Weak sequential convergence in the dual
of a Banach space does not imply norm convergence

Bengt Josefson

We shall prove that for every infinite-.limensional Banach space E there is
a sequence in E’, the dual space, which tends to 0 in the weak topology o(E’, E)
but not in the norm topology. This is well known for separable or reflexive Banach
spaces. See also [3] for other examples. The theorem has its main applications in
the theory of holomorphic functions on infinite-dimensional topological vector
spaces (TVS).

Let [~ be the Banach space of all complex-valued, bounded functions on the
natural numbers N; z=(z;)72,, denotes a point in /. Let ¢, be the Banach space
co={z€I1"; z;-0 as j—...}, e={z€I=; lim,_ _, z; exists}and P={z€cy, D 7, |2;]<
<o}. Let L(F, Fy) denote the set of all bounded linear mappings from F into Fy
and let H(F) denote the set of Géateaux-analytic, locally bounded functions on F,
where F and F, are locally convex TVS. See [5]. A set B F is called bouding if
sup,cp [f(2)| << for every f€H(F). Put H,(F)={f€H(F);fis bounded on bounded
subsets of F}.

Theorem. To every infinite-dimensional Banach space E there exist ¢;CE’ such
that ||o;|=1 andlim, , , ¢;(z)=0for every zCE.

Corollary 1. No neighbourhood of O€ F, where F is a locally convex TVS, is a
bounding set. -

Proof. See [2].
Corollary 2. $,(E)=$(E) for very infinite-dimensional Banach space E.
Praaof. Se [2].

Proof of the Theorem. Let FCE be a separable, infinite-dimensional subspace.
From [1] and [2] it follows that there are z)¢ F and ;€E’ such that [[y;]=1,
22 =1, ¢;(z)=1 and lim;, ., ¥;(z)=0 for every z€F. Let Y€L(E, I ) be the
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mapping ¥ (2)=(¢,(2), Ys(2), ..., ¥;(2), ...). Put D=y(By) where By is the closed
unit ball in E. We shall say that E has property A if there are linear functionals

as in the theorem. We recall that /= has property 4 which follows from the fact
that there is @€ L(I™, I*(B)), where card B=card R and /2(B) is the Hilbert space
on B, such that ¢ is onto [6]. In the rest of the proof we shall prove that if there
is no @a€ LI, 1) such that ¢,(D) is separable and not compact then D is like
the unit ball in /= in the sense that we may use a technique to prove that E has
property A which is similar to that used to prove that /= has property 4. More
explicitly, if there is no ¢, as above Lemma 6 gives that X, in the Proposition may
be taken such that (X,) is not dominated by a geometric series and then the sequence
of mappings (¢,) in the Proposition and Lemma 4 replace p€L(I™, I2(B)). If, on
the other hand, there is @, LI, [”*) such that ¢,(D) is separable but not compact
then it follows trivially that E has property A.

Definition 1. Put, for z€1= and MCN, supp z={jEN; z;70} and Projp;z=
=(2});en Where z;=z; if je M and z;=0 if j¢ M. Let I~ (M)={z€I"; z;=0 if j¢ M}.

Definition 2. Put, for z€1” and MCN, Ny (2)=Im, . ; rcu 12— 2| (N (2)=
=0if M is finite).

Definition 3. A set ACI™ is called a l-set if for all finite subsets {a®, ..., a®}
of A the vector of components (a{, ..., a’)€C* assumes exactly the values (+1,
+1, ..., 1) for all possible 2 choices of signs.

Definition 4. Let {a®};, be a 1-set and r a positive integer. Let {M;(r, {a®});
j=1,2, ..., 2"} be the partitioning of N into 2"~* disjoint parts such that (a(’,...
s @) =(@®, ..., a" ) if and only if s, /€M;(r, {a®}) for some j. Put
M(1, {a®)=N.

