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1. Introduction

What does it mean to cut a topological space X along a subset A? Consider two
examples:

(1) X is the plane, and 4 is a triod (i.e. a Y).

(2) X is a Mobius band, and 4 is the equator.

Note that both sets 4 have empty interior, or, in the terminology of [20], are thin;
this is necessary if “cutting’ is to make muech sense. Now in both examples, it is intuitively
clear what happens when X is cut along A: The space X is replaced by a space X, and if (2)
p: XX is the function which maps each point of X to the point of X where it came from
before cutting, while A denotes p—(4), then p maps X — A homeomorphically onto X — 4.
In (1), X is the plane with a (topologically) circular hole, and A is the boundary of the hole.
In (2), where cutting is occasionally performed as a parlor trick, X is a cylinder, A is a
circle which is one of the two components of the boundary of X, and p|A is a double
covering. Let us try to identify those common properties of p and A< X which will lead to
a general concept of cutting. (3)

First of all, p is continuous and closed, and—as observed above—maps X —A homeo-
morphically onto X —A. Moreover, in both examples p|A is finite-to-one, but in general
this requirement must be somewhat relaxed, as the following example shows:

(3) In the plane, X consists of the intervals joining (0,0) to (x,1) for all  in §=
{1,4,%,...,0}, and 4 ={(0,0)}.

(1) Supported in part by a National Science Foundation grant.

() We use —— to denote an onto map.

(®) It should be noted that a somewhat different method of cutting was implicitly considered by
R. H. Fox in [7]. In many important cases (including Examples (1), (2), and (3)), Fox’s cuts agree with
ours; in general, however, Fox’s map pp is a restriction of our map p, and the range of pp (unlike the
range of p) need not be all of X. The exact relation between these two ways of cutting will be established
in section 186.
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In this example, it is intuitively clear (remembering that X —A must be homeo-
morphic to X —.4) that X consists of the intervals joining (z,0) to (z,1) for z in S, while 4
consists of the points (x,0) with = in S, and p is obvious. Note that here p| A is not finite-
to-one (since p~1(0,0)=_8 x {0}), but it is (compact, totally disconnected)-to-one, and that
will always be the case.

To isolate the essential property of A< X, consider what would happen if we cut X
along A. If the original cut of X along A was performed properly, the answer must be:
Nothing happens. More precisely, if p: X—>X is the map obtained by cutting X along A,
then p is a homeomorphism. Now the crucial property of A< X which causes this behavior
is that A nowhere cuts X in the following sense: (1) A is thin in X, and whenever €A and
U is a neighborhood of z in X, then U — A does not split into two disjoint open sets both
having x in their closure.

This completes our discussion of what to expect from cuts, and brings us to our
principal theorem, which asserts that, for Tychonoff spaces, such cuts are always possible,
and are essentially unique in the following sense: If p: X——X and p,: X,;——X are both conse-
quences, satisfying our conditions, of cutting X along A4, then p and p, are equivalent;

that is, there exists a homeomorphism k: X-—X, such that p=p,ok.

THEOREM 1.1. Let X be a Tychonoff space and A a thin subset.(2) Then there exist—
essentially uniquely—a Tychonoff (3) space X with nowhere cutting subset A, and a continuous
closed p: XX which maps X —A homeomorphically onto X —A and maps A (compact,
totally disconnected)-to-one onto A.

In the situation described in Theorem 1.1, we will say that (X,A,p) is an (X, 4)-cut.

After some preliminary results in section 2 on proper maps (i.e. closed maps with
inverse images of points compact) and monotone-light factorizations, and in section 3 on
nowhere cutting sets, the proof of Theorem 1.1 will be given in section 4. It is not long, and
depends only on Propositions 2.3, 3.5, 3.11 and 3.12.

Since the map p in Theorem 1.1 is proper, it follows [12; Theorem 2.2] that if X is
compact, so is X, and if 4 is compact, so is A. The same is true for paracompactness and
local compactness [12; Theorem 2.2]. Unfortunately, however, metrizability of X need

not be inherited by X, as the following example shows:

(1) This concept (but not this terminology) was introduced by J. de Groot [11]. (See also Freu-
denthal [7].) For compact spaces, it has recently received considerable attention from Sklyarenko
(see, for instance, [17]), who calls Y a perfect compactification of X if ¥ —X nowhere cuts ¥. While some
of our work is similar in spirit to Sklyarenko’s, there is little overlap.

(2) Note that we need not assume that A is closed.

(®) Propositions 2.4 and 2.5 imply that essential uniqueness actually extends to Hausdorff spaces
X (since, subject to the other assumptions, they are automatically Tychonoff spaces).
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(4) X consists of 0 and all »~1 for n=1,2,..., and 4 consists of 0 alone.

Here geometric intuition is little help in determining X and p: X—X. (Note that X == X,
since X —A splits into {n~!|n even} and {n~|n odd}, both having 0 in their closure).
As a matter of fact, X =p(X — A) (that is, the Stone-Cech compactification of the countable
discrete space X —A), and p is the unique extension of the identity map on X —A.(%)
This follows from Theorem 1.1, once it is known that (X —A) is totally disconnected
{10; p. 90] and that, if K is a Tychonoff space, E — E nowhere cuts SE (Proposition 3.5).
This example is rather typical; whenever one’s geometric intuition fails to produce X
for metrizable X, one may expect X to be non-metrizable. All the same, it would be nice
to have a somewhat more precise criterion for metrizability, and fortunately—at least for
separable metric X—a very satisfactory one is available. Let us say that 4 <X nowhere
scatters X if, whenever a€4 and U is a neighborhood of ¢ in X, then any disjoint open
covering of U — A4 is locally finite at a. This concept is discussed in section 6. Now it is not
hard to show that A nowhere scatters X if and only if 4 nowhere scatters X (Proposition
7.2), and that, in a first countable (2) space, nowhere cutting sets are nowhere scattering
(Proposition 6.2). Hence if X is to be metrizable, or even first countable, 4 must nowhere
scatter X. (This implies that, in Example (4) above, X cannot be metrizable). That estab-

lishes the easier half of the following fundamental result, proved in section 7.

TarorEM 1.2. If (X,A,p) is an (X, 4)-cut, and X is separable (3) metric, then the fol-
lowing are equivalent.

(a) X is separable metric.

(b) X s first countabl

(¢) A nowhere scatters a.

For compact spaces, Theorem 1.2—together with Theorem 1.1—has some bearing on
the Freudenthal compactification [8], which is discussed at the end of section 7.

While in general we have only an existence theorem to guarantee that cuts are pos-
sible, there are three situations where we can describe them more explicitly. Firstly, if X
is metrizable, 4 nowhere scatters X, and X — 4 is locally connected, then X is simply the
completion (or part of the completion if X is not complete) of X — A remetrized in a natural
manner (see section 8). Secondly (see section 9), if X is a locally finite simplicial complex

and A a subcomplex, then X and A are also easily described complexes, and p is piecewise

(') More generally, X =f(X — A) whenever X is compact metric and X — A4 is 0-dimensional.

(2) X is first countable if, for x € X, there exists a countable base for the neighborhoods of z.

(3) I do not know whether this result, or something like it, remains true for arbitrary metric spaces.
(See, however, the special cases treated in Theorem 8.1 and Proposition 11.1.)
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linear. Finally (section 10), if X is a mapping cylinder with base A, then X is a mapping
cylinder with base A.

Perhaps the most important example of nowhere cutting sets are sets which are
collared in the sense of M. Brown [5] (see Example 3.6). If A is collared in X, we say that
A is multicollared in X, and such sets are studied in section 11.

In section 12 we show that if a thin subset has certain properties locally, then it also
has them globally. A typical result, whose proof depends on a theorem of M. Brown [5;
Theorem 1], asserts that a locally multicollared subset of a metric space is multicollared.

If X — A has only finitely many components, then these are in a natural one-to-one
correspondence with the components of X, and, under certain additional hypotheses
(which are always satisfied if X is E* and 4 is non-empty, closed, and connected), with the
components of A. This is proved in section 13.

In section 14 we generalize the process of cutting to a process for “completing a spread”’,
and generalize Theorem 1.1 accordingly. In section 15, we compare this completion process
to a somewhat different one due to R. H. Fox. In section 16, finally, we compare the cutting
process which grows out of Fox’s completion to the one studied in this paper.

To conclude, the author gratefully acknowledges many helpful conversations with
Morton Brown and John Isbell.

2. Proper maps, monotone-light factorizations, and spreads

According to. Bourbaki [4; § 10, Definition 1 and Theorem 1], a continuous map
f: E—F is proper if it is closed, and inverse images of points are compact. (Such maps are
called compact by Vainstein [21], fitting by Henriksen and Isbell {12], and perfect by
Aleksandrov [1].) Proper maps are compact in the sense of Whyburn [24; 8] (i.e. inverse
images of compact sets are compact); the converse is true in metric spaces [24; 8.2], but
not in general.

The following result is known, but I have not found an explicit statement in print.

ProrosiTioN 2.1. Let f: E—F be proper. If E is dense in o Hausdorff space E,,
and F< F,, then any continuous extension f,: E,—F, of f maps E, — E into F,—F.

Proof. Suppose not. Then there is an « € E, — E with f,(x) € F. Let y €f,(x) and 4 ={~Y(y).
Now A4 is compact and ¢ 4, so there exist disjoint open U and V in E, with z€U and
Ac V. Then z€(UNE) <(E—V), so

y=h@)EFN(f(E-V) =F0((E-V)" =(E-V),

which is false. That completes the proof.



cuTS 5

Proposition 2.1 shows that the requirements of Theorem 1.1 are somewhat redundant.
In fact, if p: X>>X is a proper map which maps X — A homeomorphically onto X — 4, then
p -automatically maps A onto 4.

The following result was proved by Bourbaki [4; § 10, Proposition 5], and will be used

later.

Prorosition 2.2. If h: E—>G and g: G—F are continuous, if G is Hausdorff, and
if f=goh, then f is proper if and only if g and % are both proper.

Recall that a continuous f: £—>F is monotone (resp. light) if f~'(y) is connected (resp.
totally disconnected) for every y € F. If f: E—F is continuous, then f=goh is a monotone-
light factorization of f if, for some @, the map h: E—~—@ is monotone and g: G—F is light.
Moreover, we also require that % be a quotient ( =quasi-compact) map, meaning that U
is open in G whenever A=1(U) is open in E. This last requirement is not standard, but it
permits the conclusion, following Whyburn [23; Theorem 2], that the monotone-light
factorization—if it exists—is essentially unique. In fact, ¢ must then—essentially—be the
space of all components of all f~1(y) (y€F) with the quotient topology, and k: E-—(@
must be the quotient map. There is then a unique ¢g: G——F such that goh=f, and
this ¢ is continuous. If F is a T',-space, it can be shown that g must be light, so that
. then the monotone-light factorization of f exists. While @ is a T',-space whenever F is,
& need not be Hausdorff even when Z and F are both metrizable. If f is proper, however,
then @ is Hausdorff whenever £ and F are Hausdorff, so that ¢ and % are then also
propef by Proposition 2.2. This was asserted by Ponomarev [16] for compact E and F
(which is all we need in the proof of Proposition 2.3 below), but his proof is valid in
general. Since these facts are neither well known nor very accessible, we take time out to
outline their proofs.

