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Abstract

Proofs are given of two theorems of Berezin and Karpelevi¢, which as far as we know never
have been proved correctly. By using eigenfunctions of the Laplace—Beltrami operator it is shown
that the spherical functions on a complex Grassmann manifold are given by a determinant of certain
hypergeometric functions. By application of this result, it is proved that a certain system of operators,
for which explicit expressions are given, generates the algebra of radial parts of invariant differential
operators.
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0. Introduction and motivation

In [1] BEREZIN and KARPELEVIC gave an explicit expression for the zonal
spherical functions on a complex Grassmann manifold. Unfortunately, no proof
was given there.

In [9] TAKAHASHI stated the same result, but he also gave a proof. This
proof, however, was not correct. It relies upon another result of BEREZIN and
KARPELEVIC (also in [1], unproved), namely that the algebra § {(Do(G)) of radial
parts of invariant differential operators is generated by a system of operators 4,
(i=1,...,n), for which they could give explicit expressions. This being proved, it
is sufficient to find the eigenfunctions of all 4;.

Takahashi’s error was in the proof that 6(D,(G)) is generated by the 4;. T'll
try to indicate where he went wrong. He proceeded as follows.

Let G:=SU(n,n+k;C), and g=su(n,n+k) its Lie algebra. Let g=I+p
be a Cartan decomposition of g. Let S(p) be the symmetric algebra over p, and
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let I(p) be the subalgebra consisting of K-invariants. Let A denote the canonical
linear one-to-one mapping of S(g) onto D(G). Take pcI(p). Then there exists
a polynomial g such that §(A(p))=q(sy, ..., s,)+terms of lower order. Define
pi=8(4 (P))—q(4y, ..., 4,). Then we have degree p’<degree p. Now, according to
Takahashi, the result follows by induction to the degree of p. But nothing guarantees
us that p”-has a highest order term with constant coefficients, so the induction step
is not justified.

In this paper another proof of these two theorems is given, namely by using
eigenfunctions of all §(D) (D€D,(G)) — say & — which have a certain convergent
series expansion at < in a positive Weyl chamber, instead of spherical functions
— say @ — which are eigenfunctions of all §(D) being regular in 0. To obtain these
@, we only need to find the eigenfunctions of 6() (radial part of the Laplace—
Beltrami operator) which have the desired series expansion. That such a function
is an eigenfunction of all 4(D) (D€D,(G)) is a result of HARISH—CHANDRA [3].
A simpler proof is given by HELGASON [4]. Then we use that a spherical func-
tions ¢ can be written as a combination of @’s. This gives us the first theorem of
Berezin and Karpelevi¢. Finally, in the last chapter the second theorem of Berezin
and Karpelevi¢, which states that the algebra 6(D,(G)) is generated by the 4;
(i=1,2,...,n), is proved.

1. The group G=SU(n, n+k; C)

Let G=SU(n, n+k; C) be the group of all complex (n +m)X (n+m) matrices
with determinant 1 (m=n-+k, k=0), which leave invariant the hermitian form:

x1.7_C1 +x2>_62+ +xn5€n_xn+1xn+l_ _xn+min+m*
Then G is a connected, semisimple Lie group with finite center (see TAKAHASHI [9]).
Let g=lie (G) be the Lie algebra of G. Then g=su(n, n+k;C) and gis a

real, semisimple Lie algebra.
Let g=%¥+p be a Cartan decomposition of g, with

I= {[g 3] u* =—u,v* =—v, uc M,(C), vEMm(C)}

{22 sl

Let acp be a maximal abelian subalgebra. We may choose for a the set of
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all matrices of the form

Onxn T Onxi
T
HT: 0
mxm
kan

where O, , denotes the (pXgq)-matrix with only zeros as entries, and
T = diag (t,, ..., 1)

(t:€R for all /). Let «;€a* (i=1, ...,n) be defined by o;(Hy)=t. Then the roots
of (g,a) are given by +a;, +20; (1=i=n) and +(x;ta;) (I1=i<j=n), with
multiplicities m, =2k, m,, =1 and m, ta, =2

Let ap:=exp Hy, and A:={ar=exp Hy:Hr€a}.

