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Introduction 

In  this paper we study certain self-adjoint singular integral operators with ma- 

trix coefficients acting on a multi-component Hilbert space H; namely, 

Lx(2) = A (~) x(X) + 1-- p (~ k*(2) k(~) x(#) dla, 
7gi J a  

( All(A) --. A l n ( ~ ) ~  

A~(~) A2~(~)) 
where A(~)= i i ' 

\An1(~) A=(~)I 

t 
k l l ( ~  ) . . .  k l n ( ~ ) '  ~ 

~(i) = 

where the matrices above have elements which are complex-valued functions of ;t, 

and for almost all 2, A(2) is a bounded Hermit ian operator on the Hilbert  space H 

which consists of vectors x(2)= {Xl(). ) . . . . .  xn(2)} with measurable components such tha t  
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Moscow, August 1966 under the title: Eigenfunction expansions of some self-adjoint operators. 
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S~ [xJ(~t)[ 2d~t< co. k(~t) is required to be Hilbert-Schmidt  on H for almost all ~. 

We shall not necessarily take n to be finite in the following, but shall always restrict 

ourselves in this paper  to the case tha t  (a, b) is a finite interval. 

I t  is most remarkable that  all the unitary invariants of L can be explicitly 

obtained under an additional condition on the range of the commutator  [L, 2I], where I 

is the identity operator on H. 

T ~ O R E M  1.1. I /  the (trace class) operator C-----S~ k*(~t)k(~u)x(#)d# has one dimen- 

sional range in H, then the operator 

I +  k(~)(A(~)-  (D)- lk*(~)  

I --  k(~)  (A(~)  - r 

/or non-real o) considered as acting on a fixed coe/ficient Hilbert space, h, an 12-space 

o/ dimension n, has only one eigenvalue di//erent /rom one and that cigenvalue has 

the /orm 

dv I,  
exp g(v' v -  r 

where g(v, ,~) is a measurable /unction o/ the pair (v, ,~) such that 0 <~ g(v, ~) <~ 1. I / n  is 

finite g(v, ,~) assumes only the values zero and one;/urthermore the set in R • R /or  which 

g(v, 2) is the characteristic /unction is a bounded set with the property that the sets 

p~={v; g(v, 2)=  1} /or each fixed ,~ in (a, b) consist o/ exactly n disjoint intervals. 

Suppose also, to rule out a trivial degeneration of the matr ix  A(~), that  the 

smallest closed invariant subspace of L containing the range of C is H, and define 

m(~)=q if F~={/z;g(~,~u)=l} is a union of q disjoint intervals; otherwise, let 

m(~) = ~ .  

Then the yon Neumann spectral multiplicity o/ L is m(~) and the spectral measure o/ L 

is Lebesgue measure. 

In  the above theorem we can show that  g(v,/z) can be calculated from the 

coefficients A(2) and k(2) by  means of the formula 

1 [ / +  k( l~)(A(~)-v- iO)k*(#)  ] 
g(v, #)= ~ a r g  det - -  ~ v ~ ) J "  k(/~) (A(/z) 

When C is not restricted to have one dimensional range it is not yet  determined 

if the conjecture tha t  the description of the spectral invariants of L is still given as 
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above is true; nevertheless, it is possible to give a less explicit description of these 

invariants which has an algorithmic nature and which can be applied in a variety 

of special cases. 

THEOREM 1.2. There exists a unique analytic operator valued ]unction on h, 

E(r z), such that 

I - k(2) (A (~t) - ( D ) - l k * ( ~ )  

I + k(2) (A(2) - (D)-lk*(~) -- E$(~~ ~ - i0) ~((D, ~ -- i0) 

and lim E(~o, z) = I. 
a)-~ oo 

THEOREM 1.3. There exists a unique positive trace-class on h valued measure dM~(. ) 

such that 

E ( ~ -  iO, x)E*(~-  iO, ~) = 1 + C Tg~ld_._d/~, a .a .  ~. 
j F - x  

dM~(') is absolutely continuous with respect to the scalar measure d (Trace 

(M~(-))). Call the Radon-Nikodym derivative M~(#), and let the ~th eigenvalue of 

M~(/u) be denoted by 2j(~, #), each eigenvalue appearing over again according to its 

multiplicity, in such a way that  

o < . . .  < 23(~, ~) < 2~(~, #) < ~1(~,/~). 

Define, for any Borel set of R, the scalar measures 

M~J)(A) = fA 2j(~' ~u) d(Trace (M~(~u))). 

Call the L ~ space of complex-valued functions on (a, b) square summable with respect 

to di~)(  �9 ) Hi. 

THEOREM 1.4. Let m ( ~ ) = ~ _ l  dim (Hi), then m(~) is the von Neumann spectral 

multiplicity ]unction /or L, and m(~) and Lebesgue measure ]orm a complete set o/ 

unitary invariants /or L. 

These theorems reduce the problem of calculating the unitary invariants of L to 

the problem of constructing the fundamental solution E(l,z) of the homogeneous 

Riemann-Hilbert  problem 
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I -  k(2) (A(2) - ~o)-~k*(2)E*~, 
I + k ( 2 ) ( A ( 2 ) ~  , Z+iO)=E*(5),2-iO),  

lim E(~o, z) = lim E(w, z) = 1. 

The degree to which our results constitute a solution to the problem of diago- 

nalizing L depends upor~ how successful we can expect to be in finding a solution 

to this problem in an explicit and manageable way. 

Such Riemann-Hilber t  problems have been studied extensively in the literature, 

and if A(~) and k(2) are sufficiently smooth as functions of 2 the problem of cal- 

culating E(l, z) is reduced to the problem of solving a Fredholm equation. C . f . N . I .  

Muschelischwili [15] and I. N. Vekua [18]. When A(;t) and k(),)are rational functions 

of ;t it is possible to give a somewhat simpler explicit solution, Vekua [18]. 

When n is finite and A()~) and h(~t) are sufficiently smooth a circle of results 

beyond the scope of the present paper shows that  for fixed t E a ( L ) t h e  measure 

d Trace (M~(/~)) is purely atomic, concentrating its mass at only a finite number 

of points. 

In  this case the construction by G. F. Mandshewidse [16, 17] of a solution to 

the Riemann-Hilber t  problem by an iterative procedure may  be effective for the de- 

termination of dim H j. 

We will have, in this case, 

E(~-iO,  x ) E * ( ~ - i O , ~ ) = I +  (dM~(la) . M~[r~(~)] 
- I ~  ~ r,~-~:_~j(~), 

j # -  x j=l j (~) -  

where /~j(~:) is the positive mass which the measure d Trace (Me( ' ))  concentrates at  

the real point rj(~). 

Thus 

1 
j cfj (E(~ - iT, x) E*( ~ - i~, ~) - I) dx = M~[rj(~)]Fj(~), lim 

2xi ~o 

where cj is a sufficiently small circle about  rj(~). Approximation of this contour in- 

tegral by Riemann sums may  prove to be numerically possible in certain cases. 

In  any case, Theorem 1.1 above is deduced from Theorem 1.4. 

Our results can be understood abstractly as a means o/ obtaining the spectral 

invariants o/ a bounded sel/.ad]oint operator V /rom those o/ another bounded sel/- 

ad]oint operator U such that V U - U V = ( 1 / x i ) C  where C is a positive operator o/ 

tra~e class. 
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Thus Theorem 1.1 above provides a complete solution of this abstract  problem 

when C is restricted to be of one dimensional range. 

These results are extensions of previous work [1], [2], [3], [4]. 

1. The determining function 

The basic technique of our method consists in the introduction of an operator- 

valued function of two complex variables, E(1, z), the determining function of the 

pair {U, V}, which characterizes the relationship between the two operators U and V 

such tha t  V U -  U V =  (1/zd)C. 