To show that g light if F is T, let y€ F, and suppose C<g~(y) is connected. Then
C is connected, and ' g~(y) since g~1(y) is closed. Since the inverse image, under a mono-
tone quotient map, of a closed connected set is connected (this is easily verified), »=(C)
must be connected, and hence is contained in a component of f~}(y). Hence C—and thus
(' —contains at most one point.

To show that G is Hausdorif whenever £ and F are Hausdorff and f is proper, let
Y15 Y2 €G, and let us separate them by disjoint open sets U, and U,. If g(y,) +g(y,), this is
trivial. If g(y,) =g(y.) =2, then h~'(y,) and h—1(y,) are different components of the compact
Hausdorff space f-!(z), and hence [3; p. 233] there exists a clopen C, in f~1(z) containing
h-1(y,) and not A=(y,}. Then C; and C,=/-1(z) — | can be separated in by disjoint open
sets W; and W, Now W=W, U W, is an open set containing f-1(z), so, since f is closed
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z has an open neighborhood V in F with f-{(V)c W. Now if W,/=W,n f-Y(V), then W, is
an open inverse set under h, so we may let U,=h(W /).

The result just proved, together with Proposition 2.2, implies that G inherits any
property possessed by both E and F which implies Hausdorff and is preserved by images
(or inverse images) of proper maps. Among such properties are metrizability [19], para-
compactness [12], and normality [23; Theorem 9], but not the property of being a Tychonoff
space [12; 4.2]. Nevertheless, we have the following result, which is all we shall really need

concerning monotone-light factorizations.

ProrosiTionN 2.3. If f: E—F is proper, and if E and F are Tychonoff spaces, then
so s the middle space G of the (essentially unique) monotone-light factorization of f, and the

factors are proper.

Proof. Let f: BE—BF be the continuous extension of f. If f=%o7 is the monotone-
light factorization of f, then the middle space G is (compact) Hausdorff by the result of
Ponomarev [16] considered earlier. Since f is proper, E=/-1(F) by Proposition 2.1. Let
G =g~Y(F) (so that E=k-Y(@)), and let g=5| @ and h="F| E. Then g and k are proper, and
f=goh is a monotone-light factorization of f, with middle space G. That completes the proof.

Note that Proposition 2.2 was not needed to show that the factors in Proposition 2.3
are proper.

We conclude this section with a look at spreads in the sense of R. H. Fox [7]. According
to Fox, a continuous f: X—Y is a spread if X and Y are T, and if the clopen subsets of all
f~1(U), with U open in Y, are a base for the open subsets of X. Every spread is clearly light,
but a simple example in [7; p. 255, footnote] shows that the converse is false. Nevertheless,
we have the following result, a special case of which appears in [7; p. 255, footnote]. (We
use the fact that a totally disconnected compact Hausdorff space is 0-dimensional, in the

sense of having a clopen (=closed and open) base [14; p. 20, A].)

ProrosiTionN 24. If p: E—F is light and proper, and if E is Hausdorff, then p
is a spread.

Proof. Let x€ E, and let U be a neighborhood of x in E. Let Z =p~Y(p(x)). Since Z is
0-dimensional, there exists a clopen C; in Z with x€C,=(UNZ). Let C,=Z—C,;. Then
C, and C, are disjoint compact subsets of E, so can be separated by disjoint open sets W,
and W,, and we may suppose W, U. Let W=W,; U W,; then W is an open neighborhood
of Z in E, so V=F—p(E—W) is an open neighborhood of p(x) in F, with p~Y(V)<= W,
But now W, Np~1(V) is a clopen subset of p~(V), and

z€(Wynp (V) <=U,
which completes the proof.
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Further results on the relation of spreads to proper maps are found in sections 14 and 15.
The following proposition is due to J. R. Isbell; the analogous result for regular spaces
was proved by Fox in [7].

Prorosition 2.5. (Isbell). If p: E—F is a spread, and if F is a Tychonoff space,

then so 1s K.

Proof. Since p is a spread, ¥ is by assumption T',. Now let z€ £, and let V be a basic
open neighborhood of , so that V is clopen in p~'(W) for some open neighborhood W
of p(x). To define a continuous f: E—1I with f(x) =0 and f(E — V) =1, first pick a continuous
g: F—>I with g(p(x))=0 and g(F —W)=1, and then let f be gop on V and 1 elsewhere.
This f is continuous, since it is gop on ¥ and 1 on E—V, and ¥V and E — ¥ are closed sets
whose union is E. That completes the proof.

3. Nowhere cutting sets

If A is a subset of a topological space X, then A nowhere cuts X if 4 is thin in X (i.e.
has empty interior) and if, whenever a €4 and U is a neighborhood of @ in X, then U —4
does not split into two disjoint open sets both having @ in their closure. (This requirement
clearly need only be satisfied by all U in some local base at a.) Our first three lemmas
follow directly from the definition.

LeEmMma 3.1. The following properties of a thin A< X are equivalent.
(a) A nowhere cuts X.
(b) If U is open in X, and {U,,U,} is a disjoint open covering of U — A, then {U,,U,}

is a disjoint open covering of U (where U, is the closure of U, in U).

The following corollary shows how “nowhere cutting” is related to some similar con-

cepts. The implication (b) = (c) follows from Lemma 3.1, and the others are clear.

CoROLLARY 3.2. Suppose A< X is thin. Then always (a)=(b)= (c); if X is locally
connected, then (a), (b), and (c) are equivalent.

(a) X —A is locally connected at A (i.e. if a€ A, every neighborhood U of a in X contains
a nesghborhood V of a with V — 4 connected).

(b) A nowhere cuts X.

(¢) If U< X is open and connected, then U — A is connected.

Note that, if X is not locally connected, the conditions of Corollary 3.2 need not be
equivalent. For instance, let @ be the rationals, and X =@ x I; then 4 =@ x {0} satisfies
(b) (see Proposition 3.4) but not (a), while 4 =@ X {1} satisfies (¢) but not (b).
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LeEMMA 3.3. Let A< X, and let U be a collection of open subsets of X which covers 4.
Then A nowhere cuts X if and only if A 0 U nowhere cuts U for every U € U.

We now prove two important propositions.

ProrosiTioN 3.4. If E is a topological space, E x {0} nowhere cuts E x I.

Proof. Clearly E x {0} is thin. Now let (z, 0)€E x {0}. Tt suffices to show that, if
U=V x[0,t) is a rectangular neighborhood of (z,0)in E %I, and if {U,,U,} is a disjoint
open covering of U — A, then U, and U, cannot both have (2,0) in their closure. Now for
each x'€V, {2’} X (0,t) is connected, and thus entirely in U, or entirely in U, Hence
U,;=V,%(0,t), where {V,,V,} is a disjoint open covering of V. But then (x,0)€U, only if
2€V;, and that completes the proof.

Note that the proof of Proposition 3.4 actually proves the following stronger result:
If BCY isthin, and Y — B is locally connected at B (see Corollary 3.2), then E X B nowhere
cuts EX Y.

Our next result was proved in the proof—although not explicitly stated in the state-
ment—of [13; Lemma 4]. (See also [17; Corollary to Theorem 1].) For completeness, we
reproduce the proof.

ProPosSITION 3.5. [13] [17]. If E is a Tychonoff space, BE — E nowhere cuts BE.

Proof. Let x€BE — E, let U be an open neighborhood of z in SE, and let U N E split
into two disjoint open sets ¥, and V,. Since E is dense in SE, the set (UN E)” = V.,uV,
contains U, where the closures are taken in 8E. We must show that x ¢ 171 n 72.

Suppose €V, n V,. Pick a continuous ¢: BE—>I such that ¢(x) =0 and p(fE - U)=1.
Define f: E—I by

@)=} if x€V, and gl2)<},
f(x) = @(x) otherwise.

Then f is continuous on each of the open sets V, and E—({z€E|p(x)<}}nV,), and
since these sets cover E, f is continuous on E. The continuous extension f of f over BE
coincides with ¢ on V,, so f(x) =0, and is>} on V,, so f(z) >}. This contradiction shows
that ¢V, N V,, and the proof is complete.

We now come to our list of examples of nowhere cutting sets A< X. For Example
3.6, recall that A is collared in X in the sense of [5] if there exists a homeomorphism %
from A4 x[0,1) onto an open neighborhood of 4 in X such that (a,0)=a for every a€A4.

ExaMPLE 3.6. 4 is collared in X. (This formally strengthens Proposition 3.4, and

follows from Proposition 3.4 and Lemma 3.3.)
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ExaMprrLE3.7. 4 isthin, and X — 4 is locally connected at A. (See Corollary 3.2.)

ExamrrE 3.8. X is an n-manifold, and dim A <n —2. (This follows from Corollary
3.2 and the fact [14; p. 48, Corollary 1] that a connected n-manifold remains connected
after removal of a subset of dimension <n—2.)

Examprr 3.9. X is a melric space, A is thin, and X — A is uniformly locally con-
nected. () (This follows from Example 3.7.)

Examrre 3.10. E is a Tychonoff space, E< X<fSE, and A=X — E. (This follows
from Proposition 3.5 and the trivial fact that,if B nowhere cuts ¥ and if (Y —B)c X< Y,
then BN X nowhere cuts X.)

We now prove some results which will be needed elsewhere in this paper.

ProrosiTioN 3.11. Let f: X—>Y be a quotient map. Let A< Y, with f~'(y) connected
for all y€ A, and suppose f1(A) nowhere cuts X. Then A nowhere culs Y.

Proof. We use Lemma 3.1. Clearly 4 is thin. Suppose U is.open in Y, and {V,,V,}
is a disjoint open covering of U —A4. Let U’'=f-1(U), and V; =f*V,) for i=1,2. Then
U’ is open in X, and {V3, V3} is a disjoint open cover of U’ —f-1(4). If V; is the closure of
V,in U’, then, by Lemma 3.1, {V3, V3} is a disjoint open covering of U’. Since f~!(z) is
connected for all z€4, V; =f-1(f(V/)) for i=1,2, so that {f(V1), f(V3)} is a disjoint open
covering of U. By Lemma 3.1, that completes the proof.

The following result was proved by E. Sklyarenko {17; Lemma 2].