On the root system we choose an ordering such that the positive Weyl chamber
C* is given by the T with #,>#>...>1,>0. Then the positive roots are «;, 2u;
(I1=i=n) and a;*+a; (1=i<j=n). The simple roots are o, —dy, tly—ty, .0y &3 —
Oy Ol

Let > be the set of all roots, and 3* the set of all positive roots.

From now on we identify 7 and H.

Let g:=g 3,5+ m,o.

Then o(T)=27_, o:it;, with g;=k+1+2(n—i).
Let A(ap)i= [[ 5+ (@D —e *D)yme,
Then we have:
4=o0w? with g(ap)=2"*+D [T?  (sh®1, sh2t),
and w(ar) =240 [T, . (ch2t;—ch2t).

Let D(G) be the algebra of left G-invariant differential operators on G, and
let Dy(G) be the subalgebra of D(G) of right K-invariant operators. If DEDy(G),
let 6(D) denote the radial part of D.

As usual let C, R, Z, Z+, Z~ denote the sets of all complex numbers, real
numbers, integers, positive (non zero) integers and negative (non zero) integers,
respectively.

2. Radial part of the Laplace—Beltrami operator
Let §(Q) denote the radial part of the Laplace—Beltrami operator. In [3]

HARISH—CHANDRA proved the following lemma:

Lemma 2.1. Let H,, ..., H, be a basis of a, and let (g"),.; ;o, denote the
inverse of the matrix with elements B(H;, H;) (B(.,.) Killing form). Then

Q1) 3(Q = 3o, A7 gV Hoo AH,.
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Take for H, the matrix Hy, with T;=diag ©, ...,0,1,0,...,0) (with 1 on
the i-th place). Then

= Zﬂezmﬁﬁ(Hi)ﬂ(Hj)

= 4(k+2n)9;;.
So formula (2.1) gives:

1 -2 -1 9 2 )
5(Q) = (4k+2m) 1 351 0% 52(60 aa_ls]'

(As a differential operator H; corresponds with 9/d¢;). Hence:

2
A+ 5(@) = 3, [%Jr(zw—l%‘j-ﬂ—l oo ait]

I a]
—Z'ico 1[Ei—2—+0' a—tl—a—g ow

0? do )
—_ 1) _ ~1_ - 7
20 [at3+" ot o5,
=018 (L, ..., Lyco—o1S(L,, ..., L) w,
where we have defined

L= £+2(k coth ¢;4coth 2t)i
i 3ti2 i i ot;

13

and

S;(L1, ..., L,) := the j-th elementary symmetric polynomial in L,, ..., L,
(see [9]).

Now define

A_] = (D—ISJ‘(L]_, veey L,,)O(/J,
then we have, because of the relation S;(Ly,...,L,) w=c;e (c; defined by
68 = I G+ 4G+ D), see [):
2.2 4((k+2n)8(Q)) = 4, — 371 4i(i+k+1).

3. Eigenfunctions of 6(Q)

In this chapter we make use the following lemma (see [4], ch. II, prop. 1.10).
Let A be the root lattice, thatis A={z;f1+...+2,8,: f;€ >, B;is simple, z;€ Z+uU(0)}.
Let y denote the natural isomorphism of D(X) onto I(4) (X=G/K, A Lie group
corresponding to a, I(4) set of W-invariant polynomials on 4, see [4], ch. 1I, theo-
rem 1.2).
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Lemma 3.1. The equation
o(Qu =—((4, 1)+{e, Q)u

has a unique solution on C+ of the form
u(H)y= ®,(expH)= > ,., I',exp (Y=1i—o—wH)

with Ty=1. u=®,0exp is also a solution of the system of differential equations

(3.1) d(D)u =y(D)(Y=1A)u, DED,(G).
In our case, the function @, of the lemma takes the form
(3.2) ®,(ap) = /=1i-a)(™ S ea T, (3)e—HD
where
TeCH
A= (lla cevs ln)eaé
Iry=1,

in order to be an eigenfunction of all (D), DcD,y(G).
So we have to solve
(078, (Ly, ..., L)ow)u = pu,
ie.
Si(Ly, -y LY ou) = plou).

