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Introduction

The periodicity theorem for the infinite unitary group [3] can be interpreted as a state-
ment about complex vector bundles. As such it describes the relation between vector bundles
over X and X x 82, where X is a compact (1) space and 82 is the 2-sphere. This relation is

most succinetly expressed by the formula
K(X x 8%) = K(X)QK(S?),

where K(X) is the Grothendieck group(2) of complex vector bundles over X. The general
theory of these K-groups, as developed in [1], has found many applications in topology and
related fields. Since the periodicity theorem is the foundation stone of all this theory it
seems desirable to have an elementary proof of it, and it is the purpose of this paper to
present such a proof.

Our proof will be strictly elementary. To emphasize this fact we have made the paper
entirely self-contained, assuming only basic facts from algebra and topology. In particular
we do not assume any knowledge of vector bundles or K-theory. We hope that, by doing
this, we have made the paper intelligible to analysts who may be unacquainted with the
theory of vector bundles but may be interested in the applications of K-theory to the index
problem for elliptic operators [2]. We should point out in fact that our new proof of the
periodicity theorem arose out of an attempt to understand the topological significance of
elliptic boundary conditions. This aspect of the matter will be taken up in a subsequent
paper.(3) In fact for the application to boundary problems we need not only the periodicity

theorem but also some more precise results that occur in the course of our present proof.

(1) Compact spaces form the most natural category for our present purposes.
(2) See § 1 for the definition.
(®) See the Proceedings of the Oolloqui'&m on Differential Analysis, Tata Institute, 1964.
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For this reason we have been a little more particular in the statement of some of our results
than is necessary for the periodicity theorem itself.

The basic ideas of the proof may be summarized as follows.(!) The vector bundles over
82 are well-known and are easily determined. If we can carry out this determination in a
sufficiently intrinsic manner then it should enable us to determine the bundles on §2 x X.
Now isomorphism classes of m-dimensional vector bundles over S2 correspond to homotopy
classes of maps of the circle S! into the general linear group GL(m, C). Moreover the homo-
topy class of such a map f is determined by the winding number w(f) of det f. If we regard
81 as the unit circle in C and let f,=2"., a7 be a finite Laurent series approximating f

(the @, being m X m matrices), then putting p =2"f, we have
o(f) =w(fs) =w(p) —nm.

o(p) is just the number of zeros of the polynomial det (p) inside the unit circle. For our

purposes however it is more significant to observe that
o(p)=dim V;,

where V; is a certain vector space intrinsically associated with p. It may be defined in two
ways both of which are enlightening. In the first place we can regard p as a homomorphism
between free O[z]-modules of rank m. Then the cokernel of p is a torsion C[z]-module, i.e.
a finite-dimensional vector space endowed with an endomorphism 7',. The eigenvalues of

T, do not lie on 8! (since p is non-singular there) and so we get a decomposition
Vo=V ®V;

where V; corresponds to the eigenvalues of T, inside 8! and V3 to those outside S. Alter-

natively we can consider the linear system of ordinary differential equations

AV
p(—zcﬂ)u—o.

‘The space of solutions ¥V, consists of exponential polynominals and decomposes as
V,=V; @V,

where V; involves exp(idz) with |4| <1 while ¥; involves those with [1] >1. The first
definition brings one close to the work of Grothendieck in algebraic geometry while
the second connects up with boundary-value problems as mentioned earlier. In any case
V3 is an invariant of p which is a refinement of the winding number w(p). If p depends

continuously on a parameter space X then the spaces V; will form a vector bundle over

() The terms used here are all defined in the body of the paper.
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X. This vector bundle turns out to be a sufficiently good invariant of p so that the relation
obtained in this way between vector bundles on X x§% and vector bundles on X gives
the periodicity theorem.

It should be emphasized that the preceding remarks are made in order to give the
reader some insight into the nature of the proof. In fact in our formal development we
mention neither modules nor differential equations.

The arrangement of the paper is as follows. In § 1 we define vector bundles, establish
a few basic properties and then introduce the groups K(X). The reader who is familiar
with vector bundles may skip this section. In § 2 we state the main theorem which in fact
is a slight generalization of the periodicity theorem in that X X S2 is replaced by a suitable
fibre bundle with fibre §2. In essence the additional generality gives what is called the
“Thom isomorphism theorem” for line-bundles in K-theory. Since this comes out naturally
by our method of proof it seemed reasonable to include it. Also in § 2 we introduce “clutch-
ing functions™ f and approximate them by finite Laurent series f,. In § 3 we consider poly-
nomial clutching functions p and we show how to replace them by essentially equivalent
linear functions. Then in § 4 we show how to deform any linear clutching function into a
standard form. The proof of the main theorem is then given in § 5.

