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Introduction 

The periodicity theorem for the infinite unitary group [3] can be interpreted as a state- 

ment  about complex vector bundles. As such it describes the relation between vector bundles 

over X and X • S 2, where X is a compact (1) space and S 2 is the 2-sphere. This relation is 

most succinctly expressed by the formula 

K ( X  • S 2) ~= K(X)(x~K(S2), 

where K ( X )  is the Grothendleck group (2) of complex vector bundles over X. The generaI 

theory of these K-groups, as developed in [1], has found many  applications in topology and  

related fields. Since the periodicity theorem is the foundation stone of all this theory i t  

seems desirable to have an elementary proof of it, and it is the purpose of this paper  t(~ 

present such a proof. 

Our proof will be strictly elementary. To emphasize this fact  we have made the paper  

entirely self-contained, assuming only basic facts from algebra and topology. In  particular 

we do not assume any knowledge of vector bundles or K-theory.  We hope that ,  by  doing 

this, we have made the paper intelligible to analysts who may  be unacquainted with the 

theory of vector bundles but  may  be interested in the applications of K- theory  to the index 

problem for elliptic operators [2]. We should point out in fact tha t  our new proof of the 

periodicity theorem arose out of an a t tempt  to understand the topological significance of 

elliptic boundary conditions. This aspect of the mat ter  will be taken up in a subsequent 

paper.(a) In  fact for the application to boundary problems we need not only the periodicity 

theorem but  also some more precise results tha t  occur in the course of our present proof. 

(1) Compact spaces form the most natural category for our present purposes. 
(2) See w 1 for the definition. 
(3) See the Proceedings of the CoUoquium on Differential Analysis, Tara Institute, 1964. 
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For  this reason we have been a little more part icular  in the s ta tement  of some of our results 

t han  is necessary for the periodicity theorem itself. 

The basic ideas of the proof m a y  be summarized as follows.(1) The vector  bundles over 

S~ are wel l -known and are easily determined. I f  we can carry  out  this determinat ion in a 

sufficiently intrinsic manner  then it should enable us to determine the  bundles on S 2 • X.  

:Now isomorphism classes of m-dimensional vector  bundles over S ~ correspond to  h o m o t o p y  

classes of maps  of the circle S 1 into the general linear group GL(m, C). Moreover the homo- 

t o p y  class of such a map / is determined by  the winding number  ~o(/) of d e t / .  I f  we regard 

S 1 as the unit  circle in C and  l e t / n = ~ n  akz )' be a finite Lauren t  series a p p r o x i m a t i n g /  

( the ak being m • m matrices), then put t ing  p =Zn/n we have 

w(/) =w(/n) =co(p) - n m .  

~o(p) is just  the number  of zeros of the polynomial  det  (p) inside the unit  circle. For  our  

purposes however  it is more significant to observe tha t  

~o(p) = d i m  V~, 

where V + is a certain vector  space intrinsically associated with p.  I t  m a y  be defined in two 

ways  both  of which are enlightening. I n  the first place we can regard p as a homomorphism 

between free C[z]-modules of rank  m. Then the cokernel of p is a torsion C[z]-module, i.e. 

a finite-dimensional vector  space endowed with an endomorphism T~. The eigenvalues of 

T~ do no t  lie on S 1 (since p is non-singular there) and so we get a decomposit ion 

v~ = v~ | v l  

where  V + corresponds to the eigenvalues of Tp inside S 1 and V~ to those outside S 1. Alter- 

na t ive ly  we can consider the linear system of ordinary differential equations 

T h e  space of solutions V~, consists of exponential  polynominals  and  decomposes as 

V~ = V~ | V;, 

where V~ involves exp(i~.z)with [;t] < 1 while V;  involves those with I~.I >1 .  The first 

definit ion brings one close to the work of Grothendieck in algebraic geomet ry  while 

the  second connects up with boundary-value  problems as ment ioned earlier. I n  any  case 

V~ + is an invariant  of p which is a refinement of the winding number  ~o(p). I f  p depends 

cont inuously  on a parameter  space X then the spaces Vp + will form a vector  bundle over 

(1) The terms used here are all defined in the body of the paper. 
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X. This vector  bundle turns  out  to be a sufficiently good invariant  of p so tha t  the relation 

obtained in this wa y  between vector  bundles on X • S 2 and  vector  bundles on X gives 

the periodicity theorem. 

I t  should be emphasized tha t  the preceding remarks are made in order to give the 

reader some insight into the nature  of the proof. I n  fact  in our formal development  we 

ment ion neither modules nor  differential equations. 

The ar rangement  of the paper  is as follows. I n  w 1 we define vector  bundles, establish 

a few basic properties and then introduce the groups K(X). The reader who is familiar 

with vector  bundles m a y  skip this section. I n  w 2 we state the main  theorem which in fact  

is a slight generalization of the periodicity theorem in tha t  X • S ~ is replaced by  a suitable 

fibre bundle with fibre S ~. I n  essence the addit ional generali ty gives wha t  is called the 

"Thorn isomorphism theorem" for line-bundles in K-theory .  Since this comes out  natura l ly  

by  our method  of proof it seemed reasonable to include it. Also in w 2 we introduce "clutch- 

ing funct ions" / and  approximate  them by / in i t e  Laurent series/n. I n  w 3 we consider poly- 

nomial clutching functions p and we show how to replace them by  essentially equivalent  

linear functions. Then in w 4 we show how to deform any  linear clutching function into a 

s tandard  form, The proof of the main  theorem is then given in w 5. 