We will characterize the class of such determining functions, and show how to 

construct the direct integral space on which V is diagonal from a determining 

function. 

Let  h be the l.z space of dimension equal to the maximum of the dimension of 

the range of C and the spectral multiplicity of U. The Schmidt expansion of C has 

the form C = ~ 2 ~ n ( ' ,  ~vn) where {~n} is the complete set of eigenvectors of C, and 

where the {~t~} are the corresponding eigenvalues. 

I f  {0n} is a complete orthonormal set in h we define a linear transformation k 

in  H whose range is in h by  setting kqOn=~nO n and extending k to all of H by  

setting kx=O if Cx=O. Similarly, we define a transformation k*: h-~H by setting 

k*On = ~n qJn" 

Thus we arrive at  CqJ n = k*kq~ n = ~q~n and so C =  k*k. 

We now define the determining /unction o/ the pair ( V, U} by setting 

1 
E(1, z)= l + _ _ k ( V - l ) - l ( U - z ) - l k  * l r  z~a(U) ,  

7gl~ 

where 1 denotes the identity operator in h. 

E(l, z) is an operator which maps h into h. In  fact, E(1, z) maps the subspace 

of 'h spanned by  those 0 n corresponding to 2n ~= 0, onto itself. Let  us call this sub- 

space H. 

An alternate definition might have been made in terms of the identity 

( U -  x)-l(V-- y)-lk* = ( V -  y)-~( U -  x)-~k*E(x, y). 

That  is, E(x, y) is a mapping on the domain space h so devised as to compensate 

for the change in order in which the resolvents are applied. 
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Proo/. 

-- x ) - l (V-  y ) - l k *  [1 (v 
L 

But  

J.  D. PYbTCUS 

-[- l  k ( v - y ) - l ( U - x ) - l k *  ] 

= ( U - x)-  1( V - y) -  lk* -{- 1 .  ( U - x ) -  1( V -- y)-  1C( V - y)-  1( U - x)-  1]~,. 

I (U_x ) - I (V_y ) - IC(V_y ) - I (U_x ) - I  : ( V _ y ) - l ( U _ x )  1__ (U_x) - I (V_y) - I ,  
~7~, 

since V U -  UV= (1/~i)C. 

Hence (U - x)-  1( V - y)-  lk* = (V - y)-  I(U - x)-  1]c*E(x, y),  

I n  a similar way  we see immediately  tha t  

E*(2, ~) = E-l(x, y). 

2. Systems of singular integral equations 

THEOREM 2.1. Let U and V be bounded symmetric operators on a separable Hil- 

bert space ~ .  Let C be a positive operator o/ trace class. Assume that V U - U V =  

(1//~i)C. Then V restricted to the smallest closed subspace o/ ~ ,  F, which reduces both 

U and V and which contains the range o/ C is unitarily equivalent to the singular in- 

tegral operator L, acting on a certain direct sum o/ Hilbert spaces, H, in which U [ r  

is diagonal, defined by setting 

Lx(2) = A(2) x(2) + 1. p ( k*(2) k(#) x(#)dt~ 

/or x(.  ) EH, where A(2) is a bounded symmetric operator on H and where k(2) is bounded 

on H, and is Hilbert-Schmidt, a.a. 2 ~ a(U). Both o/ these operators are weakly measurable 

essentially bounded /unctions o/ 2. 

Proo/. A theorem of C. P u t n a m  [7] asserts t ha t  the smallest subspace of 

reducing both  U and V and containing the range of C, F, is contained in Ha(U ), 

where Ha(U) is the set of elements in ~ for which IIE~xll 2 is an  absolutely contin- 

uous function of 2; E~ being the spectral resolution of U = ~2dE~. Furthermore,  

II c II ~< II v II-(measure [a(U)]). 
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Let  H be a minimal direct sum decomposit ion of F into invariant  subspaces of 

U, ~k~, each generated by  a cyclic vector  ]c~. Choose an isometric t ransformat ion S; 

F - ~ H  such that ,  for ! E F 

S / =  {~1(~) . . . . .  gn(~)), 

and SU[ = {~gz()~), . . . ,  ~tgn(~t)} = SUS-~g(~) 

Set SJ=g~(~), and let {~i} be an or thonormal  set of eigenveetors of C corresponding 

to eigenvalues {~t~}. Then  C =  ~ z ~ t ~ ( ' ,  ~c~) and 

t , l  i,l 

If w e  define, for each ~, the matr ix  k* with the element in the i th  row and 

j th  column (k*)~j=l jS~j ,  we will have 

SC/= SCS -1 = fo(v)k*(/) k(#)g(p)d F, 

where k(#) is the adjoint  operator  (on H) to k*(/~) with mat r ix  elements given by  

(k(F))~=2~Sjg~ ~. k(#) is compact  for almost every  /~, because 

But  this implies tha t  

~1 SJ(Jtz(Pz)I ~ < ~ a.a. 
l,] 

which, in turn,  implies tha t  k(#) is Hi lber t -Schmidt  as an operator  on l 2. 

The proof tha t  k(.  ) is a bounded operator  on H is slightly more involved. We 

first note tha t  II C II = ~ II k(t)I[~dt. This follows because 

2 �89 

and II cx II fl[ ]] x II. 

But  it  is a s tandard  argument  to show tha t  the equal i ty  may  be achieved. 
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If V U -  U V =  (1/gi)C>~O, where U and V are bounded and symmetric, then C. 

Putnam has shown [7] that  the Schwarz inequality implies that  ]] eli  ~< I[ VH'(meas" 

ure [a(U)]). 

In the spectral representation of U, we may write this inequality in the form 

fll k(t)II, ~. dt <~ ]] V II �9 (measure [a(M)] ) ,  

where M = S U S  -1, and if we let g(A) be the operator in H which acts by multi- 

plying each component of the vector in H by the characteristic function of an interval, 

A, we will get 

[z(A)MX(A)] [Z(A)LZ(A)] - [Z(A)LZ(A)] [I~(A)MZ(A)] 

= 1 ( k*(t)k(~)d~, tEa(U) ~ A. 
xei J.(v)nA 

J" II ~(t)]],~,dt < ]l V ]1 measure (o'(U) 13 A). Thus 
j a  (U)nA 

Now take Am= [~m, tim], then the fundamental theorem of the calculus implies that, 

for almost every to, 

' /2 l im fl,,, _-~ II k(t)IIV.,~t = II k(to)II, ~, 
m,. -~ ,oo  

prov ided  tha t  :',n < to < ~., and limm .=  ~'m = limm .=  ~',n = to Hence  II k(t) I I ,  ~, is essent i  
ally bomlded. 

Now define the bounded operator T on H by 

1 p  
Tx(2)= ~i Jo(v) k*(2)k(g) 

; 
~ _  ~ x(g)dg. 

T satisfies 
1 

[TM - MT] x = ~e--i J,(u)k*(2) k(/~)x(/~)dt~. 

If L' is is another bounded operator satisfying this commutator relation, then A 

L ' - T  will commute with M. But the weakly closed ring which is generated by M 

is the ring of the given decomposition of our space 1 ~ into a direct integral; hence, 

by a theorem of yon Neumann [8] A must be a bounded Borel function of M(1), q.e.d. 

Let  us compute E(o~, z) in this representation. 

(1) Compare with Xa-Dao-Xeng, On non-normal operators. Chinese Math. 3 (1963), 232-246. 
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The vectors (0, 0, ..., 1, 0 . . . .  ) = On form a complete orthonormal set in h, while 

the vectors {$1q9~,$2~ . . . . .  )=0~ form a complete orthonormal set in H. 

But S]c(A)eo,(A)dA=A~On, since 

f2~ ~ S~( /~)  S, ~( /z)d# = ~ (~ ,  ~.). 