Let us try a solution u(T) of the form
(T u(T) = 03(t7) - ... - valt),
where v; is a solution of the equation
3.3 L, =—(3+(k+1))v;,, £,>0,
such that v; is of the form
(3.4 vi(ty) = V14D 3= P e—my [=1.

Definition 3.1. Let v;(¢;)) be a solution of (3.3), which is of the form (3.4).
Then we define
v1(ty) - ... 0, (2,)
®b,(a;) = ———"2,
},( T) w(aT)
Theorem 1.

a. @,(ay) satisfies 3(QB(a)=—((i 7)+ (0, 0)B(ar).
b. ®,(ar) has a series expansion (3.2).



74 Bob Hoogenboom

Proof.
a. According to (2.2) we have

(3.5) 4(k+2n)8(Q) B, (ar) = (4,— S"=1 4i(i+ k+1)) 8, (ar).

Because of the relation B(H;, H;)=4(k+2n)d;;, the inmer product (.,.)
iS given by <é’ ’7>=(4(k+2n))_1 2:;1 éinb if ‘E:(él’ seey én)s '1=(711, seey r’n)

Hence
4,P;(a) = 0718, (Ly, .., Lyow (0™t JTr_, v:(2)
= o 1 (—(4(k+2n) (4, Ay+nk+1)%) ITi_, vi(t)
(3.6) =—(4(k+2n) (4, Ay +n(k+1)) P, (ap),

because of the relation L;v;(z)=—(A3+(k+1)®)v;(t,)6;;. Since g;=k+1+2(n—i)
we have 4(k+2n){p, Q>=n(k+1)2+2;;; 4j(k+14j), and this together with (3.5)
and (3.6) proves a.

b. To prove that &,(T) has a series expansion (3.2) we use the fact that
0,(t;) is of the form (3.4). We have

vl(tl) Seee® vn(tn)

¢2, (aT) = Cl)(aT)

According to (3.4) the numerator is of the form

(37 WDk (it D FE Ly it S5 Ty eht,

For the denominator we have
o(a,) = 2i—D ij % (€ e—2 — g2t —e—2))
(3.8) — 22(n—1)t1+2(n—2)12+...+2tn_1 ]]i<j (1 _.e—2(ti—tj))(1 —e—2(‘i+'j))_

In C* we have #,=t,>...>1,>0, so for all T€C+ the exponents in the
denominator (i.e. —2(;,—t;) and —2(t;+¢;) with i<j) are <O, so we have the
power series expansions

1 oo

—_— = —2p(;—t))
1—e—20t,-tp — p=0€ s
1

—_— = o —2q(t,+1,)
ety = Za=o€ Y
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Using these power series expansion and formulas (3.7) and (3.8) we get for @,

®,(ap) = eVt~ G+ D—2—-D) 1y + ..+ (Y =14,y — K+ D=2 1,1+ (Y =12, -G+ D)y,,

Ty (2;:0 Iy e k%) Hi<j (2:;0 e~ 2Pt 24;0 el+e)),

ie. /=14 myltiplied with a finite product of convergent series of the form

e bﬂ(/l)e_”(T).
Hence multiplication of the power series gives

&, (ap) = e/ =12-D S eaTu()e D,

Clearly we have I'y=1 which proves b. [

Now we’ve come to the point where we have to find the function v;(f;) which
satisfies (3.3) and (3.4). The equation L;v;=p;v; can be seen as a differentia]
equation for Jacobi functions (see [8]). The general equation for Jacobi functions is:

