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Recursions for characteristic 
numbers of genus one plane curves 

Ravi Vakil 

Abstract. Characteristic numbers of families of maps of nodal curves to p2 are defined as 
intersection of natural divisor classes. (This definition agrees with the usual definition for families 
of plane curves.) Simple recursions for characteristic numbers of genus one plane curves of all 
degrees are computed. 

1. I n t r o d u c t i o n  

The main results of this paper are recursions calculating characteristic num- 

bers of genus one plane curves of any degree, and of genus one plane curves with 

fixed complex structure. En route, we derive (known) recursions for characteristic 
numbers of rational curves. 

In Sections 2 and 3, we describe a rigorous framework for discussing character- 

istic numbers in general (as intersections of natural divisors on Kontsevich's moduli 

space of stable maps), culminating in Theorem 3.15. This framework will be used in 
a companion article [V2] verifying Zeuthen's calculation of the characteristic num- 

ber of smooth plane quartic curves, a project begun by P. Aluffi [A3]. It will also be 

used in another article IV1] extending formulas of Hurwitz and others on coverings 

of the sphere. In Section 4, we review facts about maps of low-genus curves to P~, 

and in the rest of the article we apply this setup to deduce recursions solving the 
characteristic nmnber problem for genus one plane curves. 

Characteristic number problems motivated a great deal of algebraic geometry in 

the nineteenth century. For complete historical background and references, see [K1]. 

After the advent of the intersection theory of Fulton and MacPherson, a modern 

study of the enumerative geometry of cubics was undertaken successfully in the 

1980s (see [All for history). The introduction of Kontsevich's moduli space of stable 

maps in the 1990s has reinvigorated the field by suggesting surprising recursions 

involving solutions to such enumerative problems, and has led to great advances. 
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This particular paper  was inspired by [KK]. 

Numerous conversations with A. J. de Jong have tremendously improved the ex- 
position and argumentat ion in this paper. The author is also grateful to T. Graber,  
P. Belorousski, and R. Pandharipande for useful discussions and advice, and to 

J. Harris for first introducing him to these questions. He also thanks A. Postnikov 
for discussing the combinatorial background to Section 5.11. A Maple program 
implementing all algorithms described here is available upon request. 

2. Convent ions  and background results  

2.1. We work over a fixed algebraically closed field k of characteristic 0. By 

scheme, we mean scheme of finite type over k. By variety, we mean a separated 
integral scheme. All morphisms of schemes are assmned to be defined over k, and 

fibre products are over k unless otherwise specified. 

Suppose f :  X - + Y  is a morphism of varieties. We say that  f is unramificd at 

a point p if the induced morphism of tangent spaces Tp,x--+f*Tf(p),Z is injective, 
and that  f is unramified if it is unramified at all points p E X .  Let r a m ( f )  be the 
set of ramified points of f .  Let S i n g ( f ) c X  be the set of points that  are ramified 
or are singular points of fibers of f .  Let S m ( f ) : = X \ S i n g ( f ) .  Let j~reg be the set 

of regular points of X.  

If  f :  C--+X is a morphism of schemes and Y is a closed subscheme of X,  then 
define f - l ( y )  as C x x Y ;  f - l y  is a closed subscheme of C. 

If f :  X--+Y is a finite morphism of varieties of the same dimension, then the 

ramification (Weil) divisor R f  is the sum over the height 1 associated primes p of f~} 

of the length (of ft}) at p, times the Well divisor p. If u: Y--+Y is the normalization, 

and p: X x y Y - + X  is the projection, then it is simple to check that  g: X x y Y - - + Y  

is also finite, and p . R g = R f .  

2.2. A family of nodal curves over a base scheme S (or a nodal curve over S) 

is a proper flat morphism 7c: C--+S whose geometric fibers are reduced and of pure 
dimension 1, with at worst ordinary double points as singularities. (There is no 

connectedness condition.) If  X is a scheme, then a family of maps of nodal curves 
to X over S (or a map of a nodal curare to X over S) is a morphism 6: C-+ X x S 

of schemes over S, where 7c: C - + S  is a family of nodal curves over S. A nodal 

curve (with no base scheme specified) is a nodal curve over Spec k, and a map of 

a nodal curve to X is a map over Speck. Similar definitions hold for families of 
nodal curves (and maps) over Deligne-Mumford stacks (see [DM] for definitions). 
We will actually need results in this generality, but  for simplicity of exposition we 
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will prove basic results only over schemes. The arguments over Deligne-Mumford 
stacks are the same. 

2.3. L e m m a .  Suppose r~: C-+S  is a family of nodal curves over a normal 
variety S. Let v: C - ~ C  be the normalization map. Then gr: C-+ S is also a family 

of nodal curves. There is an effective Cartier divisor N on C such that w&/s = 

(z~*wc/s)(-N).  The support of N is the locus where z~ is not an isomorphism (with 
multiplicity 1 along each component), and is contained in Sm(~). 

Thus tJ: C--+C is a clutching morphism ([KN], Section 3). The author was 
unable to find this precise statement in the literature, but it is surely well known. 
We will use the notation N to simultaneously denote the Cartier divisor and the 
corresponding underlying scheme. We call the Well divisor N := �89  the nodes 

of the family. 

Proof. We first show that  # is a family of nodal curves, and that  N consists of 
smooth points of #. Properness is immediate, and the remaining conditions need 
only be checked in a formal neighborhood of closed points p of C. I fpcSm(Ir ) ,  then 
it is a normal point of C. If p is a node of the fiber, then the complete local ring of 
C at p is B~--A[[u, v ] ] / (uv -h ) ,  where A is the complete local ring of S at re(p) ([J], 
2.23). Here I n c A  is the maximal ideal corresponding to lr(p), h~m,  and (x, y, m) 
is the maximal ideal corresponding to p. 

If h=0,  the normalization clearly has two points, smooth above S. If h e 0 ,  the 
local ring is normal. (Sketch of proof: It suffices to show that  A [ u , v ] / ( u v - h )  is 
normal, which can be rewritten as A[x, y ] / ( x2 - ( y2 + h ) ) .  But y2+h is square-free, 
and if A' is a normal domain and h' is square-free, then A ' [ x ] / ( x 2 - h  ') is normal 
by same proof as that  of [Ha], Exercise II.6.4.) 

