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w 1. Introduction 

In  a recent paper  [2] we studied the average order of a large class of ari thmetical  

functions which occur as the coefficients of Dirichlet series which satisfy a functional  

equation. I n  this paper  we obtain  an estimate, in mean, for the error-term associated 

with such ari thmetical  functions. Apar t  f rom obtaining a number  of classical results 

as special cases, we obtain some new results on certain ari thmetical  functions in alge- 

braic number  theory.  

I f  ~ is an ideal class in an algebraic number  field K of degree n, the Dedekind 

zeta-function of the class ~ is defined by  

1 
(Na) s' 

where the summat ion  is over all non-zero integral ideals in ~, and if we consider the 

ar i thmetical  funct ion 

k<~x 

where ak(~) denotes the number  of ideals in ~ of norm k, then it is known, after  

Weber  and Landau  [9] t ha t  

E(x )  = ~ ak(.~) -- ).x = O ( x , ( n - 1 ) / ( n + i ) ) ,  
k4x  

where ~t is the residue of ~K(s, ~) a t  s =  1. I n  this paper  we shall show, for example, 

t ha t  if n = 2, then 

~ f~lE(u)l du = 0(~). 
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In  view of the fact [2, p. 128] that  

E(x) 
lim - ~  = _ ~ ,  

this result seems to be the best possible. 

Our main theorem implies this as well as several other results. I f  r2(n ) denotes 

the number of representations of the integer n as a sum of two squares, and 

P(x )=  ~ r2 (n ) -~x ,  
n ~ x  

then P(x) is the error-term in the lattice-point problem for the circle. Although the 

conjecture that  

P(x) = O(xt +~), 

for every positive ~, is yet  to be proved, it was sho~m by Hardy [5] that 

1 f [ i p ( y )  l dy = O(x t+~), 
gg 

for every e >0.  This was sharpened by Cramdr [4] into 

1 ~X]p(y)t dy = O(xt), (1) 
X 31 

which he obtained as a consequence of an asymptotic formula for the error-term, in 

mean-square, namely 

x f[ip(y)] dy = c, x ~ + O(x t +~), (2) 

for every ~ >0.  Here c I is a constant given by 

1 ~ ~rz(n)~ u 
C 1 = 3 ~ 2 . _  1 ~ n ~[ / " 

Cram~r also obtained a formula similar to (1) in the case of the error-term in Dirichlet's 

divisor problem. If  d(n) denotes the number of divisors of n, and 

A(x) = ~. d(n) - x log x - (2V - 1) x, 
n~<x 

where ~ is Euler's constant, then Cram~r's result is that  

1_ [A(y)12dy=c2x�89 c ~ = G i  \ n ~ J 
X n = l  
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which implies tha t  ; I A ( y )  Idy = 0(~) .  

Landau [8, Satz 548], and later Walfisz [12] improved the error-term in (2) by 

showing t ~ t  
1_ 

I"lP(y) I ~ dy = c~x~ + O(log a x).  
X .]1 

There is a reference in the literature [11] to a similar improvement  of (3), although 

we have not had access to tha t  paper. Both these results, however, will emerge as 

corollaries to our main theorem. So will the following result, due to Walfisz [13], on 

Ramanujan ' s  z-function: 

I 1 T(y) I s dy = c~ z 11�89 "~ O(x 11 log s x), 
X 

where T ( x ) =  ~ z(n), and ca= hiS�89 . 
n<~x 50~r~ n=l  

w 2. PreJimluaries 

The functional equation we are concerned with is set up as follows. 

Let  {an}, {bn} be two sequences of complex numbers, not all zero, and {2,}, {/~,} 

be two sequences of real numbers such tha t  

0 < 2 1  < 2 S <  * , - <  ~n---)'OO, 

0 < ~tl < ~ts < ... </xn---~ cr 

Let  (~ be a real number, s a complex number  with s =  a +  it. Let  

N 
h ( s )  = I-I F(~s+fl,), 

where N~>l ,  fl~ is a complex number, and ~ > 0 .  Let  A = ~ = ~ .  We say tha t  the 

functional equation 

A(s )  ~(s )  = A 0  - s) Y,0 - s) (4) 

holds, if ~ and ~p can be represented by  the Dirichlet series 

~ a  s ~ b  -s 
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each of which converges absolutely in some r ight  half-plane, and if there exists in 

the s-plane a domain D, which is the exterior of a bounded,  closed set S, in which 

there exists a holomorphic funct ion g with the proper ty  l i m l t l ~  Z((~ + it) = 0, uniformly 

in every interval  - co < ~1 < a ~< a2 < + ~ ,  and  

Z(s) = A(s) 9(s), for a > c 1, 

g(s) = A(~ - s) ~(~ - s), for a < cz, 

where c1, C~. are some constants.(1) 

For  ~/> 0 we define 

A~(x) 
1 

1' ~ '  a n ( x -  2n)q' 
F ( 0 +  ja..<, 

the dash indicating t h a t  the last te rm has to be multiplied by  �89 if ~ = 0  and  X=2n.  

I t  is known [3, formula (4)] t ha t  functional  equat ion (4) implies the ident i ty  

M ( x )  - S~(x)= 
bnlq(pnx) 

n=l ~u~ +q ' (5) 

for x>O, and ~ 2 A f l - A ( ~ - � 8 9  where fl is such tha t  Zn~ l ib ,  l~u~<  c~. We assume 

to be an integer, in which case 

1 ~" r ( s ) ~ ( s )  

where C is a curve enclosing all the singularities of the integrand,  and 

Here C '  consists of the lines 

r ( ~  - s)  h ( 8 )  z e§  d , .  
+ 1 + ~ - s )  A(,~-s) 

a = % + i t  with I t [ > R ,  

where 

c o -  2A e, 0 < e < ~ - ~ ,  c 0 > d - - m a x  - R e  , v = l , 2  . . . . .  N,  

together  with three sides of the rectangle whose vertices are c o -  JR, co+ r - J R ,  % + 

r+ JR, and %+ JR. We choose r and R such tha t  all the poles of the in tegrand are 

to the left of C' .  