(3.9) (4, ,,(t))—l%{Aa, 5@ d_‘;gl} = —(22+(@+ B+ DHu(),

where A, 5(t)=(e'—e )t (e' +e )%,
The left-hand side of (3.9) in the case a=k, =0, t=¢; is easily seen to be
equal to L;u. So let us try to find a solution of

(3.10) (400 f Ao 2d = — (24 D9

which is of the form (3.4).
Substitute #;:=—sh?¢;. Then equation (3.10) leads to a hypergeometrical
differential equation. If we let #;—<o, (3.4) gives the asymptotic behaviour:

(3.11) v;(t) = eV =T4=G+ D)4 (1 4 o(1)).
According to [2, 2.9(9)] the Jacobi function of the second kind
B0 (1) = (& 9 TP (3 (ke 1 -y TTA), 2 (k1Y 7T,
1—V=Tk; —sh=2t)

is a solution of (3.10) for all A; with Im A ¢ Z~, having the asymptotic behaviour
(3.11).

Lemma 3.2. @S{‘i"’)(ti) has a convergent series expansion (3.4) for t,>0.
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Proof.
0%0() = (" —e ™ THTEDE (S~ ko 1- VT4, 5 (k+1-V=12);
1— V—_I/li; —sh“zti)
= (e e~ 40D B (2 (k+1—V=T14); 3 (k+1—V=14);
1=Y=14; ch=2t) (see [2, 2.10(6)])

(G kr1=y=T))
(1 - V:T)“i)n n!

absolutely convergent for t=0 since O<ch=2f;<1. Hence

= /=1~ D)y (] g2t/ ~1h—G4D 3=

(ch—2g)",

ng,o)(ti) _ e(}/—_u,—(k+1))t,. :;Oyne—znti(l_I_e—zt,.)—znﬂ/—u,.—k—l

The lemma follows by expansion of (1-e=2)=2w¥—ti—k-1

e_2ti. 0

in powers of

Combining theorem 1, lemma 3.1 and lemma 3.2 we get

Theorem 2. The function
&, (ap) = D80 o 9500

w(ar)

satisfies

5(D)®,(ap) = y(D)(V —14) &,(ap)
for all DeDy(G).

4. Spherical functions on SU (n, n+ k; C)

Let ¢, be a spherical function on G, that is an eigenfunction of all DeDy(G),
having value 1 at e. Then we have (see [5]):

4.1 o.(ar) = ZSGW c(sd) Dy (ap), TeCT,

where W is the Weyl group of G and &,(ar) an eigenfunction of 5(Q) with a series
expansion (3.2). Our main goal in this chapter is to find ¢,, or to find the func-
tion c.

Let us first look at the rank 1 case (see [8]). As a solution of the hypergeo-
metrical differential equation (3.10), which is regular for =0, we get:

o5 () = oF: (5 (k+ 14V =12), 3 (k+1-V=14); k+1; —sh?z).
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Now, assume that 4;4V—1Z. Then we know from {2, 2.10(2)] that

oFy (3 (k+14+V=114), 3 (k+1-V=14); k+1; sh*t)

= Zseu, -1} c(s}-i)(et"_e_t")y_lu"_(kﬂ)

coFy (3 (ke 1=V =TsA), 3 (k+ 11—V =TsA); 1—-V=1sA; —sh=2¢)

with
F(k—}—l)['(_ le_l) 2V:li+k+1
4.2 1) — r(- , .
(4.2) c(l) TG 1TV =IA) T et 14V —12)
So we have
(43) (pii(tj) = C(}-i) @li (t])+c(_ j’;) @_li (tJ)

(from now on we omit the indices (, 0), that is we’ll write ¢, instead of ¢ etc.)
where ¢ is defined as in (4.2). Because (—A4,)2=A? the following relation is also
valid.

(4.4) Ligy, (1) = — (2 +(k+1)?) @3,(2).

Definition 4.1.
A det (01D =i, j=n
=1 wlay)

@x(ag): ij
(4 is a normalization constant, independent of 7 and J, which has yet to be deter-
mined.)