All that  remains is the statement about relative dualizing sheaves. Using the 
explicit tbrmal-local computations above, there is an exact sequence of sheaves 

* 1 1 0 > 5 > u f~c/s --+ fQ'/s > 0 

on C, where 5- is an invertible sheaf on N. Hence if det is the determinant functor 
defined in [KnM], Chapter I, 

act = (det.*a Vs)O(det f ) - i  : ( . ,  act ab/ )e (act s )  -1 

As det ax/$1 _COx/s_ for a family of nodal curves ([Kn], Section 1) and det .7"= (.9~ (N) 

(as 5 c is an invertible sheaf on N and/V is Cartier), the result follows. [] 
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2.4. We define three different conditions on families of maps of nodal curves 
g: C--+P 2 X S. 

(*) Over a dense open subset of S, the curve C is nonsingular, and g factors 
/ 

C & C ' ~ P 2 x S  where g' is unramified and gives a birational map  from C '  to its 
image; c~ is a degree d~ map with only simple ramification (i.e. reduced ramification 
divisor); and the images of the simple ramifications are distinct in p2. (Whenever 
this case is discussed, the notation (~, d~, C' ,  t /)  will be used.) 

(**) Over the normal locus (a dense open subset) of S, each component  of 
the normalization of C (which is a family of maps of nodal curves by Lemma 2.3) 
satisfies (.).  

(***) No component  of the total  space C is collapsed by 7r. 
So (*) implies  (**)implies  (***). 

We say that  a line L is tangent to a map  ~): C--+P 2 at a point p ifpE~-JL and 
p is not a reduced point of Q-1L. We say tha t  L is simply tangent if L is tangent to 
g at p, p is a nonsingular point of C and co-IL has multiplicity exactly 2 at p. Note 
that  the ramified points of t) form a closed subset, and a p l  of lines are tangent to 
each such point. 

2.5. Remark. Suppose Y is a scheme of pure dimension d, 7r:X--+Y is a 
proper flat Inorphism of relative dimension r, and t;1, ..., s are invertible sheaves 
on X.  Then 7r.(Cl(s ) is an element of As-T(Y) (see [F], Chap- 
ter 17): to intersect with a class in A.Y,  pull back the class to A.X ,  intersect 
with Cl(s (t;~), and push forward. In terms of bivariant intersection the- 
ory, pulling back and intersecting with a product  of Chern classes gives a class in 
A~(X--+Y), which we then pushforward to get a class in A~-T(Y--~Y)=A~-~(Y) 
(see [F], Section 17.2 (P2)). The same is true if ~r is a representable morphism of 

stacks ([Vii, Section 5). 

2.6. S t a b l e  m a p s .  A stable map is a map g from a connected nodal curve C 
to p2 (see Section 2.2) such tha t  g has finite automorphism group. The arithmetic 
genus of a stable map is defined to be the ari thmetic genus of the nodal curve C. 
If [C] EAx (C) is the fundamental  class of C, and ILl EAx (p2) is the class associated 
to a line, then ~.[C]=d[L] for some nonnegative integer d. We say that  d is the 
degree of the stable map. 

A family of stable maps is a family of maps of nodal curves to p2  whose fibers 
over maximal points are stable maps. Let 3~g(P  2, d) be the stack whose category 
of sections of a scheme S is the category of families of stable maps to p2  over S 

of degree d and ari thmetic genus g. For definitions and basic results, see [FP]. It  
is a fine moduli stack of Deligne Mumford type. There is a "universal map" over 
3Ag(P2,d) that  is a family of maps of nodal curves. There is an open substack 



Recursions for characteristic numbers of genus one plane curves 161 

Jbl~(P 2, d) that  is a fine moduli stack of maps of nonsingular curves. 

Fix integers d and g. Let 5=(d~1)--9 . The locus in PH~ corre- 

sponding to irreducible degree d curves with exactly ~ simple nodes is an irreducible 
nonsingular locally closed subvariety of eodimension d, hence dimension 3 d + g - 1  
([HI, main theorem). There is a unique component of 2~g(P 2, d) that  is the closure 
of such maps (as an easy computation shows that  the deformation space to any 
of these maps has dimension 3 d + 9 - 1 ) ;  call this component 2~g(P 2, d) +. (If g >0  
there are other components.) The universal map over j~g(p2 ,  d)+ satisfies (*). 

In fact something slightly stronger is true (although we will not need it): if 
3,t is an irreducible closed substack of A4g(P 2, d) + whose general member corre- 
sponds to a map mapping a curve birationally onto its image, and dim 3/l > 3d+ g - 1 ,  
then J t 4 = M g ( P  2, d) +. This essentially follows from methods of [CH] (see Proposi- 
tion 2.2); a proof appears (in more generality) in [V3] (Section 3). 

We shall see that  enumerative questions about plane curves can be usefully 
interpreted as intersection theory problems on flAg(P 2, d) +. 

In general, if re:/2-+3//is a family of maps whose general curve is nonsingular, 
we will call the locus in jr4 where the corresponding curve is singular the boundary 
of 34, and denote it A. By abuse of notation, we sometimes refer to rr*A as the 
boundary as well. 

3. C h a r a c t e r i s t i c  n u m b e r s  o f  famil ies  o f  m a p s  

3.1. Suppose t): C -+P~ • S is a family of maps of nodal curves over S, where 

S is a finite union of dimension d varieties. Let ~2 be the space of lines in PS, and 

let I be the incidence correspondence I={(p ,  L) c P  2 x ~z ]pCL}. Let 

D univ :=  C X p 2 x s ( l x  S) ,  

so we have the following diagram with two fiber squares: 

Duniv 

I •  

; C x ~  ~ > C 

$ l 
> p 2  x l g 2 x S - - - - > -  p2xS 

S• 2 
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As I is a P l -bund le  over p2, Duniv is a p1 bundle over C. Hence D univ has pure 

dimension d+2  and does not contain any components of C x P  2. Thus, as I is a 

Cartier divisor on p2  •  Duni v is a Cartier divisor on U x P  2. 