A few words on the general phi losophy of this paper  m a y  be in order here. I n  algebraic 

topology the or thodox method  is to replace continuous maps  by  simplicial approximations,  

and then use combinatorial  methods.  When  the spaces involved are differentiable manifolds 

a powerful al ternative is to approximate  by  di//erentiable maps and use differential- 

geometric techniques. The original proof of the periodicity theorem, using Morse Theory,  

was of this nature.  W h a t  we have done here is to use polynomial approximat ion  and then 

apply  algebraic techniques. I n  principle this method  is applicable whenever  the spaces 

involved are algebraic varieties. I t  would be interesting to see this philosophy exploited 

on other problems.(1) 

1.  P r e l i m i n a r i e s  o n  v e c t o r  b u n d l e s  

Let  X be a topological space. Then a complex (~) vector bundle over X is a topological 

space E endowed with 

(i) a continuous map p : E--~X (called the projection), 

(ii) a (finite-dimensional) complex vector  space structure in each Ez=p-l(x), x EX, 

(1) The periodicity theorem for real vector bundles (which is considerably more intricate than the 
complex case) has recently been dealt with by R. Wood following the general lines of this paper. 

(3) The word complex will be omitted from now on, since we shall not be concerned with real vector 
bundles. 
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such that E is locally isomorphic to the product of X with a complex vector space. Explicitly 

this means that, for each xEX,  there exists an open set U containing x, an integer n and 

a homeomorphism q :p2I(U)-->U • C n such that  

(a) q commutes with the projections onto U, 

(b) for each x E U, ~ induces a vector space isomorphism ~x: Ez -->CL Ex is called the 

fibre at  x. I f  X is connected then dim E z is independent of x and is called the dimension 

of E. 

If  Y is a subspace of X and E is a vector bundle over X then 

has a natural vector bundle structure over Y. We call E I Y the restriction of E to Y. 

A section of a Vector bundle E is a continuous map s:X-->E with ps=ident i ty .  

Thus, locally, a section is just the graph of a continuous map of X into a vector space. The 

space of all sections of E is denoted by F(E). If  E, F are two vector bundles over X then 

a homomorphism of E into F is a continuous map ~ : E-->F commuting with the projections 

and inducing vector space homomorphisms ~x: Ez-~Fx for each x EX. The union of all 

the vector spaces Hom(Ex, Fx) for x E X  has a natural topology making it into a vector 

bundle Hom(E,  F), and a section of Hom(E,  F) is then just a homomorphism of E into 

F. If  ~EF Hom(E,  F) is such that ~x is an isomorphism for all x, then ~-1 exists. In  fact 

~-1 is continuous. To see this we work locally so that  ~ is the graph of a continuous map 

U-+ISO (C n, C n) = GL(n, C) 

and observe that  the inverse is a continuous map in the topological group GL(n, C). Thus 

~ - IEF  Horn(F, E) and so ~ is an isomorphism of vector bundles. The set of all isomor- 

phisms of E onto F will be denoted by ISO(E,  F). A vector bundle is trivial if it is iso- 

morphic to X • C n for some n. 

Natural operations on vector spaces carry over at  once to vector bundles. We have 

already considered Horn (E, F). In  addition we can define the direct sum E O I  v, the tensor 

product E @ F  and the dual E*. For example 

and if E, F are isomorphic over U c X to U • C n, U • C m then (EOF)  I U is topologized as 

U • (C'~OCm). Canonical isomorphisms also go over to bundles, thus for instance 

Horn (E, F) ~ E*@F. 

The iterated tensor product E(~E(~  ... @E (k times) will be denoted by E ~. If  L is a line- 

bundle, i.e. a vector bundle of dimension one, we shall write L -1 for L* and L -k for (L*) k. 
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This nota t ion  is justified by  the fact  t ha t  the (isomorphism classes of) line-bundles over 

X then  form a multiplicative group with L -1 as the inverse of L. The uni t  of this group is 

the trivial line-bundle X • C (denoted by  1). 

Let  ]:  Y-->X be a continuous map  and let E be a vector  bundle over X.  The induced 

bundle ]*(E) is a vector  bundle over Y defined as follows. I t  is the subspace of E • Y 

consisting of pairs (e, y) with p(e) =](y), the projection and  vector  space structures of the 

fibres being the obvious ones. Thus 

t*(E)~=Ej~) x {y}. 

I f  E is trivial over U c X then ]*(E) is trivial over ] - I (U)  c Y. I f  ~: E--->F is a homomorphism 

of vector  bundles over X then this induces in an  obvious way  a homomorphism 

1"(~) :I*(E)-~I*(F) 

of vector  bundles over Y. Note  that ,  if l :  Y-->X is the inclusion of a subspace Y c X,  

then I*(E) ~ E I Y. 

Hav ing  given the basic definitions concerning vector  bundles we pass now to their 

h o m o t o p y  properties. 

L E ~ M X  {1.1). Let Y be a closed subspace o I a compact (Hausdorll) space X and let 

E be a vector bundle over X .  Then any section o I E I Y extends to a section o I E. 