Prorosition 3.12 [17]. Let X be Hausdorff, p: X——Y proper, A< Y nowhere culting,
and p|p~(Y —A) one-to-one. Then p is monotone.

Proof. If y€ Y — A, then p—(y) consists of a single point. So suppose y€4. If p~(y)
is not connected, then p~(y) is the union of two disjoint closed—hence compact—subsets
C, and C,, which can be separated by disjoint open sets W, and W,. If W=W,UW,,
then W is a mneighborhood of p~i(y), so p(W) is a neighborhood of y in Y. Let
V,=W,—p(A); since p maps p~(¥ —A) homeomorphically onto ¥~ A4, {p(V,),p(V,)}
is a disjoint open cover of p(W)—A. Since V, and ¥, intersect p—1(y), both (p(¥;))” and
(p(V,))~ contain y. That contradicts the assumption that A nowhere cuts Y, and the proof
is complete.

If X is normal in Proposition 3.12, then—as the proof shows—it suffices if p is open
or closed (rather than proper).

(') A metric space M is uniformly locally connected if to every & >0 corresponds a 6 >0 such that
any two points x, y of M, with g(x,y) <4, lie in a connected subset of M of diameter <e.
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ProrosirioN 3.13. If ZcY< X, and if Y ~Z nowhere cuts Y and X — Y nowhere
cuts X, then X —Z nowhere cuts X.

Proof. We use Lemma 3.1. Clearly X —Z is thin in X. Let U< X be open, and {U,, U,}
a disjoint open cover of U —(X —Z)=UNZ. Let V=UNY, V,=U;nY,and V,=U,Nn Y.
If W, is the closure of V, in V (4=1,2), then {W;, W,} is a disjoint open covering of V
(Lemma 3.1), and hence, if R, is the closure of W, in U {=the closure of ¥, in U), then
{R,, R,} is a disjoint open cover of U. By Lemma 3.1, that completes the proof.

Recall that (X,A,p) is an (X, 4)-cut if the conditions of Theorem 1.1 are satisfied.

Lemma 3.14. If (X, A, p) s an (X, A)-cut, and if U is open in X, then (p~(U), p~ (U N 4),
p|pY(0)) isa (U, U N A)-cut.

Proof. Clearly U N 4 is thin in U, and p~(U N A) nowhere cuts p~'(U) by Lemma 3.3.
The other requirements for a (U, U N 4)-cut in Theorem 1.1 are also clearly satisfied, and

that is all we need.

4. Proof of Theorem 1.1

Let 7: p(X — A)—>BX be the continuous extension of the injection map j: X —4—X.
Let X =7-%(X), and f=7|X. Then f: XX is proper. We will show that, if p: X—X
and A =p~1(4), then (X, A,p) is an (X, 4)-cut if and only if p is the light factor of a mono-
tone-light factorization of f. Since such factorizations exist (with the middle space Tycho-
noff and both factors proper) and are essentially unique (Proposition 2.3), that will prove
our theorem.

Suppose X A X2 X is the monotone-light factorization of f, with 2 and p proper, and
let A=p1(4). Now f-1(X —A)=X—A by Proposition 2.1, so f maps f~1(X —A4) homeo-
morphically onto X —4, and hence p maps p~}(X —4)=X—A homeomorphically onto
X —A. By assumption, p is light and proper. Finally, A nowhere cuts X by Proposition
3.11, because h is closed and h-1(A) =f-1(4) =X — (X — 4), which nowhere cuts X by Exam-
ple 3.10.

Suppose, conversely, that (X,A,p) is an (X,d)-cut. Let k=p—'[(X—A); then
k: (X — A)~>X is a homeomorphism into. Let k: (X — A)—>pX and p: X—SX be the continu-
ous extensions of k and p, respectively. Then fok agrees with j on the dense set X — A4,
and hence on all of §(X —A4). Now 5~1(X)=X by Proposition 2.1, so k(X)=7"X) =X.
Let ¢ =l—c|f( . Then f=pog, p and g are proper, and p is light, so we need only check that g
is monotone. Note that g-}(X —A) = X — 4 by Proposition 2.1, and ¢ is one-to-one on X — 4;

hence ¢ is monotone by Proposition 3.12, and the proof is complete.
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5. Lifting mappings

In this section we prove a theorem (Theorem 5.3) which generalizes the uniqueness
part of Theorem 1.1. The theorem is preceded by some preliminary results on extending
maps defined on dense sets; these results have some independent interest, and will also be
used to prove Theorem 14.2.

Our first result is a very general extension theorem for continuous functions defined
on sets with nowhere cutting complement. Recall that a set-valued function ¢ from E to
the space 27 of non-empty subsets of F is upper semi-continuous if {x € E|p(x)<V} is
open in E for every open V< F, and that f: E—F is a selection for ¢ if it is continuous and

f(x) Ep(x) for every z€E.

ProrosiTion 5.1. Let ¢: E—2F be upper semi-continuous, with F regular and every
@(x) compact and totally disconnected, and let B< E be nowhere cutting. Then any selection g
for @|(E — B) extends uniquely to a selection f for ¢.

Proof. Uniqueness of f follows from the denseness of E—B. To prove existence, it
suffices [4; § 8, Theorem 1] to show that, if ,€ B and E,=(E —B)U {z,}, then g can be
extended to a continuous f: Ey—F with f(x,) €Ep(z,). Let us do that.

For each neighborhood U of x, in K, let

S(U) = (9(U —{zo})) ™ Nplao)-
Since ¢ is upper semi-continuous, S(U) is not empty. Hence if
$={S(U)| U a neighborhood of , in E,},

$ is a collection of closed subsets of ¢(z,) with the finite intersection property, and so has
a non-empty intersection S.

Now pick any y,€8, and define f: E;—>F by
flx) =g(x) if z€E-B,
1) = yo.

We will show that f is continuous (which will imply that y, is actually the only point in §).

We need only show continuity at x,. So let ¥ be an open neighborhood of y, in F,
and let C; be clopen in ¢(x,) with y,€C,<(V N ¢(x,)). Let Cy=¢(x,) —C,. Then C, and C,
are disjoint compact subsets of F, so can be separated by open sets W; and W,, and we may
suppose W, V. Let W=W,U W,, and U=g-{(W); then {z,} UU is a neighborhood of

x, in B, since ¢ is upper semi-continuous. Let U;=¢g-1(W)) for :=1,2. Now {x,} nowhere
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cuts E, (since B nowhere cuts E), so x, is not in the closure of both U, and U, and hence
{20} UU, or {z,} UU, is a neighborhood of z, But if {x,} UU, were a neighborhood of
Z,, then

9o €8 < S({mo} U Up) = (9(Uy))” =Wy,

which contradicts y,€ W,. Hence {«,} U U, is a neighborhood of z,. But

f(zo} U U) =g(U) U{yo} <V,

so f is continuous at z,, and the proof is complete.

COROLLARY 5.2. Let n: X—Y and q: Y=Y be continuous, with Y regular and q light
and proper. Let A<X be nowhere cutting. Then any continuous g: (X — A)—>Y, such that
7| (X—A)=gog, can be extended unigquely to a continuous f: X—>Y such that x=qol.

Proof. For each z€X, let ¢(z) =g Y(n(x)) =(¢ ' ox) (2). Since ¢ is closed, the set-valued
map ¢! is upper semi-continuous, and hence so is ¢. Also, if € X — A, then ¢(x) is compact
and totally disconnected, and g(x) Ep(x). Hence, by Proposition 5.1 there exists an f: X—>Y

satisfying our requirements, which completes the proof.

TarorEM 5.3. Let (X,A,p) be an (X,A4)-cut, and (Y,B,q) a (Y, B)-cut. Suppose
f: X—=Y is continuous with A>fY(B). Then there exists a unique map f: X—>Y, with

A o 1-4(B), making the following diagram commutative.

f

el

X
’
X

I} f is a homeomorphism onto, so is f.

Proof. Define g: X—A—Y by g(x) =¢~1(f(p(x)), and note that g is single-valued and
continuous. Let & =fop. The first assertion now follows from Corollary 5.2.

If f is a homeomorphism onto, we similarly obtain a continuous h: Y—X such that
poh=f-1loq. But hof is then the identity on the dense set X — A, and hence on all of X,
and similarly foh is the identity on Y. Hence f and h are inverse homeomorphisms onto,
and the proof is complete.

Note that Corollary 5.4, with f a homeomorphism onto, yields a new proof—not de-

pending on section 2—of essential uniqueness in Theorem 1.1.
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6. Nowhere scattering sets

Recall from section 1 that a subset A of X nowhere scatters X if, whenever U is a neigh-
borhood of @ €4, then every disjoint open covering ¥ of U — A4 is locally finite at a (i.e. a
has a neighborhood W which intersects only finitely many V € ¥).

It is easily checked that, for A < X to nowhere scatter X, it is sufficient if each neigh-
borhood U of a €4 contains a neighborhood V of @ such that ¥ — 4 has only finitely many
components. {This occurs, for example, if 4 is a subcomplex of a locally finite simplicial
complex.) That this condition is not necessary, however, is shown by Example (3) of the
introduction.

If the definition of nowhere scattering is altered by requiring ¥ to be finite and W
to intersect only one ¥ € W, then one obtains a characterization of nowhere cutting. Hence
if the definition of nowhere scattering is merely changed by requiring ¥ to be finite, one
obtains a characterization of sets 4 which are both nowhere cutting and nowhere scattering.

This yields the following analogue of Lemma, 3.1.

LeMma 6.1. The following properties of a thin A< X are equivalent.

(a) A nowhere cuts and nowhere scatters X.

(b) If U is open in X, and {V.,}, is a disjoint open covering of U—A, then {V,}. is a
disjoint open covering of U (where V, denotes the closure of V, in U).

It is now easily checked that all results in section 3 after Lemma 3.1, with the excep-
tion of Proposition 3.5 and Example 3.10, remain true if “nowhere cutting” is replaced by
“nowhere cutting and nowhere scattering”.

Simple examples, like a point on a line, show that a nowhere scattering subset need
not be nowhere cutting. The converse implication is, in general, also false (consider Example

3.10, with £ the integers), but we can prove:

Prorosirion 6.2. In first countable spaces, nowhere cutting sets are nowhere scatiering.

Proof. Let X be such a space and 4 a nowhere cutting subset. Let 2€4, let U be a
neighborhood of z in X, and ¥ a disjoint open covering of U —A4. We suppose that no
neighborhood of z intersects only finitely many V €W, and obtain a eontradiction.

First, let us show that no ¥V €Y has x in its closure. Suppose x€V, for some V,€U;
then ¥V, and (U —4) -V, form a disjoint open covering of U — A4, so z is not in the closure
of (U—-4)-V,. Hence some neighborhood of z intersects only V,, contradicting our
assumption.