8.2. Remark. For any subvariety Q of C, the divisor D univ i n t e r s ec t s  Q •  

t r an sve r se ly :  D univ intersects Q • ~2 properly, and the components of intersection 

appear  with multiplicity 1. (Reason: D univ •  (Q •  is a P l -bund le  over Q, 

so it is reduced of dimension dim Q + I . )  

3.3. The morphism o: D uni~--->S x ~2 is proper, as it factors into a sequence of 

proper morphisms (see the diagram above). Let E be the union of the dimension 1 
components of fibers of o, so s is a closed subset of D univ ([GD], III.4.4.10 as all 

fibers have dimension at most 1), and consists of the components of the curves in 
the family mapped  to a line. This includes the subset Np of components of curves 
mapped  to a point (closed by [GD], III.4.4.10 applied to the morphism Duniv--+P 2 • 

S), and the locally closed subset EL : = E \ E p  of components mapped surjectively to 
a line. As each component  mapped  to a line but not a point is mapped to only one 

line in ~2,  dim EL < d-t- 1. If the family satisfies (***) then dim Ep < d +  1 too. 

Hence if the family satisfies (***) then the codimension of a . (E )  in S x P  2 is 
at least 2, so the morphism a is quasifinite outside a set of codimension 2. As 
is proper, cr is finite away from this closed subset as well ([GD], 111.4.4.2). In this 
case, define the ramification (Weft) divisor R univ to be the closure in D univ of the 
ramification divisor of this finite map. Let cjuniv:--CO(c• ). 

3.4. C l a i m .  I f  the general curve in the family is nonsingular and every com- 
ponent of the generic curve maps with positive degree (so the family satisfies 
(***)), then in dd+l(Duni~), [Runiv]=(Duniv+couniv)[Duniv]. (Here Dunivq-co univ 

is a Cartier divisor on C ~niv which can be intersected with the class [D"niv].) 

Hence the branch divisor is in the class cr.((Duniv+cou~iv)]D~tv ). 

Proof. It  suffices to prove the claim when S is normal; in general, one can 
pushforward the analogous result on the family over the normalization of S (see 

Section 2.1). We may discard closed subsets of D ~'iv of codimension at least 2, and 
we use this to make simplifying assumptions about  the family. 

(1) The morphism a is finite away from a codimension 2 subset of S •  2, so 
we may assume that  cr is a finite morphism. 

(2) The space S • ~2 is regular in codimension 1, so we may assume that  S • ~2 

is regular. 
(3) As C is regular in codimension 1, and D univ is a p l -bund le  over C, we may 

assume that  D univ is regular. We may Mso assume that  D uni~ is disjoint from the 
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singularities of C x ~2_+ S x ~2. 
The ramification divisor is 

E (length( ftDun~ V/(s x~2) ) P)P'  
P 

where the summation is over the associated primes P of ~1 If 27 is the D,ln~v/(Sxp2)" 

ideal sheaf of D univ on  C x P  2, then in the exact sequence 

0 } s _____5 ~1 (C•215 @ODuniv ) ~1 Duniv/(SXp~) } 0 

([Ha], Theorem II.8.17) the first two terms are locally free on D 'lniv of rank 1, and 
Z/Z2~Ocx~2 (--Duniv)@OD,,m~. Thus 

~1 1 (ouniv)@ODunlv e l (  Duniv/(S•215215 2) )" 

But t~c• ) ~aJ "ni~ on C r~g • ~2 by [Kn], Section 1, so the claim follows. [] 

3.5. The support of/~univ. Assume the family satisfies (*) (and hence the hy- 
potheses of the previous claim). Recall that  dim/I~univ = d @  1, and R univ is contained 
in D univ, a Pl-bundle over C. A component R of R "niv is of one of two forms. If 
R maps to ram(t)), then as dim ram(t))<d (and equality holds only for components 
surjecting onto S), R must be a pl-bundle over a component of Sing(To) (and R 
surjects onto S). Loosely speaking, this is a locus where a ramified point of the 

general curve maps to the universal line (corresponding to the point in ~2). 

Otherwise, there is a morphism fl'om the unramified points of 0 to C x~2  
(sending each point to its tangent line), and the image is an open subvariety of R "niv 
(of dimension d + l ) .  Loosely speaking, a component R of R "niv mapping to this 
locus corresponds geometrically to points of tangency from unramified points of the 
general curve to the universal line. Again, R surjects onto S. 

3.6. Cla im.  ( a ) / f  the family satisfies (*), then/~univ consists of the divisorial 
components of the closures of the sets 

(i) ramification points of c~ mapping to the universal line, and 
(ii) unramified points of maps tangent to the universal line, 

with multiplicity 1. 
(b) In (i), "ramification" may be replaced by "simple ramification". In (ii), 

"tangent" may be replaced by "simply tangent". 
(c) Furthermore, o'. /~ univ consists of the divisorial components of the closures 

of the sets 
(i) maps where a simple ramification of c~ maps to the universal line, and 
(ii) maps where the image is simply tangent to the universal line. 
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Divisors of the first type appear with multiplicity 1, and divisors of the second type 
appear with multiplicity d~. 

Proof. By 3.5, (a) is true set theoretically. By Sard's theorem, we can check 
the multiplicities by looking over a general point of S (as each component  surjects 

onto S, and the constructions all commute with base change). (See [K2], p. 6, 
for a discussion of applications of this variant of Sard's theorem to enumerative 
geometry.) Thus it suffices to prove the result when S is a closed point, so we have 
reduced to the case of a single map, and the study of the ramification divisor of the 
morphism from a p l -bund le  over C to P2. 

We first show the result for the unramified map C ~ P  2 (or equivalently, the 

case d ~ = l ) .  

Let (D~n~v) ' C C • ~2 be the PX-bundle over C '  (defined similarly to D U ~ ) .  It  is 

simple to show that  if a: X--~Y is a finite morphism of nonsingular varieties, p E X  is 
a general point on a component  of the ramification divisor, and a -1 (c~(p)) is a local 
Artinian scheme of length 2 at p, then the component  appears  with multiplicity 1. 

In this case, if [L]EP 2, then the pullback of ILl to (D~ni~) ' is isomorphic to the 
pullback of L to Cs A fundamental  tact of duality theory of curves is that  the 
curve ~'(C') (or any other reduced curve in p2)  has a finite number of bitangents 
and flexes, i.e. the map  t) ~ has only a finite number of tangencies that  are not sinrple 
tangencies (see [K3] for a comprehensive survey). Thus if [L] is a general point of 

the (one-dimensional) branch divisor of (D~niv) ' -+P 2, then L is simply tangent to 
~(C') at exactly one point (and transverse at the rest), so the ramification divisor 
(and branch divisor) indeed appears  with multiplicity 1. This proves the claim for 
the family C t--~P2. 