Proo]. Let  s be a section of E I Y" Now, since a section of a vector  bundle is locally the  

graph of a continuous vector-valued function, we can apply  the Tietze extension theorem (1) 

[4: p. 242] locally and deduce tha t  for each x E X  there exists an  open set U containing x 

and t E F ( E  I U) so tha t  t and s coincide on U N Y. Since X is compact  we can then choose 

a finite open covering (U~) with t ~ e r ( E  I V~) coinciding with s on Y N U~. Now let {e~) 

be a par t i t ion of un i ty  with support  ( ~ ) c  U~. Then we get  a section s~ of E by  defining 

s~(x)=e~(x)t~(x) if xEU~ 

=0 if xCU~, 

and ~ s~ is a section of E extending s as required. 

LEMMA (1.2). Let Y be a closed subspace o t a compact space X ,  E and F two vector bundles 

over X .  Then any isomorphism s: E I Y--> F I Y extends to an isomorphism t: E] U---> F ] U /or  

some open set U containing Y. 

Proo]. s is a section of Horn(E ,  F)]  Y. Applying (1.1) we get  an extension to  a section 

t of Horn(E ,  F).  Le t  U be the subset of X consisting of points  x for which t~ is an iso- 

morphism. Then, since GL(n, C) is open in End(Cn), U is open and contains Y. 

(1) In fact for the main results of this paper we only need the Tietze extension theorem in quite 
simple cases where its proof is trivial. 
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PROPOSITIO~ (1.3). Let Y be a compact space, It: Y-->X a homotopy (0~<t~<l) and E 

a vector bundle over X .  Then 

/~ E~=/~ E. 

Proo/. I f  I denotes the unit interval, l e t / :  Y x I-->X be the homotopy, so that / (y ,  t) = 

/t(Y) and let ~: Y x I-->Y be the projection. Now apply (1.2) to the bundles /*E,  g* /~E  

and the subspace Y x {t} of Y x I,  on which there is an obvious isomorphism 8. By the 

compactness of Y we deduce t h a t / *  E, and xe*/~ E are isomorphic in some strip Y x (~t 

where (~t denotes a neighbourhood of {t} in I .  Hence the isomorphism class of/t* E is a 

locally constant function of t. Since I is connected this implies it is constant, whence 

A projection operator P for a vector bundle E is an endomorphism with P~ =P.  Then 

P E  and ( 1 - P )  E inherit from E a topology, a projection and vector space structures in 

the fibres. To see that they are locally trivial choose, for each x E X, local sections 81 ..... 8n 

of E such that the st (i ~< r) form a base of Px Ex and the s~ (i > r) form a base for (1 - P ) :  E:. 

Then for a sufficiently small neighbourhood U of x we have a vector bundle isomorphism 

: U x C " ~ E [  U 

r 
given by (y x (a 1 .. . . .  an)) = ~ a~ Pu st(y) + ~ ai(1 - P)u si(y). 

i = l  i = r + l  

This establishes 

LEMMA (1.4). I / P  is a projection operator/or the vector bundle E, then P E  and (1 - P )  E 

have an induced vector bundle structure and 

E = P E Q ( 1  - P )  E. 

We turn next to the question of metrics in vector bundles. If  E is a complex vector 

bundle we can consider the vector bundle Herm (E) whose fibre at x consists of all hermitian 

forms in E:. A metric on E is defined as a section of Herin (E) which is positive definite for 

each x E X. Since the space of positive definite Hermitian forms is a convex set, the existence 

of a metric in E over a compact space X follows from the existence of partitions of unity. 

Moreover, any two metrics in E are homotopie, in fact they can be joined by a linear 

homotopy. 

Vector bundles are frequently constructed by a glueing or clutching construction 

which we shall now describe. Let 

X = X  1 U X 2, A = X  1 N X2, 

all the spaces being compact. Assume that  E~ is a vector bundle over X~ and that  
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q~: E 1 [A-->E~ I A is an isomorphism. Then we define the vector bundle E l u  ~ E~ on X as 

follows. As a topological space EI[J~oE 2 is the quotient of the disjoint sum E I + E  2 by  

the equivalence relation which identifies e 1 E E l l A  with ~(el)E E~ I A. Identifying X with 

the corresponding quotient of X 1 +X~ we obtain a natural  projection p :  EI[.J~oE~-~X, 

and p-l(• has a natural  vector space structure. I t  remains to show tha t  E 1 O ~E2 is locally 

trivial. Since E l u  r E~ I X - A = (E 11 XI - -  A) + (E 2 ] X 2 - A) the local triviality at  points x ~ A 

follows from tha t  of E 1 and E 2. Let  therefore a E A and let V1 be a closed neighbourhood 

of a in X 1 over which E 1 is trivial, so tha t  we have an isomorphism 

01: Eli V I ~ V 1  • C ~. 

Restricting to A we get an isomorphism 

O~ :Eli V1 N A ~ ( V 1  N A) • C ~. 

Let 0~ :E21 V1 N A-->(V1 N A) • C ~ 

be the isomorphism corresponding to 0~ under ~0. By (1.2) this can be extended to an iso- 

morphism 

O~: E21V2~V2 • C ~ 

where V 2 is a neighbourhood of a in X 2. The pair 01, 03 then defines in an obvious way an 

isomorphism 

01Ur V2--~(V1U V2)xC ~, 

establishing the local triviality of E 1 U ~ E2- 

Elementary properties of this construction are the following. 

(1.5). 1 / E  is a bundle over X and E i = E[X~, then the identity de/ines an isomorphism 

1A : EIlA--)-E2]A, and 

El lJ I~ E2~- E. 