Similarly, we deduce that  

(k*(~)0~)~ = ~ k*(~),J~s~ = k*(~)~ = ~ ( S , ~ )  (4). 
t 

Thus the determining function of (U, V} in the spectral representation of U 

takes the form 

'fo E(co, z) = 1 + __ k(~.) (L -- o))-I(M - z)-lk*(~.)d2t. 
Y~$ (u)  

We will study the boundary behaviour of this operator-valued function as z-~a(U) 

and o) -> (~(V). 

Before we do this, however, we wish to describe the strategy which we will 

pursue in order to achieve a diagonalization of L. 

Digression: Barrier related spectral problems 

Let L =  S,(L)~dE~ be a self-adjoint operator on a separable Hilbert space, ://, 

with an absolutely continuous spectral measure. Let  ~/= ~ |  ://k~ be a direct sum de- 

composition of ~/ into pairwise orthogonal invariant subspaees of L, minimal in the 

sense of Hellinger-Hahn, each generated by a cyclic vector k~. Let  fl~(~) = (~/~)II E~k~ II 2, 

and let 

1 
S,[/] (~) - fl,(~) ~ (/, E~ k,). 

The following theorem was established in a previous paper [2]. 

T H E O R E M  

= l i m ( / , ( L - ~ + i ~ ) - l g - ( L - ~ - i ~ ) - S g )  p~[/,g]=- (/,E~g) 2~i~o 

m(D 

1 

ere m(~) is the von Neumann spectral multiplicity /unction o/ L.  Similarly, any 

decomposition o/ ~ into a direct sum o/ reducing subspaces, leads to a bilinear expres- 
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sion /or P~[/, g] in terms o/ the partial isometries that diagonalize L on the subspaces 

o/ the decomposition. The number o/ terms in such an arbitrary decomposition need not, 

o/ course, be equal to the spectral multiplicity. In  such a case linear relations will exist 

between the generalized eigen/uuctions that correspond to the partial isometries. 

Now we will turn our at tention to a way of representing the direct integral 

Hilbert  space on which L becomes diagonal in terms of analytic functions defined 

fro the spectrum of M whose boundary values will correspond to generalized eigenfunc- 

tions of L. 

If  / ( ' ,  z) is an H-valued analytic function for z r with the property tha t  fin- 

ite linear combinations of the form ~ia~/(' ,  z) are dense in the domain of L, we 

define F~(~,z)--(1/fi~(~))S~(/(., z)) to be the indicatrix function of L relative to the 

analytic generating family / ( ' ,  z) and the invariant subspace : ~ .  (It  follows by  an 

easy argument that  it is possible to choose a version of F~(~, z) which is analytic for 

almost all ~ ~ a(L) when z ~ C.) 

Let ~* be the Hilbert space whose elements are generated from (the equivalence 

classes of) those functions g(~, z) tha t  can be represented as finite linear combinations 

of the form 

g(& z) = ~ ~(~) G~(~, z), G~(~, z)--= [/~(~)] ~F~(~, z), 

where each ~j(~) is measurable with So ~[~J(~)[2d~ < ~ by imposing the scalar product 

' f ~  ' 
(g, g )~.= ~j(~)~j(~)d~. 

Let 74~ be the Hilbert space formed from finite linear combinations of the form 

a(~,x) =~o:aP~(x, Yk) where :c a and ykr  are arbitrary,  by imposing the scalar prod- 

uct (a, a') ~ = ~ , k  ~cz'~ P~(x, Yk) when P~(x, y) = P~[/(', x ) , / ( ' ,  y)]. 

The author proved the following simple theorems in (2). 

TH ~ o R ~ ~. Let / E ~ ,  de/ine /(~, z) E ~* by setting /(~, z) = ~jSj[/] (~)Fj(~, z): Then 

the correspondence /(~, z)~--,/ /urnishes a spectral representation /or L in the sense that 

/(~, z)~--*/ implies' ~/(~, z)~-,L/, and ~* is the direct integral o/ the spaces ~ with respect 

to Lebesgue measure so that the spectral multiplicity m(~) o/ L is equal to the dimen- 

sion o/ ~ .  

THEOREM. A necessary and su//icient condition that L have an absolutely con- 

tinuous spectrum is 



COMMUTATORS AND SYSTEMS OF S I N G U L A R  I N T E G R A L  E Q U A T I O N S .  I 229 

f~ P ~ ,  g] d~ = (/, g)~ V[, g e ~/. 

These elementary theorems provide the basis for our method. 

The idea is that  for certain operators L it is possible to find explicitly an anal- 

ytic generating family / ( ' ,  z) relative to which the indicatrix functions for • all satisfy 

(1) F~(~, z) is sectionally holomorphic, z CR. 

(2) F~(~, ~• the boundary values of F~(~, z) as z-->2 e R, are finite almost every- 

where, and are, in a precise sense, distributions. 

(3) There exists a positive purely singular measure of finite total mass d ~ ( - )  

defined on the Borel sets of the real line such that  Sadhu(r) is an integrable func- 

tion of ~l for each Borel set A, and for almost all 2 

f ~ ( ~ ,  ~t +) = ( 1  + ( dn~(~) ] F,(#, Z ). 
J . a )  v - ~ - iO/ 

When these conditions are satisfied we will say that  the operator is barrier 

related. 

Thus the problem of calculating the unitary invariants of • is transformed into 

an analysis of the measure dM~('), as explained in [3], and such an analysis can be 

explicitly carried out because it is possible to characterize the solutions of the bar- 

rier problem. 

In the present work we will need a generalization of the method outlined above; 

namely, we will find operator-valued indicatrix functions F~(~, x) corresponding to 

operator valued analytic generating functions [ ( . ,  x) all acting from h to H such that  

for fl e h and basis vectors {Ok} e h 

(1) (fl, F~(~, X)0k)h= S ,k[ / ( ' ,  X)fl]; 

(2) F~(~,~+iO)= ( l + S ( d ~ ( v ) / ( v - ~ - i O ) ) F ~ ( ~ , 2 - i O ) ,  a.a. 2, 

where d ~ ( , )  is now a positive operator valued singular measure mapping h into h. 

The direct integral space ~/* which diagonalizes L will be constructed by form- 

ing a Hilbert space from the finite linear combinations g(x)= ~ O~(x, yi)o~i where ~t E h, 

and 0~(x, y) is the operator mapping h into h defined by setting 

(fl, p~(x, Y):t)h = ~ (/( ", x)fl, E~[( . , y)~) 

1 
- ~ . l iE ([(. ,  x)fl, [ (L  - ~ - i~ )  -~ --  ( L ,  ~ + i ~ ) - 1 ] / ( . ,  y ) ~ )  

~ 9 ~  ~ ~,0 
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for ~, flEh. The space :H~ is formed by taking as the scalar product 

for the indicated finite linear combinations, and then taking the completion. 

The kernel ~)~(x, y) will be a reproducing kernel for the space in the sense that  

(g(x), :r = (g(~/), ~)~(x, y)~)u~. 

In this paper we will take as our operator-valued analytic generating family 

k*(~t)/(~t-z). The main result (Theorem (3.3)) of the next section is that  

_1 lim f k(/~) ~_ i ~ ) _ l ] ~ d ~ t  
2~ti,~0 J/x - x [(L - ~ +  i~) -1  - (L- 

1 E * ( ~ -  i0, ~) E ( ~  + i0, .~) - E* (~  + i0, ~)E(~ - i0, ~! 
2 x -  9 

= p~(x ,  y)  

has the properties outlined above. 

w e  will show that  (~, ~)~(x ,y) f l )  permits a bilinear expansion in the form 

for certain partial isometrics $tj. 

At this point it becomes necessary to comment upon another difficulty. If k ( . )  

has a non-trivial null space, then the finite linear combinations ~ m . v ( k * ( 2 ) / ( ~ - Z m ) ) ~ v ,  

~pE h will not be dense in H, and may not even form an invariant subspaee of L. 