A few words on the general philosophy of this paper may be in order here. In algebraic
topology the orthodox method is to replace continuous maps by simplicial approximations,
and then use combinatorial methods. When the spaces involved are differentiable manifolds
a powerful alternative is to approximate by differentiable maps and use differential-
geometric techniques. The original proof of the periodicity theorem, using Morse Theory,
was of this nature. What we have done here is to use polynomial approximation and then
apply algebraic techniques. In principle this method is applicable whenever the spaces
involved are algebraic varieties. It would be interesting to see this philosophy exploited

on other problems.(!)

1. Preliminaries on vector bundles

Let X be a topological space. Then a complex (2) vector bundle over X is a topological
space E endowed with

(i) a continuous map p:E—X (called the projection),

(i) a (finite-dimensional) complex vector space structure in each E,=p(zx), vr€X,

(1) The periodicity theorem for real vector bundles (which is considerably more intricate than the
complex case) has recently been dealt with by R. Wood following the general lines of this paper.

(?) The word complex will be omitted from now on, since we shall not be concerned with real vector
bundles.
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such that E is locally isomorphic to the product of X with a complex vector space. Explicitly
this means that, for each x € X, there exists an open set U containing #, an integer n and
a homeomorphism ¢: p:l(U)—>U X C" such that

(a) @ commutes with the projections onto U,

(b) for each €U, @ induces a vector space isomorphism ¢_: E,—~C". E, is called the
fibre at x. If X is connected then dim E, is independent of # and is called the dimension -
of K.

If Y is a subspace of X and F is a vector bundle over X then
ElY= UE,
yeY

has a natural vector bundle structure over Y. We call E|Y the restriction of E to Y.

A section of a vector bundle E is a continuous map $:X—FE with ps=identity.
Thus, locally, a section is just the graph of a continuous map of X into a vector space. The
space of all sections of ¥ is denoted by I'( ). If E, F are two vector bundles over X then
a homomorphism of E into F is a continuous map ¢: E—F commuting with the projections
and inducing vector space homomorphisms ¢,: E.—~F, for each x€X. The union of all
the vector spaces Hom(E,, F,) for z€X has a natural topology making it into a vector
bundle Hom (E, F), and a section of Hom (E, F) is then just a homomorphism of ¥ into
F. If p€l’ Hom (E, F) is such that ¢, is an isomorphism for all z, then ¢! exists. In fact

@1 is continuous. To see this we work locally so that ¢ is the graph of a continuous map
U—~IS0(C*, C")=GL(n, C)

and observe that the inverse is a continuous map in the topological group GL{n, C}. Thus
¢ 1€’ Hom (F, E) and so ¢ is an isomorphism of vector bundles. The set of all isomor-
phisms of E onto F will be denoted by ISO(E, F). A vector bundle is frivial if it is iso-
morphic to X x C™ for some n.

Natural operations on vector spaces carry over at once to vector bundles. We have
already considered Hom (E, F). In addition we can define the direct sum EQDF, the tensor
product EQF and the dual E*. For example

(EQF),=E,DF,
and if B, F are isomorphic over U< X to U x C", U X C™ then (E@®F)| U is topologized as
U X (C*@®C™). Canonical isomorphisms also go over to bundles, thus for instance
Hom (E, F)=E*®QF.
The iterated tensor product EQER... QF (k times) will be denoted by E*. If L is a line-
bundle, i.e. a vector bundle of dimension ore, we shall write L1 for L* and L for (L*)*.
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This notation is justified by the fact that the (isomorphism classes of) line-bundles over
X then form a multiplicative group with L~ as the inverse of L. The unit of this group is
the trivial line-bundle X X C (denoted by 1).

Let f: Y—>X be a continuous map and let E be a vector bundle over X. The induced
bundle f*(E) is a vector bundle over Y defined as follows. It is the subspace of E XY
consisting of pairs (e, y) with p(e) =f(y), the projection and vector space structures of the
fibres being the obvious ones. Thus ‘

f*(E)y = Ej(y) x {?/}
I E is trivial over U < X then f*(E) is trivial over f-1(U) < Y. If «: E—F is ahomomorphism

of vector bundles over X then this induces in an obvious way a homomorphism
() f*(B)~>f*(F)
of vector bundles over Y. Note that, if f: Y—>X is the inclusion of a subspace ¥ < X,
then fX(E)~E|Y.
Having given the basic definitions concerning vector bundles we pass now to their

homotopy properties.