(1.6) I] fl~ : E~--> E~ are isomorphisms on X~ and cp' fl~ =fl2(p, then 

E1U~E2~- E'I U~, E~. 

(1.7). I/(E~,q)) and (E~,q)') are two "clutching data" on the Xi, then 

(El U ~ E2) @ (E'~ U ~, E~) ~ E;@E1 U E2(~E'~, 

(El U ~ E~)@ (E~ O ~, E~) ~ E I@E'~ U E~@E~, 
ep| 

Moreover, we also have 
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LEMMA (1.8). The isomorphism class o] EI(J~E ~ depends only on the homotopy class 

o/ the isomorphism q~: E1]A-->E~ ]A. 

Proo/. A homotopy of isomorphisms E 1 [A-->E~[A means an isomorphism 

(P:z~*EI[A • I--+z~*E~[A • I, 

where I is the unit  interval and :g: X • I-->X is the projection. Let  

/t:X--+X • I 

be defined by/ t (x)  =x • (t} and denote by  

q~t:EI[A-->E2[A 

the isomorphism induced from (I) by / t .  Then 

E1 tJ +, E~ =/ t  (~ E1 LIr ~*E~). 

Since/0 and/1  are homotopic it follows from (2.2) tha t  

E1U +, E~.~ EI [.J +, E2 
as required. 

We come finally to the definition of the Grothendieck group K(X). Let us recall 

first the elementary procedure by  which an abe]jan semi-group defines a group. I f  A is 

an abelian semi-group we form an abelian group B by  taking a generator [a] for each 

a E A and relations [a] = [b] + [c] whenever a = b + c. The mapping 0 : A - * B  given by  O(a) = 

[a] is then a homomorphism and it has an obvious "universal proper ty"  (i.e. B is the "best  

possible" group which can be made out of A): if q):A-->C is any homomorphism of A into 

an abe]Jan group C then there exists a unique homomorphism (;:B-->C so tha t  ~0 =~0. I f  

X is a compact space we take A to be the set of isomorphism classes of vector bundles over 

X with the operation O.  The corresponding abe]jan group B is denoted by  K(X). Thus for 

each vector bundle E over X we get an element [E] of K(X) and any element of K(X) is 

a linear combination of such elements. The zero dimensional vector bundle gives the zero 

of K(X). The universal proper ty  of K(X) shows in particular tha t  K(X) is the appropriate 

object to s tudy in problems involving additive integer-valued functions of vector bundles. 

This explains the relevance of K(X) for example in the index problem for elliptic operators. (1) 

The operation (~) induces a multiplication in K(X) turning it into a commutat ive ring 

with [1] as identity. A continuous m a p / :  Y-->X induces a ring homomorphism 

1" : K(X)-*K(Y) 

where ]*[E] = [/*El. 

I f  X is a poinb then K(X) is naturally isomorphic to the ring of integers. 

(1) I t  was similar considerations which led Grothendieck to define K(X) in the first place in algebraic 
geometry. 
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2. Statement of the periodicity theorem 

I f  E is any vector bundle then by  deleting the 0-section and dividing out by  the action 

of non-zero scalars we obtain a space P(E) called the projective bundle of E. There is a 

natural  map P(E)-->X and the inverse image of x E X  is the complex projective space 

P(E~). I f  we assign to each yEP(Ex) the one-dimensional subspace of E x which corresponds 

to it we obtain a line-bundle over P(E). This line-bundle is denoted by  H*, i.e. its dual is 

denoted by  H. The projection P(E)-->X induces a ring homomorphism K(X)-->K(P(E)) so 

tha t  K(P(E))  becomes a K(X)-algebra. Our main theorem determines the structure of this 

algebra in a particular case: 

THEOREM (2.1). ,Let L be a line-bundle over the compact space X,  H the line.bundle 

over P(LO1)  defined above. Then, as a K(X)-algebra, K(P(LO1))  is generated by [H] subject 

to the single relation 

([/t] - [1]) ([L] [H] - [1]) = 0. 

I f  X is a point, so tha t  P (ZO1)  is a projective line or 2-sphere S n, (2.1) implies tha t  

K(S  ~) is a free abelian group generated by  [1] and [H] and tha t  ( [H] - [1 ] )2=0 .  Hence 

(2.1), in the case when L is trivial, can be rephrased as follows: 

C OR 0 LLAR Y (2.2). Let ~r 1 : X x Sn-->X, z~: X x $2---~S 2, denote the projections. Then the 

homomorphism /: K(X)  Q z  K(S  n)-->K(X x S ~) 

de/ined by ](a@b ) =ze~ (a)~r~ (b ) 

is a ring isomorphism, 

This corollary is the periodicity theorem proper. 

For any  x there is a natural  embedding L,-->P(LO1)x given by  

y-->(yO1) 

which exhibits P (LO1) ,  as the compactification of Z z obtained by  adding the "point  a t  

infinity". In  this way we get an embedding of L in P =P(LO1) ,  so tha t  P is the compacti- 

fication of L obtained by  adding the "section a t  infinity". Now let us choose, once and for 

all, a definite metric in L and let S c L  be the unit circle bundle in this metric. We identify 

L with a subspace of P so tha t  

p =p0  U P~r S = p c  fl p ~ ,  

where p0 is the closed disc bundle interior to S (i.e. containing the 0-section) and P~r is 

the closed disc bundle exterior to S (i.e. containing the co-section). The projections S--->X, 

P~ P~--->X will be denoted by  ;r, ~r 0, ~r~ respectively. 
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Suppose now t h a t  E ~ E ~ are two vector  bundles over X and t h a t / E I S O  (~*E ~ :~*E~). 

