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Intreduction

In this paper we study certain self-adjoint singular integral operators with ma-

trix coefficients acting on a multi-component Hilbert space H; namely,

. 1. (PR A)k
La(?)= ADz(d) + —P f %xm)dﬂ,

a

Au(4) ... Ay(4)

A ... A4
where A= %1(/1) ) 211(}») ’
A,(A) ... A,a(d)
kn(l) kln(l)
kz 1 e ]C n Z
= [ 0 B )

knl(z') knn(z')

where the matrices above have elements which are complex-valued functions of 1,
and for almost all 4, A(1) is a bounded Hermitian operator on the Hilbert space H

which consists of vectors x(4)={x,(2), ..., %,(1)} with measurable components such that
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SO0 xfA)PFdA< oo. k(A) is required to be Hilbert-Schmidt on H for almost all 4.
We shall not necessarily take n to be finite in the following, but shall always restrict
ourselves in this paper to the case that (a, b) is a finite interval.

It is most remarkable that all the unitary invariants of L can be explicitly
obtained under an additional condition on the range of the commutator [L, AI], where I

is the identity operator on H.

TurorREM 1.1. If the (trace class) operator C= {4 k*(A)k(u)x(u)du has one dimen-

stonal range in H, then the operator

I+ k(A) (A(2) — w) k()
I—k(A) (A(2) — ) 'k*(A)

for nom-real  considered as acting on a fized coefficient Hilbert space, h, an ly-space

of dimension n, has only ome eigenvalue different from one and thot eigenvalue has

% d
exp (f_ g(v, 2) _”w),

where g(v, ) is a measurable function of the pair (v, ) such that 0<g(v,A)<1. If nis

the form

Finite g(v, A) asswmes only the values zero and ome; furthermore the set in R x R for which
g(v,A) is the characteristic function is a bounded set with the property that the sets
yi=A{v;9(v,A)=1} for each fized A in (a,b) consist of exactly n disjoint intervals.

Suppose also, to rule out a trivial degeneration of the matrix A(A), that the
smallest closed invariant subspace of L containing the range of C is H, and define
m(E)=q if Te={u;9(§,u)=1} is a union of ¢ disjoint intervals; otherwise, let
m(§) = oo.

Then the von Neumann spectral multiplicity of L is m(&) and the spectral measure of L
ts Lebesgue measure.

In the above theorem we can show that g(v,u) can be calculated from the
coefficients A(4) and k(1) by means of the formula

1 I+ k(u) (A(u) — v —90) k*(u)
90, p) = arg det [1 — k() (A(u) —v—40) k*(u)] '

When C is not restricted to have one dimensional range it is not yet determined

if the conjecture that the description of the spectral invariants of L is still given as
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above is true; nevertheless, it is possible to give a less explicit description of these
invariants which has an algorithmic nature and which can be applied in a variety

of special cases.

THEOREM 1.2. There exists a wunique analytic operator valued function on b,
E(w,2), such that

I—k(2) (A(A) — ) k*(A)
I+ k(2) (A(4) — )" 'k*(A)

=E*(®, A—10)E(w, A —10)

and lim E(w,z)=1.
THEOREM 1.3. There exists a unique positive trace-class on h valued measure dM4( )

such that

dM e(p)

‘u,—x

E(&—i0, ) B*(£— 10, &) = I + f

dM(-) is absolutely continuous with respect to the scalar measure d (Trace
(M(-))). Call the Radon-Nikodym derivative M (u), and let the jth eigenvalue of
M(u) be denoted by A,(&, u), each eigenvalue appearing over again according to its
multiplicity, in such a way that

0<... <)\.3(§,M)<lg(§,#)<}-1(§’”)

Define, for any Borel set of R, the scalar measures
M)~ [ e, dTrace (L)

Call the L? space of complex-valued functions on (a,b) square summable with respect
to dMP(-) H,.

THEOREM 1.4. Let m(f)%Z?zl dim (H?), then m(£) is the von Neumann speciral
multiplicity function for L, and m(E) and Lebesque measure form a complete set of

unitary invariants for L.

These theorems reduce the problem of calculating the unitary invariants of L to
the problem of constructing the fundamental solution E(l,z) of the homogeneous
Riemann-Hilbert problem
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I—Fk(2) (A(A) — @) 'k*(A)
I+kQA)(AQA) — ) k*(A)

EX (@, A+ 10) = E*(®, A —40),

a}im E(w,z)= zlirg E(w,z)=1.

The degree to which our results constitute a solution to the problem of diago-
nalizing L depends upon| how successful we can expect to be in finding a solution
to this problem in an explicit and manageable way.

Such Riemann—Hilbert problems have been studied extensively in the literature,
and if A(A) and k(A) are sufficiently smooth as functions of A the problem of cal-
culating E(l,z) is reduced to the problem of solving a Fredholm equation. C.f. N. L.
Muschelischwili [15] and I. N. Vekua [18]. When A4(A) and k(A) are rational functions
of A it is possible to give a somewhat simpler explicit solution, Vekua [18].

When = is finite and A(A) and k(1) are sufficiently smooth a circle of results
beyond the scope of the present paper shows that for fixed §€o(L) the measure
d Trace (Mg(u)) is purely atomic, concentrating its mass at only a finite number
of points.

In this case the construction by G. F. Mandshewidse [16, 17] of a solution to
the Riemann—Hilbert problem by an iterative procedure may be effective for the de-
termination of dim H’.

We will have, in this case,

-3 *E_ 10 &) — M e(p) _ & Mr(é)]
E(E—1i0, ) E*(£ zo,x)_1+f”_x =1+ 3 T D e)

where p,(£) is the positive mass which the measure d Trace (M¢(-)) concentrates at
the real point r,(&).

Thus

1. . o ,
2_nil,:f% cj(E(f‘m,Z)E*(E—m,x)—l)dx=Me[T;(§)]/t,-(§),

where ¢; is a sufficiently small circle about r,(£). Approximation of this contour in-
tegral by Riemann sums may prove to be numerically possible in certain cases.

In any case, Theorem 1.1 above is deduced from Theorem 1.4.

Our results can be wunderstood abstracily as a means of obtaining the spectral
invariants of a bounded self-adjoint operator V from those of another bounded self-

adjoint operator U such that VU— UV =(1/ni)C where C is a positive operator of
trace class.
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Thus Theorem 1.1 above provides a complete solution of this abstract problem
when C is restricted to be of one dimensional range.