Now let By, B,,... be a base for the neighborhoods of # in X. By induction, we can
pick elements V;and W, of Y (¢=1,2,...), all distinct, such that V;nN B,+gand W,n B,+o
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for all 4; this is easily done, since € (U —A4)~ (because A is thin). Now let V=U{,V,,
and W=(U—-A)—V. Then V and W form a disjoint open covering of U —A4, and both
have z in their closure, which is a contradiction. This completes the proof.

In the remainder of this section, we characterize nowhere scattering sets under special

circumstances. These results will not be needed for the proof of Theorem 1.2.

ProrosITION 6.3. If X is a locally compact (1) metric space and A<X is 0-dimen-
sional, then A nowhere scatters X if, and only if, every disjoint open covering of X — A is lo-
cally finite at every point of A.

Proof. The condition is clearly necessary. To prove sufficiency, let a€ 4, let U be an
open neighborhood of @ in X, and ¥ a disjoint open covering of U —A. We must show that
W is locally finite at a.

Let B be open, with € R< R< U and R compact. Let C be a clopen subset of 4
such that a€C< (RN A4), and let

N ={z€R|d(z,0) <d(zx,A—C)}.

Then N is open in X, and N N A =C. Also B=N — N does not intersect 4 and is compact.
Now let W={VNN|VEY}; it suffices to show that W is locally finite at a. Now
W=, U W9,, where

W, ={WeW|WnB+g}, and W, ={WEW|W<N}.

Since U9, is a disjoint, open covering of B, and B is compact, W, is finite. Now the ele-
ments of UY,, as well as their union W,, are clopen in N —4 and in N —A4, and hence in
X —~A. Hence W, U {(X —A)—W,} is a disjoint open covering of X —A4, and is therefore
—along with U¥,—locally finite at a. Hence so is U9, and the proof is complete.

In the proof of Propesition 6.5 below, we need the following unpublished result of
H. H. Corson.

LeEMMA 6.4 (H. H. Corson). A compact Hausdorff space, which is the continuous image

of a separable metric space, is metrizable.

Proof. If E is compact Hausdorff, then E x E is regular and the diagonal A is closed
in E x E. Hence (E x E)— A can be covered by open sets whose closures in E x E miss A;
since (E X E)—A is also the continuous image of a separable metric space, it has the
Lindelsf property, so (E % E)—A is covered by countably many such sets. Hence A is a

(1) It suffices if X is locally compact at every point of 4.
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G5 in B x E, which implies that ¥ is metrizable. (Proof: Let A= N7-1U,, with U, open,
and pick open V, ;in E (i=1,...,k(n)) such that

k()

ACiU (Vi %V, )< U, for all n;
=1
then the set of all such V,, ; is a countable base for E.) That completes the proof.
Recall that, if £ is a topological space and x € B, then the quasi-component of E con-
taining x is

N {C< E|C clopen, xz€C}.
The space Q(E) of quasi-components of E is topologized by taking all sets of the form
{CEQ(E)|C< U} U clopenin F

as a base for the open sets. This topology makes the natural projection =: E——@Q(E)

continuous, but not, in general, a quotient map.

ProrositioN 6.5. If X is a compact melric space, the following properties of a
0-dimensional subset A are equivalent:

(a) A nowhere scatters X.

(b) Every disjoint open covering of X — A4 1is finite.

(c) The space Q of quasi-components of X — A is compact metric.
(d) X —A has only countably many clopen (in X — A) subsets.

Proof. (a)= (b). Let U be a disjoint open covering of X — 4. By assumption, each €4
has an open neighborhood intersecting only finitely many U €Y. Surely every point of
X — A has such a neighborhood, so X is covered by such neighborhoods, and hence, being
compact, by finitely many of them. Hence U is finite.

(b)= (a). This follows from Proposition 6.3.

(b) = (c). Compactness of @ follows from (b), and metrizability from Lemma 6.4.

(c)= (d). (After Freudenthal [9; 2.4].) By (c), @ has a countable, clopen base B. Thus
each clopen set S<@ is the union of sets in B, and, since § is compact, of finitely many.
Hence @, and thus also X — A4, has only countably many clopen sets.

(d)= (b). If U were an infinite disjoint covering of X —A4, each of the uncountably
many subcollections of U would have a different clopen union, contradicting (d).

Note that, under the assumptions of Proposition 6.5, the property of 4 nowhere

scattering X was characterized entirely in terms of properties of X — 4 alone.
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7. Proof of Theorem 1.2; application to Freudenthal compactification

Throughout this section, let (X, A,p) be an (X, 4)-cut.

ProroSITION 7.1. A nowhere scatters X if, and only if, A nowhere scatters X.

Proof. Suppose A nowhere scatters X. Let a€4, let U be a neighborhood of @ in X,
and Y a disjoint open covering of U — 4. Now for each 2€p~(a), the set p~}(U) is a neigh-
borhood of z in X, and

Y ={p (V)| VeY}

is a disjoint open covering of p—}(U) — A. Hence « has a neighborhood N, with the property
of intersecting only finitely many elements of p~*(¥). Since p~1(a) is compact, it is covered
by finitely many open (in X) sets with this property, and hence by a single one (their
union), say N. Then p(N) is a neighborhood of a (since p is closed) intersecting only finitely
many VEY.

Suppose A nowhere scatters X. Let z€A, let U be a neighborhood of # in X, and Y
a disjoint open covering of U — 4. Since p is a spread (Proposition 2.4), there exists a neigh-
borhood M of p(z) in X, and a clopen subset N of p~1(M), such that € N<U. Then
{p(V N N)| V €V} together with (M —A4)—p(V) form a disjoint open covering of M4,
and hence p(x) has a neighborhood W intersecting only finitely many elements of this
covering. But then p~}(W) N N intersects only finitely many elements of ¥, and the proof
is complete.

Proposition 6.2 and half of Proposition 7.1 imply that (b)= (c) in Theorem 1.2.To
prove the harder result (c) = (a), we need some preliminary results about bases in X and X.

First, some notation: A base B for X — A is called full if, whenever a €4, U a neighbor-
hood of ¢ in X, and C clopen in U — 4, then (¥ N C) € B for some neighborhood V of ¢ in X.
IfGisopenin X —A, let

G =yU{UcX|Uopenin X, UN{X—-A)=G}.
P

Note that, since A is thin in X, G*<G.

Lemma 7.2. If B is a full base for X — A, then {(p~}(B))*| BE B} is a base for X.

Proof. Suppose B is a full base for X — 4. Let 2€X, and V a neighborhood of z. We
must find a BE B such that x€p~1(B)*< V. Pick an open U in X such that z€UcUc V.
If z€X—A, we now merely pick BEB such that p(x)€ B<p(U—A). So suppose z€A.
Since p is a spread (Proposition 2.4), there exists a neighborhood M of p(z) in X, and »
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clopen subset N of p~1(M), such that x€ N < U. By assumption, there exists a neighborhood
W of p(x) in X such that B=W N p(N —A)isin B. Now

p~HB)=p (W) N (N —A)=(p~{(W)NN)n(X-A),
80 z€(p Y (W)NN)cp(B)*<pYB)y cN<=UcV,
which completes the proof.

LeMmwma 7.3. 4 Hausdorff space B, which is a continuous tmage of a separable metric
space, has a countable collection U open subsets such that, if x=+y are in E, then there exist
disjoint U,, U, in U with x€U, and y€U,. If E is 0-dimensional, the U €U may be chosen
clopen.

Proof. Since E is Hausdorff, the diagonal A is closed in £ x E. Hence (Ex E)—A
can be covered by open rectangles V x W; if E is 0-dimensional, ¥V and W may be chosen
clopen. Since (E X E)—A has the Lindel6f property, this covering has a countable sub-
covering {V; x W ;}2;, and we let U={V }2, U {W }.

Lemma 7.4. If X is separable metric, and A nowhere scatters X, then X — A has a count-
able full base. ‘

Proof. Let {B,}7.1 be a countable base for X. For each n, let £, be the space of quasi-
components of B, — 4, and let f,: B, —A—>E, be the natural map. Topologize ¥, by taking
as base for the open sets all sets U such that f,~1(U) is clopen in B, —A. Clearly E, is
Hausdorff and 0-dimensional, and f, is continuous, so we can apply Lemma 7.3. Let U, be
a collection of clopen subsets of E, with the property guaranteed by Lemma 7.4, and, for
convenience, let us suppose that it is closed under finite intersections. Let W, =
{f{"YO)|UEU,}, and let F be the collection of finite unions of sets of the form
B, NW (WelW,, mmn=1,2,..). Let us show that F, which is clearly a countable base for
X —A4, is full.

Let a€4, U a neighborhood of @ in X, and C' a clopen subset of U —A. We must find
a neighborhood V of @ such that (¥ N C) €F. Since {B,}7_1, is a base for X, we may assume
that U= B, for some k. Denote B,—A by B;.

First, let us show that, if x€C, then there exists a W, € W, containing x, and a neigh-
borhood N, of a, such that (N, N W,)< C. Let @ be the quasi-component of B which con-
tains x; clearly Q< C. Using our assumptions about U,, we can now pick a decreasing se-
quence {S,;}52; from U, whose intersection is . Let S,= B;. Let D be the disjoint open
covering of By, consisting of C and all sets of the form (B, —C) N (8;—8,,,) for j=0,1,....
Since A nowhere scatters X, there exist a neighborhood N, of o which intersects only

finitely many elements of D. Hence, for some j, the set N, does not intersect
2 — 642945 Acta Mathematica. 111. Imprimé le 11 mars 1964
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(Bi—C) N (8;—8,,,) for any j>j,. Let W.=S8, . Then N, does not intersect (Br—O)nW,,
so NN W, does not intersect By —C, and thus, since W, B}, we have (N, N W,)<C.

Now {W,|z€C} is a subcollection of the countable collection U, and hence can be
re-indexed as {W,}721. For each j, let N, be a neighborhood of a such that (N,N W;) < C.
Note that C< U2, W,. Now let U be the disjoint open covering of Bj consisting of B, —C
and all sets C 0 (W,— UIZI W,) for j=1,2,.... Since A nowhere scatters X, there exists a
neighborhood N of a which intersects only finitely many elements of U, and hence misses
CN(W,—Uizi1W,) for all j greater than some index r. Hence (N NC)= Uj.1 W;. Now
pick m so that ¢ € B,,< (N N (N;-1N,)). Then

(Ba )= (Ba 0 (N 1 0N U (B W)= U (B (0 W) (B 1),

Hence (Bn N C)= (jl:Jl (BaN W) €T,

which completes the proof.