Thus, in this case, the partial isometrics $tj obtained as outlined above from the 

bilinear form ~)~(x, y) will not be densely defined. 

I t  might happen that  the reducing subspaees of L to which the Sij correspond 

do not have the whole space as direct sum. 

We will show now, however, that  we 

(a) are able to extend the partial isometrics to the smallest invariant subspace 

of both U and V which contains the range of their commutator, and 

(b) the extended partial isometrics constitute a complete set. 

Assume for this purpose that  partial isometrics $~j have been defined on a do- 

main which consists at least of all vectors of the form ~.m.n(k*(~t)/(2-xm))~n, and 
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tha t  they  satisfy the following relation for all x, y ~ (r(M) and all ~, fie h 

1 lim ( (k(/~)flfl, [(L - ~ + i~) -~ - (L - ~ - i~/)-a] ~ ]  d# 
2 ~ i ~ o  Jo(u) \/~ - x 

$, k*(#) 
V - u  ' 

where E~ is the spectral resolution of L. 

Consider the closure A of the set of finite linear combinations of vectors hav- 

ing the form 

a~,k(M - x~) I ( L  - y~) a]c*~k, 

where xi, yj are complex numbers  and ~k is some vector  in h. 

L EMMA 2.1. A is an invariant  mani /o ld  /or both L and M .  

Proo[. Note  tha t  ( L -  y) 1 ( / _  X) 1]r  = ( M -  x ) - I ( L -  y ) - l ] r  a s  operators  

on h. Thus 

1 1 
(L - o)) I(L - y ) - l ( M  - x)-ak*o~ = (L - o)) I(M - x) 1]c*~ - - -  (L  - y ) - l ( M  - x)-lk*cr 

~ o - y  w - y  

1 1 
= - -  (M - x ) - i ( L  - y)- ik*E*(~,  ~)~. _ Y (M - x ) -a (L  - s  I ]c*E*(~,  y)(x-- O) .  y 

Hence, the resolvents of L applied to the finite linear combinations whose clo- 

sure generates A have images of the same form. Clearly A is invariant  under  the ac- 

t ion of the resolvents of M. 

Since ( M  - x ) - l ( L  - y ) - lk*  = ( L -  y) i ( M  - x )  X k * E ( x ,  y) 

We m a y  set 

on H 

$~{ ~ a m , o ( M -  x , ) - I ( L -  y , )  1]~*g0} (~) 
m , n . o  

=S~j{  ~ a m ~ o ( L - y n ) - l ( M - x m ) I k * E ( x m ,  y~)o~o} 
m , n , o  

= ~ amno(~ -- yn)-IS~j[(M - xm)-lk*E(xm, y , )  q0] 

and since E(yn, Xm)~oEh, S ~ [ ( M - x m ) - l k * E ( x m ,  Yn)~0] will be determined once we have 

defined the operators Sit on vectors of the form k * ( M - x ) - l o ~ .  

15 -- 682904 A c t a  m a t h e m a t i c a .  121. Imprim~ le 4 d6cembre 1968. 
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Since the t ransformations $~j are bounded, their  extensions to A are uniquely 

determined.  

LEMMA 2.2. The partial isometrics $~j are complete. 

Proof. 

S~j[(M - x)-  I(L - p) - lk*(~t) fl] (~) $~j[(M - y) - I(L - q) lk*(~t) ~] (~) 
t , j  

= ~ $~j[(L - p ) - l (M - x)-lk*(2)E(p, x)fl] (~)$,j[(L - q)-~(M - y)-Ik*(2)E(q, y)~] (~) 
t,] 

_ 1 1 ~ $~s[(M _ x)-lk*(2) E(p, x)fl] (~) $~j[(M - y)-lk*(2) E(q, y) ~r (~) 
~ - p ~  q 

- (E~(M - x)-lk*((~)E(p, x)fl, (_If - y)-Sk*(~)E(q, y) e) 
~ - p ~ - q  

=0@ (E~(L-  p ) - i ( M -  x)-ik*(~)E(p, x) fl, ( L -  q)- l ( M -  y)-~k*(~) E(q, y)e) 

= ~ ( E ~ ( M ,  x)- ~(L - p)- ~k*()t) fl, (M - y)- ~(L - q)- lk*(~) 0~) 

and, if we integrate these last equations with respect to d~, we obtain 

((M - x)-S(L -- p ) - ik*( ) l )  fi, (M - y)-~(L - q) - ik*( ) , )g )  

= f ,  $ , [ ( M -  x)-~(L - p)-~Ic*(2)fi] ( ~ ) $ ~ j [ ( i -  y ) - ~ ( L -  q)-Ik*(;t)o~] (~)d~. 
(v) 

This in turn,  implies tha t  

,.~ f,,(v)S,,[/] (~)$,,[g](~)d~= (f, g)~ 

for any  vectors  f, g~A.  This is completeness. 

The set A defined above is the smallest invariant  manifold of both  L and M 

containing the range of the commutator .  

3. The Riemann-Hilbert problem for E(1, z) corresponding 
to the spectral variable of  U 

Fix  ~. Le t  us denote by  N~(k) the  nullspace of k()~) in h~ and by  N~(k) • its or- 

thogonal  complement.  If x and x'  are elements of N~(k) • such tha t  kx= kx', then 
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(x-x')EN~(k) (1 Nz(k) x=  {0}, so tha t  x=x'.  Thus, the restriction k~= k iN~(k)" k of to 

N~(k)" is a one to one linear t ransformat ion of N~(k)" onto R~(k), the range of k()~). 

Thus k(~t) has linear inverse ~= 1"(4) which is defined on R~(k). 
Let  us extend ~ from R~(k) to all of h in the following way: for every x Eh 

there exists a unique v E R~(k) and eo E Ra(k)' such tha t  x =  v + co. The projection of h 

on R~(k) along R~(k) • P~, is defined by  P~x= ~. The t ransformat ion ~z=  ~ =  ?'~P~ is 

identical with ]a on Ra(/c) and is defined everywhere in h. 

I t  is clear tha t  

(a) k y k :  k, 

(b) (kY) l n(k)= I I ink), 

Let  h(t) be an arb i t rary  differentiable vector  which vanishes outside (a + e, b -  e) 

for some ~ > 0  and set 

Then 

/(~) = ( L -  o J ) - l ( M -  z)-lh(~), 
g(R) = ( M -  z)-I(L- o))-1h(2). 

Im  o~, I m  z 4 0, 

1p 
[A(2) - co]/(2) + zd f,(u)k*(~)k(l~) /( )d = (M - z ) - l h ( ~ ) ,  

1 p f ,  k*(X) k(#) ( M -  z) g(#)d# = h(2). [A(~)-e~ (v) lu -2  

For  I m  ~ ~= 0, define 

1 fo k(v)/(t)dt, F(z)=2~i  (~) t - v  

1 f~ k(t)(M-Z)g(t)dt. 

Then by  the Plemelj-Privalow relations, extended for vector-valued integrands 

(where the subscripts _+ refer to limits in ~ taken from above and below the real 

axis) we have, almost  everywhere, 

1(4) = •(F § - F ) + [1, g(~) = (M - z) - ly(G + - G-) + gl, 

w h e r e  /1, g l  E .~'(]~). 
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T h u s  

(A - co) 7 ( F  + - F - )  + (A - (D)/1 + k*(F"- + F - )  = ( M  - z ) - l h ,  

(A - o~) 7(G § - G- )  + (A - ~)g~ + k*(G § + G- )  = h. 