Phrased differently, the branch divisor o f  (Duniv)l--+]~ 2 is the dual curve to 

o(C'), with multiplicity 1, and the ramification divisor is the set of (p, L)EC' x P  2, 
where L is the tangent line to Or: C~___~p2 at p. From the fiber square 

Pl -bund le  
D univ > C 

( D u n i v )  ' e l -bund l~  > C',  

the ramification divisor of the left vertical arrow is the pullback of the ramification 

of a,  simply by definition of (*). Thus the ramification of the m a p  Duniv--+P 2 is as 

described in (a). 

In the course of proving (a), we saw the behavior of the general points of the 
components of R ~niv and a , R  ~mh', so (b) and (c) are also clear. [] 
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3.7. Next assume that  S is normal, and that the family satisfies (**). Let 

be the normalization of C (so C - ~ S  is a family of nodal curves by Lemma 2.3). Let 
(resp. N) be the locus on C (resp. C) described in Lemma 2.3 (the "branches of 

the normalization", resp. the "nodes of the family"). Define D univ, cd univ, ~nniv aS 
above, and ~u~iv, cSu~iv, ~univ as the analogous constructions for the family C--->S. 

Let u be the normMization C x p2_+ C x p2. 

3.8. C la im.  In A . ( C •  

Duniv. (Duniv q_couniv) = / / .  (h~ i .  + (~  • ~2). bu~i~ ) = ~. (Runiv) ~_Duniv. (N x ~2).  

It should certainly be true tha t  /[~univ=//.(~univ-}-(Nxp2)-j~univ) 3s cycles, 

but we will not need that  here. It is useful to think of this claim geometrically (but 
sloppily) as "the divisor where a family is tangent to a line is the divisor where the 
normalization of the family is tangent to the line, plus twice the divisor where a 
node of the family is mapped to the line". 

Pro@ Oil C •  ~univ r,,Duniv ' P , - so 

h univ : b univ. (D univ d-c~ univ) = t/* D "niv �9 ( S  D univ -}- p*couniv) _ (jQ x ~2)./~untv 

by Lemma 2.3. Pushing forward by the (finite degree 1) morphism p gives us the 
first equality. The second equality follows from the pushpull formula 

/)univ.(,~ • 2) = (t2*Duniv).(j~ •  2) = Duniv.tj.(]V • p 2) = 2 D u n i v . ( N •  [] 

3.9. Remark. With the same hypotheses as above, if Q is any subvariety of S, 

then cr,(R uni") does not contain Q xI~ 2. (As no map is tangent to all lines in P~, 
the result is clearly true even if Q is a point.) 

3.10. Incidence and tangency divisors on a .family of maps. For the rest 
of this section, let t): C--~P~• S be a family of maps of nodal curves over some 
equidimensional reduced base S, satisfying (**). For each line L in p2 let DL 
be the closed subscheme t ) - lL on C. Let co:=coc/s, and 2):=t~*Op~(1). We will 
occasionally use co and 2) to also denote their classes in the Chow group. 

Let a:=rc,(2) 2) and fl:=rr. (2). (2)+co)). (In the language of' Harris Morrison's 
"standard conjecture for the Hilbert scheme" [HM], p. 64, these divisors are A and 
A+B.)  The Weil divisor c~ will be "the divisor of maps through a fixed general 
point", and the Weft divisor fl will be "the divisor of maps simply tangent to a fixed 
general line." By Remark 2.5, a, f lEAIS  (in the operational Chow ring). 
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v 2  
3.11. L e m m a .  Fix subvarieties Q of C and Q~ of S. I f  [L] is general in P , 

then 

(i) D L is a Cartier divisor on C in class 19, and the morphism DL--+S is 
quasi-finite in codimension 1; 

thus we can define a ramification divisor RL as in 3.3, and a branch divisor BL := 
71-,RL; 

(ii) DL intersects Q properly, with multiplicity 1 along each component of the 
intersection; 

(iii) BL is the class ~.(19-(19+w)); B n consists of divisorial components of 
the closure of the locus of maps simply tangent to L, and maps with nodes of the 
family on L, with multiplicities as described in Claims 3.6 and 3.8; BL does no t  
contain QI. 

Proof. Use Kleiman-Bert ini  ([Ha], III.10.8) on D u n i v - + p 2 x S  (with group 

PGL(2)) .  Use Remark 3.2 and 3.3 for (a), Remark 3.2 for (b), and 3.4-3.9 
for (c). [] 

3.12. L e m m a .  I f  p is general in p 2  then the union of the maximal points of 
p - l (p)  is in class 19 2 in Ad- I (C) .  

Proof. As sets, &-l(p) is the intersection of DL and DM where L and M are 
generM lines. By Lemma 3.11, each component  of DL appears  with multiplicity 1. 

D ~ Q--DL) , each If { L}i are the components of DL, then by Lemma 3.11 (applied to -- i 
component  of (OlD~) 1M appears with multiplicity 1 on D~. Finally, DM does 

not contain any component of D~NDJL (also by Lemma 3.11, taking Q to be any 
component  of DiLNDJ). [] 

3.13. Remark. Hence we can interpret a as follows. Fix a general point p E P  2, 
and for each component  of the generic curve C not mapped  to a point, associate 
the locus where p lies on the image of this component; this is a Well divisor on S. 

Associate to this Well divisor a multiplicity equal to the degree of the map of the 
component  of C onto its image. The formal sum ap of these divisors (with these 
multiplicities) is in class a.  

We can also interpret fl geometrically. Fix a general line L c P  2. To each 
component  of the normalization of C (saris .lying (*)) we associate the locus where 
the map  C ' - + P  2 is tangent to L; this is a Well divisor on S. Assign a multiplicity 
of d~ to this divisor. To each component of the normalization of C satisfying 
(*) we also associate the locus where a ramification point of a maps to L, with 
multiplicity 1. To each node of the family we associate the locus where the node is 
mapped  to L. This is a Well divisor on S; assign a multiplicity of 2 to it. Then the 
formal sum/3L of these divisors (with these multiplicities) is in class ft. 
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Moreover, if Q is any subvariety of S (distinct from S), Q is not contained in 
any component of ap or/3L on S (for p and L general). Consequently, if the general 
map in S does not satisfy a closed condition (e.g. cuspidal, tacnodal, or with a node 
on a fixed line), then neither does the general map in any component of ap or ~z. 
In particular, each component in ap and/3L also satisfies (**). 