These results are extensions of previous work [1], [2], [3], [4]

1. The determining function

The basic technique of our method consists in the introduction of an operator-
valued function of two complex variables, E(l,z), the determining function of the
pair {U, V}, which characterizes the relationship between the two operators U and V
such that VU—-UV = (1/7:)0.

We will characterize the class of such determining functions, and show how to
construect the direct integral space on which V¥ is diagonal from a determining
function.

Let h be the I, space of dimension equal to the maximum of the dimension of
the range of C and the spectral multiplicity of U. The Schmidt expansion of C has
the form C=222¢,(-, ¢,) where {p,} is the complete set of eigenvectors of C, and
where the {1} are the corresponding eigenvalues.

If {0,} is a complete orthonormal set in » we define a linear transformation &
in H whose range is in h by setting ke,=4,0, and extending k to all of H by
setting kxr=0 if Cx=0. Similarly, we define a transformation k*: h—H by setting
*0,=2,¢,.

Thus we arrive at Cg,=k*kp,=1%¢, and so C=k*k.

We now define the determining function of the pair {V, U} by setting

E(l, 2)= 1+%k(V—l)‘1(U—-z)’1k* lg¢o(V),z¢a(),

where 1 denotes the identity operator in A.

E(l,2) is an operator which maps % into k. In fact, E(l, z) maps the subspace
of % spanned by those 0, corresponding to 1,+0, onto itself. Let us call this sub-
space H.

An alternate definition might have been made in terms of the identity
(U—2y NV —y) k* = (V—y) YU — )" k*E(x, y).

That is, E(x,y) is a mapping on the domain space % so devised as to compensate

for the change in order in which the resolvents are applied.
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Proof.

(U=a)(V—y) % [1 + 7%.k(V -y (U- x)’lk*]

=~ (U=2) (V= y) e+ 2 (U =) (V=) O —y) (U =) 8
But

é(U— ) V=9 OV -y (U-2) ' =(V -9 (U-2) ' = U—-a) (V-9

since VU~ UV =(1/n1)C.
Hence (U =)V —y) % = (V — ) (U —2) ¥ Elx, ),
In a similar way we see immediately that

EXZ,9)=E" (=, y).

2, Systems of singular integral equations

THEOREM 2.1. Let U and V be bounded symmetric operaiors on a separable Hil-
bert space . Let C be a positive operator of trace class. Assume that VU — UV =
(1/7i)C. Then V restricted to the smallest closed subspace of W, T, which reduces both
U and V and which contains the range of C is unilarily equivalent to the singular in-
tegral operator L, acting on a certain direct sum of Hilbert spaces, H, in which U|T
is diagonal, defined by setting

a(p)dp

) 1o POk
La(A) = A(A)x(A) + r P J'a P

(U)
for x(-)EH, where A(2) is a bounded symmetric operator on H and where k(1) is bounded

on H, and is Hilbert—Schmidt, a.a. A€o(U). Both of these operators are weakly measurable
essentially bounded functions of A.

Proof. A theorem of C. Putnam [7] asserts that the smallest subspace of H
reducing both U and V and containing the range of C, T', is contained in H,(U),
where H,(U) is the set of elements in H for which || E;z||* is an absolutely contin-

uous function of A; E; being the spectral resolution of U= [ AdE;. Furthermore,

loll<|| V- (measure [a(T)]).
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Let H be a minimal direct sum decomposition of I' into invariant subspaces of
U, U, each generated by a cyclic vector k;. Choose an isometric transformation S;
I'>H such that, for feTl

Sf= {gl()')! s gn(}*)}:
and SUf={g,(4), ..., Ag,(A)} = SUS g(A)

Set 8;f=g¢,(1), and let {(p,} be an orthonormal set of eigenvectors of € corresponding
to eigenvalues {47}. Then O'= >, ¢/, ¢;) and

SCf= {iZl 81%112(9;': Si@w v 1_21 Sn(plj'lz(gi’ St‘Pt)H}-

If we define, for each A, the matrix k* with the element in the ith row and

jth column (k*);=4;8,¢;, we will have

SCf = 8081 = f K () k() g ) s

o)

where k(u) is the adjoint operator (on H) to k*(u) with matrix elements given by
(k(u))y= 2:S;@;. k(u) is compact for almost every u, because

5 (18 0up Fede= 3 A< .

But this implies that
le|S,(l,<p,) <o aa. ¢
which, in turn, implies that k(u) is Hilbert—-Schmidt as an operator on I,.

The proof that k(:) is a bounded operator on H is slightly more involved. We
first note that ||C| = [| %()||%d¢. This follows because

s
| [kmratwae| < (1@l ts@ude( [Tear (o)
2
T |k [foawi]| < [lolka [Tk ok
and I el < [ 140 al ]

But it is a standard argument to show that the equality may be achieved.
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If VU-UV=(1/a:i)C>0, where U and V are bounded and symmetric, then C.
Putnam has shown [7] that the Schwarz inequality implies that ||C|| <| V| - (meas-
ure [g(U)]).

In the spectral representation of U, we may write this inequality in the form
[k e <11 71 - easure o2,

where M =SUS™!, and if we let X(A) be the operator in H which acts by multi-
plying each component of the vector in H by the characteristic function of an interval,

A, we will get
[2(A) Mx(A)]{X(A) Lx(A)] — [x(A) LX(A)] [2(A) M%(A)]

~1 K@) k(r)dr, tE€a(U)NA.
T JoinA
Thus f | @) [12.dt < || V|| - measure (a(U) n A).
a(WINA

Now take A,=[«,, §.], then the fundamental theorem of the calculus implies that,

for almost every ¢,

1
lim
m-»o00 ﬂm T %y

ﬂm
[ iwza= e
Em

provided that a,<fy<pf, and lim, . ot,=lim, oo, =t. Hence |[k()|, is essenti-
ally bounded.
Now define the bounded operator 7' on H by

1 k(2) k()

Tx(A) m:PJ;(U) ] x(u)du.

T satisfies [TM —MT)x= l f E*A) k() o(u) dp.
7 Jon

If L' is is another bounded operator satisfying this commutator relation, then 4=
L'—T will commute with M. But the weakly closed ring which is generated by M
is the ring of the given decomposition of our space I' into a direct integral; hence,
by a theorem of von Neumann [8] A must be a bounded Borel function of M(*), q.e.d.