Le t  gl  = ( M -  z ) - lg~ .  T h e n  

(A - ~o) 7 [ ( M  - z) IG§ - (M - z) 1G ] + (A - w)~l  + k*[(M - z) 1G+ + (M - z) 1G-] 

= (M - 2 ~ ) - l h ( ~ ) ,  

a n d  t h u s  

(A - ~o)7[F + - ( M -  z)-~G +] + I t*IF + - ( M  - z ) - i G  + ] - [(A - co)7[F  + - ( M -  z ) - l G  + ] 

+ k*[F-  - (M - z) 1G-]] = (A - co) [/1 - gl] 

o r  

[(A - co)7 + ]c*] [ F  + - (M - z ) - lG  + ] - [(A - w) 7 - k*] [ F -  - ( M  - z ) - l G  -]  = ( A  - ~o) [[1 - g,]. 

T h u s  

[ 7  + ( A  - (D) -  1]~ *]  I F  + - (M - z)-~G + ] - [7  - (A - (A)) - lk  *]  [-~ - -  [M - z] 1 G - ]  = f l  - -  ~ I .  

T h u s  

7 [ ( F  + - ( i - z ) -  lG + ) - ( F -  - ( M  - z ) - l G - ) ]  + (A - ~o)- lk*[(F + - ( i -  z ) -  ~)G + ) 

+ ( F -  - (M - z) 1G-)] = [1 - g l  

b u t  ( F  + - ( M  - z ) - l G  +) - I F -  - ( M  - z ) - l G  - ]  E R ( k )  a n d  k 7 la(k) = In(k). Thus ,  if we m u l -  

t i p l y  this  l as t  e q u a t i o n  b y  k we will ge t  

[1 +/c(A - o ) ) - l k  *] I F  + - ( i  - z ) - I G §  - [1 - k(A - ~o) l k * ]  I F -  - (M - z ) - i G  - ] 

= k(/, - gl) = 0. 

A t  th is  p o i n t  we will  m a k e  use  of some resu l t s  due  to  I .  C. Gohbe rg  a n d  M. 

G. K r e i n  [8], which  genera l ize  resu l t s  of Muschel ischwil i  a n d  Vekua ,  on  the  factori-  

za t ion  of f i n i t e  d i m e n s i o n a l  mat r ices .  

L e t  ~ be the  r ing  of func t ions  :~(~t) of the  fo rm ~ ( ] ~ ) = C + S ~ : r  - ~  <~ 

2 ~< ~ ,  ] E L,  C co n s t an t .  

B y  ~+  d e n o t e  the  s u b r i n g  of ~ of f unc t i ons  :~().) of the  fo rm :~().)= C +  S~ / ( t )  

e~t~dt, a n d  b y  ~ -  the  func t ions  of the  fo rm C + S ~  E v e r y  f u n c t i o n  in  ~+  

is de f ined  b y  m e a n s  of a f u n c t i o n  wh ich  is ho lomorph ie  ins ide  t he  u p p e r  hal f  p l ane  
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~[+ and which is continuous up to the boundary.  Similarly, functions in }~- are de- 

fined by  means of a funct ion holomorphic in the lower half plane 1--[- and continuous 

up to the boundary.  

Let  ~=• denote the ring of n • n matrices whose entries are all elements of 

~ ,  and let + }~n• and  ~ ; ~  denote the corresponding ring of matrices whose entries 

are respectively in R + and in R- .  

T H E  O REM (Gohberg and Krein). I n  order that the non-singular matrix /unction 

T(2)e R.• possess a representation o/ the /orm T(~t)=~+(~t)~0*(~t) in which ~+(~t)E R~+• 

and determinant  (~+(~t))~=0, ~tErI+, it is necessary and su//icient that T ( 2 ) be positive 

definite. 

I n  addition, it follows from results of those authors  tha t  ~0"(2)E "R;• 

Suppose now tha t  A(~t) and k(~t) are n-dimensional operators and tha t  they  belong 

to the ring R . . . .  (We will car ry  out  a series of calculations on this assumption,  and 

then by  passing to a limit in the final step, do away with these restrictions.) 

We have already shown tha t  

[1 + k(A - r *] [F  + - (M - z)- lG + ] = [1 - k(A - ~o)-~k *] [F -  - (M - z) 1G-], 

and with A and k restricted by  the smoothness and dimensionali ty restrictions im- 

posed just  above we can now assert the existence of matr ix  functions cf+(~t) and 

~n• and }~• respectively such tha t  (~) e + 

1 - k() , )  ( A ( ~ )  - ~ ) - ~ k * ( 2 )  ,2, 

~v+(2) = 1 + k(2)(A(2) - ~ k ~  ~ / 

for eo real and not  in o'(L).(1) 

But  this equat ion taken in conjunct ion with the immediately preceding equat ion 

implies t ha t  

~ 7 I ( ~ ) [ ( M -  z )F+(2) -  G+(2)] = ~ : 1 ( 2 ) [ ( M -  z)F-(2) - G- (A)]. 

Since the left-hand side of this equat ion belongs to the ring R~xn and the right- 

hand  side belongs to the ring ~+• it follows, by  a simple extension of Liouville 's 

theorem, tha t  each side equals a constant  matrix.  

(1) Since Theorem 5.1 shows that we are factoring a positive operator. 
(~) Using a well-known theorem of :N. Wiener. See [8] p. 249. 
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Now, we can evaluate the constant  by  analyt ical ly  continuing 2 to ~ (in either 

half-plane). T h e n  we will have 

~ ( T ) - I [ ( T  - -  z)F(T)  -- G ( T ) ]  = - -  ~ ( z ) - l e ( z )  

1 G(z) = ~ jk(t)g(t) dr, 

thus G+ (~) - (M - z)F + (4) = q~()~ + iO) q~(z)-lG(z), 

g -  (,~) - ( M  - z ) F -  (~) = q~(,~ - iO) ~ ( z ) -  l g ( z ) ,  

so (G+(~) - G-(k)) - (M - z) (F+(2) - F-(2))  = (~(~ + i0) - ~(~ - i0)) q~(z)-lG(z). 

Thus k(,~)(M-z)g(,~)-(M-z)k(~)[( ,~)=(~(2+iO)-~f(2-iO))q~(z)-lG(z) 

and k(~) (M - z) [(L - w) - l (M - z)- lh(2) - (M - z) - l (L - w)-lh(2)] 

= - [ ~ ( ~  + i0 )  - ~ ( ~ -  i 0 ) ]  ~(z)-lG(z). 

But  ( L - o )  i ( M - z ) - l - ( M - z )  ~(L-eo) ~1 

z ) - l ( L M -  M L )  = ( L - e ~  \ ~i . ] ( M _ z ) - l ( L _ e o )  1 

Thus, by  subst i tut ing this relation, and evaluat ing G(z), we obta in  

- k(2) (M - z) (L - o ) ) - l ( M  - z )  ik*(~)f]~(t) (M - z)-l(L - ~) lh(t)dt 

= Iv(Jr + i 0 ) -  q~(Jt -- i 0 ) ] ~  ~ k ( t ) ( i  - z )  1 ( 5 -  (~) lh(t) dt. 

Since h(t) is a rb i t rary  the integral in this expression ranges through the range of the 

operator  ~]c(t)dt, which is H. 

I n  H we, accordingly, have the operator  ident i ty  

- k(2) (L - eo)-l(M - z) l k * ( ~ )  = (M - z) -1 2 [ ~ ( ~  + i0 )  - ~ ( ~  - i0 ) ]  ~ ( z ) -  1. 

Now mult iply both  sides by  z and let z ~  oo, to get  

- k ( ~ )  ( L  - o ~ ) -  l k * ( ~ )  = �89 + i0) - ~ ( ~  - i 0 ) ] .  

by  setting ~ = z. 

Bu t  
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For  a contour  C enclosing a(U) oriented in the clockwise way,  we can use simple 

es t imates  and  Cauchy 's  theorem to show t h a t  

f ,  ~(i~ + i0) - cf()t - i0) d+~ = ~ ~0(0) 
(~) ~ - z J c  0 - z dO 

but ,  for z outside C, the Cauchy residue theorem tells us t ha t  

f c ~ d O = 2 7 d [ q g ( z ) - l ] .  