We note that | e, Lall=4 Die 14l if {a;} is a 1-set. In fact, C. O. Kiselman
has proved that the constant 1/2 can be replaced by 2/z and this is best possible.

Lemma 1. If E does not have property A there exist an infinite set VN and
a number e=0 such that for every infinite UCV, sup,cp Ny(z)=s.

Proof. Assume that the lemma is false. Then there are infinite sets U; such
that U;cU;_;¢ U; and sup,¢p Ny (2)<277, There is an infinite set UcCN such
that UN(QU; is finite for every j EN.J Hence sup,¢cp Ny(z)=0 which is a contradic-
tion.

We may assume that ¥=N. Let ec/= be {I,1,...,1,...}.

Lemma 2. There exist an index set B, HkCB, peL(l=, I2(B)) where 1*(B) is
the Hilbert space on B, C;>0, C;>0 and a 1-set {aW}, <> such that card B=
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=card R, B\ H, is finite,
H,cH, . ,c..cHy=B8, |¢|<C,, ”Proj[Hk_l\Hk](P_(a(k))” > Cy,

21 IPrOjiss, 10 (PrOjiag v, ezl < 1074+ k7% "1eg. Cy

and p(e)=@(2)=0 if z€c,. Here ¢ is the constant in Lemma 1.

Proof. From [6] it follows that there is ¢, € L(/=, [?(B)) such that ¢, is onto.
Since card B=>card N it follows there are C,;>0, b ¢/~ and H,<B such that
H,c H,_,, B\H, is finite,

16®] <4 and |[Projuy,_~ma@1(0®] = Ci.

Let {a™};2,, be a 1-set and Fcl= the subspace generated by a® and ¢. Then
acF if and only if a = Zf=1/1ka("’+x where x€c and A=(4, ..., A, ...) €/ Let
Y € L(F, [=) be the mapping defined by i (a®)=b® and Y (x)=0 if x€c. We have
lWli=1 because

(1D b a® +x|| = 4 Dbl if xee.

But />~ has the norm preserving extension prbperty hence ¥ can be extended to
Y1 € L(I=, I=) such that [y, [={¥]. Put ¢=gp.0y,.

Assume now that we have found (j)i_;<N, where s¢N, and (Hp)i.,cB
such that Hy_,> Hy, Hj =ijk for some j, €N,

(Projig, ~ma@ @) = C, if k=s
and

. . Ci-¢ .
21 [Projg 10 (Projiar,s1, wiwy@)l < I—@I—kkﬁ if k=s.

Choose now j; ., €N and then H;H:ij “ for some jP’”éN such that

[Projrgmss119 (@Vs+V)| > Cy
and

. ) C,-¢
Zt [ Proja’s + 119 (Projgar, (s 42, {a‘frﬁ})]e)” = W

which of course is possible according to the construction of ¢ and the fact that
a vector in /2(B) is “small” outside a finite subset of B. Hence {aY¥}> | and (H)
have the desired properties. Q.E.D.
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Lemma 3. Let jEN be a fixed number and ¢, {a®};-_; and (H,) be as in Lemma
2 and z€l” be such that ||z|| <2 and

IProjta a0 @ > €y = 2
for some k=>j. Then there exist an infinite set VCN, ¢’ € L(I=(V),1~), a 1-set
{pO} 2 cl=(V) and h,,€C such that
[Projpyyz— he— 2321 25 by s Projia, o, peomnb®|| < 8—1’:):—(5'1-,
@ (Projpu, ¢, poop10™) = Projpy, o, aryia®”  if r=j

p'e)=e @ (2)€co if z€co, @ (BY)=a%Ir =1
and

. , C
[Projin ~ma®oe @I = 3—23

Proof. 1t is an immediate consequence of the definition of Ny, (j41,(my)(2)
that there exist an infinite set V,c M,(j+1, {a®}), a 1-point & €I=(V,), p,s€C
and %;.; € C such that