Then we can form the vector  bundle 

~o E ~  

over  P .  We shall denote this bundle  for b rev i ty  by  ( E ' , / ,  E r162 and  we shall say  t h a t  ] 

is a clutching funct ion for (E 0, E~) .  Tha t  the most  general bundle on P is of this form is 

shown b y  the following lemma: 

LEMMA (2.3). Let E be any vector bundle over P and let E ~ E :r be the vector bundles 

over X induced by the O-section and oo -section respectively. Then there exists / E I S 0  (Te*E ~ re*E r162 ) 

such that 
E~=(E o, [, E~), 

the isomorphism being the obvious one on the O-section and the ~ -section. Moreover F is uni. 

quely determined, up to homotopy, by these properties. 

Proof. Let  s0:X-->P ~ be the 0-section. Then Sog 0 is homotopic  to the ident i ty  map  of 

po, and  so by  (1.3) we have an  isomorphism 

1o: E I P ~  E ~ . 

Two different choices of ]o differ b y  an au tomorphism ~ of ~ E ~ and  any  such ~ is homo- 

topic to the au tomorphism ~ ~o where c~ ~ is the au tomorphism of E ~ obtained by  restricting 

to the 0-section. I t  follows t h a t  we can choose ]o to be the obvious one on the 0-section 

and  tha t  this determines it uniquely up to homotopy .  The same remarks apply  to E I P ~ 

and  the lemma then follows, taking 

Remar]r I f  F is a vector  bundle over X then (1.5) shows tha t  (F,  1, F)  is the vector  

bundle over P induced f rom F by  the projection P-->X. Wri t ten  as an  equat ion in K(P)  

this s ta tement  reads 

[(F, 1, F)]  = IF]  [1], 

where [1] is the ident i ty  of the ring K(P)  and  [F]  [1] is module multiplication of K(X)  on 

K(P).  

When  L is the trivial line-bundle X • C 1, S is the trivial circle bundle X • S I so tha t  

points  of S are represented by  pairs (x, z) with x E X  and zEC with Izl =1 .  Thus  z is a 

funct ion on S, so also is z - I  and we can consider functions on S which are finite Lauren t  

series in z: 

ak(x) z k. 

W h e n  L is no t  trivial we wan t  to introduce a nota t ion which will enable us to deal con- 
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venient ly with the corresponding expressions. To do this we observe t h a t  the inclusion 

S->L defines, in a ra ther  tautologous way, a section of ~*(L). We shall denote this section 

by z. I f  L = 1 then a section of ~*(L) is just  a funct ion on S and  the section z is precisely 

the funct ion described above. The reader who is pr imari ly interested in Corollary (2.2} 

m a y  th roughout  th ink of this special case and regard z as a function. To obtain the more 

general Theorem (2.1) however  we have to consider z as a section. The only complications 

introduced by  this are notational ,  since we have to identify all the various bundles which 

occur. 

Using the canonical isomorphisms 

~*(L) - ~ *  Horn (1, L) 

we m a y  also regard z as a section of g * H o m  (1, L) and, as such, it has an inverse z -1 which 

is a section of 
~* H o m  (L, 1) -~*(L-1) .  

More generally, for any  integer k, we m a y  regard z ~ as a section of g*L ~. I f  now akEF(L -~) 

then 
~*(ak) Q z  k e f t* (1 ) ,  

i.e. it is a funct ion on S. For  simplicity of nota t ion  we write akz ~ instead of ~*(a~)Qz ~. 

Thus we have given a meaning to the finite Fourier  series 

n 

/ =  5 a~k : 

if akEF(L -k) then / is a funct ion on S. Final ly suppose tha t  E ~ E ~ are two vector  bundles 

on X and  tha t  
ak EF H o m  ( L ~ Q E  o, E~r 

then ak z ~ E F Horn (~*E ~ ~*E ~), 

where again we have replaced 7c*(ak)Qz k by  akz ~. A finite sum 

n 

/ = ~ak z ~ e F H o m  (~*E ~ ~*E ~r 
- - n  

with the ak as above will be called a finite Lauren t  series for (E ~ E r162 I f  / E ISO (~*E~ ~) 

then it defines a clutching funct ion and  we call this a Laurent clutching/unction for (E ~ E~r 

The simplest Lauren t  clutching function is z i t se l f - - taking E ~ = 1, E :~ =L. We shall 

now identify the bundle (1, z, L) on P defined by  this clutching function. We recall first 

tha t  the line-bundle H* over P is defined as a sub-bundle of 7e*(LQ1). For  each y E P ( L O 1 ) ,  

H* is a subspace of (LO1)x and 

H* = L ~ Q O ~ y =  ~ ,  

H ~ - 0 O l x ~ y = 0 .  
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Thus the composition H*-->~*(LO1)->g*(1), 

induced by the projection LO1-->I, defines an isomorphism 

/o: H* { ~--->-z~3'(I), 

and the composition H*-->~*(L(~I)--~*(L) 

induced by the projection LG1-->L, defines an isomorphism 

[~0 :H* {P~176 

Hence [ =/co [~a : ~*(1)-~z*(L) 

is a clutching function for H*. Clearly, for yESz,/(y) is the isomorphism whose graph is 