Proof of Theorem 1.2. That (a)= (b) is obvious. As observed earlier, (b)= (c) follows
from Propositions 6.2 and 7.1. Lastly, (c)= (a) follows from Lemmas 7.2 and 7.4 and
Urysohn’s metrization theorem, which completes the proof of Theorem 1.2.

We conclude this section by using Theorem 1.2 to relate cuts to the Freudenthal
compactification. If D is a separable metric space, then a metric compactification X of D
is called a Freudenthal compactification of D if X — D is 0-dimensional and nowhere cuts X.

If it exists, the Freudenthal compactification is essentially unique [8]. We now prove

PRrROPOSITION 7.5. Let A be a thin, 0-dimensional subset of a compact metric space X,
and suppose that X — A satisfies one of the equivalent properties of Proposition 6.5. If
(X,A,p) is an (X, A)-cut, then X is a Freudenthal compactification of X —A.

Proof. By Proposition 6.5, 4 nowhere scatters X, so X is metrizable by Theorem 1.2.
Since X is compact and p is proper, X must be compact [12]. Since p is a spread (Proposi-
tion 2.4) and A is O-dimensional, so is A=p-1(4). Finally, A always nowhere cuts X,
and that completes the proof.

The following corollary was proved (differently) by Freudenthal [8] [9].

COROLLARY 7.6. The following properties of a separable metric space D are equivalent:
() D has a Freudenthal compactification.
(b) D satisfies the conditions of Corollary 6.5, and has a metric compactification X with

X — A 0-dimensional.
Proof. That (a)= (b) follows from Proposition 6.2 and Corollary 6.5, while (b)= (c)

follows from Proposition 7.5.
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8. Locally connected metric spaces

If (¥,d) is a locally connected metric space, one can always obtain a metric d* on ¥
such that

(a) d* and d generate the same topology,

(b) d* is uniformly locally connected, (1)

(c) d*=d,

(d) d*(w,y) <a if x and y lie in a connected subset of d-diameter <a.

In fact, if Y is connected, such a d* is obtained [22] by letting
d*(x,y) =inf {diam 4| A< X, A connected, x and y in A}.

If Y is not connected, one ean still obtain such a d* as follows: In each of the (open) com-
ponents Y, of Y, pick a point p,. If x and y are in the same component of ¥, define d*(z, )
as above; if they are in different components, say x€ Y, and y € Y, let

a*(w, y) =d* (@, pa) -+ d(Pa> pg) + d* (s, y) + 1.

It is easy to chek that this works.

For simplicity, the following result is stated for complete spaces, but, as we shall
see, an analogous result is true in general. The hypothesis that A nowhere scatters X is
essential, however, for otherwise X could not be metrizable (Propositions 6.2 and 7.1).

Our proof will be purely metric, making no use of the general existence theorem for

cuts.

THEOREM 8.1. Let X be a complete metric space, A< X thin and nowhere scattering,
and X — A locally connected. Let (Y ,d) be X — A with the induced metric, let X be the completion
of (Y,d™) (where d* is as above), let p: X—X be the uniformly continuous extension of the
injection i: (Y,d*)—>X, and let A=X—Y. Then (X, A,p) is an (X, 4)-cut.

Before proving Theorem 8.1, we need a lemma, whose notation is that of the theorem.
Lemma 8.2. If a€d, »,€X—A, and p(x,)—>a, then some subsequence x,, of x, con-
verges in X (to an x with p(x)=a).

Proof. We will pick a decreasing sequence of infinite sets S, (£>1) of positive integers
such that, if m, n€S,, and £>1, then d*(x,,z,)<k™'. This will suffice, for we can then

inductively pick n, so that n, €S, and n, ., > n,.

(1) See footnote (1) on page 9
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Begin by letting S; be the set of all positive integers. Suppose that S,,...,8, have
been found, and let us pick Sy,,. Let U be the open 4(k -+ 1)~l-sphere about a in X, and
let ‘Y be the set of components of U — A4; since X —4 is locally connected, each VEY is
open. Since A nowhere scatters X, there exists a neighborhood W of & which intersects only
finitely many V €Y. Hence S, has an infinite subset S, such that all p(x,) with n€S,.,
are in one element of Y, say V,. But V, is connected with d-diameter <(k+ 1)1, hence
with d*-diameter <(k+1)~1, and thus S,,, satisfies all our requirements. This completes

the proof of Lemma 8.2.

Proof of Theorem 8.1. We must verify that X, A, and p satisfy all the requirements of
Theorem 1.1.

(a) p is closed: Let E be closed in X, and let y€X be in (p(E))”, so that p(x,)—>y for
suitable z, € E. We must show that y €p(E).

Pick z,€X — A whose distance from z, is less than n—'. Then d(p(x,), p(z,;)) <n~1, so
plz)—>y. If yeX — A, then z,—~p~(y), so z,~>p~(y), hence p'(y)€EE and yEp(E). If
Yy €A, then, by Lemma 8.2, z, has a subsequence z,, converging to some z€X with p(z) =y.
But then x,,—2, and hence 2€ ¥ and y€p(E).

(b) p is onto: This follows from (a).

(¢) p maps X —A homeomorphically onto X —A: This follows from the definitions.

(d) p(A)< A: This follows from (c) and Proposition 2.1.

(e) p~(x) is compact for x€A: Since X and X are metrizable, and p is closed, p~*(x)
has compact boundary [19] [21]. But p~!(x) is a subset of the thin set A, and thus coincides
with its boundary.

(f) A nowbhere cuts X: A is thin in X by definition, and X — A is uniformly locally con-
nected. Hence A nowhere cuts X by Example 3.9.

(g) p is light: We will actually prove that p is a spread (see section 2). Let U be a
neighborhood of € X, and pick r so that S, the d*-sphere about z of radius r, is contained
in U. Let W be the d-sphere about p(z) of radius 1r. Let ¥ be the collection of components
of p~{(W)—A. Since X —A is uniformly locally connected, A nowhere cuts and nowhere
scatters X (see Example 3.9 and the remark following Lemma 6.1), and hence (Proposi-
tion 6.1) {V |V €Y} is a disjoint open covering of p~*(W), with V denoting the closure of
V in p~1(W). Pick V€ ¥ such that x€ V. It remains to show that V,.<U.

If y, z€V,, then p(y), p(z) are in the connected subset p(V,) of X —A4, and since
(Vo)< W, we have d*(y,z) <ir. Since z€V,, it follows that d*(x,y) <ir for every y€V,,

50 Vo, 8< U. That completes the proof.
We conclude this section with a remark about what happens to Theorem 8.1 if X is



CUTS 21

not complete. In that case, X is not the whole completion of (Y,d*); it is the subset of this
completion consisting of all points which are limits of sequences u,€Y such that i(u,)
converges in X. The map p: X—X and the set A are defined as before. The above proof of

Theorem 8.1 goes through unchanged in this more general situation.

9. Simplicial complexes

Let K be a locally finite simplicial complex, and let | K| carry the usual (metrizable)
topology for which U< | K| is open provided its intersection with each simplex of K is
relatively open. Call a subcomplex L of K thin if each simplex of L is a face of at least one
simplex of K which is not in L. It is clear that L is thin in K if and only if | L|is thin in | K |
in the sense of having empty interior.

Suppose now that L is thin in K. Let K* be the disjoint union of the maximal simplices
of K, and let z: K*>—K be the natural projection. If s and ¢ are simplices of K*, with
faces s’ and ¢ such that z(s’)=n(t')¢L, then we write x~y whenever z€s’, y€t', and
m(z) =n(y). We now define the equivalence relation=on |K*| by letting x=y whenever
there exists a sequence & =y, ...,x, =y such that 2, ~ z,,, fori=0,...,n—1.Let E=|K*|/=
be the quotient space, and q: | K*|-—E the quotient map. Since =y implies n(x) =n(y),
there exists a p: B—| K| such that 7 =pog. Now let K be the set of all ¢(s), with s a simplex
of K*. In general, K need not be a complex, because the intersection of two simplices of
K need not be a simplex of K, but only a finite union of such simplices. However, under
these circumstances XK', the barycentric subdivision of K, is a complex, and p: K'-—K’
(where K’ is the barycentric subdivision of K) is simplicial. Note that |K|=|K'|=E.
Finally, let L=p—Y(L).

TurorEM 9.1. If L is a thin subcomplex of a locally finite simplicial complex K, and
if K, L, and p: K-—K are as above, then (|K|, |L|, p) is a (| K|, |L])-cut.

Proof. It follows from the definitions that p maps |K| —|L| homeomorphically onto
K —L, and maps |L| onto |L|. Let us show that p is closed. If K is a finite complex, this
is clear, since then |K| is compact. In general, let A< |K]| be closed, and let us show that
p(4) is closed. By definition, we must show that p(4) NS is closed for every simplex s of
K. But p~(s) is a finite subcomplex of K, so that 4 N p~1(s) is compact, and hence p(4) N s=
p(4 Np~L(s)) is also compact. So p is closed; since K is locally finite, each p~1(x) is finite,
so p is proper and light. It remains to show that |L| nowhere cuts |K|. We do this by
showing that |L| satisfies the conditions of Example 3.7.

First of all, L is clearly thin in K, so |L| is thin in |K|. Now let € |L|, and let U be a
neighborhood of « in |K|; we must find a neighborhood V of x in |K| such that V — |L|
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is connected. Let S be the star of z in K. Now the definitions imply that, if s and ¢ are simpli-
ces in S, then there exist simplices s =s,), ...,s, =t in § such that s, N s;,, ¢L for i =0,...,n —1.
But this implies that, if ¥ is a barycentric neighborhood of # in |§|, then ¥V —|L| is
polygonally connected, and that completes the proof.

Now that we have a combinatorial description of cuts, what can be said about L in case
K is an (n+1)-manifold, and L is dimensionally homogeneous? If dim L<n, then
(K,L)=(K,L). If dim L=n+1, then L is not thin. So suppose dim L=n. The following

example shows what can happen:

ExAMPLE 9.2. Let |K| =E®, and let |L| consist of two tangent spheres. Then |L| has
three components: Two of them are spheres, and the third consists of two tangent spheres.

The above example shows that the components of |L| need not be manifolds, but the
following theorem asserts that they cannot get much worse than two tangent spheres.

THEOREM 9.3. Let K be a triangulated (n + 1)-manifold (not necessarily combinatorial),
and L a homogeneously n-dimensional subcomplex. Then L is homogeneously n-dimensional,

and each (n—1)-simplex of L is the face of exactly two n-simplices of L.