LemmaA (1.1). Let Y be a closed subspace of a compact {Hausdorff) space X and let
E be a vector bundle over X. Then any section of E|Y extends to a section of E.

Proof. Let s be a section of E|Y. Now, since a section of a vector bundle is locally the
graph of a continuous vector-valued function, we can apply the Tietze extension theorem (1)
[4: p. 242] locally and deduce that for each € X there exists an open set U containing x
and tE(E|U) so that ¢ and s coincide on U n Y. Since X is compact we can then choose
a finite open covering {U,} with ¢,€I"(E|U,) coinciding with s on ¥ n U,. Now let {g.}
be a partition of unity with support (o,) = U,. Then we get a section s, of B by defining

8x(X) =0(X)t(z) f z€U,
=0 if x¢U,,
and >, s, is a section of E extending s as required.

Lemma (1.2). Let Y be a closed subspace of a compact space X, E and F two vector bundles
over X. Then any isomorphism s: E|Y—F|Y extends to an isomorphism t: E|U—~>F|U for
some open set U containing Y.

Proof. s is a section of Hom (E, F)| Y. Applying (1.1) we get an extension to a section

¢t of Hom (X, F). Let U be the subset of X consisting of points 2 for which ¢, is an iso-
morphism. Then, since GL(n, C) is open in End (C*), U is open and contains Y.

(*) In fact for the main results of this paper we only need the Tietze extension theorem in quite
simple cases where its proof is trivial.
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ProrosiTioN (1.3). Let Y be a compact space, f,: Y—>X a homotopy (0<t<1) and E
a vector bundle over X. Then
fiE=fE.

Proof. If I denotes the unit interval, let f: ¥ x I—=X be the homotopy, so that f(y, f) =
fily) and let 7: Y x I—Y be the projection. Now apply (1.2) to the bundles f*E, »n*f{ E
and the subspace ¥ x {t} of ¥ x I, on which there is an obvious isomorphism s. By the
compactness of ¥ we deduce that f*E, and #*ff E are isomorphic in some strip ¥ X
where 6t denotes a neighbourhood of {t} in I. Hence the isomorphism class of /" E is a

locally constant function of ¢. Since [ is connected this implies it is constant, whence
fCE=ftE.

A projection operator P for a vector bundle ¥ is an endomorphism with P2=P. Then
PE and (1-P)E inherit from E a topology, a projection and vector space structures in
the fibres. To see that they are locally trivial choose, for each € X, local sections s,,...,s,
of £ such that the s; (4 <r) form a base of P, E, and the s; ( >r) form a base for (1 —-P)_ E,.

Then for a sufficiently small neighbourhood U of = we have a vector bundle isomorphism
¢: UxC"~E|U

T n
given by (yx(ag,...,am)) :i;ai P, s(y) "‘ier:lli(l — P),si(y).
This establishes

LeMMA (1.4). If P is a projection operator for the vector bundle E, then PE and (1—P) E
have an induced vector bundle structure and

E-PEQ®(1-P)E.

We turn next to the question of metries in vector bundles. If E is a complex vector
bundle we can consider the vector bundle Herm () whose fibre at x consists of all hermitian
forms in E,. A metric on E is defined as a section of Herm (£) which is positive definite for
each € X. Since the space of positive definite Hermitian forms is a convex set, the existence
of a metric in £ over a compact space X follows from the existence of partitions of unity.
Moreover, any two metrics in £ are homotopic, in fact they can be joined by a linear
homotopy.

Vector bundles are frequently constructed by a glueing or clutching construction
which we shall now describe. Let

X=X,UX, A=X,nX,,

all the spaces being compact. Assume that E, is a vector bundle over X; and that
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@:B,|A—>E,|4 is an isomorphism. Then we define the vector bundle E;U, E; on X as
follows. As a topological space E,U, E, is the quotient of the disjoint sum F,+E, by
the equivalence relation which identifies e, € B, | A with @(e,) € E,| A. Identifying X with
the corresponding quotient of X, +X, we obtain a natural projection p:E,U,E,—~X,
and p—(x) has a natural vector space structure. It remains to show that E | E, is locally
trivial. Since B,U, B,| X —~ A=(E,|X, — A) +(B,| X, — A) the local triviality at points x ¢ A
follows from that of E, and E,. Let therefore a €4 and let V, be a closed neighbourhood

of a in X, over which E, is trivial, so that we have an isomorphism
0,: B, | Vi~V xC™
Restricting to 4 we get an isomorphism
6 :E,|Von A—(V,n A)xCm
Let 03 :Ey| Vyn A—(V, n 4)x C"

be the isomorphism corresponding to 6f under ¢. By (1.2) this can be extended to an iso-
morphism
Op: By| Vo>V x Cn

where V), is a neighbourhood of ¢ in X,. The pair 0,, 6, then defines in an obvious way an
isomorphism
0:U00,: B1Up By|V, U V> (VU V)% CP,

establishing the local triviality of E U, E,.
Elementary properties of this construction are the following.
(1.5). If E is a bundle over X and E;=E|X,, then the identity defines an isomorphism

1,:E,|A—~Ey| A, and
E,Uv, E,~E.