We want to prove that ¢,(a;) is a spherical function on G. Therefore, we’d
like to write ¢, as a combination of @,’s, in a way which is similar to (4.1). Accord-
ing to [9] we have W={s: s(ty, ..., t)=(1ts1)> ---» Enlo(m)s E=E1, 6€S,}. We'll
denote such an s€ W by s=(s, 6) with e=(g,, ..., &,) and ¢€¢S,. Thus

A7t w(ap) ,(ar) = T;‘ét (((p)iz' g,?%)

- D ges, (1 H;=1 ® 2oy (Ep)
B (= 1)#me-D det (A3 1)

Za €S, (* l)sgn ‘ Z§L=1i1 c (81 )“a(l)) ¢al Ao1y (tl) Se.et C(Sn j'a(n))Qf:,. Aa(n) (tn)
CIF D det (37

_ C(slia(l)) Peen C(enla(n)) n
- ZaeS:El (—1)Ent—D det ((E'Ii]~ (.))2(1'—1)) Hp=1 Q)spla(p)(tp)'
£i= a(l
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Hence

4.5) pilar) = Zsew C(s4) Dy (ar),
where

(4.6) CO) =4 c(A)-...-c(Ay)

T(=1)Fnn-D det (A2G-Dy
Since (sA, sA)=(A, ) for all s W, it follows from (4.5) and theorem 1 g that

@.7) 5(Q¢ilar) =—(4 H+{e, ) ¢a(ar).

Lemma 4.1. (HUA [6].) Suppose f(x),...,f,(x) are C=-functions on a real
interval 1. Let
™ det (fi(xy)
Hi<j(xi_xj) '

Then F is C™ and symmetric on I" and, for a€l,

F(xy, .oy X,) =

(— DEnt—1)

F(a, ...,a) =m

det (f9-9(a)).

Moreover, if all the f; are polynomials, then so is F.

Proof. (Sketch) Use complete induction with respect to #, by writing

Al o filx)
S1(x2) —f1(x1) L So(X) —fu(x0)
Xo— Xy Xo— Xy

det (fi(x))) = (xa—xy)...(x,—x;) - det :
Si(e) —f/1(x) N SuGew) —fa(x0)

Xp— Xy Xn— X1

and next expanding the determinant with respect to the first row. O
According to [2, 2.8(20)], we have

d e oy (@)(B) T
(4.8) 'a;izFl(a, b, [ Z)__—(F)I——2F1(a+l’ b+l, C+l, Z).
Now
. det((91)(t) _
oy -

_ det(oFy (3 (k+1+V=14), 2 (k+1-V=14); k+1; —sh21))
= lTlglo 2n(n—1)]]i<j (sh®f,—sh? tj) .
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Using lemma 4.1 and (4.8) we see that this expression is equal to

2—n(n—1) (_ 1)%71(11—1)
1120, (n—D!
1 1

ey (ﬁ] .(,1§+(k+1)2) ——‘lt—{k—iq](/lﬁﬁ-(k-l-l)z)

1 " 1 2 2 2 2
(~4) [(k_H)."(k+(n_1))J().1+(k+l)).,.(/11+(k+2n—1))...

1 w1
- ! det| AHGEFDE o (k1)
22n(n—1)]];;; {(k‘i-j)"_jj |} R

(2 (kDR (24 (ke 12yt
_ (= DEr—D
2 LAkt
Hence, if we take

(4.9) A= (_ l)-}n(n—l)zzn(n—-l) H:;i {(k+j)"’fj!}

Hi<j (A?_i?)

in definition 3.1 we obtain
(4.10) ¢a(ag) = 1.

Now, since it is obvious from the definition that ¢; is W-invariant and C*
everywhere on A, it follows from theorem 2 and the relations (4.5) and (4.10) that
for all Acag with 4,4 Y —1Z for all p, ¢,(ay) is the restriction to 4 of a spherical
function on G. Because the set {A€¢C": V—14,4Z Vp} is an open, dense subset
of C", we can catch all 1 by analytic continuation (if A,=4, for some p, q, p+#q
continuation according to lemma 4.1), so we have proved the first theorem of Bere-
zin and Karpelevié.