Thus, b y  analyt ic  cont inuat ion th roughout  the  domain  of ana ly t ic i ty  

1 f,  k(2) (M- z)-l(L- (D)-lk*(~) d~. ~0(z)= 1 - - ~  (~) 

Since E*(5~,~)=E-l(oo, z) we have  proved  

T H E O R E M  3.1a.  

E((;o,  z) = ~0(z) -1  o n  ]~.  

We have  assumed in the foregoing pa rag raphs  t h a t  B(2) and k(~) are finite di- 

mensional  matr ices  continuous in +~. The general  case where A(+~)and k( ; t )are  weakly  

measurable  essential ly bounded  functions of ~ can now be obta ined b y  an approxi-  

ma t ion  argument(I ) ,  and  we finally obta in  

T H E O R E M  3.2. 

I -- k(~) (A(+~) - ( D ) - i ] ~ * ( ~ )  

I + k(~) (A(~) - o~) lk*(~) = E*(~, ~ -  i0) E(~o, ~ -  i0). 

T H E O R E M  3.3. 

The /ollowing relation is an operator identity on h 

k*(~) 
l ~ l i m f b a ~ ( - ~ ) ( ( L - ~ + i O ) - l - ( L - ~ - i O ) - l ) ~ - ~ d ~  

= 1 E*(~ - iO, ~) E(~ + iO, ~) - E*(~ + iO, ~) E(~ - iO, Y) 
2 x - ~  

(1) See also R. G. Douglas: On factoring positive operator functions. J. Math. Mech. 16 (1966), 
119-126, Theorem 4. 
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Proo/. We have already established the fundamental identity 

k(2) (L - ~ o ) - 1 ( / -  y)-~]c*(2) = 1 (M - y)-~H*(~o, 2) E(o,  y), 

where H(o~, 2)~E(oJ,  2 +  i0) - E(o), 2 -  i0). 

Thus k(~) (5  _ o))_ 1]r 1 H*((~, ~) E ( ~ ,  
2 - x  2 - y  2 (2~ x ~  y) " y)' 

but  
2 - x ~ - y  x ~ x  2 ~ 

1 (~  E- l (~o ,  ~ - i0)  - E-~(o~,  2 + iO)d~  = 1 - E - ~ ( w ,  z). 
and 2~i .]a ~ - z 

Hence, since 

1 1 1 1 
- {E* (~ ,  ~) E ( ~ ,  y)  - 1}, 2 x _ y ( ( 1  E-l(eo, y))E(eo, y ) - ( 1 - E - ~ ( w , x ) ) E ( w , y ) ~  2 x - y  

we find that  

p~(x, y) ~ x 1 Y (E*(~ - iO, ~) E(~ + iO, y) - E*(~ + iO, ~) E(~ - iO, y)}. 

4.  A b s o l u t e  c o n t i n u i t y  o f  spec tra l  m e a s u r e  

THEOREM 4.1. Under the hypothesis o/ Theorem I, V restricted to the smallest sub- 

space o/ H, F, reducing both U and V and containing the range o/ C has an absolutely 

continuous spectral measure. 

Proo]. If V U - U V = ( 1 / z d ) C  then the theorem of Putnam to which we have 

referred before [7] affords the quickest proof. Putnam's theorem asserts that  F c Ha(U). 

Set W = -  U. Then W V - V W = ( 1 / g i ) C .  Thus F c H a ( V ) ,  q.e.d. 

Another proof of this result can also be given. We can evaluate S,P~(x, y)d~ 

by residues to get SP~(x, y)d~= (/, g)u. The characterization of absolutely continuous 

spectral measures given in the digression then implies the result of the theorem. 

5. The dual I-Iilbert p r o b l e m  

T H E 0 R E M 5.1. There exists a positive one parameter operator-valued ]amily o/mea- 

sures d~a(.) such that 

1 + k(~) (A(~t) - l ) - lk*(~)  -t- ~ d ~ ( v )  
1 - k ( 2 ) ( A ( 2 ) -  l ) - l ]~*(~)  = 1 , ]  ~ . 
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Proo/. For any invertible operator Q, Im Q = - Q ( I m  Q-1)Q.. But if a(/)= 

]r (A(~)-l)-ak*(~) then a(1) has imaginary part positive in the upper half plane, 

and we can find a positive measure dSa(. ) such that 

Now 

Im 

(dSa(v) 
a(1) = j ~_  i" 

[ ' -J  7-5-] (ds~(v)] = _ 1  [1-- j-~-~j(dS~(")l Im [1--,] ~ _ - {  ](dSa(v)] L,,[~I- J-~--1]fdSa(v)]* 

= . j  

hence, using the fact that  1 -  a(1)~ 1 when 1 becomes infinite, we can conclude that 

there exists a positive measure dRy(. ) such that 

1 -  

1 1 + (d_Rz(v) 
(as~( 0 j ~- t 

B 

J r - 1  

Let E~(1) 
1 - j  ~,_ l 

(dR~(v) 
l + ] v -  l 

and 
(d&(~) 

E~(1)= l +,] v - l "  

Then (dSz(v) _ El(1 ) _ 1 - E ~ ( 1 )  = , ] ~ - - - 1 -  - 1 

so that  El(l ) E2(l ) = [2 - E~ ~] E2 = 2E2 - 1 = 1 § j v - 1 ' q.e.d. 

I t  is clear that the measure d~a(. ) is of trace class, since the operator k(2) is 

Hilbert-Schmidt. 

We have encountered the operators E(l, z) as the solution of the l~iemann-Hil- 

bert problem 

1 - k ( 2 ) ( A ( ~ ) -  1 ) - l k * ( 2 ) E * ( i ,  
1 + k(2) ( A ( 2 ) ~  2+iO)=E*(i,~-iO). 
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We now wish to show that  the duality between U and V extends to a duality be- 

tween their respective spectral variables z and I. That  is, we will establish 

THEOREM 5.2. There exists a positive one parameter /amity o/ h-valued operator 
measures dM(. ) such that 

E*(,-iO, z)= E*(~+iO, z)(I + f d M ' ( J  1 
a ff-~, /" 

Proo I. * x 1 E*(~ + iO, 9) E(~ - iO, 2) - E*(~ - iO, (J) E(~ + iO, ~) 
P~( ,Y)=~ s  

Thus E(~ - i0, y) p~(x, y) E*(~-  i0, x) = 

1 1 
- - -  [ E ( ~  - iO, 2 )  E * ( ~  - iO, x )  - E ( ~  - iO, y )  E * ( ~  - iO, ?7)]. 
2 ~ - y  

Now set y = x, then 

0 ~< i-~-x Im E(~ - i0, s E*(~ - i0, x), 

since ~)~(x, x) is a positive operator. Hence, when Im x > 0, Im E ( ~ -  i0, s E*(~ - i0, x) ~> 0. 

Thus, by the operator generalization of the familiar representation theorem for func- 

tions analytic in the upper half plane with positive imaginary part, we can conclude that  

E(~ -. iO, 2) E*(~ - iO, x) -- I + ['|dM~(---~) 
j f f - ; ~  

(since E(~o, z)-+I as z-+ oo). 

T~IEOREM 5.3. E(~-iO, z)E*(~-iO, 5 ) - I  is of trace class. 

Proo/. 
E(l, z) E*(I, 5) 

= (I  + l  f lc(~)(L-1)-~(M-z)-iP(~)d~) ( l - l  f k(~)(M-z)-l(L-i)k*(~)d, 0 

=I+~ifk(~)(L-1)-i(M-z)-~P(~)d~-~ifk(~)(M-z)-l(L-bP(~)d~ 

+~fk(Z)(L-1)-'(M-z) lk*(2)d2fk(ff)(M-z)-l(L-i)P(ff)dff. 
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Thus  

COMMUTATORS AND SYSTEMS OF SINGULAR INTEGRAL EQUATIONS. I 

(L - l) I (M - z) -1 - (M - z) ~(L - l) -1 = (M - z)-~(L - l) -1 C (L - l ) - l (M - z) -1. 
2"g 
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E(l ,  z) E*(l,  z) = i [ + | ~  [bl]~(l~) ( M  - z) l (L  - l) -1 C (L - l ) - l (M - z)-Ik*(~) d~ 

, f  + _ k(t)  (M - z)- I[(L - l)- 1 _ (L - i)- 1] k*().) d). 