H*. Since H* is the subspace of(t) Lx(~lx spanned by  y(~l  (yESxcLx, 1EC) we see that  

] is precisely our tautologous section z. Thus 

H* ~ (1, z, L). (2.4) 

From (2.4) and (1.7) we deduce, for any integer k, 

H ~ =~ (1, z -~, L-k). (2.5) 

Suppose now that  /El" Horn (~r*E ~ ~z* E ~176 is any section, then we can define its Fourier 

coefficients 
ak EFHom(L~QE o, E ~~ ) 

1 f s  /xz;k-Xdzx" by(2) ak(x) = ~ 

Here Ix and zz denote the restrictions of [, z to Sx and dz z is therefore a differential on Sz 

with coefficients in L~. Let  sn be the partial sums 

n 

1" 
-- ~0 8k. and define the Cesaro means /n = n  

The proof of Fejer's theorem [5; w 18.32] on (C, 1) summability of Fourier series extends 

immediately to the present more general case and gives 

LEMMA (2.6). Let [ be any clutching/unction/or (E ~ E~176 [n the sequence o[ Cesaro 

(1) The symbol 1 may cause the reader some confusion hero since it denotes the trivial line-bundle 
and also the complex number 1. 

(2) Here again we omit the ~ sign. 
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means o/the Fourier series o/[. Then ]~ converges uni/ormly to ] and hence is a Laurent 

clutching ]unction/or all su//iciently large n. 

Remark. The uniformity can be defined by  using metrics in E ~ and E r but  does not 

of course depend on the choice of metrics. 

3. Linearization 

By a polynomial clutching ]unction we shall mean a Laurent  clutching function without 

negative powers of z. In  this section we shall describe a linearization procedure for such 

functions. 
n 

Thus let p = ~ ak z k 
k=0 

be a polynomial clutching function of degree ~ n for (E ~ E~). Consider the homomorphism 

s : 7e*( ~ LkQE~ *(E ~ 0 ~ LkQE ~ 
k=0 k = l  

given by  the matr ix  

s  = 
I ao al an 1 - - z l  

- z l  

- - z l  

I t  is clear that  ~ ( p )  is linear in z. Now define the sequence pr(z) inductively by  P0 = P '  

zpT+l(Z) =p~(z)-p~(O). Then we have the following matr ix  identity 

s  = (lpipll p)(11 )(lzl ) 
1 1 - - z l  

or more briefly I:~(p) = (1 +N1) (pO1) (1 +N2) (3.1) 

with Ni, N 2 nilpotent. 

Since l + t N  with 0< t~<l  gives a homotopy of isomorphisms, if N is nilpotent, it 

follows from (3.1) and (1.8) that  we have 

1 6 - 6 4 2 9 0 7  Acta mathematica 112. I m p r i m 6  le 4 d6eembre  1964. 
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PROPOSITION (3.2). C~(p) and p O 1  define isomorphic bundles on P, i.e., 

k=l k=l k=O k=l 
Remark. The definit ion of I~n(p) is of course modelled on the  way  one passes f rom an  

ord inary  differential equat ion  of order  n to a sys tem of f irst  order  equations.  

For  b rev i ty  we now write I ~ ( E  ~ p ,  E ~162 for the bundle 

r t  n 

( 5 Lk(~) E~ s E ~ Q  5 Lk(~)E~ �9 
k = 0  k = l  " 

L~MMA (3.3). Let p be a polynomial clutching/unction o] degree <~n /or ( E ~ E~). Then 

s +I(Eo, p,E~ s176 p,E~176 , 1, Ln+i(~)E~ (3.4) 

s176 zp, E ~) ~-s176 E o c ) O ( L - I Q E  ~ z, E~ (3.5) 

Proo/. We have  
s o] 

s = \ 0 . . . - z  1/" 

Multiplying z on the  b o t t o m  line b y  a real p a r a m e t e r  t wi th  0 ~< t ~< 1 then  gives a h o m o t o p y  

f rom s to s  and  so (3.4) follows using (1.8). Similarly in 

0 

~n+l(zP) I --Z 

a o al 
1 

--z 1 

an) 
- -z  1 

we mul t ip ly  1 on the  second row b y  t and  get  a h o m o t o p y  f rom s to l ~ n ( p ) O - z .  

Using (1.8) and  (1.6) (with El=E1  = L -1Q E ~ E~= E~ = E o, ill= 1, f12 = - 1 ,  q~ =z, ~" = - z )  

we deduce (3.5). 

We  shall now establish a s imple algebraic fo rmula  in K(P). For  convenience we write 

[E ~ p,  E ~] for the e lement  [(E ~ p ,  E~) ]  in K(P). 

PROPOSITION (3.6). For any polynomial clutching/unction p ]or (E ~ E ~) we have 

the identity 
([E 0, p, E ~ - [E  0, l ,  E~ [HI - [1]) = 0  

Proo/. F r o m  (3.5) and  (3.2) we deduce 
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( L - 1 Q E  ~ zp, E ~) 0 (  ~ L~QE ~ 1, ~ LkQEo) 
k = 0  k = 0  

7t 

n ~ L k @ E ~ 1 7 6  z, E~ -~ (E~ E ~ ) O (  ~ L ~ Q E  ~ 1, 

Using (1.7) and (2.5) and passing to K(P) this gives: 

[L -x] [H-l j  [E ~ p, E ~] + [E ~ 1, E~ = [E 0, p, E r162 ] + [L -1] [H -~] [E ~ 1, E~ 

from which the required result follows. 