Theorem 3. (BEREZIN and KARPELEVIC [1].) The zonal spherical functions
@, on G=SU (n, n+k; C) are given by

pi(ar) =
~ A det (3Fy (% (k+1+V=14), 5 (k+1—-V=14); k+1; —sh?1,))
/PRGN 287D JT, (ch 21, —ch 21,)

where A is as in (4.9).
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5. The algebra 6(D,(G))

Now we come to the point where we can prove the second theorem of Berezin
and Karpelevi€. We proceed as follows. First, we show that the functions ¢, sat-
isfy 4;¢,=a;(A) ¢, for all j, and next, by using a method of KOORNWINDER
(see [7], § 6), we show that every differential operator, which has all the ¢, as eigen-
functions, is a polynomial in the 4; (j=1, ..., n), and this polynomial is uniquely
determined. Thus, because of the factthat §(D)¢,=y(D)(V —11)p, (DEDL(G))
(this folows from theorem 2 and (4.5)) it follows that the algebra §(Dy(G)) is gen-
erated by the 4; (j=1, ..., n).

For reasons of convenience we’ll work with a slightly larger set than (D, (G)).

Lemma 5.1. A;¢;,(ar)=a;(X)¢;(ay) for all j.
Proof. 1In 1 variable ¢ we have

L;®;,(t) = —(A+(k+ D) &, (1) 5.

I CHL) [T, @,,() = [T, (E— (3 +(k+1)9) 1T 2:,(2)).

Define on ag; the functions a;(%) by

Il (E— O+ G+ 1)) = 2 _pa;,(D .

Hence

Then
Si(Lys o L) [Tic; @2,(t) = a;(2) [Ti~, @2,(2) for all j.
= (0718;(Ly, ..., L)ow) ®,(ar) = a;(2) ®,(ay) for all j.
= (0718;(Ly, ..., L)ow) ¢,(ar) = a;(A) ¢,(ap) for all j.
= 4;¢,(ap) = a;(A) @, (ap) for all j. OO
For the second part: remark first that every differential operator which is a
polynomial in the 4;, has to have all ¢, as eigenfunctions, because of lemma 5.1.
So we have to prove that every D which has all ¢, as eigenfunctions must be a poly-
nomial in the 4;. We’ll restrict ourself to those ¢, which are polynomials, that is
%(k+1il/—_1 A)€Z~. If we can prove that this, i.e. every D which has all poly-
nomial ¢, as eigenfunctions, is a polynomial in the 4;, we are done because of
the remark above.
Let A" be the ordered set of all n-tuples u=(yy, ..., u,) with p,€Z for all i,
and pm=p,=...=p,=0, and let < denote the lexicographical ordering on A,
Let t=(t, ..., t,) with ¢,¢Z for all i.
Now, let ¢, (f) be a polynomial. Say

%(k-l—l—-l/——_ll,-) =—m;—n+i for i=1,..,n and meN.
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Then ¢, () becomes
0;,(t) = o Fy(—(mi+n—1i), my+n—i+k+1; k+1; —sh?r).
We’ll denote such a @, (¢) with % (k+1— V=1 A)=—m;—n+iby Pm,(t). Thus
P, t)is a polynomial of degree m;+n—i in —sh?¢. Then it follows from lemma 4.1
that ¢, (ar) is a polynomial of the form ¢;(ay)=c(—sh? £;)™...(—sh? t,)"+terms
of lower order (according to the lexicographical ordering of the n-tuples (1, ..., m,)).
This polynomial function we’ll denote by P, (ar) (meAN).

Definition 5.1. Let D¥(G) be the set of all W-invariant differential operators
on R”, regular in the interior of all Weyl chambers, and having all the P, as eigen-
functions, that is DEDY(G) implies DP,,=b(m)P,,.