(1) c, c 1, % . . . .  , c', c", ... are constants which do not necessarily have the same value at all 
occurrences. 
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If  ~ is an integer, ~ >0,  and 0 <  ~ <  x, the ~th finite difference of the function 

F(x) is defined as 

If F has Q derivatives, then 

/'~+~ ]'t,+~ /'t~_l+~ 
Aq)"F(x)= L d~l J,. d*2 "'" J t~'-I "~(5)(t5)dt., 

where ~(q) is the ~th derivative of F.  Since 

1 
z A ~ ( Y -  )'n)q+ ~ I~(~+l) ( AIAi(y)= Z'  an 

and since { F ( ~  + 1 ) } - l A ~ ( y  - 2 . )  q = 2 5, 

AeAq" ~=,~SA~ q Z lanl) �9 (6) we have ~ ~y l  
y<.~n~y+5.?t 

~y+). ft,+.~ ~t~,_l+). 
Again A~S~(y)= J~ dt~ dr2... So(tq) dtq, 

.I t ,  i t s - 1  

and if the only singularities of ~0 are assumed to be poles, then 

So(y ) = ~ c,y ~ (log y)'~-~, 

Where r~ is the order of the pole at  s =  ~, so that  

A[Sq(y) = So(y ) 2 5 + O()?+~y ~-~ logr-~y), (7) 

where q is the maximum of the real parts of the poles of q, and r is the maximum 

order of a pole with real part  q. 

From (6) and (7) we have 

A~ - So(y ) = 2-~A~ [AS(y) - S~ (y)] + O(]ty q-~ logr-ly) + O( ~ la~]). (8) 
y<.tn~Y+~.t 

On the left-hand side of (8) is the "error-term" which we wish to estimate in "mean 

square". If we write 

E(y) =- A ~ (y) - S o (y), 

W(y)---- A~ [A~ (y) - S 5 (y)], 

V(y) :--O(,~y 5-1 log'-~y) + O( ~. la.I), 
(9) 
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then we have 

Our problem now reduces to estimating the integrals on the right-hand side of (10). 

The form of V is such tha t  in addition to the assumptions already made on the 

nature and location of the singularities of ~0, we need assume only an order condi- 

tion on the an in order to estimate the first integral. To estimate the second integral, 

we assume functional equation (4), apply the difference-operator A~ to identi ty (5) 

which results from it [3, (4)], and take the square of the absolute value on both 

sides. This would involve estimating the integral 

lX ( ~ ~ bm~)nA$!.(/Mmy)" A~l-Q(/lgnY)~ 
\n: l  m~=l (~m~n)~ 7 ] 2-2qdy' (11) 

where the bars denote complex conjugates. An essential element of the method is to 

ehoose 2 not as a constant but  as a function of y, namely ;t = y1-1/2A-,7, ~1 > O, where 

the A comes from the gamma-factors in the functional equation, and to choose r/ 

suitably in the resulting estimate. Since ~) may  be chosen as large as we require, the 

estimation of (11) depends on an estimate of the integral 

~ ).(y)-2q. A~Is(la,,y ) �9 A~is(luny ) dy (12) 

for different ranges of ~m and /zn. 

:Now the asymptot ic  expansion of 15 is known i n  a convenient form [3]. I f  m i s  

any positive integer, we have 

rn 

I5 (x) = ~0ev(e)  x ~ - ~  cos (hx ' ~  + k,~) + O ( x ~ - ( ~ §  

as x-->c~, where e,(~) and ]c~ are constants, 

co=co0+ ~ 1 ,  ' c~176 - 4A '  

h = 2 e  O/2A, 0 = 2  log A l o g A  
I ~v  ~ - -  

N 

/ ~ = � 8 9  2 (fl,--�89 a = - -  + - i - ~  , 
v = l  

k = A a - l u ,  

e0(Q) = eB~-a0(A~t) -1, 
N 

B =  - 3  ~ ~10g ~ , +  (A(~+~+ 1) logA.  
v = l  
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I f  this asympto t ic  formula is used in (12), the est imate of (12) is reduced to t ha t  

of the integral 

f i '  ih ll2A ll2A - ' h  l12A yll2A 
U,n.a(x)~ ,~(y) ~e'Ai(y~'e ~'~ y ).Ai(y~'e '~"~ )dy, (14) 

and this, in turn,  depends on estimates for 

t ll2A yll2A 
 i(uo  ), (15) 

i l]2A l/2A d i l]2A ..1]2A t 1/2A 112A 
e -  'urn Y Q ca ,um y - -  )]. (16) and for e~"~ Y dy 

These we proceed to  obtain in the sequel, so tha t  the second integral on the right- 

hand  side of (10) is also taken care of. I t  is this integral which gives rise, in some 

cases, to  an asymptot ic  formula for 

with a " m a i n "  term and an O-term, and in other  cases to an O-term only. Our 

choice of z/, and therefore of 2, will be different in these different, eases. 

An estimate for the third integral on the r ight-hand side of (10)resul ts  f rom the 

est imates for the  first and second integrals by  Schwarz 's  inequality. Bu t  in some 

cases it would be advantageous  directly to use the known estimates for W (see [2], 

p. 110, (4.20)) and for V. 

w 3. Estimates for the finite differences 

We shall now obtain est imates for (15) and (16), and use them to estimate the 

integral in (14). 

Le t  ~ be a fixed integer, ~ > 0 ,  and 0 < ~ t < y .  Le t  o) and # be real numbers.  

Then 

A~(y~ ~ e~'Yl/~)=y~ ~ ( - 1) q ~ 1 + e ~(~+~')1/'~ 

(:1(;)( =Y"Aq~e"~/:~+Y~' Z Z ( - 1 )  q-" ~,2 ke,~,(~+,~),~A+O(2,y~_q)" (17) 
~=o k=l \ y /  

Set (v, k) ~-- v(v - 1) ... (v - k + 1), 
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for /c integral, and 0 < k ~< ~, with (u, 0) = 1. Then 

We can find constants  a}~), such t h a t  

~ = al ~) (~, ~) + . . .  + a(~) (~, 1), 

for u ~> 1, with a(~) = 1. We have 

( - I )  ~  ~,~ e ~"(~+'~'" = ~_ a ( ~ + ~  �9 (q, l) 5~ -~ e ~"(""~'" ,  
v=O l=1 

f o r  ~=O~(--1)~ [Ot(lk)(y'k)~-'''~O~{k'~)(y'l)]e~(y+~'2)l/'z'A 

~ , + 1 ~ ,  ]r - r ) .  ( - 1 )  5 ~ e ~ ' ~ §  

= a ~ _ ~ + ,  ( e ,  l ) "  �9 ( - 

= ~ ~ g(2_)z+l �9 (~), l) �9 e l . ( _ 1)o z-~ et~C~+(z+~)~ v~ .  
l=l r=0 

From (17) and (18) we get  

A~ (y "~ e ' ' y I~)  = y" A~ e '~'7'~'4 + y,O 2 2 ~(k) A~-' + O(2~ y'~ ~ - ~  +1" (~, 1). e i"(~ + t~ )~  
k=l /=1 

uniformly in 2, ~, y. 