3.14. We now come to the main result of this section. Suppose C--+P 2 x S 
is a family of maps satisfying (**), and S is a Deligne Mumford stack. Let the 
components of C be called {C.i}~ 1, with c~i and d~  as defined in 2.4. Let N1,.. . ,  Nt 
be the components of the nodes of the family (see Lemma 2.3)). Fix a general points 
Pl, ... ,Po~ and b general lines L1, ..., Lb in p2. 

To each point Pi associate a component C~(i). Parti t ion {l, ..., b} into three 
sets El ,  s and E3. To each jEE1 associate a component Cx(j). To each j E s  
associate a component Cytj). To each j Gs associate a component of the nodes of 
the family N~(j). Consider the following cycle on S, of codimension a+b, that  is 
the closure of the subset of S(k) corresponding to maps such that  

(i) for each l < i < a ,  the image of C~,(i) passes through Pi; 
(ii) for each jEE1,  the map restricted to Cx(i) is simply tangent to Ly; 
(iii) for each j Cs the image of a ramification of ay(j) passes through Lj; 
(iv) for each j E s  the image of N~tj) lies on Lj. 

(Note that  this cycle is empty if more than two lines in /23 are associated to the 
same Nk.) To this cycle, associate the multiplicity 

C~ 

Let Q be the cycle that  is the sum over all choices above of the cycles described 
above, with multiplicity. 

3.15. T h e o r e m .  In Ad-a-bS, [Q]=c~/3b[s]. The components of Q described 
above are all distinct. 

For a specific example, see Remark 4.6. 

Proof. Use induction on a+b; the case a-b=O is clear. Assume the result for a 
fixed a-ao, b=bo, so we have distinct cycles Q~ with multiplicities m,i given by the 
inductive hypothesis, with Ei  m~[Qi] =c~a~ b~ IS]. Using Remark 3.13, it is straight- 
forward to verify that  tile theorem holds for (a, b ) = ( a 0 + l ,  b0) (resp. (a0, b0+l)) ,  
by expressing a[Qi] (resp. ~[Q~]) as ~ j  mij[Qij]. By Remark 3.13, Q~j does not 
contain QinQi,, so QijCQi,j, for (i,j)r this shows inductively that  the 
components of Q described above are distinct. [] 
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Note that  if the family satisfies (*), then we may ignore Z2a. If furthermore the 
general map gives a birational isomorphism from the curve to its image, then we 
may also ignore s 

3.16. Characteristic numbers of families of maps. If t): C --+P2 x S  is a family 
of maps of nodal curves to p2 over S, where S is a finite union of varieties of di- 
mension d, then we say that  ~a/3b[S] (a+b=d) are the characteristic numbers of the 
family of maps. If the family satisfies (**), then these numbers can be interpreted 
enumeratively using Theorem 3.15, as counting maps (with multiplicity). This con- 
struction carries through even if S is a Deligne-Mumford stack (and t): C ~ S  is a 
family of nodal curves over a Deligne Mumford stack, see [DM] for a definition). 

The classical characteristic number problem for curves in p2 (studied by, e.g., 
Chasles, Zeuthen, Schubert) is: how many irreducible nodal degree d geometric 
genus g maps are there through a general points, and tangent to b general lines (if 
a+b=3d+g-1)?  (The classical phrasing was somewhat different.) By 2.6, and 
Theorem 3.15, this number is aa/3 b on j~g(p2 ,  d)+. 

3.17. Generalizations. The obvious generalizations to maps to P~ and with 
marked points (which will not be needed here) are also true: the arguments are 
identical. The argument for maps to p1 (needed in IV1], see also Section 5.11) 
requires no change: just consider maps to a fixed line in p2. 

4. G e n u s  0 a n d  1 fac t s  

In this section, we review known facts about stable maps to P~. 

4.1. Genus 0 (front [FP]). The Deligne Mumford stack J~0(P2,d)  is non- 
singular of dimension 3 d - 1  ([FP], Section 0.4). The boundary A is the union of 
divisors A0,j where Ao,j generically corresponds to a map of two genus 0 curves, 
joined at a node, one mapped with degree j and the other with degree d - j .  

4.2. Genus 1 (from [V4]). Let J ~ l ( P  2,d)* be the closure of points in the 
stack J ~ I ( P  2, d) corresponding to maps that  do not contract a genus 1 union of 
components. Then J ~ l ( P  2, d)* is irreducible of dimension 3d. The boundary A is 
the union of 

(1) divisors A0, j (j >0), where A0d generically corresponds to a map of a genus 
1 curve E and a genus 0 curve R joined at a node, where R is mapped with degree 
j and E is mapped with degree d - j ;  

(2) the divisor A0 of maps from rational (nodal) curves; 
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and possibly three more (IV4], Lemma 5.9); 
(3) points corresponding to cuspidal rational curves with a contracted elliptic 

tail; 
(4) points corresponding to a contracted elliptic component attached to two 

components, where the images of the rational components meet at a tac- rational 
node; 

(s) 
rational 

Let 

points corresponding to contracted elliptic components attached to three 
components. 
A~i be the union of divisors of type (3)-(5) above. 

4.3. C la im.  If E is an irreducible component of A~i and a+b=3d-1, then in 
A0(Jt4 i (e2,  d)*), a~/3b[~] =0.  

Pro@ We prove the result if E is of type (3). Choose a general points and b 
general lines, and let Q be the 1-dimensional cycle in J~l(P 2, d)* described in 3.14, 
so [QJ=c~[3b[3~i(P 2,d)*]. Then Q is the set of points corresponding to maps 
through the a points and tangent to the b lines. We will see that  Q is disjoint from 
E, which will imply the claim. 

If b/--+E is the restriction of the universal family to ~, ~- let i:5/'~-+5/ be the 
component of 5 / tha t  is the union of the noncontracted genus 0 curves. Then Qoi is a 
stable map (of genus 0 curves to p2) over E, inducing a triorphism f :  ~--+JM0 (p2, d) 
whose general fiber (above the image f (E) )  is 1-dimensional, corresponding to the 
j-invariant of the elliptic tail. Thus dim(f(E))=dim(E)-l=a+b-1.  There are 
no maps in f(--)  through the a points and tangent to the b lines, for dimensional 
reasons. But it is easily checked that  a map rnEE passes through a point (resp. is 
tangent to a line) if the map f(rn)  does, so QNE=0.  