1,5 = 3 Nat, 541, aoyy (2)s

. F:0 =7, C
[Projy (2 — P15+ €= hyya,s+ 0] < —Ijbr—é—l' and Ny, (z—Fj,1,,6% = 0.
2

Put V= U,V and aff*D = >/, 6°. It is obvious that we can take {a{’};;,,C
cI=(V) such that {a{};2, is a 1-set in [= (V") where a{” =Projya® if r=j. Since
Nty (41, taoyy (@ — Ry g, a8 ¥9)=0 it follows from the definition that we can find
h; €C and p, ;€ C such that

N, <a,<,'>»(2— Zr hjsr,e - Projo, 41, {a{,’)))]algjﬂ) - hj,sa(gj)) =0

by

and

. e .j‘j .C
IPr0jen, . g (e — by a5l = —jGrrg =

In the same way we may continue and after j+ 1 steps we get that there are
h, ,€C and h€C such that

1) [Projeyy(z — he — Zixt 3y, o Proja, ., womad|| = = R

|, <2 because {a{M};2, is a 1-set and because |z[<2.
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In the same manner it follows that there are h'¢C, A, €C and z'€]> such
that || <2, Iy =<2,
z=2z+he+ Z'J:=1 ZS hr,‘,s ° Proj[M,(r, {a‘”})]a(r)

lim lZs/l = %NM;(JH-L {a(l)})(z)~

t—>oco
teM,(j+1, {aV)

and

Lemma 2 gives that
' . , C..c-j-i C
[Projy s\ rg@ (@) = Cym 2l = = 22
10 2
Let {d®}2,ci=(V) be a l-ser such that there are disjoint infinite sets UFc
C My (j+1,{d}) such that U, U= M;(j+1,d®) and

{Projiu e 1d Y44

is a 1-set for every I and s. Let z”={z/},¢y be such that z; = (i)°- |, y,.| if €U
Let Fcl=(V) be the subspace which is generated by z”, d®, Proju, ¢, wanyd®
I=r=jand c. b¢F if and only if

b=y,-2"+x+ 2f=1 Zs Vr,s * PrOjpr, (s, {da)))]d(') + Z’Z°=,-+1 Ad®

where x€c 95€C, ¥, €C and A={Aj,1, ..., 4j x> ...} €4, Let Y€ L(F, 1) be the
mapping ¥ (z") = 2'/2, Y(e)=e, Y(dP)=a®, Y(z)=0 if z€c, and

¥ (Projpar, o, gy d® = Projuy, ¢, woypn@”s

r=j. It is easy to check that [ji)|=1. But to has the norm preserving extension
property hence ¥ can be extended to Y, € L(I=(V'), {=) such that [[{,]|=1. We may
assume that

. : . C
IProjiu N a0y (Projyuguuenz )l = 2

(Since otherwise
. . b C
}]PIOJEHj\Hk]q)Ol]II(PrO_][[lJ uQUuEZ ) = ?3]

Hence there is t=(t, ¢;, ...). Where #;==1 or —1 such that

. . . : C.
@ ”PTOJ[H,-\Hkl<P°‘/’1(PTOJ[QU§§),UU§.,‘,>J(Zs tshj+1,sPI’OJ[M,(j+1,{b(<,'))>]b5’+))” > 1—68—,

where b’ =d® if r=j+1 and bJ*V = {x},¢y is such that x, = — 1 if 1€ U}, x,=1
if teU®, and x,=0 elsewhere.
Let GcI=(V') be the subspace which is generated by c, {a{”};2, and

Projiu, ¢, woymas’  if r=j+1.
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As above it follows that there is J¢L(G, l°°(V)) which can be extended to J; €
EL(I=(V),I=(V)) such that |[J|=|L]=1, J(e)=e, J(z)=0 if z€cy, J(@{)=b{"
if r£j+1,
J(Projpay, ¢r, (ar 19 = PrOjpas, v, ooy b i r=j
and
J(Projia, (j.41, tap1a§’ V) = 1, Projiu, (41, pgoyn b5 0

But then (1) and (2) give that ¢’=y,0J; and b®=a{? have the properties in the
lemma. Q.E.D.