F rom the definition of A~ we have 

(m) 

~ l  (y~ e~,, I~ )  = O(y~). (20) 

On the o ther  hand,  we can prove that ,  for I~ul>c, 

A~(y '~ e ~'~v~'~) = O(2qy '0-~§ Itt IQ). (21) 

This follows from the fact  t h a t  if / (y)=y'~ e ~'yv~A, and /(o denotes the ~)th derivative 

of [, then we have 

( ) itt qe ~m'lj~ c o~-O§ ..~rz~-l~ke~,~x (22) 
k=0 
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SU (0) and A~/(y)=O(,~ ~ p .[/ (t)[). (23) 
y<t<y+q,r 

We shall use (20) or (21) according to convenience. 

The next  step is to estimate (16). We shall now make a /ur ther  assumption on ~, 

namely 

2 ~ 2 ( y ) = c l . y  ~, c1>0 , (24) 

so that  the derivative ~'(y)= O(2/y). Set 

If  we use the rule 

D(y) - -  e i"yl/'A ~yy 

d~ {A~F(y)} = A~F' (y) + ~]t' (y) . A~-~ F ' (y + 2), 

(25) 

which is easily deduced from the definition of A~, we obtain 

D(y) ~ it` A~ (y~-~+~A e,,y~, 'A) = __ H1/2A-1 i~  (yVa eiltyl/2A) + OjA~(ytO-1 eft~yl/2A) + 

+ ~)).' ( y ) "  A~ - I  [ (D(y + ) . )a)- i  + it` -~- ~)~o_l+l/2A]eil~(y+,)l/,~r ~-~(y 

On using (19) together with the facts that  (,~/y)k = O(2/y), and ~' (y) = O(,~/y), we have 

�9 ~ 
~t` ~ l12A-1 r~ r eil~yll2A ~ 1  - -  St` ~ (o-l+l/2A A0 " D ( y )  = - ~ y ty ~ + O(y~-i AJJ "2- - ~  y t.~ e iltyl/')A 

+ O(ytO- 2 § 1/2A ~.  It` I) + (DY r176 An eitty 1/2A + .. . .  

in which the " la ter"  terms are of lower order than the ones retained. Thus, if 

~" It`l yll2A-1 > c~, then 

n ( y )  = ~oy~-l Ai  e ' ~ ' ~  + O(y ~ - : §  �9 ~.  If'l) = O(Y ~  ~" it`l). (26) 

If, on the other hand, ,~'lt`l'yl/2A-l~c2, then on using (19), together with (21)with 

to=0,  we obtain 

D(y)=O (t`yl,2A-~) yCokZl ~_ 1 [y) ~(kk)+I.(~,I).A~-/e,,(u+,z)l,u~ § ) 

: O ( ' t ` ' * Y ~ O §  ~ ( ~ I k ' ( : )  ' - l  ) k~l l=l \ y ]  ( l t ` l 'y l l2A) '-I  +O()"Ym-~'II2A-11t`[)  

= O[( ] t ` ]  * ~"  yl/2A-1)~ yr ( 2 7 )  

4 - -  642906 Acta mathematica 112. Imprira~ lo 11 sep tembre  1964. 



50 K.  C H A N D R A S E K H A R A N  A N D  R A G H A V A N  N A R A S I M H A N  

In the range Igl<c2.yl-~2A2-~, however, we have 

(l~l. 2. y~,2~_~), yO,  < c~ ( l~ l  2. y1,2~_,) ym-i, 

so that  (26) is also valid in this range. Similarly in the range I]~]>c~yl-1/2A2-1, 

we have 
y~-2+i12A. 2~ I~'I < C," (I~'I " 2" y,,2~-,), yo-,, 

so that  both (26) and (27) are, in fact, valid in both ranges, though (26) gives us a 

better estimate for ]/~l > c~. yl-~1~ 2-~, as (27) does for ]/~l ~< c~yl-1/2A 2-1 

Estimates (26) and (27) are enough for dealing with (16). We shall now use them 

to estimate the integral in (14). 

L E p t A  1. Let {y.} be the sequence given in /unctional equation (4). Let (~, co, eo o, 
- - .  1 - 1 / 2 A - ~  and h be the real numbers given in (13), h > 0 ,  (~>0. For y > 0 ,  let 2 = 2 ( y ) - y  

A~>l, ~ > 0 .  Let z > l ,  and 

~ th 1/2A 1/2A th l12A yl/2A u ~ . , ( ~ ) -  {2(~)}-~,.~i(uo~ ~ ~ ) . ~ ( u ~ e -  "- )du. 

Then we have /or m > n, 

[ U,n., (X)] <. C~" X 2~'+1~112A (ym#,)ql2A 
l~2 a _ t~1n/2 A , /or I~n </~,~ < z, 

Q q/2A mo+a~ 1 l12A l12A ~<c2"{2(x) }- "/~ x + -  ( l+2(x) ' /~m x 112A-1) 
i ~  A _ 1~12A , /or y. < z < #~, 

< c3" {2(x)} -2~" x~(x 1-1/~ + 2(x) ~2~) 
t~2A _ I ~ A  , /or z < y .  < y ~ .  (28)  

Proo/. If  we write 

i~ l[2A yl[2A ih l(2A yll2A 
Gm(y)~e  - '~'" A~(y~'e ~ ), and F(y)~{2(y)}-eqyV-m/eAGm(y).Ga(y), 

it is easy to see that  

f [ {  , iI~a 112~, U~,,  = 2(y)}-2~G~(y) �9 G , ( y ) ' e  ih~2~ ~"~" - "  J dy 

2A f~ d (e~h~12A, ~12~ II~A, = ih(l~eA _ ]a~2A ) {2(y)}-eey ~ - ~  G~" G~'~y  ('~ ~" ))dy 