(1.6) If B;: B;—E; are isomorphisms on X; and ¢’ B, = B,p, then
E\U, E,~E U, E;.
(L.7). If (B, @) and (E;,¢’) are two “clutching data” on the X,, then
(E\UpE,)D (B Uy Es)~ E1DE; (E)J E,DE.,
PP’
(B,U B,)®(E1 Uy E3)~E,QE; (E)J'E2®E;,
@y

(B Uy E)*~ETU -1 EZ.
Moreover, we also have
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LeMMA (1.8). The isomorphism class of E,\U,E, depends only on the homotopy class
of the isomorphism ¢: B, | A—~E,| A.

Proof. A homotopy of isomorphisms E,|A—>E,| A means an isomorphism

O:7*E,|AxI->n*E,|AXI,
where I is the unit interval and z: X X I—>X is the projection. Let
foeX—>XXxI
be defined by f,(z) =z x {t} and denote by
@i B |A—~Ey[A
the isomorphism induced from ® by f,. Then
E1U«pthgﬁ(7t*E1Umn*Ez)-
Since f, and f; are homotopic it follows from (2.2) that
E,\Ug, By E U, B,
as required.

We come finally to the definition of the Grothendieck group K(X). Let us recall
first the elementary procedure by which an abelian semi-group defines a group. If 4 is
an abelian semi-group we form an abelian group B by taking a generator [a] for each
a €A and relations [a] =[b]+[c] whenever a =b +c. The mapping 0:4—B given by 0(a) =
{a] is then a homomorphism and it has an obvious “universal property” (i.e. B is the *“‘best
possible”” group which can be made out of A): if p: A~>C is any homomorphism of 4 into
an abelian group C then there exists a unique homomorphism @: B—C so that ¢ =¢0. If
X is a compact space we take 4 to be the set of isomorphism classes of vector bundles over
X with the operation @. The corresponding abelian group B is denoted by K(X). Thus for
each vector bundle E over X we get an element [E] of K(X) and any element of K(X) is
a linear combination of such elements. The zero dimensional vector bundle gives the zero
of K(X). The universal property of K(X) shows in particular that K(X) is the appropriate
object to study in problems involving additive integer-valued functions of vector bundles.
This explains the relevance of K(X) for example in the index problem for elliptic operators. (1)

The operation X induces a multiplication in K(X) turning it into a commutative ring
with [1] as identity. A continuous map f: ¥Y->X induces a ring homomorphism

f*:K(X)~>K(Y)
where FLE1=[f*"E].

If X is a point then K(X) is naturally isomorphic to the ring of integers.

(1) It was similar considerations which led Grothendieck to define K(X) in the first place in algebraic
geometry.
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2. Statement of the periodicity theorem

I E is any vector bundle then by deleting the 0-section and dividing out by the action
of non-zero scalars we obtain a space P(E) called the projective bundle of E. There is a
natural map P(E)—X and the inverse image of 2€X is the complex projective space
P(E,). If we assign to each y €P(E,) the one-dimensional subspace of E, which corresponds
to it we obtain a line-bundle over P(K). This line-bundle is denoted by H*, i.e. its dual is
denoted by H. The projection P(E)—>X induces a ring homomorphism K(X)—K(P(E)) so
that K(P(E)) becomes a K(X)-algebra. Our main theorem determines the structure of this
algebra in a particular case:

THEOREM (2.1). Let L be a line-bundle over the compact space X, H the line-bundle
over P(LP1) defined above. Then, as a K(X)-algebra, K(P(L®1)) ts generated by [H] subject
to the single relation

((H]—[1])([L][H] - [1])=0.

If X is a point, so that P(L@1) is a projective line or 2-sphere 82, (2.1) implies that
K(8?) is a free abelian group generated by [1] and [H] and that ([H]-[1])2=0. Hence
(2.1), in the case when L is trivial, can be rephrased as follows:

CoROLLARY (2.2). Let 7ty: X x 82X, my: X X §2—>82, denote the projections. Then the
homomorphism [ K(X)QRz K(S?)—K(X X 82)
defined by Ha®@b) =nF(a)5(b)
18 @ ring isomorphism.