Proposition 1. There are ¢,€L(I™,1*(B)), H,CB, X,>0 and z¢D such that
X,>Cy+£-27" where C, is the constant in Lemma 2 and ¢ the constant in Lemma 1,
B\ H, is finite :

H,,CH,,_1C Y CH() = B, S]élg ”Proj[Hk_l](pn(Z)” = Xk

and
IProjig, _ N1 @a (P > X;-1072 if k=n.

Proof. Let ¢, {a®};>, and H, be as in Lemma 2. Put X, =sup, sup,¢p [l ¢’ (2)||
where ¢’ satisfies the following conditions.

a) There is an infinite set VN such that ¢’ € L(I*(V),1”) and |¢’|=1.

b) There are a l-set {p©}>,cI=(¥) and jeEN such that ¢’ (b®)=aV*® if
k=1,

¢) ¢’(e)=eand ¢’ (2)=0if z€c,.

Take @o€ L(I”(V),I=) and z®€D such that | o @q(zV)[|>32/50X; and such
that @ satisfies conditions a)—c) for a 1-ser {p¥)> ,<I= (V) and joc€N. We may
assume that

: . , 32
IProjea @00’ GO = o X,

since otherwise we just have to take a bigger j,, omit finitely many 4% and renumber.
Now, if we assume X,=C, +¢, a direct application of Lemma 3, where ¢ o¢, cor-
respond to ¢ and (H jo+Ekey Correspond to (Hy)y, in Lemma 3, we get that there
are an infinite set V,CV,, a l-ser (b} 1= (V) and @€ LI (Vy), I~ (Vy) #Y
and A" ¢ C such that

e C,

M IPrOjpyyy (-0 — Ve — Bb@)I < 172~

and yn=@go¢; satisfies a)—c) with ¥, {(p®};~, and j replaced by V3, (b8},
and jy+1. That X;>C, -¢ follows because there is z°€D such that Ny(z%)>2-¢,
according to Lemma 1, hence there are an infinite set "N and a l-set {a®),c
cI®(V’) such that Ny/(z°—h-a{P)=0 for some AcC such that |[h|>¢. Assume
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now that there are, for every ¢<n, an infinite set V,CV,_s, Y,€L(I" (¥, I”(V;-)),
0 EL(I=(V,, I(B)), a 1-set (b}, cI=(V), 29D, jeN, X,>C; 527, 9¢C
and £®,€C such that ’

t

. X, , ,
l|PrOJ[Hj(t_1,\Hm)](p,(z(‘))ll =350 where j(z) = Z::l]n

; ] g-17t.C
25 Projia 010 PrOjia, a1, p i1l < ~——m s
10*-C,

(L)
Y (Projiu, i, p 1P ® ) = Projuas, o, i, ;b&en i r=<t,
ey
(B8 = by it r>1,

17t Chy

[Projiyg (20 — Ke— Ziy Xy b+ Proju, o, b ® Il < 8—104—,52—-

Then it follows, since A9, /%] <2 because sup,¢p [z =1, that

. X, .
UPrOJ[Hj(k—l)\Hj(k)](pt(z(k))[[ > 1—0% if k=t

Put X, =sup, sup,¢p [Projia,,..,1P»-10¢" (2)|| where ¢’ satisfies the following condi-
tions:
a’) There is an infinite set V< V,_; such that ¢’¢L(I*(V),[*(V,-,)) and
le’ll=1. -
b’) There are-a l-set {¢®}2,c/=(V) and jEN such that ¢'(c®)=5bF*}
if k=nand
(p'(Proj[Ms(r,(c(U})]c(r)) = PI'Oj[M’(,’(b(I) 1)})]bg?_1) lf r=n-1.