=o(~2~ ~,~) [lF(x)l+lF(1)I+ jl IF'(y)ldy ]. (29) 
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If ~n<~m~<Z, then because of (21), we have 

IF(y) 1 = O[y 1-1j~A 2-~qZ~'U~-2~y ~ (~m~)-~ }1 = O[u ~ ' §  (~m~.)~:~], (30) 

and because of (27) and (21) we have 

I~' (y) l = O[y -~ IF(v) 1 + ~-~y ' -~ '~  {y~-'-~' (~y):~ ~.:_.o(~.y):A}]. (31) 

Now (29), (30), and (31) lead to the proof of the first part of (28), if we note that  

5>0 ,  A~>I. As to the second part, we have /un~<Z<#m, so that  from (20), (21), (26) 

and (27) we obtain 

F(y) = O[;~-2~ 1-1/2A { y "  y~'- ~)? (~ny)~/~A}] = OD ~-Q. #.~2A . ya, O+a,+l-1/2A], 

and [ F' (Y)[ = O[Y - ~ [ F (Y) ] + Z- ~q y~-.~A { :  . y . , -~- ~ ; :  (;e~y )~ 

+ (~2A. ;t" y"-~§ (~y)Q:~A y~,-~;t~}] 

= or;-q, e/2A a,coo+co-I/2A ;I + 2, ~/2A ~,I/2A -I'(] 
t "~ i ~n ,~ t I.~m kt j J, 

and these inequalities lead to the proof of the second part of (28). If z < / t n <  bern, 

we have again from (20), 
I~(y)l = 0(4  ~y~_~j~A+~o), 

and IF'  (y)] = O(y-l[F(y)[ + ~-~o yl-I,v.'A yO,-~+i/2A o, ~r 1/~A "Y ""t/~m + / ~ ] )  

= O ( y - 1  IF(y)[ + a,2m-l~-20+11", l12A + II2A'~ tl~,n tZn I), 

because of (26), and these inequalities lead to a proof of the third part of (28). Thus 

Lemma 1 is proved. 

w 4. Estimate of the error-term 

We have already seen in (10) that  the error-term in mean square is given by 

; I E ( y ) , 2 d y = : ~ ] V ( y ) , ~ d y + ; I W ( y ) l ~ - ' d y + ; 2 - q W V + W V ) d y ,  (32) 

where E(y) o = A~ (y) - S o (y), W(y) = A~ [A~ (y) - Sq (y)], 

r ( y ) = O ( 2 y q - l l o g r - l y ) - t - O (  ~ . [anl)"  
y<]tn<<.u+O). 

If we assume that  functional equation (4) holds, then we have [2, (4.6)] identity (5), 

from which it is immediate that  
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n-I m=l ([I.~ra[Lin) ~+Q 

L e t  g~ and  fl~ be such t h a t  

5 [a.l'a~ ~'< oo, 
n - 1  

Le t  us assume,  in add i t ion ,  t h a t  

7. Ib. { 3 = O( x2a-' log~'z), 
l~n~x 

n = l  

~'~>0. 

(33) 

(34) 

(35) 

Since no t  all  t he  bn are  zero, i t  follows t h a t  fl>~ �89 W e  shall  somet imes  use a s imi lar  

a s s u m p t i o n  on the  an, n a m e l y  

Z {an{2=O(x2~-ll~ , ~ (36) 
2a~<x 

_For s impl ic i ty  we fu r the r  assume t h a t  

/ t ,  = c 1 �9 n, 2,  = c~. n, (37) 

�9 even though  our  f inal  resul t  would  require  on ly  an  a s sumpt ion  on the  dens i ty  of 

.{/~n}, {2n} l ike /*n+X--/tn>~Ci>0, 2n+l--2n~>C~>0.  As before,  we choose 

1 
2 = 2(y) = ye, c = 1 - ~ - ,/, ~y > 0, (38) 

: and  z = x TM. (39) 

"To e s t ima te  S~2-2elW(y)12dy, we wri te  

n=l ~2n(d+q) ~ m~.n ([~m[Z~n) ~+0 
m~n 

= W 1 (y) + W~ (y), say,  

: and  es t ima te  ~ 2-~W1 dy a n d  S~ 2-~W,~ dy separa te ly .  I n  the  former  in tegra l ,  we spl i t  

t he  series for W 1 in to  two par t s ,  accord ing  as /tn ~< z or  /tn > z .  I n  the  f i rs t  pa r t ,  we 

u s e  the  e s t ima te  

lAdle (ttny)13 = (,un2) ~ IIo(t~,y)[ 3 + O(]l~2n q+2ea*+i/2A ~2Q+1 y2~.-(1-lISA)) 

+ 0 ( / ~ §  X~+2 (/~,y)~.-2a-, /2a)) ,  (40) 

-which follows from the  observa t ion  t h a t  
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~5(~)=j~ et~j,, at,... ~.I.(~,~t)et, 
J t q - i  

a n d  therefore  

A] Iq (g~ y) = (~t~ 2)e I o (#n y) + O{~t~ + I~Q + 1 (fin y)~~ 

since I_~(y)=O(y~O-(1-1~A)), a n d  Io(y)=O(y~~ [el. (13)]. W e  also use 

e s t ima te  

A~lq(~u,~y) = O[(/~)t) ~ (/~=y)~']. 

Thus  ;2-eq ~ Ib'~]~'lA[Iq(lany)]~ ; (  ) 

say,  where  

N o w  

y2Alq < ~n << z ,an <~ z ~.r 

1/2A~ 
= 0  "~ 

J bn[2 

I O(x2o.+llog~,x. ~2A~(2fl-O-l-1/2A)), if 2 f l - ( ~ -  1 - ~ - ~  > 0 ,  

1 O(x~*"+XlogB'+lx), if 2 f l - 6 - 1 - ~ = 0 .  

1 O(x~~ if 2fl - ~ - 1 - < 0, a n d  ~ / -  2 A '  

0(1),  if 2fl - ~ - 1 - ~ < 0, a n d  ~ is suff icient ly large. 