Let us compute E(w,z) in this representation.

(!) Compare with Xa-Dao-Xeng, On non-normal operators. Chinese Math. 3 (1963), 232-246.
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The vectors {0,0,...,1,0, ...}=0, form a complete orthonormal set in A, while
the vectors {S,¢,, S,@,, ...} =0, form a complete orthonormal set in H.
But [ k(A)w,(A)dA=1,0,, since

fli jZS;-%(u) S, @a(1)dp = Al @;, n)-

Similarly, we deduce that

(£*(2)0,); = ;k*(l)ném =" (D)in = 2.8, 9s) ().
Thus the determining function of {U, V} in the spectral representation of U
takes the form
1
Ew,z)=1+—, kQA) (L— o) (M —z) k*(A) dA.
4] a(l)
We will study the boundary behaviour of this operator-valued function as z—g(U)
and w—o(V).
Before we do this, however, we wish to describe the strategy which we will

pursue in order to achieve a diagonalization of L.

Digression: Barrier related spectral problems
Let L= {,.,EdE; be a self-adjoint operator on a separable Hilbert space, N,
with an absolutely continuous spectral measure. Let ¥ = > @ Hx; be a direct sum de-
composition of H into pairwise orthogonal invariant subspaces of L, minimal in the
sense of Hellinger-Hahn, each generated by a cyclic vector k,. Let 8;(&) = (9/08) || B¢k ||%,
and let
1 o
Bi(&) o€

Si[f1é) = (1, Eck).

The following theorem was established in a previous paper [2].
THEOREM
0 1
=Y E _ l. _ . -1, _ _ o -1
Pdf, g1=z(f, Beg) = 5 lim (L —E&+in~tg—(L—E—in'g)

m(&)

= % S.[f1(&)8,[g]1(§) ﬁ:(f):

ere m(£) is the von Neumann spectral multiplicity function of L. Similarly, any
decomposition of H tnto a direct sum of reducing subspaces, leads to a bilinear expres-
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sion for Pgf,g] in terms of the partial isometries that diagonalize L on the subspaces
of the decomposition. The number of terms in such an arbitrary decomposition need not,
of course, be equal to the spectral multiplicity. In such o case Linear relations will exist

between the generalized eigenfunctions that correspond to the partial isometries.

Now we will turn our attention to a way of representing the direct integral
Hilbert space on which L becomes diagonal in terms of analytic functions defined
ffo the spectrum of M whose boundary values will correspond to generalized eigenfunc-
tions of L.

If f(-,2) is an H-valued analytic function for z¢ R, with the property that fin-
ite linear combinations of the form Y,a,f(:,z) are dense in the domain of L, we
define F,(£,2)=(1/B/£)S{f(-,2)) to be the indicatrix function of L relative to the
analytic generating family f(-,z) and the invariant subspace . (It follows by an
easy argument that it is possible to choose a version of F(&,z) which is analytic for
almost all £€¢(L) when z¢C.)

Let H* be the Hilbert space whose elements are generated from (the equivalence
classes of) those functions g(&, z) that can be represented as finite linear combinations

of the form

9&,0) = Zoy(§)G)(£,2), GE2)=BAE] PF L, ),

where each «,(&) is measurable with [,2]e;(£)|*dé < oo by imposing the scalar product
9,9 )w= JZ (€) otj(€)dE.

Let H: be the Hilbert space formed from finite linear combinations of the form
a(E, x) =2 oy Pe(x, y,) where a, and y, ¢ C are arbitrary, by imposing the scalar prod-

uct (a,a') He= 3, waoi Pelw . yp) when Pe(z,y) = Pelf(-, ), (-, ).
The author proved the following simple theorems in (2).

THEOREM. Let €M, define f(&,2)€H* by setting f(& 2) =, S,[f1(E)F (&, 2). Then
the correspondence [(£,z)<>f furnishes a spectral representation for L in the sense that
f(€, 2) o f implies Ef(E,2)>Lf, and W* is the direct integral of the spaces W with respect
to Lebesque measure so that the spectral multiplicity m(&) of L is equal to the dimen-
ston of M.

THEOREM. A necessary and sufficient condition that L have an absolutely con-

tinuous spectrum is
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These elementary theorems provide the basis for our method.
The idea is that for certain operators L it is possible to find explicitly an anal-

ytic generating family f(-,z) relative to which the indicatrix functions for L all satisfy

(1) Fy(&, 2) is sectionally holomorphic, z ¢ R.

{2) Fy(&, 2*), the boundary values of F,(£ 2) as z—~ A€ R, are finite almost every-
where, and are, in a precise sense, distributions.

(3) There exists a positive purely singular measure of finite total mass dRi(-)
defined on the Borel sets of the real line such that f,dRi(v) is an integrable func-

tion of A for each Borel set A, and for almost all 1

pe - (14 AR

g(1>v—§~i0

)Fz(§= A7)

When these conditions are satisfied we will say that the operator is barrier
related.

Thus the problem of calculating the unitary invariants of I is transformed into
an analysis of the measure dM;(-), as explained in [3], and such an analysis can be
explicitly carried out because it is possible to characterize the solutions of the bar-
rier problem.

In the present work we will need a generalization of the method outlined above;
namely, we will find operator-valued indicatrix functions F,(£, ) corresponding to
operator valued analytic generating functions f(-,z) all acting from % to H such that
for f€R and basis vectors {6, }€h

{1 B, F& x)0,),= Sik[f( %) Bl;
(2) Fy(& A+10)=(1+ f (dRi(»)/(v— E—i0)) Fy(&,A—i0), a.a. A,

where dR;(-) is now a positive operator valued singular measure mapping kb into h.
The direct integral space {* which diagonalizes I will be constructed by form-
ing a Hilbert space from the finite linear combinations g(z) = 2 De(x, y;) «; where «, €,

and Pe(x,y) is the operator mapping ~ into h defined by setting

(8, Delzr, y) x)n = 3% (- 2)B, Bel(-, 9)a)

~ Ltim (f(, )8, (L= E—in) — (L= &+ i) (- 9)a)

AZ T
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for o, f€h. The space H. is formed by taking as the scalar product

(g: g, )715 = iz] (Di(xj’ xi) *is (1{)

for the indicated finite linear combinations, and then taking the completion.