(n=

¢) ¢’(e)=eand ¢’ (2)=0if z€c,.
Take now @€ L(I"(Vy), I™(V,-1), jo€N and z®¢D such that

. 32
”PrOJ[Hj(n—l)\Hj(n—l)+jo](Pn—10(P0(2(n))“ = %’ Xn

and such that ¢, satisfies the conditions a’)—c’) for a 1-set {c{}> ,<I™(V,). The
existence of j, follows as before. Now, if we assume X,>C,+£-27", an application
of Lemma 3, where ¢, 0@, correspond to ¢ and (H;u)iziU Hp-1)+ Jot Dm0
correspond to (Hy),—, in the Lemma, give that there are an infinite set V,C V5,
a l-set (BB ,cI=(V,) and @ L(I>(V,), 1= (Vy)) such that Y,=q,0¢5, 9,=
=0u—1Wn, Varju=Jo+1, {(BE}=, and z® satisfy the conditions 1)—5) for some
K”eC and KeC. X,>C;-£-27" because there is s€N such that

IPrOjea, ¢um1y1Pn~1 (PrOjppt, G, o2y 18- > C1 v 27"

(n—
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and because sup,¢p Nu, o, o ,,p(@) > 2-¢

(n-1)

. X, .
nPrOJ[HM_D\HM](p,,(z<k>)n>1—0"6, if k=n,

because of b’) and 5). Hence ¢,, H,, X, and z® have the desired properties. QED

J

Lemma 4. E has property A if there exists to every given teN a mapping ¢,€
€L(I=, C) and to every given y>0 a number C,EN such that sup,¢p |Projy,) ¢.(z)|=1
Sfor every n€{l,2,...,t) and such that for every z€D and te€N |Projy, 0,(2)|=y
Jor at most C, differentnc {1, ..., t}. k

Proof. Assume the lemma is false. It is easy to see that we may assume without
loss of generality that sup,sup, sup,p |Projp,; ¢.(z)|<2. It is well known and
easily séen that there are uncountably many g,£G=U,XU,X...XU,X..., where
U,={1,2, ..., 1}, such that if a0, Projj;g, = Projg,, for at mos finitely many
j. Let p€L(E,1(G)) be the mapping ¢={p; oy, ps0Y, ..., 9,0, ...} where Y€
€L(E,I”) is the mapping in the beginning of the proof of the theorem. Since {g,},
is uncountable it follows from the argument in the proof of Lemm al if E does
not have property 4 that there are {u;};2;C {o}, &>0, infinite sets V;C V1N
and z€ D such that

lim oY) =¢g.

t—>oo

t €Proj[Vj] Iu;

Let y,€L(I, C) be such that |y,]<1/e,, ¥, (x?)=% and ¢ (2)=0if supp zNV;
is finite for some jEN where xV =)= xP =g, if ncV; and xV=0 if nelV;.
Let jEL(l‘” (&sp)> C) correspond to ;. From the proof of Lemma 1 it follows,
since |1p1, ile (z‘f)))]:%, that if E does not have property A there are a subsequence
{ji}eo1€N, >0 and z€D such that |l//1’ i (z))|>5 for every k¢N. Hence there
are, to every reN, €N and Y,CN such that Y, contains r elements and
|Proji; @, (¥(2))|=6-2, if nCY, since otherwise there are z9¢el> such that supp
299 N supp 2P =0 if j, #j, and |y, (z9’)|>1 for all je¢N which is impossible. Hence
we get a contradiction if r> C,.,- QED.

Lemma 5. If E does not have property A there exist to every y=0 a number
C,€N and number T,€N such that if t=C, and sup,cp D/jm, Ny (=1, where
M®cN, for every ne{l, ..., t} then there are zV€D and VC{l,2,...,t} such
that > ,cy Diny Nygo (P)=2"""T and such that V contains 2™+ elements.