Putt ing E ~ = 1, p =z, E ~ =L in (3.6) and using (2.4) we obtain the formula: 

([H] - [1]) ([L] [H] - [1]) = 0 (3.7) 

which is par t  of the assertion of our main theorem (2.1). 

4. Linear clutching functions 

We begin by  reviewing some elementary facts about  linear transformations. Suppose 

T is an endomorphism of a finite-dimensional vector space E, and let S be a circle in the  

complex plane which does not pass through any eigenvalue of T. Then 

Q = 1 f ~ J S  (Z -- ~ ) - l d z  

is a projection operator in E which commutes with T. The decomposition 

E=E+OE_ ,  E+=QE, E _ = ( 1 - Q ) E  

is therefore invariant  under T, so tha t  we can write 

T = T + O T .  

Then T+ has all eigenvalues inside S while T_ has all eigenvalues outside S. This is jus$ 

the spectral decomposition of T corresponding to the two components of the comple- 

ment  of S. 

We shall now extend these results to vector bundles, but  first we make a remark on 

notation. So far z and hence p(z) have been sections over S. However, they extend in a 

natural  way to sections over the whole of L. I t  will also be convenient to include the 

-section of P in certain statements. Thus, if we assert tha t  p(z) = az + b is an isomorphism 

outside S, we shall take this to include the s ta tement  tha t  a is an isomorphism. 

PROPOSITION (4.1). Let p be a linear clutching/unction/or E ~ E ~ and define endo- 

morphisms QO, Qr162 o / E  ~ E ~ by putting 

l f~ _1 d =2-ff~i~s dp~P;I" 
QO=~ p~ fx, Q? 1 

X 
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Then QO and Q~r are projection operators and 

pQO :Qr 

Write Ei+ =Q~E ~, E t_ = ( 1 - Q ~ ) E  ~ (i=O, r so that E~= E~+ ~Ei_. Then 19 is compatible with 

these decompositions so that 

io =19+(~19-- 

Moreover, 19+ is an isomorphism outside S, and 19_ is an isomorphism inside S. 

Proo/. I n  view of (1.4) i t  will  be sufficient  to  ver i fy  al l  s t a t emen t s  point -wise  for each 

x C X.  I n  o the r  words,  we m a y  suppose  X is a point ,  L = C and  z is j u s t  a complex  number .  

:Now since 19(z) is an  i somorph ism for [z[ = 1 we can  f ind  a real  n u m b e r  a wi th  :~ > 1 so 

t h a t  p(a):EO-->E ~ is an  i somorphism.  F o r  s impl ic i ty  of ca lcula t ion  we shall  iden t i fy  E ~ 

a n d  E ~176 b y  this  i somorphism.  N e x t  we consider  the  conformal  t r ans fo rma t ion  

] - - O ~ Z  

W ~ 

which preserves  the  un i t  circle a n d  i t s  inside. Subs t i t u t i ng  for  z we f ind  (since we have  

t a k e n  p(:r = 1) 
w - T  

p(z) = w + a' 

where  T E E n d  E ~ Hence  

1 
[, 

QO = p-ldp 

- 2 i w,_l t - (w  §  )'dw § (w-  r)-ldwl 

---- 2~il flwl=l (w-- T)-ldw since la[ > 1 

= Q~ s imilar ly .  

Al l  the  s t a t emen t s  in the  p ropos i t ion  now follow f rom w h a t  we have  asse r ted  above  in  

connec t ion  wi th  a l inear  t r ans fo rma t ion  T. 

COaOLLXRY (4.2). Let p be as in (4.1) and wr~;te 

p+=a+z+b+, p =a_z+b_. 

Then puttinq pt =p~ +p~ where 

p~+ =a+z+tb+, pt_=ta_z+b_ 0~<t~<l 
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we obtain a homotopy of linear clutching functions connecting p with a+ z~) b_. Thus 

( E~ T, E~176 ~- ( E~ , z, L | 1 7 6  ~ 1, E~ 

Proof. The last part of (4.1) implies that  p~+ and p~_ are isomorphisms over S for all 

t with 0 ~<t ~< 1. Thus p~ is a linear clutching function as stated. Hence by (1.8) 

(E~ p, ECr176 p 1, E~o)~(E ~ a+z, E~176 b_, E~- ). 

Since a+:L|176 b_: E~ ~_ are necessarily isomorphisms we can use (1.6) and 

deduce that  
0 oo (E+, a+z, E+ ) ~- (E ~ z, L |  ~ 

(E~ )~-(E ~ 1,E~ 

from which the conclusion follows. 

If p is a polynomial clutching function of degree ~< n for (E ~ E ~ then F~n(p) is a 

linear clutching function for (V ~ V ~~ where 
?t n 

v o = y. L ~ |  ~ V ~ = Z ~ |  Y L ~ |  ~ 
k~0 k ~ l  

Hence it defines a decomposition 
Vo = v o | v ~ 

as in (4.1). To express the dependence of V ~ on p, n we write 

v o = v . ( z 0 ,  p,  E ~ ) .  