This corollary is the periodicity theorem proper.

For any x there is a natural embedding L,—~P(L@1), given by

y—>(y®dL)
which exhibits P(L@1), as the compactification of L, obtained by adding the “point at
infinity”. In this way we get an embedding of L in P=P(L®1), so that P is the compacti-
fication of L obtained by adding the “‘section at infinity’’. Now let us choose, once and for

all, a definite metric in L and let S <L be the unit circle bundle in this metric. We identify
L with a subspace of P so that

P=pPoy P>, S=POnP*,
where P? is the closed dise bundle interior to S (i.e. containing the 0-section) and P* is

the closed disc bundle exterior to § (i.e. containing the oo -section). The projections S—X,
P—X, P*—X will be denoted by =, 7y, 7., respectively.
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Suppose now that E°, E™ are two vector bundles over X and that f €EISO (z*E°, n* E).

Then we can form the vector bundle
g B U/neB”
over P. We shall denote this bundle for brevity by (H°, f, £~} and we shall say that f

is a clutching function for (E? E*). That the most general bundle on P is of this form is

shown by the following lemma:

LeMMA (2.3). Let E be any vector bundle over P and let E°, E™ be the vector bundles
over X induced by the 0-section and oo -section respectively. Then there exists f €ISO (m* B0, 7* E)
such that

E=(E° |, E®),
the isomorphism being the obvious one on the O-section and the oo -section. Moreover F is uni-

quely determined, up to homotopy, by these properties.

Proof. Let s,: X— P? be the 0-section. Then sy7, is homotopic to the identity map of
P°, and so by (1.3) we have an isomorphism
fo: E|PO—>mg E°.
Two different choices of f, differ by an automorphism « of 75 E°, and any such « is homo-
topic to the automorphism 7y o® where a0 is the automorphism of E° obtained by restricting
o to the 0-section. It follows that we can choose f, to be the obvious one on the 0-section
and that this determines it uniquely up to homotopy. The same remarks apply to E|P*
and the lemma then follows, taking
f=tfufo
Remark. If F is a vector bundle over X then (1.5) shows that (7, 1, F) is the vector
bundle over P induced from F by the projection P—>X. Written as an equation in K(P)
this statement reads
[(F, 1, F)]=[F](1],
where [1] is the identity of the ring K(P) and [F][1] is module multiplication of K(X) on
K(P).
When L is the trivial line-bundle X x C1, § is the trivial circle bundle X x St so that
points of S are represented by pairs (z,z) with £€X and z€C with |z|=1. Thus z is a
function on S, so also is z~! and we can consider functions on S which are finite Laurent

series in z:
n

> a(x) 2~

When L is not trivial we want to introduce a notation which will enable us to deal con-
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veniently with the corresponding expressions. To do this we observe that the inclusion
8—L defines, in a rather tautologous way, a section of n*(L). We shall denote this section
by z. If L=1 then a section of #*(L) is just a function on § and the section z is precisely
the function described above. The reader who is primarily interested in Corollary (2.2)
may throughout think of this special case and regard z as a function. To obtain the more
general Theorem (2.1) however we have to consider 2 as a section. The only complications
introduced by this are notational, since we have to identify all the various bundles which
ocour.

Using the canonical isomorphisms
7*(L)=x*Hom (1, L)

we may also regard z as a section of #* Hom (1, L) and, as such, it has an inverse 2~ which
is a section of
a*Hom (L, 1) 2=n*(L1).
More generally, for any integer k, we may regard 2* as a section of n*L*. I now g, €EI'(L )
then
7* (o) Q2 €La*(1),
i.e. it is a function on 8. For simplicity of notation we write a,2* instead of 7*(a;)®2".

Thus we have given a meaning to the finite Fourier series

n
f=S
-n

if @, €I'(L*) then f is a function on 8. Finally suppose that E°, E* are two vector bundles

on X and that
@, €M Hom (IFQE°, E*);

then a,2* €' Hom (n* E°, n* E™),

where again we have replaced n*(a,) Q7% by a,7". A finite sum
f=2a,2* €l Hom (n*E°, n*E>)

with the a, as above will be called a finite Laurent series for (E?, E*). If f€ISO (n*E°,n* F*)
then it defines a clutching function and we call this a Laurent clutching function for (E°, E>).
The simplest Laurent clutching function is z itself—taking "E°=1, E* =L. We shall
now identify the bundle (1, z, L) on P defined by this clutching function. We recall first
that the line-bundle H* over P is defined as a sub-bundle of z*(L@1). For each y EP(LPL),
Hj is a subspace of (LP1), and
Hy= L0y =oo,

H:=0D1,<y=0.
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Thus the composition H*—>a*(LPl)—>nr*(1),

induced by the projection LP1—>1, defines an isomorphism
fo: H¥* | PO—>mg(1),

and the composition H* =g (LD1)—~>n*(L)

induced by the projection LP1—L, defines an isomorphism
foo : H*| P35 (L).