Proof. First we must show that |L| is the union of n-simplices. Let #€ |L|, and let s
be an (n -+ 1)-simplex of K containing z. Then p(s) is an (n + 1)-simplex of K containing
p(x). Since K is a manifold, we can pick (n+ 1)-simplices ¢,...,t, in K, all containing
p(x), such that t,=p(s), (¢;Nt,,)¢L for =0,...,k—1, and ¢, has an n-dimensional face u
which contains p(x) and is in L. Then the definitions imply that z € p—'(u) N s,, where s, is
the unique (»+ 1)-simplex of K such that p(s,) =t But =1 (u) N s, is an n-simplex of L,
so L is indeed the union of n-simplices.

Next, let s""! be an (n—1)-simplex of L; we must show that 8", the collection of
n-simplices of L which contain s"~1, has exactly two elements.

Let s"** be any element of S"*!, the collection of all (n+ 1)-simplices of K which con-
tain s" 1. The definition of K implies that 8"*! is obtained by starting with s"*!, and then
successively adding—in both directions—simplices which intersect some element of S"+!
already obtained in an n-simplex not contained in L. Now the definition of K implies that
every element of 8" is a face of exactly one element of §"+1. Hence if the above process of
adding simplices “ends in" 'both"directions with an (n+ 1)-simplex having a face in 8%,
then 8" has exactly two elements and we are through. If not, the two arms of the process
would meet, and each element of S*+! would intersect two others in n-simplices of K not

lying in L. But then each element of 7"+ ={p(s)|s€ 8"} would intersect two others in
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n-simplices of K not lying in L; since K is a manifold, 7"*! would then consist of all (n + 1)-
simplices of K containing p(s"!), and so p(s" ') would not lie in any n-simplex of L, which
contradicts our assumptions. That completes the proof.

10. Mapping cylinders

If f: E—>F is a continuous function, then the mapping cylinder C; is obtained by tak-
ing the disjoint union (EXJI)UF, and identifying (x,0) with f(z) for all x€E. Let
7 (B X I) U F-—C, be the quotient map. Then z, maps F homeomorphically onto m,(F)
(called the base of C), and this is used to identify 7, (F) with F.

Lemma 10.1. If f is closed, then so is n,.
Proof. Let A< (E xI)U F be closed, and write AN (& x {0})=Bx {0} and AN F=C.
Then
7 (7w A) N (B x I) =AU (f(f(B) U C) x {0}),

and 7w A)) N F=f(B)UC,
so 717 (m(A4)) is closed in (E x I) U F, and therefore 7,(4) is closed in C,.

LeMMma 10.2. If E and F are Tychonoff spaces, and f: E——F is proper, then C; is
Tychonoff.

Proof. Let f: BE—>BF be the continuous extension of f, and write 7 for z7. Let
X =n((E x I)U F). Since { is proper, f{-(F) = E by Proposition 2.1, so z~}(X)=(E xI)U F.
Hence 7|(E xI)U F is a closed map—and hence a quotient map—from (£ x I)U F onto
X, so that the Tychonoff space X is homeomorphic to C,. This completes the proof.

The requirement in Lemma 10.2 that f is proper seems to be essential. In fact, if ¥ is
the Tychonoff plank (=({#<Q}x{a<w})—(Q, w)) and F is a point, then f: E——F is
continuous and closed, but C; not a Tychonoff space.

Prorosition 10.3. If E and F are Tychonoff spaces, f: E—F light and proper,
and if p=n;|E X1, then (E <1, E {0}, p) is a (C;, F)-cut.

Proof. Since f is onto, F is thin in C,. By Lemma 10.2, C, is Tychonoff. By Lemma 10.1,
p is closed. And E x {0} nowhere cuts £ x I by Proposition 3.4. All other requirements are
obviously satisfied, and that completes the proof.

Lemwma 104. If f: E—F is a monotone quotient map, then F nowhere cuts C;. (Hence,
if C,is Tychonoff, (C;, F) is a (C;, F)-cut.)
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Proof. Since f is a quotient map, so is 7r;| E x I. The lemma now follows from Proposi-
tion 3.11.

J. Isbell asked what happens when the requirements on f are relaxed, and conjectured
the answers given below.

Suppose h: E—G and g: G—F are continuous, and f=hog. Then we can define a
continuous g*: C,——C, as follows: If k:(E x I)UG—~(E xI) U F is the map which is the
identity on E x I and is g on @, then g* =m,0kon;'. This ¢g* is single valued, and is con-
tinuous because g*om, =m0k, which is continuous. Note that, if ¢ is closed, then so is ¥,

and hence also ¢*. Similarly, if ¢ is proper or light, so is g*.

ProrosiTioN 10.5. Let E and F be Tychonoff spaces, and f: E—F proper. Let
E-L-GLoF be the monotone-light factorization of f (see Proposition 2.3). Then (C,,G,g9%)
s a (C;, F)-cut.

Proof. By Proposition 2.5, k and ¢ are proper. By Lemma 10.2, C, and C; are both
Tychonoff. Since g is proper and light, so is g*. By Lemma 10.4, G nowhere cuts C,. All

other requirements are clearly satisfied, and that completes the proof.

THEOREM 10.6. Let f: E—F be continuous, with f(E) dense in F, and C, Tychonoff.
Then f has a factorization E—’;G—LF, with h(E) dense in G, C, Tychonoff, and g light and
proper, such that (Cy,Q,g%) is a (C,, F)-cut.

Proof. Let 7: B(E < I)UBF—>BC, be the continuous extension of n,: (E xI)U F—~>C,.
Since 7, (E x I) is dense in C;, we have #{B(E x I)=pC,. Let R=7YC,)NP(E *xI), and
let 7= | R. Then 7: R—C, is proper, and hence (Proposition 2.3) has a monotone-light
factorization R—;'—>S—>p—>0,, with p and ¢ proper. Let G=p"(F), and let us show that
(8,G,p) is a (O}, F)-cut. We know that p is light and proper. Now =, maps E X (0,1] homec-
morphically onto C,— F, so (Proposition 2.1) E x (0,1]1=7n"C;— F), and hence E % (0,1]=
g71(S —@); this implies that p maps S —@G homeomorphically onto C;— F. It remains to
show that G nowhere cuts 8. Since ¢ is closed and monotone, it suffices to check—by Pro-
position 3.11—that ¢~1(#) nowhere cuts R. But (E x I)—(E x(0,1])=E x {0} nowhere
cuts £ X I (Proposition 3.4), and B —(E x I) nowhere cuts B (Example 3.10), so ¢~}(G) =
R —(E x(0,1]) nowhere cuts R (Proposition 3.13).

Define k: E—@ by h(z)=4q(x,0), and g: G—F by g=p|G. Then g(h(x)) =p(g(x,0)) =
7ti(x,0) = f(x) for all x€E, so f=goh. Since p is light and proper, so is g. Let us show that
(Ch,G,g%) is a (C,, F)-cut. Define k: C,»>—8S by k=p~log*. Then k is single valued and

continuous, because koz, is the identity on @ and coincides with ¢ on E x I. Also k is one-
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to-one and onto, and maps @ identically onto &. Now pok=g*, which is proper because
g is proper. Hence k is a homeomorphism by Proposition 2.2. Since (S, G, p) is a (C}, F)-cut,
this implies that (Cy, @,g%) is also a (C,, F)-cut.

11. Multicollared sets

According to M. Brown [5], a subset B of a space Y is collared in Y if there exists a
homeomorphism % from B x [0,1) onto an open neighborhood of B in Y such that A(b,0) =5
for every b€ B. Collared sets are always nowhere cutting (Example 3.6); if, with the nota-
tion of Theorem 1.1, A is collared in X, we say that 4 is multicollared in X.

Let us illustrate this concept by answering a rather special question: If X is an n-mani-
fold (without boundary), and 4< X is multicollared, what can A look like? Since A is
collared in X, we have A X (},1) homeomorphic to a subset ¥V of X — A which is open in X.
Then p(V), which is homeomorphic to V, is open in X, so A x E! is an n-manifold. Now
if n=2 or 3, this implies [3] that A is an (» —1)-manifold (so that each component of A
is a line or a circle if »=2), and hence, if 4 is closed, X is an n-manifold with boundary A.
If n>4, however, A need not be a manifold: In fact, for » >4 there exist non-manifolds
B such that Bx E'=E"[2]; if we let X =B X E' and 4= B x {0}, then A is the disjoint
union of two copies of B, and is thus not a manifold. (Whether such examples exist with
X triangulable and 4 a subcomplex is unknown.)

We now return to the general theory. For multicollared sets the metrizability question
is easily settled:

Prorosition 11.1. If A< X is multicollared, and if X is metrizable, so is X.

Proof. Let h be a homeomorphism from A x[0,1) onto an open neighborhood U of A
in X. Then A is homeomorphic to (A X {}})<(X—A), so A is metrizable, and hence so
is U A. Also U =p~Y(p(U)), and p(U) is open in X and hence an F, in X,so U is an F, in
X. Thus the paracompact space X, being the union of the open Fy-set U and the dense set
X —A, both of which are metrizable, is itself metrizable [6; Corollary 1.2]. That completes
the proof.

We now characterize multicollared sets in terms of mapping cylinders (see Section 10).
Since collared sets are defined in terms of I’ =[0,1)—rather than I=[0,1]—to permit the
use of open neighborhoods, we will find it convenient to use the ‘“‘half-open” mapping
cylinder C7, which is defined just like C; except that I.is replaced by I'. All results which
were proved for (', is section 10 are equally valid for C;.

Recall from section 1 (just before the statement of Theorem 1.1) that two maps
fi: B,~—F and f,: E,~-F are called equivalent, and we write f, = f,, if there exists a homeo-
morphism k: E,~—E, such that f,=f,0h.
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ProrosiTiOoN 11.2. The following properiies of a thin subset A of a Tychonoff space

X are equivalent:

(a) A is multicollared.

(b) For some proper map f: AA—>—>A, there exists a homeomorphism k from C; onto an
open neighborhood U of A in X such that k(a)=a for all a€A.

Moreover, if f is as in (b), and if (X, A,p) is an (X, A)-cut, then f=p|A.

Proof. (a)= (b). Let (X, A, p) be an (X, 4)-cut. Let % be a homeomorphism from 4 x I’
(where I’ denotes [0,1)) onto an open neighborhood U of A in X such that A(z,0) =z for
every z in A. Let U=p(U); then U=p~1(U), so p|U: U=-U is closed, and hence so is
poh: AxI'—U. Now let f=p|A, and let ¢: A X I'~C; be the projection map. Since f
is closed, so is ¢ (Lemma 10.1). Moreover, if 2, £, €A X I', then ¢(z,) =¢(x,) if and only if
poh(x,) =poh(x,). We can therefore define a homeomorphism k: Cr——U by k=(poh)ogl,
and then k(a) =a for every a € 4.