The arguments for types (4) and (5) are similar, and will only be sketched. 
For type (4) divisors, construct the auxiliary family 5/' by discarding the contacted 
genus 1 component and gluing the two genus 0 components together along a node. 
For type (5), discard the contracted genus 1 component and glue two of the three 
genus 0 components together along a node; this may require a finite cover. [] 

For this reason, the components of Aei will not contribute enumeratively, so 
we call them enumeratively irrelevant boundary divisors. 

Now let 5l be the universal curve over M I ( P 2 , d )  *, so 7r: /g-+/~l(P2,  d) * is a 
family of nodal genus 1 curves. Then Ml(p2,d)*\Aei is nonsingular away from 
the enumeratively irrelevant divisors, and the total space ~r*(Ad~(P2,d)*\A~) is 
nonsingular ([V4], Lemma 4.21 and Proposition 5.5). Away from the codimension 2 
subset where boundary divisors intersect (call it S), 7c is a family of "curves with 
at most one rational tail". Let R be the closure in 5 /o f  the points on rational tails. 
Then R is a Weil divisor supported over the boundary. 
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4.4 .  C l a i m .  We have, modulo enumeratively irrelevant divisors and torsion, 
c~ = ~2 [A0] + [R] as Weil divisor classes. 

Proof. It suffices to prove the result above the open set y k 4 : = ~ l ( p 2 ,  d)*\  
(SuAr There is a contraction morphism ([Kn]) 

c: Lt • ~1 (P2,d)* Ad > b/f 

3d 

contracting R (take the relatively minimal model of the genus 1 fibration). 

As (the total space of) N is nonsingular above A/I, a straightforward local 
calculation shows that  the contraction is a blow-up of the image of R along a 
nonsingular locus, so c*cou,/M(R)=c~UX~l(p2,d).~. The following lemma shows 

that  w u , / ~ = ~ [ A 0 ]  modulo torsion, so we are done. [] 

4.5. L e m m a .  Suppose f: bl'-+ A/t is a morphism of nonsingular Deligne-Mum- 
ford stacks, and f is a relatively minimal elliptic fibration. Let A0 be the locus of 
nodal fibers. Then w u , / ~ = ~ [ A 0 ]  modulo torsion. 

This lemma is implied by tile statement (71}1 = 1  on A/ll,1 (see [HM], Exer- 
cise 2.58). 

4.6. Remark. Suppose ~ is the locus A0 or A0,j in 2~ l (P2 ,d )  *, or the locus 
A0,j in A/I0(P 2, d). Fix a general points and b general lines, where a + b = d i m ~ .  
Then by Theorem 3.15, the degree of aa/~a[~] is equal to the number of maps where 
the map from the normalization passes through the a points and is tangent to the 
b lines; plus twice the number where the node maps to one of the b lines, and the 
curve passes through the a points and is tangent to the remaining b - 1  lines; plus 
four times the number where the node maps to the intersection of two of the b lines, 
and the curve passes through the a points and is tangent to the remaining b - 2  
lines. 

4.7. Maps to P~.  Almost all of the results of Sections 2 4 about maps of curves 
to p2 carry over essentially without change to maps to P% There are only two 
additional comments worth making. (1) For 1 <j_< n, there are classes a j  E A j -  1 (S) 

corresponding to maps intersecting codimension j linear spaces (so (~=c~2 when 
n=2) .  All analogous transversality results to a hold. (2) In the genus 1 case, there 
are (potentially) n + l  enumeratively irrelevant boundary divisors. 
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5. G e n u s  0 and  1 r e c u r s i o n s  

5.1. Let Rd(a, b) be the number of irreducible degree d rational curves through 
a fixed general points and tangent to b fixed general lines if a+b=3d-1, and 0 
otherwise. By 3.16, this is c~(~ b on M 0 ( p 2 , d ) .  Let Rd:=Ra(3d-I,0) be the 

number with no tangency conditions. Let NLd(a, b) be the number of irreducible 
degree d rational curves through a fixed general points and tangent to b fixed general 
lines and with a node of the image on a fixed line if a+b=3d-2, and 0 otherwise. 
By [DH], (1.4) and (1.5), 

(1) NLd(a,b)=(d-1)Rd(a+l,b)-�89 b. 

Let NP(a, b) be the number of irreducible degree d rational curves through a fixed 
general points and tangent to b fixed general lines and with a node of the image 

at a fixed point if a+b=3d-3, and 0 otherwise. Let NP~t:=NPa(3d-3,0) be the 
number with no tangency conditions. 

5.2. If d_>2, let Ed(a , b) be the degree of aa[~b[.~l(P2 , d)*] if a+b=3d, and 0 
otherwise. By 3.16, if d>2,  Ea(a, b) is the number of irreducible degree d elliptic 
curves through a fixed general points and tangent to b fixed general lines. Let 

0). 
If d=2,  Ed(a, b) still has enumerative meaning. Fix a general points and b 

general lines. Then Ed(a, b) is the number of double covers of a line in the plane by 
a genus 1 curve with a marked points on the curve mapping to the a fixed points, 
and with ramifications of the double cover mapping to the b general lines, divided 
by the order of the automorphism group of such a map. (Recall that  the degree 
of a dimension 0 cycle on a proper Deligne Mumford stack over k is the degree 
of the pushfbrward to Speck,  and may be fractional; see [Vi], Section 1.) Thus 
E2(2, 4)=2,  E~(1, 5)=10, E2(0, 6 )=  @, and E2(a, b)=0 otherwise. 

5.3. Incidences only. Kontsevich's beautiful recursion ([KM], Claim 5.2.1, 
or [RT]) computes Rd inductively, 

(2) r r3.-4  
Rd= E i2J~3~3 i_2 ) - i \ 3 i_ l j /R iRJ"  

i+j=d 

One proof involves studying rational curves through 3 d - 2  fixed points, two of 
which are marked p and q, and two marked points r and s on fixed general lines, 
and pulling back an equivalence on Pic Ad0,4. The same "cross-ratio" trick gives a 
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recursion for NPa, 

(3) 
((3d-6) /3d-6"  

i+j =d 

\ 3 i - 4 ]  ~3i-3)-2 \ 3 i - 5 / )  NPiRj. 
i+j=d 

This formula can also be interpreted as a consequence of the Witten- Dijkgraaf- 
Verlinde-Verlinde equation on F1; see [KM], Section 5. Pandharipande gives an- 
other recursion for NPd in [P2], Section 3.4. The Eguchi Hori Xiong formula 
(proved by Pandharipande in [P5] and Uubrovin and Zhang in [DZ] using Getzler's 
relation) gives Ed, 

(4) : 
i§ d 

ij(3i-2) (3d-I R Ej 
9 \ 3j / 

Remarkably, there is still no purely geometric proof known of this result. 