Hence f=fofot:m*(1)—>a*(L)

is a clutching function for H*. Clearly, for y€S,, f(y) is the isomorphism whose graph is
H;. Since H is the subspace of (1) L,®P1, spanned by y®1 (y€S,< L,, 1€C) we see that

f is precisely our tautologous section z. Thus
H*=(1, 2, L). (2.4)

From (2.4) and (1.7) we deduce, for any integer k,

He=~(1, z7%, L), 2.5)
Suppose now that f €EI' Hom (n*E°, n* E*) is any section, then we can define its Fourier
coefficients
a, €T Hom (L*FQ E°, E*)
1 k-
by(?) ay(x) = 57;;:.[51 fz2z k-1 dz,.

Here f, and z, denote the restrictions of f, z to S, and dz, is therefore a differential on S,

with coefficients in L. Let s, be the partial sums

n
=2 ay 2"
~n
1 n
and define the Cesaro means fo= . > 8.
0

The proof of Fejer’s theorem [5; § 13.32] on (C, 1) summability of Fourier series extends

immediately to the present more general case and gives

LeMMA (2.6). Let f be any clutching function for (E°, E®), f, the sequence of Cesaro

(1) The symbol 1 may cause the reader some confusion here since it denotes the trivial line-bundle
and also the complex number 1.
(2) Here again we omit the ® sign.
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means of the Fourier series of f. Then [, converges uniformly to f and hence i3 a Laurent
clutching function for all sufficiently large n.

Remark. The uniformity can be defined by using metrics in E? and E*, but does not
of course depend on the choice of metrics.

3. Linearization

By a polynomial clutching function we shall mean a Laurent clutching function without

negative powers of z. In this section we shall describe a linearization procedure for such
functions.

n
Thus let p=2 a2
K=o

be a polynomial clutching function of degree <= for (9, E*). Consider the homomorphism

L) :a"(3 @B > (B°® 5 FQE)
given by the matrix
@ a; . . . a,
-2 1
C(p)= w21
-z 1

It is clear that L"(p) is linear in z. Now define the sequence p,(z) inductively by p,=p°
2Pr41(2) =2r(2) —p,(0). Then we have the following matrix identity

L(p)=
1 p, .. . . Dn P 1
1 1 ~z 1
1 | I —z
1 1 —z1
or more briefly LMp)=(1+N)(p@D1)(1+N,) (3.1)

with N,, N, nilpotent.

Since 1-+¢N with 0<t<1 gives a homotopy of isomorphisms, if N is nilpotent, it

follows from (3.1) and (1.8) that we have
16 — 642907 Acta mathematica 112. Imprimé le 4 décembre 1964.



242 MICHAEL ATIYAH AND RAOUL BOTT

ProrosiTION (3.2). L*(p) and p@D] define isomorphic bundles on P, i.e.,
(B0, )@ ( 3 OB, 1, 3 R~ ( 3 O R, £'(p), B ® 3 IV x ).

Remark. The definition of L£L*(p) is of course modelled on the way one passes from an
ordinary differential equation of order n to a system of first order equations.
For brevity we now write L"(E°, p, E*) for the bundle
n

(SR, C'(p), BD 3 LD E).

k=0

LeMma (3.3). Let p be a polynomial clutching function of degree <n for (E°, E*). Then

C**NE,,p, E*)=C"E°,p, E*)D(L"'QE’ 1, L""'QE%), (3.4)
L YL QE, zp, B®)= LB, p, E*)D(L ' QE",2, B°). (3.5)
Proof. We have
- (1)

Multiplying 2 on the bottom line by a real parameter ¢ with 0 <¢ <1 then gives a homotopy
from L£"(p) to L"(p)P1 and so (3.4) follows using (1.8). Similarly in

0 a a . . . a
—z 1
-z 1
cn +1(Zp) — .
-z 1

we multiply 1 on the second row by ¢ and get a homotopy from L*+l(zp) to L*(p)P —=.
Using (1.8) and (1.6) (with E,=E;=L1QE°, E,=E;=E° §,=1, f,= —1,p=z2,¢'= —2)
we deduce (3.5).

We shall now establish a simple algebraic formula in K(P). For convenience we write
[ES, p, E=] for the element [(E°, p, E*)] in K(P).