The kernel PDg(x,y) will be a reproducing kernel for the space in the sense that
(g(x), “)u; = (9(9), DE(x’ ?/) a)?ls*

In this paper we will take as our operator-valued analytic generating family
k*(1)/(A—2z). The main result (Theorem (3.3)) of the next section is that

I S O o U 1)\
2ni},‘fﬁfu_x[w AR e LS

_ LE*(&—i0,2)B(§+140,9) — E*(&+ 10, &) E(& — 10, )
2 z—9

= Dé(x’ y)

has the properties outlined above.

We will show that (a, De(x,y)B) permits a bilinear expansion in the form
k* « [**
(@, Pelx, ) B) = gjsii [,%l] (&85 [%] &

for certain partial isometries §,;.

At this point it becomes necessary to comment upon another difficulty. If k(-)
has a non-trivial null space, then the finite linear combinations >, ,(k*(1)/(A— 2y,)) o,
o, €k will not be dense in H, and may not even form an invariant subspace of L.

Thus, in this case, the partial isometries §;; obtained as outlined above from the
bilinear form Pg(x,y) will not be densely defined.

It might happen that the reducing subspaces of L to which the §,; correspond
do not have the whole space as direct sum.

We will show now, however, that we

(a) are able to extend the partial isometries to the smallest invariant subspace
of both U and V which contains the range of their commutator, and

(b) the extended partial isometries constitute a complete set.

Assume for this purpose that partial isometries §;; have been defined on a do-

main which consists at least of all vectors of the form >, ,(k*(1)/(1—x,))«,, and
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that they satisfy the following relation for all z,y¢o(M) and all «, SE€EA

i i k(p)p _ s o1 (7 g ay-1 k*(‘“)‘x)
sl [y (i e 0

_ k*(u) k*(u) _ 0 [, kA, k*(A) )
_i'jsijl: 13] (E)SijL_ya] (5)—65(1’]51_‘”‘371_?/& ’

where E: is the spectral resolution of L.

Consider the closure A of the set of finite linear combinations of vectors hav-

ing the form
2ag (M —z) Y(L—y) K,
where z;,y; are complex numbers and o« is some vector in h.
LemMa 2.1. A is an invariant manifold for both L and M.

Proof. Note that (L—y) (M — =) "%*E(x,y)=(M —z)"(L—y) 'k* as operators
on k. Thus

(L= ) (L—g) O =) W=~ (=) (M~ 2) Wom — (L) (M =) s
oY oY

1 1 _
w——y (M — )" "L~ o) 'k*EX&, §)a— o—y (M —x)™ (L — y) 'k*E*(Z, §)a.

Hence, the resolvents of L applied to the finite linear combinations whose clo-
sure generates A have images of the same form. Clearly A is invariant under the ac-

tion of the resolvents of M.
Since (M -z L—y)y 'k =(L—y) (M —2) " "%*E(x,y) on H
We may set
Su{mé oamno(M - xn)‘l(L - ?/n)flk*do} (5)
=Sl S el L= ) O = ) KB, 9r) o}
= Z amno(f - yn)Alsij[(M - xm)_lk*E(xmx yn) 0‘0]

and since E(y,, x,)oo€h, S;,[(M —x,) ' k*E(x,, y,)oy] Will be determined once we have
defined the operators §;; on vectors of the form k*(M —z) a.
15 — 682904 Acta mathematica. 121. Imprimé le 4 décembre 1968.
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Since the transformations §;, are bounded, their extensions to A are uniquely

determined.

LemvMa 2.2. The partial isometries §,;; are complete.

Proof.

Zsu[M 2) L= p) R A B1(E) S, LM — )T (L~ q) Tk (D)al (@)

= iZj Sul(L— )" (M — 2)7k*(A) B(p, 2) B1(8) S,L(L — 0) (M —y) kX (D) E(q, y) o] (§)

1
=

[

Z} (M — 2) ") E(p, 2) B1(8) S, (M — y) 'R (W) Elg, y) o] ()

= (Ee(M 2) k(D) E(p, ©) B, (M —y) k(1) E(g, y) )

1
pé—
11
E—p&—qok

= oF (E;-(L P) (M —z) " k*(A) E(p, 2) B, (L — )" (M — y) k(1) E(g, y) )

6E(Es(M 2) L —p) kDB, (M —y) (L — ) R (D))

and, if we integrate these last equations with respect to d&, we obtain

(M —2) L —p) kA B, (M —y) (L —g) k(D))

=2 Sil(M — 2) (L — )7 —*A) BIE) S, (M — y) (L — q) k()] (£)dé.

i.j J o(V)

This in turn, implies that

Z Su[f] (&) S,9)(E) dE= (£, 9)u

o(V.

for any vectors f,g€A. This is completeness.
The set A defined above is the smallest invariant manifold of both L and M

containing the range of the commutator.

3. The Riemann-Hilbert problem for E(l, z) corresponding
to the spectral variable of U

Fix A. Let us denote by N;(k} the nullspace of k(A1) in %, and by Nk} its or-

thogonal complement. If x and 2’ are elements of N;(k)* such that kx=kz', then
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(x—a')EN(k) N Ny(k)* = {0}, so that x=2'. Thus, the restriction k,=k|Nyk)* k of to
N;(k)* is a one to one linear transformation of N(k)' onto R;(k), the range of k(1).
Thus k(4) has linear inverse j= (1) which is defined on R;(k).

Let us extend j from R;(k) to all of % in the following way: for every z€h
there exists a unique »€ Ry(k) and w € R;(k)* such that x=v+ w. The projection of i
on R;(k) along R(k), P;, is defined by P;x=v. The transformation Jy=F=jP; is
identical with j; on R;(k) and is defined everywhere in h.

It is clear that

(a) kFk=k,
(b) (k'y) I R = Il R(k)»
(c) (7’0) lR(;k) = I|R<;lc)-

Let h(t) be an arbitrary differentiable vector which vanjshes outside (a +¢,b— &)
for some £>0 and set

fA) = (L — o) (M —2)"'M4),

Im w,Imz+0,
9(0) = (M —2) L~ ) h(A).
S T Y P
Then 40— wlf@) + P Lm O = 3 2 i),

1 kA k
[40) - @] (M~ 2)g (1) + P fuw)—%m—z)gwdwh(z).