{b)=(a). Let ¢: AxI '—(C; be the projection map. Then, by Proposition 10.3,
(fi xI', A x {0},¢) is a (C;, A)-cut, and hence (/i x I', 4 x {0}, kog)is a (U, A)-cut. Now if
(X,A,p) is an (X, 4)-cut, then, by Lemma 3.14, (p~2(U),A,p|p*(U)) is also a (U, 4)-cut.
Since cuts are essentially unique, and A x {0} is collared in A% I, we must have A col-
lared in p-1(U), and hence in X.

Finally, under these circumstances we have

p]AEkctsz‘i X{O})=(pl(fi x{0}) =/,

and that completes the proof.

Local properties of multicollared sets are treated in the next section.

An interesting example of a multicollared set was pointed out to me by J. Isbell.
Let X be the n-fold cartesian product of the circle, and ¥ the n-fold symmetric product,
obtained from X by identifying points whose coordinates differ only by a permutation.
Let 1: XY be the quotient map. Let A consist of those points of X whose coordinates
are not all different. Then A4 is a multicollared subset of X. Moreover, ¥ and X are mani-
folds with boundaries 7z(4) and A, respectively, and mop: X——1Y is an n!-fold covering
of Y. (If n=2, then X is a torus, Y a Mébius band, and X a cylinder.)

12, Local properties

M. Brown’s principal theorem about collared sets [5; Theorem 1] asserts that locally
collared subsets of a metric space are collared, where B> Y is called locally collared if B can
be covered by open subsets U of ¥ for which U N A4 is collared in U (or, equivalently,
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in Y). If we similarly call 4 <X locally multicollared if A can be covered by open subsets
U of X such that UN A4 is multicollared in U (or, equivalently by Lemma 3.14, in X),

then we can prove the following consequence and analogue of Brown’s theorem.

THEOREM 12.1. 4 locally multicollared subset of a metric space is multicollared.

Proof. Let X be metric, A< X locally multicollared. Then 4 is covered by open subsets
U of X for which U N A4 is multicollared in U. Now if (X, A,p) is an (X, 4)-cut, then

(pX(U), pNUNA4), p[p~™U))

isa (U,U n 4)-cut for each U by Lemma 3.14, and hence p~}(U N 4) is collared in p~(U).
Hence A is locally collared in X, and is therefore collared in X (by Brown’s theorem)
provided A has a metrizable neighborhood V in X. Now each p—(U n 4) is collared in X,
and hence (just as in the proof of Proposition 11.1) has a metrizable neighborhood 7
in X. But then V, the union of all the ¥V, is a neighbofhood of A which is locally metrizable
and paracompact (by [12; Theorem 2.2], since p is proper and V =p~(p(V))), and hence
is metrizable by the Nagata-Smirnov theorem. That completes the proof.

Recall that a function f: A-—A4 is a double covering of A if 4 can be covered by open
subsets ¥ for which f-1(V) splits into two disjoint open subsets, both of which / maps
homeomorphically onto V; if one can take V=4, then f is called the trivial double covering.
If (X,A,p) is an (X, d4)-cut, we say that A (trivially) double-cuts X if p|A is a (trivial)
double covering of A; similarly, 4 locally (¢rivially) double cuts X if A is covered by open
subsets U of X for which 4 n U (trivially) double cuts U. Note that, locally, double-cutting
and trivially double-cutting is the same thing, but the equator of a M6bius band shows
that globally they are distinct.

The following result is proved just like Theorem 12.1 (except that Brown’s theorem

and Proposition 11.1 are, of course, not needed in the proof).

PropositioN 12.2. A locally double-cutting subset of a Tychonoff space is double-
cutting.

According to [4], A< X is bi-collared in X if there exists a homeomorphism 4 from
A x(—1,1) onto an open neighborhood of 4 in X such that k(a,0)=a for every a€A4.
More generally, call A double-collared in X if there exists a double covering f: A4, and
a homeomorphism % from C; (see the definition before Proposition 11.2) onto an open
neighborhood of 4 in X, such that h(a) =a for all a€ A. Now it follows from Proposition
11.2 that A4 s double-collared (resp. bi-collared) in X if and only if A is multicollared and
double-cutting (resp. trivially double-cutting) in X. Define locally bi-collared and locally
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double-collared in the obvious way. As before, bi-collared and double-collared coincide
locally, but the equator of a Mobius band shows that globally they are distinct.
The following result now follows immediately from Theorem 12.1 and Proposition 12.2.

CoroLLARY 12.3. A locally bi-collared (=locally double-collared) subset of a melric

space is double-collared.
13. Components

Let (X,A,p) be an (X, 4)-cut, and suppose that X — A4 has only finitely many compo-
nents C,,...,C,. If D,=p~3(C,), then D,,...,D, are the components of X—A. Clearly
X=D,V...U D,, where D, is the closure of D, in X. Moreover, since A nowhere cuts
X, and the D, are all open in X — A, the sets D,, ..., D, are disjoint. Since they are connected,
they are the components of X.

Now let A;=D;nA for i=1,...,n. Then the A, are disjoint, and A=A, U...UA,.
Hence the A, are the components of A, provided they are connected and non-empty.
This need not always happen even when A is connected: For example, if X is a circle, and
A consists of one point, then X is a closed interval, and A = A, consists of the two end points.
Another example is obtained by taking X = E? and 4 an open line segment in X; here
A=A, also consists of two disjoint copies of A. However, we can prove the following

result, which was first obtained by J. Jaworowski for X = E" and multicollared 4.

TrEOREM 13.1. Suppose thath is paracompact, locally connected, and unicoherent, (*)
and that A + o is closed and connected. Then each A, is connected and non-empty, so that A
and X — A have the same number of components.

Proof. If some A, were empty, then D, would be clopen in X. But then C; is a clopen
subset of X which is neither empty nor X, which contradicts the connectedness of X.

Let us show that A, is connected. Suppose not. Then A;=E U F, where E and F are
non-empty, disjoint, and closed. Since X is paracompact, and p proper, X is also paracom-
pact [12; Theorem 1.2] and thus normal. Hence there exist disjoint open subsets U and
V of X containing ¥ and F, respectively. Let W=UUV.

Before continuing, let us show that X —C, is connected. In fact,

X—Ci=A U (Uj#:iaj)y

where 4 and each C, is connected, and 4 N C, is not empty (otherwise C;=C,; would be a

non-trivial clopen subset of X). This implies that X —C, is connected.

(1) X is unicoherent [18] if it is connected and, whenever X = 4 y B with 4 and B both closed and
connected, then A n B is connected. Examples include all connected, locally connected, simply connected
Hausdorff spaces (in particular E® for all n, and S™ for n > 1), as well as projective n-space P" for n>1.
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Now D;,—W =D,—W is closed in X, so p(D; — W) is closed in X. Hence its complement
R=(X—C,)Up(W) is open. Since X —C, is connected and R is locally connected, X —C, is
contained in a connected, open subset S of R. Now SUC,;=X, X is unicoherent, and
S and C; are connected and open, so SN C, is connected by [18; Theorem 3]. Also p~1(8)
is open in X and contains 4;, so p~(8) N D, intersects both U and V. Since it is also con-
tained in W=UUYV, it is disconnected. But p=1(S)n D,=p~1(8n C;), which is homeo-
morphie to S N C,, yielding a contradiction.

14. The proper completion of a spread

Let D and X be Tychonoff spaces, and f: D—>X a spread (see section 2). Then an
extension p: X—>X of f is a proper completion of f if X is Tychonoff, p is light and proper
(hence a spread by Proposition 2.4), and X — D nowhere cuts X. (1) The following theorem
generalizes Theorem 1.1, and reduces to it in case f is a homeomorphism from D onto a
dense subset of X.

TrEOREM 14.1. If D and X are Tychonoff spaces, every spread f: D—X has an—
essentially unique (2)—proper completion p: X—>X.

Proof. Let us prove existence; uniqueness will follow from Theorem 14.2 below.

Let f: BD—BX be the unique continuous extension of f, let £ =f-1(X), and let g=f| E.
Then g: E—X is preper, and-hence- (Proposition 2:3) has a monotone-light factorization
E5X5X , with p and ¢ both proper and X Tychonoff. Let us show that ¢ maps D homeo-
morphically into X (this follows easily from Proposition 2.1 in the important special case
where f, regarded as a map from D onto f(D), is proper).

To prove that g is one-to-one on D, we must show that two points d, +d, of D cannot
lie in a connected subset of some g~(z). In fact, if d,, d,€(D ng-(z)) =f"1(z), then some
basic neighborhood U of d; misses d,, where U is clopen in f~1(W) for some open neighbor-
hood W of x. Let V=gY(W). Then ¥ N D=fYW), and since E—D nowhere cuts £
(Example 3.10), U (the closure of U in V) is clopen in ¥V (Lemma 3.1). Since g-(z)< V,
we see that d, and d, are separated by the clopen subset U N g—(x) of g~!(x), and hence do
not lie in & connected subset of g—1(x).

To prove that ¢|D is a homeomorphism, it remains to show that ¢(U) is open in
q(D) for every open U< D, and it suffices to consider basic sets U, which are clopen in
fY(W) for some open W in X. If V=g"1(W), then, as we saw above, U (the closure of

(!) By Propositions 2.4 and 2.5, X is automatically Tychonoff if it is Hausdorff.
(?) In the sense that any two such completions p: X—X and p, : X,—~X are equivalent (i.e. there
exists a homeomorphism % : X=X, which keeps D pointwise fixed, such that p =p;°k).
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Uin V) is clopen in V. Now V is an inverse set under g, and hence also under g, so that U

is also an inverse set under ¢ (since ¢ is monotone). Hence ¢(U) is open in X, and
9(U)=q(U n D)=q(0) N g(D),

so that ¢(U) is open in g(D).

As observed above, E— D nowhere cuts £ (Example 3.10). Since ¢|D is a homeo-
morphism, ¢-4(X —¢(D))=X—D by Proposition 2.1; since ¢ is monotone, this implies
(Proposition 3.11) that X —g(D) nowhere cuts X.

To complete the proof of existence, we now identify D with ¢(D), so that p|q(D) be-
comes identified with j.

To establish essential uniqueness in Theorem 14.1, we now prove the following ana-

logue of Theorem 5.3.

THEOREM 14.2. Let p: XX and q: Y=Y be proper completions of spreads f: D—X
and g: E—7Y, respectively. Let a: X—Y be continuous. Then any continuous f: D—>E such
that goff =aof can be extended to a continuous a: X—Y such that goa=aop.

<
v%
<

If o and §§ are homeomorphisms onto, so is a.

Proof. Letting m=aop and A=X—D, the first part of the theorem follows from
Corollary 5.2 (with g replaced by f, and £ by a).