53: 

(41) 

the  s imp le r  

(42) 

We  shall choose ~ = 1/2A if 2 f l - ( ~ -  1/A > 0 ,  a n d  ~/ suff ic ient ly  large if 2 / ~ - ( ~ -  

1/A <~0. Accord ing  to  this  choice of ~/, we h a v e  

f[ ~-2q ~. dy = 
y2A~ *~ ]ln <~ Z 

0(1),  if 2 / ~ - ( ~ - 1 ~ < 0 ,  

0(x2~"+1), if 2fl - (~ - ~ > 0, a n d  2fl - (~ - 1 - < 0, 

1 1 
O(x ~p-II'~ log~'x), if 2fl - (~ - ~ > 0, a n d  2fl - (~ - 1 - ~ > 0, 

o(x o.+llog +lx), if 1 > o ,  and 

(43) 
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On the other hand, 

f[ ~ - ~ .  Y~ 
la~ ~ y 2A ~I 

dy=..<..E ~,~+,) Ilo(~.y)l~ dy 

( b* t.~ ) "~- O ~ ~ [  n l "[~,n'f~+2m~ l |  ll2An"]" '~a~'2mo-(1-1/2A) dy 
P n<-z I "~'n J Pn 

of~+2mo+l/A f ]2 .  ac2ea.-2(1-1/2A),.1,~t~ +0 ~ #~+o--~'t~. i ~.~ .~ :, ~a! 
p~<~z d/a~ l 

= M z + M 2 + . M  ~, say. 

"To estimate M2, we observe that 

~ince 20)0+ 1-7:4=0, by assumption, and 

b 2 I O(xZan(~-l-a)l~176176 if 2 f l - 1 - 5 > 0 ,  

~" [ b n l 2 , x 2 ~ 1 7 6  O ( x ~ ~ 1 6 2  if 2 f l - 1 - 6 = 0 ,  

t,.~z,u~ I O(x2~ if 2 f l - l - e $ < O .  

This, together with the estimate immediately preceding (43), implies that 

M 2 

0(1), if 2 f l - o - l < 0 ,  

1 1 
O(xe~ if 2 f l - O - ~ > 0 ,  and 2 f l - O - l - ~ - ~ < 0 ,  

O(x2~-llalog~'x), if 2 f l - O -  >0, and 2 f l - d - l - ~ - ~ > 0 ,  

- 1 > 0 ,  and 2 f l - ~ - 1 - 2 - ~ = 0  , O(x2~ if 2 f l -~  A 

(44) 

according to our choice of 7- 

The estimate of M a is the same as that of M2, provided that 20) 0 + 1 -  27 =t:0, 

as can be seen from the fact that 

b 2 

i . i  z 
r ~ 

If, however, 20) 0 + 1 -  27 ---0, then we have 
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M3= O (log x " x'7 ~ ~ I  

= 0 ( logx  �9 x2~~ zZ'-y~lbnl2~tn ) 

O(w 2A'(2fl-l-o) " log f l '+ lx  " z2a~~ if 2 f l -  1 - 5 >0 ,  

= O(log ~'+2 x" x~~ if 2fl - 1 - (~ = 0, 

O(x~"+i-'~logx), if 2 f l - l - O < 0 .  

Thus, in any  case, we have 

1 
0(1), if 2 f l - 5 - ~ < 0 ,  

1 1 O(x2'~*+~), if 2 f l - ( ~ - ~ > 0 ,  and 2 f l - 5 - 1 - ~ - ~ < 0 ,  

M 3 =  A 1 O(x2~-~/Alog~'+~x), if 2fl--(~-- >0 ,  and 2 f l - 5 - 1 - ~ - ~ > 0 ,  

O(x ~'~ ~'+lx), if 2 f l - 5 -  >0 ,  and 2 ~ - ~ - 1 - ~ - ~ = 0 .  

(45) 

We now estimate M 1. We have from (13), 

I0(y) = ~ ~ v  ~.-~'~ �89 [e'(~"~+~, ", + e~(~"~*+~ )] + o(vo~247 e~=-~,(o), 
v=0 

so tha t  the first term in the asymptot ic  expansion for IIo(~ny)l 2 leads us to consider 

I bn [ 2 ~ x Ih 1 
2 t~O ~ ~ | l / 2 A t l  (]L~ny) gY=cl ~ f~~n+l/2~ --~t~"+l)J~A'~), Cl=�89 

prt~z  I..r ~1 ~n p n ~ z  

An estimate of the second term here was already given immediately ahead of (43). 

The first term gives 

Ibnl 2 x~o.+l 
I~rt <~ z 

1 c~x z~'~ + O(x ~'~~ log~'x �9 x 2A'(2~-i-~ if 2/~ - ~ -  1 - ~ < 0, 

1 = O(X 2aj~247 l o g ~ ' x  " X2A~(2/~-0-I-1/gA)), if 2fl-- (~-- 1 -- ~-~ > 0, (46) 

1 O(xe'~~ if 2 f l - ~ - l - ~ - ~ = 0 ,  
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~-~ence 

0 / .  ~ 1/2a1~ 

C2X 2r @ 0(1) ,  

0(x2~'-~1), if 

0(~2~-1~* log~" ~), 

O(x z~'~247 log ~'§ x), 

if 2 / ~ - 6 - A  <0 .  

1 1 
2 f l - 6 - ~ > 0 ,  and 2 f l - ~ - l - ~ - ~ < 0 ,  

if 2 f l - 6 -  >0,  and 2 f l - b - l - ~ - ~ > 0 ,  

1 1 
if 2 ~ - ( ~ - ~ > 0 ,  and 2 ~ - 6 - 1 - ~ - ~ = 0 .  

The other terms in the asymptotic expansion for IIo(p,~y)] z lead to 

b z l'x I b Iz /'z 
~:/ ~l nl !| t ,~- ~ptn[" yl" '2~~ d~y-- A~x" ..~1 nl II l,~a,~ y~'~'a'*-l/2"4dy = O(x2~176176 

pn<~z ]b~n 3,u n" "~ pn<z ]i.~n ,,]la X ", 

which is of smaller order than (47). Thus relations (42) to (47) give us 

~ f  2 Q 2 

pn<~z ~ n  

1 ~<0, %x 2~'.§ + O(x 20'.§ log~'+lx),  if 2 f l - ~ - ~  

1 1 
O(x~'+l),  if 2 f l - ( ~ - ~ > O ,  and 2 f l - O - l - ~ - ~ < O ,  

1 1 
o ( ~  2~-l/A log ~'§ ~), u 2 f i -  ~ - ~ > 0, and  2 f i -  ~ - 1 - ~-~ > 0, 

1 1 
O(xZ,~+~ log~,+l x), if 2fl - a - ~ > 0, and 2fl - a - 1 - 2-~ = 0. 