5.4. Swapping incidences for tangencies, genus O. From [P4], Lemma 2.3.1, in 
Pic(Ad0 (P 2, d)) | 

(5) ~= ~oz+[d/2] j(d~d J) 5o 3 
E __ .. 
j=0  

Intersect this relation with (:ta/~b~ where a+b=3d-2 (or equivalently, apply this 
rational equivalence to the one parameter family corresponding to degree d rational 
curves through a general points and tangent to b general lines) to get 

i j[ (a)(:i)ijRi(a~,b~)Rj(aj,bj) ]Rd(a,b+l)= ~Rd(a+l,b)+i+jE=d ~ a ~ a  ai 

bi+bj=b 

+4b E ai bj 
ai+aj=a+l 
b~ +bj =b--1 

a b-2 1 + 4 ( ~ )  E (a i_ l ) (  bj ) Ri(ai'bi)Rj(aj'bj) " 
ai4-aj=aJ-2 
bi+bj b--2 

In each sum, it is assumed that i, j>0;  ai, aj, bi, bj _>0; ai+bi=3i-1; aj +bj = 3 j -  1; 
and that all of these are integers. The large bracket corresponds to maps from 
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reducible curves. The first sum in the large bracket corresponds to the case where 
no tangent lines pass through the image of the node; the second sum corresponds to 
when one tangent line passes through the image of the node; and the third to when 
two tangent lines pass through the image of the node (see Remark 4.6). Note that  
in the second sum, 3 i - 1  of the a+b conditions fix the component corresponding 
to R,: (up to a finite number of possibilities). The component corresponding to 
Rj is then specified by the remaining 3 j - 2  conditions, plus the condition that  it 
intersect the other component on a fixed line. 

This completes the computation of the characteristic numbers for rational plane 
c u r v e s .  

5.5. Remark. Pandharipande [P3] earlier obtained (by topological recursion 
methods and descendants) what can be seen to be the same recursion in the form 
of a differential equation. If 

x a  b 
Y edZ R(~, > ~ ) :  ~ R~(~, b) 7 g., 

a,b,d 

then 

R~ : -R~ + ~x~ - �89 + (<~ +yR~) ~. 

(ErnstrSm and Kennedy [EK1], [EK2] showed that  the genus 0 characteristic num- 
bers are encoded in a deformed quantum cohomology ring, the contact cohomology 
ring.) 

5.6. Swapping incidences for tangeneies, the family NP.  A similar argument 
applied to the one-parameter family corresponding to degree d rational curves with 
a node at a fixed point, through a general points and tangent to b general lines 
(where a+b=3d 4) gives the formula shown in Appendix A. The corresponding 
differential equation is 

+ 2(R~+yR~x)(NP~z+yNP~)  - R ~ N P ~ .  

5.7. Swapping incidences for tangeneies, genus 1. As cc ~ ~ Q + R (Claim 4.4), 
/ 3 - a = r c .  (~D.co)= ~d[A0] + ~ i  i[A0,'/], so as Weil divisors, 

(6) ~=~+~F,o]+Zi[Ao,~l. 
i 
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Restricting this identity to the one parameter family corresponding to degree d 
elliptic curves through a general points and tangent to b general lines (where a+b= 
3 d -  1) gives 

Ed(a, b+l)  = Ed(a+ l, b) 

+ d  ((d-21)Rd(a,b)+2bNLd(a,b 1)+4(~)NPa(a,b-2)) 

+ ~+3=dE i[~, ~ ~ (a)(:{) ijR{(a{'b{,Ej(aj'bj,a~ 
biq-bj--b 

bi+bj=b--1 

( a ) ( b  1) ) 
+ E ai ~ iRi(ai'bi)Ej(ay'b3) 

ai4-aj a + l  
bi+bj--b--1 

ai+aj=a+2 
bi4-bj=b-2 

Using (1), NLa(a, b-1) can be found. The large square bracket corresponds to 
maps of reducible curves. The first sum corresponds to the case when no tangent 
line passes through the image of the node, the next two sums correspond to when 
one tangent line passes through the image of the node, and the last sum corresponds 
to when two tangent lines pass through the image of the node. 

The corresponding differential equation is 

where 
= (Rzz  - a < z  +2<)+2vNL  +2V2NP ). 

This completes the computation of the characteristic numbers of elliptic plane 
curves. 

5.8. Characteristic numbers of elliptic curves with fixed j-invariant (j#oo). 
Let Mj be the Well divisor on 2~1(P 2, d)* corresponding to curves whose stable 
model has fixed j-invariant j .  Then My~-Mo~ if j # 0 ,  1728, M 0 ~ ,  5M~, and M1728 ~ 
�89 ([P1], Lemma 4). If a+b=ad-1, define Jd(a,b):=Mo~o~/3 b. Then if d_>3, 
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the characteristic numbers of curves with fixed j-invariant, j r  1728, oc, are given 
by Ja(a, b), and if j = 0  or j=1728,  then the characteristic numbers are one third 
and one half Jd(a, b), respectively. But Mo~ parainetrizes maps from nodal rational 
curves, so we can calculate Mecoza/3 b using Remark 4.6, 

5.9. Numbers. Using the recursions given above, we find the following char- 
acteristic numbers for elliptic curves. (The first number in each sequence is the 
number with only incidence conditions; the last is the number with only tangency 
conditions.) 

Conics: 0, 0, 0, 0, 2, 10, 4~ 
2 "  

Cubics: 1, 4, 16, 64, 256, 976, 3424, 9766, 21004, 33616. 
Quartics: 225, 1010, 4396, 18432, 73920, 280560, 994320, 3230956, 9409052, 

23771160, 50569520, 89120080, 1299962164. 
Quintics: 87192, 411376, 1873388, 8197344, 34294992, 136396752, 512271756, 

1802742368, 5889847264, 17668868832, 48034104112, 116575540736, 248984451648, 
463227482784, 747546215472, 1048687299072. 

The cubic numbers agree with those found by Aluffi in [A1]. The quartic 
numbers agree with the predictions of Zeuthen (see [S], p. 187). 

Using the recursion of Subsection 5.8, we find the following characteristic num- 
bers for elliptic curves with fixed j-invariant, j r  1728, oc. 