§  

1 f k ( ~ ) ( M - 2 : ) - 1 [ ( 5  - / ) - I  ( i - ~ ) - 1 ] ~ * ( ~ )  dZ + 

, f + ~ k(~() (L - l)- I (M - z)- 'k*(t)  d~ k(#) (M - z)- ' (L  - 1)-'k*(/z) d/z. 

We now define a C 1 va lued  indefinite integral  on (~,  ~ ) .  (C 1 denotes  trace 

class, TT is the trace,  ~ is the real line.) A Cl-valued measure  # on (~,  ~ )  is said 

to be a C1-valued indefinite integral  on (~,  ~ )  if there exists a Cl-valued funct ion 

#eLI(TT/~,  C1) such t ha t  

t~(e) = f tt'(s) Trtt(ds). 

THEOREM (Kuroda  [9]). Let E(e) be a spectral measure on ('R, ~ )  and let A 6 C 2. 

Then the set /unction A*E(e)A,  e6 ~ is a Cl-valued inde/inlte integral on (~, ~ ) .  

T ~ E O a E I ~  (de Branges  [10]), Let a be a scalar measure on (~, ~.~) and let x(2) be 

a Crvalued (;-measurable/unction which satisfies (1 + ;l~)-lx(t) 6 Ll(a, C 0 and which is posi- 

tive a.a. 1. Then /o r  a.a. t 

lira 1 _~ /~_  (t  +_ie)x(/~)a(dl~) exists in C~(H). 
6~0 

These two results  enable us to analyze each factor  in the products  of integrals 

above.  Thus,  by  K u r o d a ' s  theorem we m a y  write 
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f ie(t) ( L -  l) ~k*(t) ( M -  z)-~ dt 

with 

= d t .J G ~ : ~ r  k ( ~ ( t ) J  V:- ~ J t - 

~, , __ 0]g(t) E(p) ]r ~ C1" 
(v) = G  T,[k(t) E(~) k*(t)] 

De Brange's theorem tells us that  the inner integral exists as a limit in C2 as 

l approaches the real axis. 

Since the product of two H.S. operators is in C1, the theorem will be proved if 

we can show that  the last integral has a limiting value in C 1. 

This is however implied by the familiar lemma. Let ~ be a scalar measure on 

(}~, ~ )  and let :~(2) be a Cl-valued (T-measurable function which satisfies (1 +;t~)-ix(;t) 

E Ll(a, C1). Then 

lim ~ , ~2 + ~z(r'(;t) Z().) ~o d-oo ( # -  j e~ g(/z) da(/a) = a.e. 

Take Z(v) as before, and note that  the absolute continuity of dE~ implies the 

existence of the Radon-Nikodym-derivative 

d,[Tr k(t) E(v) k*(t)] 
dv 

6. The  d e c o m p o s i t i o n ,  def in i t ion o f  $~j 

THEOREM 6.1. 

1 _ f d M ~ ( # )  ~,~+ 
p~(x, y) = 2 E*(~ + iO, x) J(~u Z x)(~ :- ~) '~t~ i0, ~). 

Proof. 

E(~-iO,  x)= (1 + fdM'(#-~)tE(~+iO, x), 
d ~ - x /  

fdM'(l~) 1 = E*(~ - iO, ~). E*(~+ iO, ~) (1 + : ~ ]  
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Thus,  

E * ( ~ -  i0, ~) E(# + i0, 9) - E*(~ + i0, ~) E ( + -  i0, 9) 
p~(x, y) = 2 ( x -  9) 

== ~ E*($+iO, 2) f (# _dM~(/~)x)(# - ~) E($+iO,~). 

We have  seen in Theorem 5.3. t ha t  ~ dM~ (#)/(/~- z) is an  opera tor  of t race class. 

F r o m  this it follows t h a t  the opera to r  dM~(. ) is of t race  cIass; fu r the rmore  it is ab- 

solutely continuous with respect  to the scalar measure  dT~M~(. ), and therefore there 

exists a Ca-valued opera tor  M~(. ) such t h a t  

M~(e) = f e M~(tt) dT~ M~(~) 

for any  :Borel set e. 

LEMMA (M. l~osenberg [14]). 

0 <M~(~) <~I (a.e. with respect to dTTM~(. )) 

Proo/. Take  a f ixed x E 12, then  for each Borel set e, 

(M~(e)x, x) -~ f e (M'~(2) x, x) dT~ M~(~) >~ O. 

Hence,  (M~(/~)x, x) t> 0 on ~ - Nx, where Tr M~(Nx) = O. 
Since l~ is separable,  there  exists a countably  dense subset  of 12, {x~}, such t h a t  

(M'~(2)x~, x~) >~ 0 on ~ - N~.  But  Tr M~(N~ U N~,) = O. Hence M~(2) >~ 0 on ~ - h r. 

I n  a similar way  we can establish t ha t  M ~ ( 2 ) < I  a lmost  everywhere  with respect  

to the t race measure.  

Now we can w r i t e  

f dM~(~)= ( M'(" )d~ M~)  
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Thus 

, .  t'/~*(~) 
- -  l i E  / / -  

2:r ,J \~t-  ~" 
a, [(L - 2+ i0) - 1 -  (J~- ~ - -  i0)-l] ]~*(/~!X-- y fl) d 2  

3( - ~ : ~ ) ~ ( ~ + i 0 ,  

: + i0, i;( )Eff + i 0 , -  
2 J  ( # - ~ ) ( # - Y )  Y)fl)~dT~M~(/~). 

Denote by {0j(~,/z)} the complete orthonormal set in h consisting of eigenvectors 

of M~(#). Let the corresponding eigenvalues be called {2~(~,/z)}, (we consider these 

numbers to be ordered so that  0 ~ ... ~<~t~(~,/~) ~<~tl(~,/~) ~ 1). Then Parseval's identity 

enables us to conclude that the last expression above is equal to: 

�89 f (:r E*(~ + iO, ~) Oj(~, /~))h (fl, E*(~ + iO, ~) Oj(~, /z))h 2j(~,/z) dT~ M~(/~). 

Now for fixed ~ consider the Lz space formed with respect to the measure 

~z2r Call this space L2(dM(~)( �9 )). Form the direct integral of 

these spaces with respect to d~i In the direct integral space select a complete ortho- 

normal set {P~.~(~,/~)}. This set will have the property that for almost all ~ {P~.r 

is a complete orthonormal set in L~(dM(J)( �9 )); moreover, it will be ordered. There- 

fore, we can again use Parseval's equality to assert that the above expression is 

equal to 

�89 ~P~"J(~'~) (~, E*(~ + iO, ~) 0~(~,/~))~ dM(J)(#) 
~.~j / ~ - x  

Now define 

• f P ~  y~) (fl, E*(~ + iO, y) Oj(~, /z) )h dM(j)(/~). 