PrOPOSITION (3.6). For any polynomial clutching function p for (E° E*) we have

the identity
(LE°, p, E=]—[E° 1, E°D((LI[H]—[1])=0

Proof. From (3.5) and (3.2) we deduce
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k3 n
(L' OF,2p, B°)D(3 L@, 1, 3 L'QE,)
k=0 k=0
n n
(B, p, B)O(3 OE 1, 3 O DL QF, 2, BY)
k=1 k=

Using (1.7) and (2.5) and passing to K(P) this gives:
(L [H][E°, p, E¥]+[E°, 1, E°]=[E°, p, E*]+[L*][H "] [E°, 1, E°]
from which the required result follows.
Putting E°=1, p=2z, E* =L in (3.6) and using (2.4) we obtain the formula:
((H]-DD(LIH]-[1D =0 3.7)

which is part of the assertion of our main theorem (2.1).

4. Linear clutching functions

We begin by reviewing some elementary facts about linear transformations. Suppose
T is an endomorphism of a finite-dimensional vector space E, and let S be a circle in the

complex plane which does not pass through any eigenvalue of 7'. Then
Q=*1—J‘ (z—T) dz
27Z7: s )

is a projection operator in £ which commutes with 7'. The decomposition
E=E ®E_, E,=QE, E =(1-Q)F
is therefore invariant under 7', so that we can write
T=7T 0T

Then 7', has all eigenvalues inside S while 7_ has all eigenvalues outside S. This is just
the spectral decomposition of 1" corresponding to the two components of the comple-
ment of S.

We shall now extend these results to vector bundles, but first we make a remark on
notation. So far z and hence p(z) have been sections over S. However, they extend in a
natural way to sections over the whole of L. It will also be convenient to include the
co-section of P in certain statements. Thus, if we assert that p(z) =az +b is an isomorphism
outside §, we shall take this to include the statement that o is an isomorphism.

Prorosition (4.1). Let p be a linear clutching function for E°, E* and define endo-
morphisms @, Q% of E° E* by puiting

1 ~ o 1 _
Q(z) = %J‘S Pz ! dp,, Q= %J‘s dp; p: L
z z
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Then Q° and Q% are projection operators and

P& =Q%p.
Write B\, =Q'E', E. =(1—Q") E' (=0, ) so that E'=E', ®E". Then p is compatible with
these decompositions so that

P=p.Op-.

Moreover, p, is an isomorphism outside S, and p_ is an isomorphism inside S.

Proof. In view of (1.4) it will be sufficient to verify all statements point-wise for each
2€X. In other words, we may suppose X is a point, L=C and z is just a complex number.
Now since p(z) is an isomorphism for |z] =1 we can find a real number & with x>1 so
that p(a): E9—>E™ is an isomorphism. For simplicity of calculation we shall identify E°
and E* by this isomorphism. Next we consider the conformal transformation
1-az

z—a

w

which preserves the unit circle and its inside. Substituting for z we find (since we have
taken p(a) =1)

_w-=T
pR)= w+to’
where 7' € End E°. Hence
1 4
= d
Q=5 A
l -1 -1
= [—(w+ ) dw+ (w—T) "dw)]
27‘67/ |w|=1
= -1- (w—T) 'dw since || >1
271 lw]=1
=Q* similarly.

All the statements in the proposition now follow from what we have asserted above in

connection with a linear transformation 7.

COROLLARY (4.2). Let p be as in (4.1) and write
p,=a,z+b, p_=a_z+b_.
Then putting p*=p'. +p* where

ph=a,z+tb,, P =ta_z+b_ 0<t<l
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we obtain a homotopy of linear clutching functions connecting p with a, 2®b_. Thus
(B°, p, E*)=(EY, z, LQES)D(EL, 1, B).

Proof. The last part of (4.1) implies that p% and p. are isomorphisms over S for all
¢t with 0<¢<1. Thus p* is a linear clutching function as stated. Hence by (1.8)

(E°, p, B®)= (B, pt, B*)= (B2, a2, EY)D(EL, b_, E2).

Since a,:LQE%—~E?, b_:E°—~E® are necessarily isomorphisms we can use (1.6) and
deduce that

(E(')Ha-(-z:Ef)‘g(E(-)Hz,L@Eg-)

(E°,b_,E®)~(E°,1,E%)

from which the conclusion follows.
If p is a polynomial clutching function of degree <= for (E°, E*) then L*(p) is a
linear clutching function for (V°, V*) where

Vo= S IQE, V7 = 8@ 3 QR
Hence it defines a decomposition
V=707
as in (4.1). To express the dependence of V% on p, n we write
VS =V, (B p, E®).