Conics: 0, 0, 0, 12, 48, 75. 
Cubies: 12, 48, 192, 768, 2784, 8832, 21828, 39072, 50448. 
Quartics: 1860, 8088, 33792, 134208, 497952, 1696320, 5193768, 13954512, 

31849968, 60019872, 92165280, 115892448. 
The cubic numbers agree with those found by Aluffi in [A2], Theorem III(2). 

The incidence-only numbers necessarily agree with the numbers found by Pandhari- 
pande in [P1], as the formula is the same. 

5.10. Characteristic number's in P*~. The same method gives a program to 
recursively compute characteristic numbers of elliptic curves in P*~ that  may be 
simpler than the algorithm of [V5]: Use Kontsevich's cross-ratio method to count 
irreducible nodal rational curves through various linear spaces and where the node 
is required to lie on a given linear space (analogous to the derivation of (3)). Use 
(5) to compute all the characteristic numbers of each of these families of rational 
curves. Use [V4] to compute the number of elliptic curves through various linear 
spaces. Finally, use (6) to compute all characteristic numbers of curves in pn .  The 
same calculations also allow one to compute characteristic numbers of elliptic curves 
in Pn  with fixed j-invariant. 
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5.11. Covers of  ps .  By restricting Pandharipande's relation (5) and relation 
(6) to degree d covers of a line by a genus 0 and 1 curve, respectively, (so c~ restricts 
to 0), where all but one ramification are fixed, we obtain recursions for MJ (9=0, 1), 
the number of distinct covers of p l  by irreducible genus 9 curves with 2 d + 2 9 - 2  
fixed ramification points, 

( 2 d - 4 ~ M O M 0  .2~ d .,2 (2d -3 )  
M ~  d - -  \ 2 j - 2 J  j d j3 ~ - - .7 ) ,  

j=l  
d 2 

M(I = ~d (~)(2d-1)M~ 1)(2d-2~[gM1~2j-2/ J . ) ( d - j ) J  . 

The first equation was found earlier by Pandharipande and the second by Pandhari- 
pande and Graber [GP]. Their proofs used an analysis of the divisors on 2~g,~ (p l ,  d). 
The closed form expression M ~ =da-3(2d -2 ) ! /d !  follows by an easy combinatorial 
argument from the first equation using Cayley's formula for the number of trees 
on n vertices. This formula was first proved in [CT]. A more general formula was 
stated by Hurwitz and was first proved in [GJ1]. 

By applying the methods of Section 3 to substacks of J~g (P l , d ) ,  one can 
recover Hurwitz'  general formula, generalize it to genus 1, and interpret it as a 
graph enumeration problem (IV1]). 

Graber and Pandharipande have conjectured a similar formula for g=2,  

MjM~ j 2d / 115 8d'~ 
m 2 = d 2  d - - w  j 1 2j-2 

d 1 / 2 d \  d / 1 1 6 9 7  d 

j 1 

This formula was proved in [O.12], and generalizations are given in [GJV], along 
with general machinery for dealing with such recursions. It is still geometrically 
unclear why a genus 2 relation should exist. The relation looks as though it is 
induced by a relation in the Picard group of the moduli space, but no such relation 
exists. 

5.12. Divisor  theory on AAs(P 2, d)*. In [P4], Pandharipande determined the 
divisor theory on 2t40(P n, d) (including the top intersection products of divisors). 
The divisor theory of J ~ l ( P  2, d)* is more complicated. In addition to the divisor a 
and the enumeratively meaningful boundary divisors, there are three enumeratively 
irrelevant divisors (see 4.2). The Deligne-Mumfbrd stack A41 (p2, d)* is nonsingular 
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away from these divisors. The stack 3A1 (p2, d) is unibranch at the enumeratively ir- 
relevant divisor of type (5); Thaddeus IT] has shown that  it is singular there. There 
are several natural questions to ask about the geometry and topology of J ~ I ( p 2  d)*.  

Is it nonsingular at the other two enumeratively irrelevant divisors? Is the normal- 
ization of 3AI(P2,d) * nonsingular? If d=3, how does it compare to Aluffi's space 
of complete cubics? What  are the top intersection products of these divisors? (The 
arguments here allow us to calculate o~afl 3g-~ and c~flad-l-'~D where D is any 
boundary divisor.) What  about Adl(P ~, d)*? 

A p p e n d i x  A. A recursive formula for NP(a, b) 

We have 

NP(a, b+l )  = @NP(a+I, b) 

+ E ~ ai-1 (ij-1)Ri(ai, bi)Rj(aj,bd) 
i4-j=d a,~H- all-2 

b~+bj=b 

+2 X 
ai Zcaj : a  
bi+bj=b 

+4b E 
ai +aj =aq-3 
bi4-by=b--1 

+4b 
aiq-a j=a+l  
b~q-bj--b-1 

+4b E 
a i + a j = a + l  
bi q-by =b--1 

aiq-a d =a+4 
bi4-bj=b-2 

ai~-aj=a--2 
b~H-by=b--2 

( a ) 

(aial)(b~l)iRi(ai,b~)Rj(aj,bj) 

(aa)(b~l)iNP~(a~,bi)Rj(aj,bj) 

(aa)(b~l)iR~(a~,b~)NPj(aj,bj) 

( a )(b 2) 

In each sum in the large bracket, it is assumed that  ai+b~=3i-1 if R~(a~, b~) 
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appears  in the sum, and a i + b i = 3 i - 3  if NPi(ai ,  bi) appears.  The  same assumpt ion  
is made  when i is replaced by j .  

The  large square bracket corresponds to maps  from reducible curves. (To avoid 

confusion: the "image of the node" refers to the image of the node of the source 
curve. The  "fixed node" refers to the  node of the image tha t  is required to be at a 

fixed point.)  Zero, one, or two tangent  lines can pass th rough  the image of the node 

of the source curve. The  two branches th rough  the  fixed node can belong to the 

same component ,  or one can belong to each. Table 1 identifies which possibilities 
correspond to which sum in the large bracket.  

Table 1. 

Term in sum Number  of tangent  Number  of irreducible 

lines th rough  image components  th rough  

of node of source fixed node 

'First 0 2 

Second 0 1 

Third  1 2 

Four th  and fifth 1 1 

Sixth 2 2 

Seventh 2 1 

[AI] 

[i2] 

[n3] 

[CH] 

[CT] 

[DM] 

[DH] 
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