For Im 70, define

Py -1 f KO0 5

27'6’1; a(U) t—1

_ 1 k(t) (M —2)
G(z) = Pt Lw) BT g(t)dt.

Then by the Plemelj-Privalow relations, extended for vector-valued integrands
(where the subscriptstrefer to limits in 7 taken from above and below the real

axis) we have, almost everywhere,
fA=FF —F )+f, gh)=UM-2)""}G" —G")+g,

where f,, g, € N(k).
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Thus
(A=) J(F*~F )+ (A=) fy +EF +F)= (M —2)h,
(A—w)J(E* —6)+ (A~ w)g, + kG +G)=h.
Let §,= (M ~2)'g,. Then
(A=) JUM —2)7'¢" — (M —2) ')+ (A~ 0)§y T B [(M —2) 'G* +(M —2)7'G7]
= (M ~2)"*h(2),
and thus
(A—@)JF" = (M —2) "G ]+ [F*— (M —2)7'¢" ) - [(A— ) JIF" — (M —~2)'G"]

HEF — (M —2) ¢ 1= (4~ o) [i—g]
or

(A—0)F+E][F— (M —2) "¢ ]-[(A—0) F-][F — (M ~2)7'¢1=(4d-w)[fL—g]
Thus
[F+A— ) R F"—(M-2) G |- [J- (A - ) FIF —[M—2'G1=fi—g.
Thus
FUF = (M=2)'G") ~ (F~ — (M —2) "G+ (A~ o) "B [F"— (M —2)"")6")
H(EFE - (M -2)'G)]=fh— 0
but (F* — (M —2)'G")—[F~ — (M —2) 'G 1€ R(k) and kJ|ru =Irg- Thus, if we mul-
tiply this last equation by t we will get
[1+ kA~ o) B [F— (M —2) "] [1 - kA4~ 0) % [F - (M —2)7'¢"]
=k(f,—g.)=0.
At this point we will make use of some results due to I. C. Gohberg and M.
G. Krein [8], which generalize results of Muschelischwili and Vekua, on the factori-
zation of finite dimensjonal matrices.
Let R be the ring of functions F(A) of the form F(A)=C + [2, f(t)e* dt, — oo <
A<oo,f€L, C' constant.
By R* denote the subring of R of functions F(4) of the form F(A)=C+ (& f(t)

¢t*dt, and by R~ the functions of the form C+ [° f(t)e**dt. Every function in R*

is defined by means of a function which is holomorphic inside the upper half plane
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[1+ and which is continuous up to the boundary. Similarly, functions in R~ are de-
fined by means of a function holomorphic in the lower half plane [ and continuous
up to the boundary.

Let R... denote the ring of nxn matrices whose entries are all elements of
R, and let Ri., and Ry, denote the corresponding ring of matrices whose entries

are respectively in R* and in B™.

THEOREM (Gohberg and Krein). In order that the non-singular matriz function
T(A) € Ruxn possess a representation of the form T(A)=q@.(A)pi(d) in whick @.(1)€ Raxn
and determinant (. (1)) +0, A€]]., i is necessary and sufficient that T(A) be positive
definite.

In addition, it follows from results of those authors that @3(A)€ Ry«n.

Suppose now that 4(1) and k(1) are n-dimensional operators and that they belong
to the ring R,... (We will carry out a series of calculations on this assumption, and
then by passing to a limit in the final step, do away with these restrictions.)

We have already shown that
[1+kA— ) %] [F"—(M—2)'G" =1 - k(Ad— o) k) [F —(M—2)'G],

and with 4 and k restricted by the smoothness and dimensionality restrictions im-
posed just above we can now assert the existence of matrix functions ¢.(4) and

@—(A)€ Rixn and Ry .., respectively such that

1 — k(A) (A(A) — )" % (A) 2
1+ (A (A(2) — ) (@) P

@i ()=

for » real and not in ¢(L).(})
But this equation taken in conjunction with the immediately preceding equation

implies that
P+ (DM —2)F* (1) — (D)= g AUM —2)F~(2) — 6~ (2)].

Since the left-hand side of this equation belongs to the ring R;., and the right-
hand side belongs to the ring R,..(%) it follows, by a simple extension of Liouville’s

theorem, that each side equals a constant matrix.

(*) Since Theorem 5.1 shows that we are factoring a positive operator.
(?) Using a well-known theorem of N. Wiener. See [8] p. 249.
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Now, we can evaluate the constant by analytically continuing 4 to 7 (in either

half-plane). Then we will have

@(r) [(r —2)F(7) — (1)]= — 9(z) 'G(z)

by setting r==z.
But

6= 5 fk(t)g(t) &,
thus G () — (O —2) F*(2) = gl + i0) g(e)'Gc),
G~(0)— (M~ 2)F"(2) = g~ i0) p(2) 6(e),
o (G~ G ()~ (M —2) (F*(2)~ F-(1) = @A+ i0) — pl2— i0)) g(z) " G(2).
Thus k()3 —2)g(h) — (M — ) k() f(B) = (plA—+ i0) — p(A — i0) p(2) '6(e)

and k() (M —2) [(L — )" (M — 2)"*h(2) — (M —2) YL — )~ h(A)]

= — [p(A+10) — p(A —i0)] p(2) G (2).

But L—w)(M—2)"'—(M—-2) (L— )
LM - ML

~(L—w) (M - z)-l( -

) (M—-2""(L-w)
Thus, by substituting this relation, and evaluating G(z), we obtain
— A (M —2)(L— ) (M — z)’lk*(}.)fk(t) (M —2) ML — o) h(t)dt

)

= [p(A+i0) — p(A— ion?i%: f k() (M —2)" YL — w) 'h(t) dt.

Since h(t) is arbitrary the integral in this expression ranges through the range of the

operator [k(t)dt, which is H.
In H we, accordingly, have the operator identity

(M —2)"

—k(A) (L — w) (M —2) h*(A) = 5

[p(A+0) — p(A — i0)] p(z) "
Now multiply both sides by z and let z— oo, to get

= k(A) (L — ) 'k*(A) = §[p(A+ i0) — p(1—i0)].
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For a contour C enclosing ¢(U) oriented in the clockwise way, we can use simple

estimates and Cauchy’s theorem to show that

f (p(l+i0)——<p(1—i0)dl=f _(B(@de
o) Z c

A— 60—z

but, for z outside C, the Cauchy residue theorem tells us that

f ] in%de = 2milg(z) — 1].