Clearly D" (G) includes both §(IDy(G)) and all polynomials in the 4;.

Lemma 5.2. Let D<DY(G). Let m=(my, ..., m)eN be the order of D. Then
D is completely determined by its eigenvalues of P,, b(n), with p<m.

Proof. By the W-invariance of D, D can be written as a symmetric operator
in —sh?t;, ..., —sh®t,. Let—sh?t,denote the vector (—sh®t,y, ..., —sh2t,,)) (6€ S,).
Then

7(m) —3 o ————8 o
D=2, Z«esnCuHhZ’a)(a(—shzzl)) '“(a(—shm)) ’

where the sum /¢ is extended to those u for which p=<m.

We’ll prove by complete induction with respect to u that ¢, is completely deter-
mined by b(u) (u<m). We have c,=b(0). It follows from DP,=b(y)P, that

9 Ha(1) d Ha(ny
b8, = Zees, o000 (i) i)

p p:] )Vm) [ p] ]Vz(n)

() —gh2 —_ S A— .

T2 Zees, 0 (—sh t‘)(a(——shztl) o) P

where the sum 7% is extended to those v for which véu, because the terms of

D with v; p annihilate P,. Hence
1 —sh?t) = — W) —sh? _
n-ﬂucu( sh?7) b(ﬂ)Pu Zv Zresncv( sh tt)[a(—shztl)
a ]Vt(")
Nocms) o

where B,=p;!...p,! times the coefficient of the term of order (uy, ..., u,) in P,.
The lemma now follows by the induction hypothesis. [

Lemma 5.2 immediately implies:

Lemma 5.3. Let D;, D,¢DY(G). Then D,D,=D,D;.
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We have by definition DEDY(G)=D is W-invariant. W is the set of allmaps
s such that

51 (fyy cos 1) > (€1l51ys o0 Enlomy) & =Fx1 Vi, 0€S,.
This implies:

Lemma 5.4. Let DEDY(G). Suppose D is written in the form

D=3,c.0) [%]ul... [%)ﬂn.

Then D is invariant under the operations
ti - = ti V i,
(tla AR tn) - (td(l)’ rry to'(n)) VO’ESn.

Lemma 5.5. Let De¢DY(G), and let d=degree D. Then D can be written in
the form

(5.1) p=3, a2 (2 410

Tu=d 5}: or,
(l.o. means lower order terms), where the c, are constants.
Proof. Lemma 5.3 implies that D commutes with all the 4;, hence
(5.2) DA;—4;D =0 for all j.
We have
4;=S5; [33—:12’ e aa—:nz]+l.o.

Let D be written in the form given by (5.1), only with ¢,=c,(¢#). Now we
use (5.2), in particular we use the fact that the terms of order d+2j—1 disappear.
This yields:

(d+2j—1)™ order part of |S; i 2 2> c,(?) Ay (2 ] =0
j o 5 ; WO\ar) o :

Zp;=d
Hence
(< 0 Oyr (0Yr
oy — . . oJ—] ...]5¥— =0,
szvi=d+2j—1 [Zp=1 ZnEVI.; 1 3tp (Cvl—nl(p,n),...,vn ln(p,n)(t)) (31‘1) [3tn] ]

where we have defined:

—Vi~':= the set of all (j—1)-subsets of {l,...,p—1, p+1,...,n},

"'iq(P’ n)=12 if pEm,
0 else;
—¢jy,...in=0 if one or more j; < 0.
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Hence we have to solve the system of equations

0
©.3) Z:=1 Znevg‘laT (cvl—il(p,‘n:),..‘,v,,—i,,(p,n)(t)) =0
p
for all 1=j=n,v with >v,=d+2j—-1.