On the other hand, the second part  of the series for W 1 leads us to consider 

(47) 

(4s) 
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Ibd ~" I~/o(~,=y)l= ~_~ 
la~+o ) dy 

Itn > Z 

,,2(~+0 | 
/~n>z /~n J 1 

\ l ,a> z/.~n 

= 0 (z ~e-l-2(e+~ log~" x �9 x ~~176 

=O(x2~~ loga'x X2A,(2~-~-~-V=a)) �9 . . 

for ~ large enough, 

(49) 

F rom (48) and (49) we obta in  

f [ 2- 2eWl (y) dy 

c2x ~'~'+1 + O(x 2'~~ log a'+l x), 

2fl - ~ - 1 > 0, O(x2~*+l), if 

O(x2ea, +1 l o g  B'+I X �9 X 2 f l - 8 - I - 1 1 2 A ) ,  

t 

if 2 f l - 5 - A < 0 ,  

and 2 f l - ~ - 1 - ~ < 0 ,  

1 
if 2 f l - ( ~ - ~ > 0 ,  and 

1 
2 f l - O- ~ - - ~ -  l >O. 

Let  us now est imate S~2-2eW2(y)dy, We have 

bm ~n Aqa Io (pro Y) " Aeaio. (pn Y) 
W=(y) = m.n ~ (/~=/*n) ~+~ 

m # n  

(5o) 

I t  will be sufficient to  est imate the par t  W~ of this sum for which pm >pn,  since 

W2(y ) = 2 R e  W~(y). We shall write 

W~ (y) = W2.1 (y) + W2.2 (Y) + W2.3 (Y), 

where 

Now 

W2.1---- ~ , W 2 . 2 - - - - - - ~ ,  W2.3---- 
l an~z  l~a~z  pro> p~ > z 

I~a < ltm ~.2z I~ra~2g 

i*,~<z tlXmPn) .]1 
t~n < ltm < 2Z 

= o E - -  �9 . . - 7 ~ - ~  

/*a<pm<gZ I b m b n l  X 2 t a ' + l - l l 2 A ( l b g m l X n ) O l 2 A ~  

( I* ,~ la , , )  ~ + Q - "  e ~ . ,  - e . ,  
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because of (13) and (28). Note that  the first term in the asymptotic expansion for 

I e leads to this estimate, the later terms being of smaller order. By assumption (37), 

Cl.tn=n, and for 0~<~<1, we have 1 - ~ < c ' ( 1 - ~ v 2 a ) .  Thus 

Ibmb.I m1-"2~ t ;~-2~W2"(y)dy=O(x2~~ (mn)a+~-~'-ol~'a mZn / 

for 

( ( n)) 
= 0 X 2~ ~ .mn .O+o_ea_o /2A  1 -{" 

n < m <2cz Tit - -  n 

= O [X 2m~ 1og~'+l X (X 2a~(e~-e-l/a) + log X)], 

Ibmb=l 1 
, <m~<~ (ran) ~+~-''-~l~a n -x m lt~a" (m - n) 

1 Ib.b.+~l ( 
= k<2~zZ ~ n<2c~-k~" nO-U- l (n+k)  ~-u+a/2"' u = f l  . . . .  

1 Ib.b.+~l 

Ib.r 

1 
O(loga'+2x), if 2 f l - a - ] = 0 ,  

1 
= O(.T, 2Ari(2fl-IJ-1lA) log a'+l X), if 2 f l -  O -- ~ > 0, 

O(1ogx), if 2 3 - 6 - 1 < 0 ,  

and similarly 
Ib,.b.I 

na+O-,,,--Q/2a m0+~-~-~/sa +a/sa n<m<C~cz 

= 0  

= 0  

1 
O(log a'+2 x), if 2 f l -  a - ~ = 0, 

O(x2n'7(2~-a-xla)loga'+Xx), if 2 f l - 6 - A > 0 ,  

1 
O(logx), if 2 f l - 8 - ~ < 0 .  

61) 
2 

(51) 
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Next let us, in view of (28), consider 

f ~2-2~W2.~ (y) dy 
1 

[bmbn[ ,oI2A [, 1-112A -4- Z -1/2A" ~\ u,n tl~,m ~"m]| 

pm~2z 
The O-term gives 

Since pmZ -~2A ~>/~-1~, this is 

2 4A" 

~ ~ u  ~ Ibml 7~-l]2A[i'~m] = 0  [ ~ Ibnl "~ [bml "Z -1/2A] 
0 

~>~2.~ ]a~ /am - p~ J ~ <~ z z ~m>~2z [~m J 

since ~m =/~m - /~ ,  +/~n ~/~m -/~n + z ~< 2(/~m -/~n). Now hypothesis (35) implies that  

~. Ibn[ = 0(x~logt~" x), 
pn~x 

hence the O-term gives 

O(Z. u l o g  fl'12 2:" Z u-QI2A l o g  ~'12 Z" Z-112A ), 

since u > 0 ,  as a consequence of the functional equation [2, (5.1)], and this is 

O(Z 2u-OI2A-II2A log ~" z) = 0(x ~a"(2u-o/2A-1/2a) loga' x). 

Hence f[2-e~W~. ~(y) dy = O(x s~~ log~' x �9 x~An(z~-~- ltA)). 

Finally we have, from (28), 

~;~-2'W23(Y) dy:x-2'(1-1/2A-rl)+2a~.O[z<Ia~a<p m ]bmb+~ ~ [;TI-ll2A-~xI-112A-'/.~llm2A~] 
, j j (la.,la.)~ 5- 

Since ,u~A >~ Z 11~A = X n, the O-factor is 

O[~=l~n~>czn'-1-.~lS+~--~,~xl-1/2A-rl(n-{-~' ] " 

By hypothesis (35 )we  have 

B(k, t ) ~  Z }b~b,+k[ = 0 [ f  - t  (t + k) ~-�89 log o. (t + k)]. n<.t 

59 

(52) 
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[bnbn+l,I 
~- nd+~(n+k),~§ d=0+e-o)-fl 

n~c~ 

0 ,o 

= O ( z  1-112A -7  z - 2 a  log~' +1 z), 

since Q is as large as we require. Thus 

j *~2- ~ W~.a (y ) dy 
1 

= O(  X-  2q(1 - 1/2 A - rD + 2m X 1 - I/2A - r I xSA ~(2fl + 2~ - 20 ~- 2~) 1Ogfl" + 1 X) 