[k*(~t) zr ~P~. j(~,/z) (g, E*(~ + iO, 2)Oj(~,/~))h dM(~ j, (/~). 
$~JL2-x J ( ~ ) = 2 - � 8 9  / ~ - x  

k*(;t) ] 
LE~MA. I /  ~ a,sSij ~ - ~  (2)=0, /or all x~a(U) 

i , /  

/or all a E h,/or certain complex valued constants a~j, then a~j = 0 all i, ~. 
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Proo/. The hypothesis immediately implies that  

f ~ aij P~j(~' P) Oj(~, ,u) dM(~J)(,a) 
~.j I~-X 

is the null vector of h. Since we can take ~ = E(~+ iO, x)~ where ~ ranges throughout 

h. But functions of the form ~ad(#-xq) are dense in L2(a(U),d#); thus, the van- 

ishing of 

f ~ ai~ e~' Oj(~, i ~) ,~(~, #) dTr M~(#) )(~,_#) 

~.j K - x  

for an infinite unbounded sequence of non-real values of x implies that  

a~j P~. j(~, #) Oj(~,/~) ).~(~, #) = 0 
i,j 

on the support of dTrM~(.). Now 

.~ a,. r P~. jCOj(~,/~), Ok(t,/~))h ;tj(~,/~) = ~ a,. k Pt. k(~, #) )-k(~, #) = O. 

And we can multiply the last expression by P~.k(~, #) and integrate with respect to 

dT~M~(,u) to get 

0 

But (P~. k(~,/~)} is a complete orthonormal set in L2(dM(,k)(lU)). Hence 

~ai.k(~i.~=ar~=O, q.e.d. 

We have seen that  

This equation, in turn, implies that  

(E,(L . . . .  ~ k*(A) lc*(2) k*(,~) 

N o w  consider the $~ extended to A, the smallest invariant manifold of both L 

and M containing the range of the eommutator (as in the sequel to Lemma 2.2). Then 

S ~ [ ( L - P ) - ~ o ~ ] ( ~ )  
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is defined, and 
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~ (E+/, g) = ~ 5A/] ($) SAg] (~), /, g e A. 

Thus,  we can conclude tha t  

~S~j[(L ._~ k* (A) ]  (~)S,~[~*(~)yfl] (~) , , ;  - p ;  _ 

all ~, fle h, x, y ~ a(M). And the previous lemma makes it possible for us to conclude t h a t  

k*(A) ] (,) = $1_[_p S,, [ ~ (  ~)x ,]  (,)" S ,~[(L-  p ) - '  ~__x aj  _ _ 

7. The  c o m m u t a t o r  w i t h  one  d i m e n s i o n a l  range  

In  this section we will specialize our results to the case where C has one dimen- 

sional range. 

T ~  E 0 RE • 7.1. There exists a measurable /unction g(v, /z), v E a(V), Iz E a( U), such 

that 0 <~ g(v, #) <~ 1, and 

d, I ] exp ~ (-) o(v~ "'" 

E(l, z) = 0 1 0 . . . .  

0 0 1 ... 
. . ,  

I f  either U or V has finite spectral multiplicity, then g(v, l~) takes on only the values 

zero and one, i.e. it is the characteristic ]unction o/some set in a( U) x a( V). 

Proof. I n  Theorem 5.1 we have shown tha t  we m a y  write 

1 + k(2) (A(A) - O))-lk*(~) 
1 - k(A)(A(A) - O) ) -  l k $ ( ~ )  

= 1 +  f dn (v) 

V--O)"  

Since C has one dimensional range the mat r ix  ~x(. ) essentially reduces to a scalar 
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and the above operator on h takes the form 

l + j v -  w 

0 

0 

0 0 . . . . .  ~ 

1 0 . . . . . .  

0 1 . . . . . .  

By a theorem of Verbhmsky [11] we may set 

l + j v - ~ o  v-~o 

for a g(v, 4) with 0 ~g(v, 4)~< 1, and, by a theorem of Aronszajn and Donoghue [12], 

g(v, 4) is a characteristic function if and only if dRy(. ) is a singular measure. 

If U has finite spectral multiplicity, then A(4) is a finite dimensional symmetric 

matrix and hence has only a finite number of eigenvalues. Thus the singularity of 

the measure dG~(. ) follows in a simple way. 

Now form 

logdet [I ~+k(4)(A(4)-~ 11~$(4)] 
k(4) (A(4) - ~ * ( 4 ) J  = log det E(~o, 

But log det (1 + 

Hence, since E(~o, z)-+ 1 as co-+ c~, 

det E(m, z) = exp ~-/  g(~,/~) 

4 + i0 )  - log det E(o~,  4 - i 0 ) .  

fd~(v!~= IgO,,4 ) d~, . 
V - - ( D ]  . Y - - ( D  

dr d/~ 1 
v -  ~o ~-~z " 

But since E(w, z) is necessarily diagonal with all its eigenvalues equal to unity except 

for the first, this proves the indicated representation. (It now follows exactly as in 

references [1, 2] that  the spectral multiplicity of V can be calculated as follows: Let 

A~= {~u; g(v, #)=  1} then if A~ is the union of p disjoint intervals, the spectral mul- 

tiplicity function, m(v)=p; otherwise it is infinite.) 

To complete the proof of Theorem 1.1 we wish to examine the spectral multi- 

plicity of the operator U. 

To do this we simply note that  ( - U ) V - V ( - U ) = ( 1 / g i ) k * k .  Thus the pair 

{ V , -  U} satisfies our requirements and we may calculate the determining function, 

e(y,x), corresponding to this pair. 
1 6 -  682904 A c t a  mathemat ica .  121. Impr im~  le 6 d6eembre  1968. 
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The two determining functions E(x, y) and e(y, x) sat isfy 

( - U - x y l (  V - y)- lk* = ( V - y) - i (  _ U - x)-lk*8(y, x), 

o r  (U - -  X ) - 1 (  U - -  y ) - i k *  = ( V - y)- l (  U - x)-1k$ ~ ( y ,  - -  X)~ 

But  ( U - x)-  1( V - y) -  sk* = ( V - y ) -  1( U - x)-  ik*E(x,  y), 

hence k % ( y , -  x)= k*E(x, y). However ,  since the range of bo th  E and  e is contained 

in the range of k, we can conclude t h a t  the corresponding principal  eigenvalues (which 

we denote b y  a superscr ipt  ~ ) sat isfy 

~(x,  y) = g(y, - x), 

t h a t  is ~ ( z , / ) = e x p  ~ /  (v) (v) - l # - ~ '  

:From this formula  we see t ha t  the spectral  mul t ip l ic i ty  o f  U is also computed  

f rom knowledge of g(v, #) b y  the  same rule as was followed for V, bu t  in the other  

variable.  

Thus  when the  spectral  mult ipl ic i ty  of U is t aken  to be n, for  each point  in the 

spec t rum of U, we m a y  conclude t ha t  the set  ~ j =  {v;g(v, -]~)= 1} consists of exac t ly  

n disjoint intervals  for each - ~ t E 6 ( - U ) ,  i.e., each ~tE (a, b). 

Remark. We have  defined E(y, x) so t h a t  

(U - x)-l( V - y)-lk* = ( V - y)- l(U - x)-lk*E(y, x). 

Suppose t ha t  S -1 is an i sometry  f r o m ~  onto ano ther  Hi lber t  space, say  the 

space in which U has the spectral  representa t ion  M. 

I n  this space we m a y  write S M S  -1= U, SLS -1= V, and 

( M  - x ) - l ( . L  - y)-l]C* = (L - y)- ~(M " x)- l[c*E(y, x). 

W h a t  is the re la t ion between E(y, x) and  E(y, x)? 

I f  ~* denotes the  pseudo-inverse of $* defined as ~ was before, then  the above  

formulae  give 

(~*S-lk *) E(y, x) (y*S~*) = E(y,  x). 

When  C has finite dimensional  range  ~* and  3" are bounded,  and  E(y, x) and  E(y, x) 
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are similar. However  since both  of these two operators are un i ta ry  for values of y , x  

real and  outside a(V), if(U) and similar normal  operators are clearly uni tar i ly  equi. 
^ 

valent,  we can conclude tha t  E(y, x) and E(~], x) are uni tar i ly  equivalent  as opera- 

tors on 12. 
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