Note that  this is a vector bundle on X. If Pt is a homotopy of polynomial clutching func- 

tions of degree ~<n it follows by constructing Vn over X • I and using (1.3) that  

V,( E~ Po, Z~162 ~ V,( E~ Pt, Z~176 �9 (4.3) 

Hence from the homotopies used in proving (3.4 i and (3.5) we obtain 

V n + I ( E  0, p ,  E ~176 ~_ Vn(E O, p, Zoo), (4.4) 

Vn+I(L-I| ~ zp, E ~162 ) ~ Vn(Z ~ p, E ~176 O (L-I|176 (4.5) 

or equivalently (using (1.7)) 

Vn+~( Z ~ zp, L |  ~176 ~= L |  V,( E ~ p, Z~176 ~ 

Finally from (3.2), (4.2) and the remark following Lemma (2.3) we obtain the follow- 

ing equation in K(P) 

[E~ Z =] + { ~ [Lk|176 = [Vn(E~ Z=)] [H -a] + { ~ [L~| ~ - [ V,(E~ E=)]} [1] 
k = l .  k=0 

and hence the vital formula 

[E~ Z ~176 = V~(Z~ Z~)] ([H -~] - [1]) + [E ~ [1]. (4.6) 
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Remark. V~(E ~ p, E r162 is the vector space denoted by V~ + in the introduction and 

(4.6) shows that  [V~]EK(X) completely determines [E~ E~]EK(P).  Bearing in mind 

the relation with ordinary differential equations mentioned in the introduction analysts 

may  care to ponder over the significance of (4.6). 

5. Proof of Theorem (2.1) 

Let  t be an indeterminate. Then because of (3.7) the mapping t--->[H] induces a K(X)-  

algebra homomorphism 

tz: K(X)[tJ/(t  - 1) (ILl t - 1) --> K(P). 

To prove theorem (2. i) we have to show that/~ is an isomorphism, and we shall do this by  

explicitly constructing an inverse. 

First let / be any clutching function for (E ~ E~~ Let/n be the sequence of Cesaro means 

of its Fourier series and put  pn =zn/~. Then, if n is sufficiently large, (2.6) asserts that  Pn 

is a polynomial clutching function (of degree ~<2n) for (E e, LnQE~176 Motivated by (4.6) 

we define 
v~(/) E g ( x )  [t]/ (t - 1) ([Lit - 1) 

by  the formula: 
v~(]) = [V~( E~ Pn, L ' Q E ~ ) ]  ( tn-1 - tn)  -~ [E~ in. (5.1) 

Now, for sufficiently large n, the linear segment joining P.+I and zpn provides a homo- 

topy  of polynomial clutching functions of degree ~<2(n + 1). Hence by (4.3) 

V2~+ ~(E ~ L~+ I(~E ~162 ) ~= V~+2(E ~ zp~, Ln+I(~E :r 

V~+I(E o, zpn, L~+IQE :r by (4.4) 

~L(~V2~(E o, p~, L~QE:C)OE ~ by (4.5). 

Hence 
v~+l(/) = ([L] [ V2~(E ~ p~, L~(~E~r + [E~ (t ~ - t ~+~ ) + [E ~ t ~+~ =~(/)  

since (t - 1) ([Lit - 1) =0. 

Thus v~(/), for large n, is independent of n and so depends only o n / .  We write it as ~(/). 

I f  now g is sufficiently close to ] and n is sufficiently large then the linear segment joining 

/n and gn provides a homotopy of polynomial clutching functions of degree <2n  and hence 

by (4.3) 
~(1) = ~ ( / )  = v . ( g )  = ~ (g ) .  

Thus v(/) is a locally constant function of / and hence depends only on the homotopy class 

of ]. Hence if E is any vector bundle over P and [ a clutching function defining E, as in 

(2.3), we can define 
~ ( E )  =~(I),  
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and v(E) will depend only on the isomorphism class of E. Since v(E) is clearly additive for 

�9 it induces a group homomorphism 

~:g(P)->K(X)[t] /( t  - 1) ([L]t - 1). 

In  fact  it is clear from its definition tha t  this is a K(X)-module homomorphism. 

We shall now check tha t  #v is the identity of K(P).  In  fact with the above notation 

we have 
~ [ ~ ]  = ~  {[ v~.(Eo, ~ ,  L~ |  ~)] (t ~-~ - t ' )  + [E 0] t ~} 

= [V, , (E ~ , p, ,  L ' |  ([HI'-* - [H'])  + [E ~ [H]" 

= [E ~ p~, L ~ ) E  ~r [HI ~ by  (4.6) 

= [  E~ In, E:r by  (1.7) and (2.5) 

= [E ~ E ~] by  (1.8) 

= [E] by  definition o f / .  

Since K(P) is additively generated by  elements of the form [E] this proves tha t  #v is the 

identity. 

Finally we have to show tha t  v# is the identity of K ( X ) [ I ] / ( t - 1 ) ( [ L ] t - 1 )  Since v# 

is a homomorphism of K(X)-modules it will be sufficient to check tha t  v#(l ~) =t" for all 

n~>0. But  

~ ( t  ~) =~[H ~] 

=~[1, z -n, L -n] by  (2.5) 

=[V~n(1 , 1, 1)] (t n-1 - t  n) +[1I t  n from (5.1) 

= t  ~ since V2~(1, 1, 1)=0.  

This completes the proof of Theorem (2.1). 
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