Thus, by analytic continuation throughout the domain of analyticity
1
plz)=1—— f k) (M —z)" YL~ o) "k*(A) dA.
44 o)

Since E*(®,%)= E '(w,2) we have proved

THEOREM 3.1a.
E(w,2)=¢(z)"! on H.

We have assumed in the foregoing paragraphs that B(4) and k(1) are finite di-
mensional matrices continuous in A. The general case where A(A) and k(1) are weakly
measurable essentially bounded functions of 4 can now be obtained by an approxi-

mation argument(!), and we finally obtain

THEOREM 3.2.

I—Fk(R)(AQR)— 0) k*(A)
I+ k(A (A(4) — w) 'k*(A)

= E*(&, A — i0) E(w, A — 0).

THEOREM 3.3.

The following relation is an operator identity on h

k*(4)

b
l—limf 3 (L—E+40)1— (L—.f—iO)'l)l—_—?]dl

2mtq40 J aA—x

_LEME-i0,8) BE +40, §) — B¥E+ 40, 5) BE—i0,9)
2 z—q ’

(1) See also R. G. Douglas: On factoring positive operator functions. J. Math. Mech. 16 (1966),
119-126, Theorem 4.
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Proof. We have already established the fundamental identity

1
k(A) (L— )™ (M —y)"'k*(A) =§(M‘y)‘1H*(CB, NE(w,y),
where H(w, Ay=E(w, A+ 10) — E(w, A—©0).
k) . k@A) 1 HY®,2)
Thus A—x(L ) =y 2(l—x)(l—y)E(w’y)’
1 1 1 1 1
put eyl 1)

1 *E " Yw, A—-i0)— E~Yw, A+ 10)
2t ) o A—z

and di=1—-EYw,z).

Hence, since

11 11
i;:y{(l —E Y0, 9) Bw,y)~ (1 - E(0,2)) E(o, y)}=§H{E’*(J), &) E(w,y)~ 1},

we find that

Dl 9) = (B (E—i0,8) B(E+i0,4) ~ B(& + 0, 8) (& ~ 0, )}

4. Absolute continuity of spectral measure

THEOREM 4.1. Under the hypothesis of Theorem I, V restricted to the smallest sub-
space of H, T, reducing both U and V and conlaining the range of C has an absolutely

continuous spectral measure.

Proof. f VU—UV=(1/mi)C then the theorem of Putnam to which we have
referred before [7] affords the quickest proof. Putnam’s theorem asserts that I' < H,(U).
Set W= —U. Then WV — VW =(1/mi)C. Thus D< H,(V), q.ed.

Another proof of this result can also be given. We can evaluate [,P:(x,y)dE
by residues to get [Ps(x,y)d&=(f,g)s. The characterization of absolutely continuous

spectral measures given in the digression then implies the result of the theorem.

5. The dual Hilbert problem

TaEOREM 5.1. There exists a positive one parameter operator-valued family of mea-
sures dRy(-) such thai
1+ k(2) (A(A) — 1) k*(2) 14 de;(v)
1 k(A) (AA)— 1) k*(4) y=1"~
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Proof. For any invertible operator @, Im Q= —@(Im @ ")@*. But if a(l)=
k(A) (A(A)—D7'k*(1) then a(l) has imaginary part positive in the upper half plane,

and we can find a positive measure dS;(-) such that

a(l) = f 48iv)

»—1
1 _ _ dS;,(’v) dSa v) dS;,(}l_) *
Im{ J‘dSl(v)}— [1 fv—l]Im[ Jv—l”j fv—l]
l_ i
[1 J dSa(V)] m f dS;(v)[ f dSA(V)]* >0,
y—1 -1 y—1

hence, using the fact that 1—a(l)>1 when ! becomes infinite, we can conclude that

Now

I

there exists a positive measure dR;(-) such that

1 __ de(Tl)
J‘dS;(v)_ Hf v—1 -
1-—- P M4
v—1
IS SN £:2 1))
Let E'2(l)~ '[dSi.('V)_ 1+ »—1
1— | =4
y—1
and E =1+ J‘%—g{(’;—)
Then 1-E3'()= del(’;) Eh—1
so that ENE(N)=[2—E;"1E,=2E,—1=1+ f 2‘11%‘(;) q.e.d.

It is clear that the measure dR;(-) is of trace class, since the operator k(1) is
Hilbert-Schmidt.
We have encountered the operators E(l,z) as the solution of the Riemann-Hil-

bert problem

1~ k(2) (AR) — 1) %)
L+ 5A) (A(2) = ) % ()

E*(1, A+40)= E*(I, 1 —10).
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We now wish to show that the duality between U and V extends to a duality be-

tween their respective spectral variables z and !. That is, we will establish

THEOREM 5.2. There exists a positive one parameter family of h-valued operator
measures dM(-) such that

_ LE*(§+40, 7) B(§ — 40, %) — BE*(& — 40, ) B(§ + 40, %)
2 z—y

Proof. Di(x,y)

Thus B(E—i0, y) Dz, y) B*(E — i0, )
; x{—y [B(&— 10, &) B*(& — i0, @) — B(& — i0, y) B¥(€ — i0, §)].

Now set y==, then

0 <~l— Im E(£ —10, £) E*(&— 10, x),
Im 2

since Pe(x, x) isa positive operator. Hence, when Im x >0, Im E(§ — 40, &) E*(& — 0, x) > 0.
Thus, by the operator generalization of the familiar representation theorem for funec-

tions analytic in the upper half plane with positive imaginary part, we can conclude that

aMe(p)

E(f—-iO,:i)E’*(é—iO,x):I+f sy

(since E(w,z)—~1 as z—>oco).