= 0(~.  2~ 1 O d  "§ X" x2A~(2'8-~-llA)), 

From (51), (52), and (53), and the definition of W~(y), we obtain 

f [ ).-~W2(y ) dy = x log x)]. O[x.2o.+ l-1/2A log~ "+1 + 

(53) 

We now consider (50) and (54), and, as before, choose v/ large and positive if 2 ~ -  

- 1/A <<. 0 (which implies tha t  2 ~ -  ~ - 1 - l[2A < 0, since A ~> 1), and ~ = 1/2A if 

2 f l - ( ~ - 1 / A  >0.  We then obtain 

12 dy [w(y) 

[ C2X2e~+l+O(x2~+l-112Alo~'+2X), if 2 f l - $ - A < 0 ,  

O(x2a~-t ' l) 'gFO(x2fl+l-2/Alog'8*+lX,),  i f  2 ~ , ~ - A ~ 0  , a n d  2 ~ - { ~ - 1 - ~ A  ~ 0 , ( 5 5 )  

We next  estimate f~ ] V(y)]2 dy in (32). We note that  V(y) = Iz~ (y) + V 2 (y), where 

Vl(y)~O(2yq-llog'-Xy), V2(y)~O(~u<a,,<u+qa]an]) , according to (9). Here q is the 

maximum of the real parts of the poles of r and r is the maximum order of a pole 

with maximum real part. I t  is obvious that  

(54) 
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f]  ]W (y)12 dy = 0 (2c  2 q - 1 + 2 c  log ~-2 x), 

where c is defined as in (38), while 

2 

because of assumption (37) so that  

61 

= O a 2 At+c ,  \l<an~<z+e~ ~-aluA-,). (x<~.~<~z+.xr n]" n ) : O (  ~ clanl 2" 

If 2 f l -  ~ -  1/A ~< 0, we have chosen ~] large and positive, so that  

f~iV~(y) l ~ dy 0(1). 

If 2 8 - ~ -  1/A >0,  we have chosen ~1 = 1/2A, in which case 

f [  { O(x~+~c-l l~ if 2:r + 2c-1# 0' 
IV2(Y)]*dY= O(log~'+Ix), if 2 a + 2 c - 1 = 0 ,  

provided that  we assume not only (35) but also (36). Thus we have, in any case, 

f[lV(y) = O(x eq-l+2clog u~-2 + O[(x u*-x+2~+ lo f t  (56) i s dy X) log X) ~] ,  

Finally we have to consider 

; ~ : Q ( W V  + WV)dy=O(;,~-'[W[.,V, dy). 

We first assume that  2 8 -  ~ -  1/A < O. Then 2 u ~ 2 f l -  ~ -  1/2A <. 1/2A, or 2Au <. �89 
From a previous paper [2, (4.20)] we have the estimate 

W(y) = O()t ~ - 2 ~  yO/2-~/4A+(2~-1)~), 

so that  2-qW(y) = O(y a/~-l/4~+2A'~) = O(y~ 

since .~=--,~(y) = yl-ll2A-,~ = y~. Hence 
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2-+[Wl" 2 la.l 'dY = 2 [a~[. f oy=o+uA':dy 
. y < ~ . a ~ y + Q ~ t  I < I , ~ X + ~  .] ) . n -  ~). n 

= E l a d : ~  , :~ - 
l<),n~X+q.Ve 

since 2 A u -  1 < O, and z/ is large and positive (irrespective of the precise order of 

~ . < .  la.]). Similarly 

f [ 2  -~ [W]. = 0(1), Vl(y) dy 

in case ~/ is sufficiently large. Thus the order of magnitude of S~2-Q[WI'[V[dy is 

smaller than that  of S~ 2-~ IY(y) l 2dy. 

We next consider the case 2 f l -  ~ -  1/A > 0. In this ease we have chosen ~/= 1/2A. 

We have 

f[z-~[wl lVldy<<. (f;~ 2~ (F[V(y)':dy }' 
= O(x~~ +1 + x u~+l-21A log+ "+1X)�89 O(x 2~+I-2tA 1og:'+ 1 x)�89 

on using (55) and (56), if ~ '~>2(r-1),  since a~>q. If ~ = f l ,  a '= f l ' ,  then this term is 

of the same or smaller order than ]~2:2~ 

Hence we have the following 

T H E O R ~  1. I/  /unctional equation (4) is satisfied with ~>0 ,  A~>I, and tz~=c' n, 

2~=c"n, and the only singularities o/ qJ are poles, and 

E Ib=l  +- = O(x ~-' log +- x), 

then /or 2 f l - 5 - 1 / A  <.0, we have 

f :lE(y) 12 = c2x 20~'+~ + O(x 2~'+',2A log+ "+n x), (57) dy 

where Wo= ~ / 2 -  1/4A, and the error-term E(y) is defined by (9). 

/ /  2t3- ~ -  1/A >0, then on the basis o/ the /urther assumptions that 

E la.I ~= o( x2~-I log+'X), 

and that fl' >~ 2 ( r -  1), where r is the maximum order o/ a pole with maximum real part, 

we have 

f *[E(y) = O(2 ~'+a) + O(x 2fl+l-21A log+ "+1 x). (58) dy 
1 
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Thus, i/ 0 < 2fl - ~  - 1 / A  < 1 / 2 A ,  we have 

FIE(y)]2 = O(x2~.+,), dy 

and if 2 f l -  ~ - 1/A >~ 1/2A, then 

f ~[E(y) = O(x ~+1-21~ log ~' §  12 dy X). 
1 

The above theorem yields a number  of results on the mean value of the error- 

term associated with several arithmetical functions. When applied to the Dedekind 

zeta-function, i t  gives new results on the number  of ideals with a given norm. 

Let  K be an algebraic number  field of degree n, and ~ an ideal class in K. 

The Dedekind zeta-function of the class ~ is defined by  

~K(s, ~)= Y (;va) -~, 
ae~ 

where the summation is over all non-zero integral ideals in ~. We may  write 

~K(s, ~) = 
a k ( ~ )  

k=l k s ' (59) 

where ak(~) is the number  of ideals in ~ of norm k. I t  is known tha t  ~K(S, ~) is a 

meromorphic function with a simple pole at  s =  1, with residue, say, 2, which is in- 

dependent of ~, and satisfies the functional equation 

~(s, ~) = ~(1 - s, ~), (60) 

where ~ (s, ~) = pr, (�89 s) Pr'  (s) B -s ~K(S, ~), 

with B = 2~zt~/2(]A]) -�89 . 