We’ll prove by complete induction with respect to the lexicographical ordering
that (5.3) implies
’ d
5.4 gt*cvl,...,vn(t) =0 Vg:l=g=n,Vv: Dv,=d.
q
(Remember that (u, ..., ) <(my, ...,m,) iff 31 such that p=m; if 1=i=]-1
and p<my;.)
i. By taking j=1 and v,=1, v,=0 for isg¢ it is clear from (5.3) that

0
3z Cor - o(2)=0 vgq.
q
ii. Let (I, ..,1)=(0,...,0, I,,,, ..., 1) with [,,,50, and assume that for all ¢

sy O =0 i Uy 1)< (s 1)
q
(induction hypothesis).
a. Assume 1=q=p.
By taking j=n—i+1, v,=1,v;=0 if 1=i=p, is*q and v;=[+2 if i=zp+1
(5.3) becomes

d
57 €00 lpszsntn () = 0.
q

b. Assume g=p+1.
By taking j=n—gq, v,=0 if 1=i=p, v;=l; if p+l=i=q-1, v,=]+1 and
vi=L+2 if i=g+1 (5.3) becomes

0
o, €000y 101 (1) = 0,

where we have used the induction hypothesis.

So it is proved that (5.3) implies (5.4). Hence ¢, , (f)=constant for allv,
so the lemma is proved. [J

Theorem 4. Let DEDY(G). Then
a. D can be written as a polynomial in the A;;
b.  this expression is unique, that is if P,(44, ..., 4,)=Py(4,, ..., 4,), then P,=P,.
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Proof. a. Let De€DY(G), and suppose D cannot be written as a polynomial
in the 4;. Let d:=degree D, and assume that d is minimal. According to lemma

5.5 we can write
a Hy a Hn
D= 2” Cu [E) (%] + l.o.

Du=d

Since D satisfies the symmetry relations of lemma 5.4, the d-th order part
0% 0°

of D has to be a symmetric polynomial in =, ..., 55,
ot ot

and hence a polynomial

. . . ... 0 0%
in Sy, ..., S,, where S;is the j-th elementary symmetric polynomial in 3712 R YEE

Thus we have
D= P(Sy, ..., S)+D,

where D’ is an operator of degree <d. We also have 4;=S;+lo., so S§;=4;+1l.0.
Hence

(5.5)  D=P(4,, ..., 4)+D",

where D” is an operator of degree d”<d.

Since DeDY(G) and PcD"(G) (because all 4;6D¥(G)) we have D”¢ DY (G).
Because d”<d, D” can be written as a polynomial in 4, ..., 4,, and because of
(5.5) this implies that D can be written as a polynomial in 4,, ..., 4,. This con-
tradiction proves a.

b. It is sufficient to show: Q(4,, ..., 4,)=0=>0=0, if Q is a polynomial.
So, suppose Q(4,, ..., 4,)=0, and Q0. So for some e€Z*

Q) = Zu k,uftug®...ulr,

2uy+4up+... +2np,5e

where not for all p with 2y, +4u,+...+2nu,=e we have k,=0. Taking wu;=4;,

2 2
and using the fact that 4;=S; [3—2, cers 3—2]+l.o. we obtain

ot ot

0=0(04,,..,4,)= Z,, k,(Sy+1.0.)/(S,+1.0.)# ... (S, + 1.0y

2, +...+ 2np,=e
0* 0% ™ 0% 0% Y|
= k 55 esaz| - 1Sulsss s 55 Lo.
Zgﬂ1+...+2nun=e M[Sl[atf ’ ’ atr?] } [ n[atf ’ atn2 ]] + ?

Hence, the e-th order term of the above expression must be 0. But this is a com-
bination of elementary symmetric polynomials, and this combination can only be O
if all coefficients are 0, hence

k, =0 Vu: 2pm-+dp,+...+2np, = e,

which is a contradiction, so 0=0. O
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Because of theorem 4 we have proved the second theorem of BEREZIN and
KARPELEVIC [1].

Theorem 5. Let G=SU (n, n+k; C). The operators A;=w"'S8;(Ly, ..., L)ow
. . 0
(1=j=n), where S;=j-th elementary symmetric polynomial and L;=——+

ot?
2(k coth t;+coth 2¢,) ?9%— , form a system of generators for §(Dy(G)).
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