TEEOREM 5.3. E(£—140,2) EX(£~10,2)— I is of trace class.
Proof.
B(l,2)E*(,2)

= (I+ 7% f k() (L~l)‘1(M—z)‘1k*(l)d/1) (1—l f k(A) (M—z)-l(L—i)k*(z)dz)

1)

=I+7%:fk(l) (L—l)‘l(M_z)—lk*(z)dl_ni.fk(l) (M_z)—l(L_z)k*(A)dl

v

+7%2 f k(A) (L= 1) (M —2) "kH(A)dA f k() (M —2)" (L~ De*() du.
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But (L—0) YM—2) ' —(M—2) NL-1)"'=(M—2) YL~ l)‘lg(L— nY M —2)

Thus

B2 B*0,5)~ 1+ 7% f k() (M ~2) YL~ 1)~ 7%(L— )N M — )" (A) da
+%fk(z) (M —2) [(L~1)" — (L— D)} k*(A) dA
s (B L= )70 =) ke A b0 O -2 =D K d
< 1= 2 [1 0120 b an [k - 0700 -2 R d
+ 7% fk(l) (M —2) [(L—1)'— (L— 1) Jk*(A) dA

+niz k(A) (L~ 1) (M ~ 2)" k() d f k() (M~ 2)" (L — 1) k) de.

We now define a C, valued indefinite integral on (R, Ys). (C, denotes trace
class, T, is the trace, R is the real line.) A C,-valued measure u on (R, D) is said
to be a C,-valued indefinite integral on (R, ;) if there exists a C,-valued function

BEL(T, pu, C;) such that
ple)= f 4 (8) T, pds).

TaeoreM (Kuroda [9]). Let E(e) be a spectral measure on (R, 2s) and let A€ C,.
Then the set function A*E(e)A, €€ D4 is a Cy-valued indefinite integral on (R, D).

THEOREM (de Branges [10]). Let ¢ be a scalar measure on (R, >s) and let x(A) be
a Cy-valued o-measurable function which satisfies (1+ A%) 'x(A) € L,(0, C,) and which is posi-

twe a.a. 2. Then for a.a. A

o 1
li —_—— d ists in Cy(H).
61111)1 ~wﬂ~miw)x(y) aldu) exists in Cy(H)

These two results enable us to analyze each factor in the products of integrals

above. Thus, by Kuroda's theorem we may write
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f k() (L— 1) (t) (M — =)' dt

B “ “ ek(t) B(v) k*(t) ]dv[Trk(t)E’(v)k*(t)] dt
- 8, T, k(t) () k*(t) y—1 t—t

with

k() E(v) k*(t

0= ik By T O

De Brange’s theorem tells us that the inner integral exists as a limit in C, as
1 approaches the real axis.

Sinee the product of two H.S. operators is in €, the theorem will be proved if
we can show that the last integral has a limiting value in C,.

This is however implied by the familiar lemma. Let ¢ be a scalar measure on
(R, Yp) and let %(1) be a C,-valued o-measurable function which satisfies (1 + A%)"%(4)
€ Ly(0, C,). Then

Take X(v) as before, and note that the absolute continuity of dE, implies the

existence of the Radon-Nikodym-derivative

@[T, k(t) E(v) k*(t)]
d, )

6. The decomposition, definition of §,;
THEOREM 6.1.

DE(x’ ?/) = 1

(¥}

E*(&+10, ) J‘wiz—]f)s(%)——y') E(&+ 10, ).

Proof.

F(E— 0, ) = (1 + f ”M) E(£+i0, z),
‘u,—x

E*(&+40, ) (1 + f(—lM) = E*(&— 140, ).
H—
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Thus,
E*£~10, %) E(&+ 10, §) — B*(&+ 40, &) E(£— 10, %)
2(x—19)

Delz, y) =

VY lpeerio s dMe(p) | [dMe(u) o
2:13—37[E (§+zO,x)[l+ . 1 f—f_y_ ]E(E—F’I,O,y)]

AMep) o

1
e s
e [ L

(&£+10, 9).

We have seen in Theorem 5.3. that [ dM:(u)/(u—z) is an operator of trace class.
From this it follows that the operator dM¢(-) is of trace class; furthermore it is ab-
solutely continuous with respect to the scalar measure dT, M¢(-), and therefore there

exists a ()-valued operator M(-) such that

M (e) =f Me(p)dT M(u)
for any Borel set e.

LEMma (M. Rosenberg [14]).
O<S ML) <I (a.e. with respect to dT, Me(-))

Proof. Take a fixed xz€1,, then for each Borel set e,

(M (e}, 2)= f (M3 w, ) T, M(3)>0.

Hence, (Mg u)z,z)>0 on R— N,, where T, M (N,)=0.

Since 7, is separable, there exists a countably dense subset of I, {z;}, such that
(M Az, %) >0 on R—N,. But T, M(N=UN_.)=0. Hence M4)>0 on R—N.

In a similar way we can establish that My (1) <I almost everywhere with respect
to the trace measure.

Now we can write’

K Ms(,u)___fM, T, M(p)
J———M—z é(ll)*——“‘u_z .
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Thus
a0 RN )
sl [( Xt g0 - @iy 0 p) 0
1 o dM ()
——2(E(§+10,x)oc, ———(/l ) y)E(EJrzO y)ﬂ)

(B(E + 40, %) a, Me(u) E(& + 40, § ﬂ)th o
f ey M),

Denote by {6,(&, u)} the complete orthonormal set in A consisting of eigenvectors
of Mi(u). Let the corresponding eigenvalues be called {2& w)}, (we consider these
numbers to be ordered so that 0<...<y(& u) <A (& ) <1). Then Parseval’s identity

enables us to conclude that the last expression above is equal to:

s f(“’ E*(s+z0 2046100 6 E*<§+;o 7 ONE a6y d M),

Now for fixed & consider the L, space formed with respect to the measure
fadif& w)dT, M(u)=M¢(A). Call this space Ly(dM{(-)). Form the direct integral of
these spaces with respect to d&. In the direct integral space select a complete ortho-
normal set {P; ;(&, u)}. This set will have the property that for almost all & {P; (&p)}
is a complete orthonormal set in Ly,(dM(-)); moreover, it will be ordered. There-

fore, we can again use Parseval’s equality to assert that the above expression is

equal to
1 ”(5’ P&l o s 140,208, a0
x f ”"5’ (B, E*(&+ 10, 9) 6,(6, 1)) ML u).
Now define
Sy [W) ](5) f i L5 w6 ) (e 10, 2) 0,8, ) dME ().
LEMMA. If Z ay; ,,[k (};): ](§)=0, for all z¢o(U)

for all « € h, for certain comple&: valued constants a,; then a,;=0 all 4, j.
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Proof. The hypothesis immediately implies that
P, (&, ;
[z aPetE By arpi
i u—x

is the null vector of k. Since we can take = E(&+ 0, x) T where 7 ranges throughout
k. But functions of the form J«,/(u—x,) are dense in Ly(o(U),du); thus, the van-
ishing of