Here r 1 is the number of real conjugates of K, 2r 2 the number  of imaginary con- 

jugates, A is the discriminant, and ~ is the class conjugate to ~. 

The Dedekind zeta-function of K is defined by  ~K(S)=~a(-Na) -s, where the sum- 

mation is over all non-zero integral ideals in K. Clearly ~x(s) = ~ ~x(s, ~), and satisfies 

the functional equation 

~(8 )=~(1 - s ) ,  

where ~(s)=F~' ( �89 -s ~K(S). I t  has again a simple pole at  s =  1, with residue 

2h, where h is the class number of K. We may  write 
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where ak is the number  of integral ideals of norm k. 

F rom a previous paper  [3] we have, for n ~>2, 

~ a~ = O(x log "-x x), 
k~<x 

and, if the field K is Galois, then 

al  ~e"  z log"-I  x. 
k<~x 

I f  we apply  Theorem 1 to the function ~ ( s ,  s which satisfies equat ion (60), 

and note t ha t  ~ = 1, A = �89 fl = 1, f l ' =  n - 1 ,  r = 1, we obtain the following 

THEOREM 2. Let K be an algebraic number /ield o/ degree n, ~ an ideal class 

in K, and ~ ( s ,  ~) the Dedekind zeta./unction o/ the class ~, given by 

~ ( s ,  ~ ) =  
ak(~) 

k=l  k s 

Let E(x)=~k<xak(~)--~x, where ~ is the residue o/ ~K(s,~) at s = l .  Then, i/ n = 2 ,  

we have 

f i lE(y )  = X 3/2 -~- log a (61) i s dy O(x X),  C 2 

and, i/ n > 2, then 

f X]E(y) I s = O(x a-4jn (62) dy log" X). 
1 

Remarks. I. Let  us consider the ease n = 2 .  Relat ion (61) implies t ha t  

1 f~[E(y) ldy= O(xt). (63) 
X J 1  

From a previous paper  [2, p. 128] we know tha t  

- -  E(z) 
li_m ~ = + ~ ,  (64) 

so t h a t  (63) seems to be "bes t  possible". 

I f  n > 2 ,  then  we have 

1 f[[E(y) l dy = O ( x  1-2/n logn/2 x) ,  (65)  
x 
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as against  the  ~ - resu l t  [2, (8.18)] 

- -  E ( z )  
lim x(=_l)/2 = - _ oo. (66) 

We notice t h a t  for  n =  3, the  two results (65) and  (66) seem to f i t  in, whereas for 

n>~4 it  is difficult to  ma in ta in  t h a t  ei ther  of t h e m  is "be s t  possible" .  

I I .  I t  is obvious t h a t  Theorem 1 applies also to L-series, and  to Heeke ' s  zeta:  

funct ion with  GrSssencharacters,  cf. [2, w We get  mean-va lue  theorems for  the  

character-sums.  We do not  write down the  actual  results, since they  are ve ry  similar 

to (61) and  (62). 

w 5. Applications to classical arithmetical functions 

I f  r2(n ) denotes the  n u m b e r  of representa t ions  of n as a sum of two squares,  

the  propert ies  of the generat ing funct ion ~(s )=~=lr2(n) /n  ~ are well known [1]. We  

have,  further ,  the  p rope r ty  [12, p. 84] 

~ r~ (n) = O(x log x). 
n<~x 

Hence,  b y  Theorem 1, 

f[IP2(y) dy c I O(xlog ax), i s X3/2 + 

where P 2 ( x ) =  ~n<~r2(n ) - : t x ,  a result  which is due to  Cramfir, Landau ,  and  Walfisz, 

as s ta ted  in w 1. 

We can similarly consider ra(n), the number  of representa t ions  of n as a sum of 

three squares. I t  is known [1, p. 502] t ha t  ra(4n)=r3(n), and t h a t  if n=g2q, where q 

is square-free, and  4Xn,  then  

ra(n)<<.c~'gl+~ra(q), 0 < e < l .  

I t  can also be p roved  f rom the explicit  formula  for  ra(n ) t h a t  ra(q)=O(Vqlogq). 
Fur the r  we have  [2, Th. 4.1], ~'n<~ ra(n) = 0(x312). Hence  

ra(9 q) =0  Z 9~+2~r~(q) 
n<~X glq<~x \gtq<~x / 

=O[Lg~<.xg2+e~g q<xl~ ~ 'ra(q)] "O(x�89176 

= O(x ~' log x)" 0 | x  t ~. ~-2| = O( x2 log x). 
\ g,<~ g / 

5- -642906  Ac t s  mathematics  112. Impr im6 le 22 septembre 1964. 
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Theorem 1 will then yield the result  

f f  [ P3 (Y)12 dy = O(x 2 log ~ x), 

where Pa(x)=~<~r3(n)-z~txt/F(5/2).  Jarn ik  [7] has, however, shown t h a t  

f [ ] P3 (Y) ]~ dy = c 1 x 2 log x + O(x ~ log t x). 

Similar results can be obtained for rk(n) for k~> 4. 

I f  d(n) denotes the number  of divisors of n, then ~=ld(n)n-S=~(s) ,  the square 

of Riemann ' s  zeta-function; and  we have [10, p. 133] 

d 2 (n) = O(x log a x), 
n ~ x  

so t h a t  Theorem 1 gives 

ffl A(y ) [3 dy = c~" x j + O(x log 5 x), 

where A(x)=  ~ n < x d ( n ) - x l o g x - ( 2  7 -  l )x ,  which is an improvement  on Cramdr's  re- 

sult (3). We have found a reference to a similar improvement  in [11], though we 

h a v e  no t  seen t h a t  paper. 

I f  T(n) denotes R a m a n u j a n ' s  function, then it is well known tha t  ~n~l T(n)n -s 
satisfies the functional  equat ion (4) with 2~=l~n=2gn, ~ = 12, a~=bn=z(n), and  tha t  

[6, p. 172] 

n ~ x  

Hence, by  Theorem 1, 

f~] T(y)12 dy =cax a2j + O(x TM log 2 x), 

where T(x)= ~n<xv(n),  a result  which is due to Walfisz [13]. 
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