If « and 8 are homeomorphisms onto, then we can similarly extend -1 to a continuous
a’: Y—>X such that poa’ =x—loq. But &’ oa is then the identity on the dense subset D of
X, and hence on all of X. Similarly, o a’ is the identity on Y. Hence a and o’ are inverse
homeomorphisms onto, and the proof is complete.

The following result is now a consequence of Propositions 2.4 and 2.5, Theorem 14.1,

and the fact that a restriction of a spread is spread.

CoROLLARY 14.3. If F is a Tychonoff space, then a map f: E—F is a spread if and
only if f can be extended to a light proper map p: G—F for some Tychonoff space G> K.
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15. The Fox completion of a spread

In [7], R. H. Fox presented a method of completing spreads which is, in general,
different from the one considered in the previous section (and leads to a different concept
of cutting). We shall refer to it as the Fox completion, to distinguish it from the proper
completion considered in section 14. We need two preliminary concepts.

Fox calls a spread p: E—F complete if it satisfies the following condition: If y € F, and
if to every open neighborhood W of y one assigns a quasi-component (see section 6) Qy of
p~Y (W) so that QW1CQW2 whenever W, < W, then (] @y is non-empty (and hence con-
sists of one point). ,

If A< X is thin, we say that A nowhere separates X if, whenever U is a neighborhood
of z€4, and V¥ is a clopen covering of U— A4, then x has a neighborhood W such that
W — A4 is covered by finitely many V€Y. If a particular € 4 has this property, we say
that A4 does not separate X at x. (Clearly every nowhere separating set is nowhere cutting
and nowhere scattering, but the converse is, in general, false (see section 16).)

We now call p: X—>X a Fox completion of a spread f: D—X if p is a complete spread
which extends f, and if X —D nowhere separates X. This is the definition given in [15],
where it is shown that it generalizes the definition given by Fox in [7] for locally connected
D. The following result was proved in [7] for locally connected D, and in [15] for arbi-
trary D.

THEOREM 15.1. Every spread has an—essentially unique (1)— Fox completion.

To claryfy the relation between Fox completions and proper completions, we need

Prorosition 15.2. If E is Hausdorff, every light, proper map p: E—F s a complete
spread.

Proof. That p is a spread was asserted in Proposition 2.4. To show that p is complete,
let y€Y and the @y be as in the definition of complete spread. Let us show that
Qw N p~Yy)+o for every W. If not, the fact that f is closed implies that there exists an
open neighborhood V< W of y such that p~}(V) misses @Qy. But then @, <@y Np~Y(V)=0
which is impossible.

Since every QwNp~'(y) is non-empty, the collection of all such sets has the finite
intersection property, and hence (since p~l(y) is compact) has a non-empty intersection.

That completes the proof.

(1) See footnote (2) on page 29.
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The converse of Proposition 15.2 is false, as is shown by mapping an infinite discrete
space info a point.
From Proposition 15.2, and the essential uniqueness of both proper and Fox comple-

tions, we now obtain the following corollary.

CoroLLARY 15.3. Let f: D—X be a spread and let p: X—X and pp: X;—X be proper
and Fox completions of |, respectively. Then the following are equivalent:

(a) p and pp are equivalent (i.e. proper and Fox completions of f coincide).
(b) pr is a proper map.
{c}) X~ D nowhere separates X.

In general, Fox and proper completions of a spread are different, as examples in the
text will show. They are, however, always related by the following result.

TrEOREM 15.4. If p: X—>X is a proper completion of a spread f: D—>X, and if
Y=DU{a€X—-D|X~D does not separate X at z},

then g=p|Y is a Fox completion of f.

Proof. Clearly ¥ — D nowhere separates Y. Since p is a spread (Proposition 2.4), so is
g. It remains to show that g is complete.

Let x€X, and for each open neighborhood W of x let @y be a quasi-component of
g4 (W) so that W,< W, implies Qw,< sz- We must find a y€ Ny Quw-

For each W, let Q' be the quasi-component of p~}(W) which contains @y. Then
Q'WICQ'W , Whenever W,= W, so (since p is a complete spread by Proposition 15.1) there
is a Y€ NwQw. Clarly y €p~1(z).

Let us show that y€Y. This is clear if y €D, so suppose y ¢ D. Let N be an open
neighborhood of ¥ in X, and ¥ a clopen covering of N N D. Pick an open neighborhood
W of z and a clopen subset U of p~{(W) so that y€U<N. Let R={V n U|V€W}; then
R is a clopen covering of U N D. Now Y — D nowhere separates Y, so Qy N D=0 by [15;
Lemma 4.1], and hence Q' N D =+ a. Since y €Q'y N U, we have Q< U, and thus @ 0 Ry+o
for some RyER. Now R, N U is clopen in U because X —D nowhere cuts X (Proposition
3.1), so that Qw<R,N U. Hence Byn U is a neighborhood of y in Z, and (R,n U)n D=
R,V for some V€Y. Hence X—D does not separate X at y, and therefore y€ Y.

Thus y€Y NQw=g (W) NQW, so it remains to show that g-(W) N QY <Qy. Since
the opposite inclusion follows from the definition of @'y, it suffices to show that no clopen
subset U of g~{(W) disconneets g=}( W) N @'w. Suppose it did. Since ¥ — D nowhere cuts ¥,
we would have U np-(W) clopen in p~}(W) (by Proposition 3.1) and disconnecting @',
which is impossible. That completes the proof.
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16. Fox cuts and proper cuts

If A is a thin subset of a 7T';-space, then applying Theorem 15.2 and Proposition 2.1
to the injection map f: X —A4—>X yields the following analogue of Theorem 1.1.

THEOREM 16.1. Let A be a thin subset of a T',-space X. Then there exist—essentially uni-
quely—a T'y-space Xy with nowhere separating subset Ay, and a spread pp: X;—X which
maps Xp— Ay homeomorphically onto X — A and maps Ap into A.

Let us call the triple (X, Ay, pr) described in Theorem 16.1 a Fox (X, A)-cut. If X is
a Tychonoff space, then the triple (X,A,p) which has hitherto simply been called an
(X, 4)-cut will now, for distinction, be called a proper (X, A)-cut. Applying Theorem 15.4
to the present special situation, we see that X can always be obtained as a certain subset
of X, with p,=p|X;. In general p; (unlike p) need not be onto X, as is shown by Example
(4) of the introduction, where Ay is empty. (A similar example can be constructed with
both X and X — A4 locally connected).

It follows from Corollary 15.3 that, if (X, A,p) is a proper (X, 4)-cut, then it is a Fox
(X, A)-cut if, and only if, A nowhere separates X.To prepare for some further (and more
useful) criteria in this direction, we now introduce the following concept, which is formally
stronger than nowhere scattering: If A< X, then A nowhere shatters X if, whenever U
is a neighborhood of €4 and ¥ is a clopen covering of U — 4, then x has a neighborhood
W such that W —A is covered by finitely many ¥V €Y. Clearly A nowhere separates X if
and only if 4 nowhere cuts and nowhere shatters X.

That nowhere shatters is actually strictly stronger than nowhere scatters is seen by
letting X be the space of ordinals <€ (the first uncountable ordinal), and letting
A ={Q}; it is not hard to check that here A nowhere scatters (and nowhere cuts) X, but
4 does not nowhere shatter X. I don’t know whether the concepts coincide in metrizable
spaces, or whether they are interchangeable in Proposition 6.2. We do, however, have

the following result.

LEMMA 16.2. “A nowhere scatters X and “A nowhere shatters X are equivalent under

etther of the following circumstances.

(a) X is separable metric.
(b) X —A is locally connected.

Proof. We need only show that, in either case, if 4 nowhere scatters X then 4 nowhere

shatters X. So let U be an open neighborhood of x€ 4, and U a clopen covering of U — A.
3 — 642945 Acta Mathematica. 111. Imprimé le 12 mars 1964
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(a) Let {V,}%-1 be a countable subcovering of ¥, and let U,=V,— UL V,. Then
{U,}71 is a disjoint open covering of U — A4, so « has a neighborhood W such that W —4
is covered by finitely many U, and hence by finitely many V€Y.

(b) If C is the collection of components of U —4, then C is a disjoint, open refine-
ment of ¥. But then z has a neighborhood W such that W — 4 is covered by finitely many
C€C, and hence by finitely many V € Y. That completes the proof.

Another useful fact about nowhere shattering sets is. the following result, which is

analogous to—and has the same proof as—Proposition 7.1.

LEMMma 16.3. If (X,A,p) is an (X, A)-cut, then A nowhere shatters X if, and only if, A

nowhere shatters X.

We now prove

TuroreM 16.4. Let (X,A,p) and (X5, Ay, pr) be proper and Fox (X, A)-culs, respec-
tively. Then (a), (b) and (c) are always equivalent, and they are equivalent to (d) if X is separ-

able metric.

(a) p is equivalent to py (i.e. proper and Fox (X, A)-culs coincide).
(b) pr is a proper map.

(c) A mowhere shatters X.

(d) X is separable metric.

Proof. The equivalence of (a) and (b) is a special case of Corollary 15.3. By that
corollary, they are also equivalent to A nowhere separating X; since A surely nowhere
cuts X, this is equivalent to A nowhere shattering X, which is equivalent to (c) by Lemma
16.3. If X is separable metric, finally, (c) is equivalent to (d) by Lemma 16.2 (a) and Theorem
1.2. That completes the proof.

It follows from Proposition 15.3 that Fox and proper (X, A)-cuts surely coincide if
X has a base consisting of sets U such that X — U has only finitely many components; in
particular, this occurs if 4 is a subcomplex of a locally finite simplicial complex X. An
example where these cuts coincide, but where no such base can be found, is given by
Example (3) of the introduction.

In conclusion, consider a metrizable space X with thin subset 4. Although there are
many situations where X is metrizable while X is not (e.g. Example (4) of the introduction
where A is empty), an example in [15; section 5] shows that in general X need not be
metrizable. If X — 4 is locally connected, however, Fox [7; p. 246, Lemma] showed that

Xy must have a countable base (and hence be metrizable) whenever X does. We now prove
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Prorositron 16.5. If A is a thin subset of a metrizable space, and if X — A is locally

connected, then Xy is metrizable. In fact, given a metric on X one can explicitly construct the
metric space Xy by the method of section 8.

Proof. It suffices to observe that Theorem 8.1 (as well as the remark at the end of

section 8) remains true without assuming that 4 nowhere scatters X, provided (X, 4)-
cut” is replaced by “Fox (X, 4)-cut”. In fact, without assuming that 4 nowhere scatters
X, part (g} of the proof of Theorem 8.1 explicitly proves that p is a spread, and it is easy
to chek that this spread is complete. Since X — A is uniformly locally connected, A nowhere
separates X, and hence (X,A,p) satisfies all the conditions for a Fox (X, A4)-cut. That
completes the proof.
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