P, (&,
3, I 6 ) 16, ) 2, Mt

for an infinite unbounded sequence of non-real values of x implies that
3 @y Py (& 1) O(& 1) A&, p) =0
on the support of dT', M¢(:). Now
lz] @y, ;P (OAE, @), Ol&, p)n Ai(&, ) = Ei:ai,kPi,k(Ea w) A€, ) =0

And we can multiply the last expression by P, (&, u) and integrate with respect to
dT, M(u) to get

;ai, kJ'Pi.k(f: w) Py (&, u) dM(é‘)(‘u) =0
But {P; (&, u)} is a complete orthonormal set in Ly(dM{(u)). Hence

Ziai.kai.r=aﬂ¢=0, qed

We have seen that

k*(2)  k*(4) k*(4) k*(2)
£(p 8 )55, [F02] 5, 5 g

This equation, in turn, implies that

S(r e T ) L 55, [E s, [E g

ok

Now consider the §,; extended to A, the smallest invariant manifold of both L

and M containing the range of the commutator (as in the sequel to Lemma 2.2). Then

k*
Su @72 @
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is defined, and

%(Eg 10)=3 SAN@SIE.  foeA

Thus, we can conclude that

L+ BT R
.| @ -0 23] @5, [ 50 8)eo
L z
k*A k*(A
su[502] s, F 5] @
all o, BER, 2,y ¢ o(M). And the previous lemma makes it possible for us to conclude that

k* &
Su -9 15 D a -2 . F 0] 0

iszp

7. The commutator wiith one dimensional range

In this section we will specialize our results to the case where C' has one dimen-

sional range.

TEEOREM 7.1. There exists a measurable function g(v, u),v€o(V), u€o(U), such

that 0 <g(v, u) <1, and
1 dv  du
— s 0 0
P {2ﬂifc<v>fo<l’>g(v v—l,u—z}

E(l,z)= 0 1 0
0 0 1

If either U or V has finite spectral multiplicity, then g(v, u) takes on only the values

zero and one, i.e. it is the characteristic function of some set in o(U) x o(V).

Proof. In Theorem 5.1 we have shown that we may write

L+ k() (AD) — @) H W) _ fd_n_l(g)
1— k(A) (A(A) — w) k(4 v—w’

Since C has one dimensional range the matrix R;(-) essentially reduces to a scalar
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and the above operator on h takes the form

By a theorem of Verblunsky [11] we may set

dR . d
1+J‘;_L(w@=exp{fg(v,l)ﬁ%}

for a g(v,A) with 0<g(», 1) <1, and, by a theorem of Aronszajn and Donoghue [12],
g(v, A) is a characteristic function if and only if dR;(-) is a singular measure.

If U has finite spectral multiplicity, then A(4) is a finite dimensional symmetric
matrix and hence has only a finite number of eigenvalues. Thus the singularity of

the measure d@;(-) follows in a simple way.

Now form
L+ k(4) (4(A) — o) 'k*(A)] Ly .
log det [1 ZRG) (A = w)’lk*(l)] =log det E(w, A+ i0) — log det E(w, A— ¢0).
dR:(v)\ dy
But log det (1 + JH) = fg(v, A) o

Hence, since H(w,z)—>1 as w—>co,

1 dv d
det E(w,z)=exp {%ffg(v’#) 4 _,u_}

v—w‘u—z

But since H(w, 2) is necessarily diagonal with all its eigenvalues equal to unity except
for the first, this proves the indicated representation. (It now follows exactly as in
references [1,2] that the spectral multiplicity of V can be calculated as follows: Let
A, ={u; g0, #)=1} then if A, is the union of p disjoint intervals, the spectral mul-
tiplicity function, m(v)=p; otherwise it is infinite.)

To complete the proof of Theorem 1.1 we wish to examine the spectral multi-
plicity of the operator U.

To do this we simply note that (—U)V — V(—U)=(1/ai)k*k. Thus the pair
{v, - U} satisfies our requirements and we may calculate the determining function,
&(y, x), corresponding to this pair.
16 — 682904 Acte mathematica. 121. Imprimé le 6 déeembre 1968.
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The two determining functions E(x,y) and e(y, x) satisfy
(~U—2) (V=9 % =(V—9) (- U—2)""k*e(y, 2),
or (U =)V —g) %"= (V= 9) (U —2) %" ely, —2)-
But (U—a) (V—yg) %*=(V—9)" (U —2) 'k E(=, y),
hence k*s(y, —x)=k*E(x,y). However, since the range of both E and ¢ is contained

in the range of k, we can conclude that the corresponding principal eigenvalues (which

we denote by a superscript ~) satisfy
E(.’l?, Z/) = 5(.'/, - II/‘),

. . 1 dv d
that is &z, l)=exp 2_m'f(v> fa(mg(v, _‘u)v——_l;—iz'

From this formula we see that the spectral multiplicity of U is also computed
from knowledge of g(v, u) by the same rule as was followed for ¥V, but in the other
variable.

Thus when the spectral multiplicity of U is taken to be n, for each point in the
spectrum of U, we may conclude that the set y;={v;g(v, —1)=1} consists of exactly
n disjoint intervals for each —A€g(—U), ie., each A€ (a,b).

Remark. We have defined E(y,x) so that
(U=2)(V—y) k*=(V —y) (U —2) k*E(y, x).

Suppose that 8~! is an isometry from 3 onto another Hilbert space, say the
space in which U has the spectral representation .
In this space we may write SMS™'=U, SLS'=V, and

(M —2) L —y) = (L—y) (M~ 2) " k*E(y, z).

What is the relation between E(y, z) and E(y, z)?
If J* denotes the pseudo-inverse of k* defined as J was before, then the above

formulae give

(F*S7k*) B(y, z) (3*Sk*) = E(y, ).

When C has finite dimensional range #* and j* are bounded, and E(y, z) and E(y, x)
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are similar. However since both of these two operators are unitary for values of y,z

real

and outside o(V),o(U) and similar normal operators are clearly unitarily equi-

valent, we can conclude that F(y,z) and f(y, x} are unitarily equivalent as opera-

tors
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