Note that this is a vector bundle on X. If p, is a homotopy of polynomial clutching funec-
tions of degree <n it follows by constructing V, over X X I and using (1.3) that

VulE°, po, )=V, (E°, py, E7). (4.3)

Hence from the homotopies used in proving (3.4) and (3.5) we obtain
V(B p, E®)=V (E° p, E7), (4.4)
Vadl L QE°, zp, EX) =V (E°, p, B*) D(L'QE), (4.5)

or equivalently (using (1.7))
V(B 2p, LQE®)= LRV (E°, p, E*)DE°.
Finally from (3.2), (4.2) and the remark following Lemma (2.3) we obtain the follow-
ing equation in K(P)
(8,9, B=1+ {3 (L@ EO1] = [Vl p, BN H 1+ { 3 (L@ )~ [Va(E,p, B} 1]
and hence the vital formula

[E°,p, B = VB, p, E*)]([H"] - [1]) + [E°] (1]. (4.6)
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Remark. V,(E°, p, E*) is the vector space denoted by V; in the introduction and
(4.6) shows that [V;]1€ K(X) completely determines [E°, p, E*]€ K(P). Bearing in mind
the relation with ordinary differential equations mentioned in the introduction analysts

may care to ponder over the significance of (4.6).

5. Proof of Theorem (2.1)

Let ¢ be an indeterminate. Then because of (3.7) the mapping ¢—>[H] induces a K(X)-
algebra homomorphism
wK(X)[t]/¢—1)((L}t—1) = K(P).

To prove theorem (2.1} we have to show that u is an isomorphism, and we shall do this by
explicitly constructing an inverse.

First let f be any clutching function for (£°, E£*). Let f, be the sequence of Cesaro means
of its Fourier series and put p, =2"f,. Then, if » is sufficiently large, (2.6) asserts that p,
is a polynomial clutching function (of degree <2n) for (E°, L*"QE*). Motivated by (4.6)
we define

va(f) EK(X)[e] /(¢ — 1) (LL}E 1)
by the formula:
Volf) =[Vanl B, py, L"Q@E®)](¢" " —17) +[E°]E™. (5.1)
Now, for sufficiently large «, the linear segment joining p,,, and zp, provides a homo-

topy of polynomial clutching functions of degree <2(n+1). Hence by (4.3)
Von+ol B, Prigy LN QE®) 2 Vo (B, 29y, L' QE)
=V ynia (B, 2pp, LR E) by (4.4)
=L@V (B pn, L"QE)DE® by (4.5).

Hence
Vs () = {{ZA[Vou( B, p,, LP"QE®)]+ [EO]} (t" —"1) + [ EC]¢™1 =w,(f)
since (¢t—1D)([L]t—1)=0.

‘Thus »,(f), for large =, is independent of » and so depends only on f. We write it as »(f).
If now g is sufficiently close to f and = is sufficiently large then the linear segment joining
f. and g, provides a homotopy of polynomial clutching functions of degree <2n and hence
by (4.3)

Y(f) =val) =va(g9) =¥(9)-
Thus »(f) is a locally constant function of f and hence depends only on the homotopy class
of f. Hence if E is any vector bundle over P and f a clutching function defining Z, as in

{2.3), we can define

v(B)=f),



ON THE PERIODICITY THEOREM FOR COMPLEX VECTOR BUNDLES 247

and »(E) will depend only on the isomorphism class of K. Since »(E) is clearly additive for
@ it induces a group homomorphism
v: K(P)—>K(X)[t]/@¢—1) ((L]t—1).

In fact it is clear from its definition that this is a K(X)-module homomorphism.

We shall now check that u» is the identity of K(P). In fact with the above notation
we have

W E)=pi{[Van( B, Py, L"@E)] (8" —t7) +[E°)¢"}
=[Vau( B, po, L'QE™)([H]"™! —[H™) + [E°][H]"
=LE°, pn, "QE](H]" by (4.6)

=[E° f,, E7] by (1.7) and (2.5)
=[E° f, B*] by (1.8)
={&] by definition of f.

Since K(P) is additively generated by elements of the form [E] this proves that uv is the
identity.

Finally we have to show that yu is the identity of K(X)[t]/(f—1)([L]t—1) Since »u
is @ homomorphism of K(X)-modules it will be sufficient to check that vu(t")=¢" for all
n2=0. But

w(t™) =v[H")

=y[1,27", L™ by (2.5)
=V, 1, DI =) +[1]¢" from (5.1)
=" since V,,(1, 1, 1)=0.

This completes the proof of Theorem (2.1).
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