (Xs) = X3¢ IT (1 + X4)P.
iz
Now log (1 + X,)* = P, log (1 + X,) < P, X3 < On (log »)}
and [Ta+xphr<[1 A+ X5 <1+ XPH¥2
>2 52
and so

log [@,], < On (log n)t — g log X3+ } N log (1 + X3) = Cn (log n)! + } log L.

Tf we write Z= 3 H,= > 2 [Qulp

A<agn A<agn weH,

(5.4)

(5.5)

(5.6)

have
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there are less than »! terms in the double sum and log (n!) < Cn log n. Again, by Lemma 1

and (1.19),
H,=Nc,>CNB"®F,,>CNB"2LM.

Also —(n~—2) log = O(log n) by (5.2), log M > C log ¢ > C log n and
log L > g log (N/q) > Cn (log ).
Hence log (Z/H,) < On (log n)t — (log L)/2—+ — oo

as n—oo and so Z=o(H,). Combining this with (5.6), we have the first part of (1.11),
and (1.10) follows.
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