Proof. Tt is easily seen that it is enough to prove the lemma if ‘__li": 1 Ny (2)
is replaced by |Projg,;¢.(2)| where ¢,€L(I=, C*). From Lemma 4 it follows easily
that there is to every y=0 a number P,€N such that if t=P,, ¢, € L(I™, C" and
SUp,¢p [Projp, @.(z)| =1 for every n€{l, ..., t} then there are T¢N and z€D such
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that |Projy,;¢,(2)|=277" for at least 27 different n€{l, ..., ¢t} wherTe perhaps
depends on the choice of ¢,. Assume that r=(P,)? and let T;, be the biggest T¢N
such that 2T=P,. It follows from above that either there is z®¢D such that
[Projp,; 0, (zZ)|=27"To for at least 270 different nc{l, ..., ¢} o1 there are z"¢D
and disjoint sets VI {l,...,¢}, where 1=r=T,~1 and 1=s=j,¢N such that
Ule7* Uiz, VI contains more than t—P, elements, V] contains 2" elements or is
emty and |Projy,;¢,(z"*)|=27"7 if ncV]. Hence there is

{Jl Ve
QDIEL(CS=1 5 le)

such that [o,|=1 and |Proj4,(z"%)|=2""" for every sc{l,...,j;} where ¢, =
=@; 0¢,. But then it follows from above that there are z"%*¢D and disjoint sets
vrlc{l, ..., t} where 2=r=T, and s=i,¢N such that T, |, V"' contains
more than t—P,—2.P, elements V"' contains 2" elements or is empty and
D wevtt |Projpa 0, (255 H| =2""", Since t— >'Iv, k-« P,>0 we can repeat this argu-
ment and we get at most Ty, steps that there are zP¢D and Vc{l, ..., ¢} such that
Dlwev [Projp,0,(z29)|==27""Te where ¥ contains 270 elements. Hence C,=(P,)?
T,=T,, z9=2z® and ¥ have the properties in the lemma. QED.

Lemma 6. If E does not have property A then, for every y=0, SUp;¢p Zk 1
NMn(z)>2 T, if nis big enough wehre M{PCN are infinite sets such that for
ﬁxed n, M® are disjoint and 1 =k =j,=2".

Proof. Take y,<y and take C, and T, asin Lemma 5. Let J,€N be the greatest
integer / such that >'_, 2" DTy, = ],, Repeated applications of Lemma 5
give, since sup, ¢ p Nyr(z)>e, that

Suka 1NM"(Z)>2~YO i Ty g o n-mg, jé 27 v = 2-rnj,

Yo

if n is big enough because 2"+ Tr=2", hence ,=n/T, and because C, Ut DTy g |
Q.E.D.

Proof of the theorem, continued. We shall use the notation in the proposition
and its proof. It is easy to see that we may assume that X, decreases. There is =0
such that X, <(1—-26)"- C, if n is big since if (X,);_, is not dominated by a geometric
series there is, to every t€N, n,€N such that X, /X, ;,<1+1/¢ hence

1006 . = 200
T @7 OPIOJihp, N\ Hnp+ 111 Py 4t and ¢, = —
ne+t t=1 ?
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have the same properties as (¢,);2, and C, in Lemma 4 for a suitable choice of
@i €L(I*(H, _1\H, ,_1), C') which is impossible. Divide now, for each n, {1, 2,
..., 2"} into [2/6]+1 disjoing parts U, , ([] denotes the integer part) such that

o .
M [l—r-g]  IProjig, _;1@m-1(bG-)I =

= “Proj[H,,_l](pn—l(Proj[Mj(n,{b(") )})]bg:)q)” =

n-1
s\ . o .
= [1—(7—1)7] IProjim, @1 GG if jET,,.

Since |Projig, go,,_l(bg)_ pl=C; it follows that there is #,€N such that (1—
—r,0/2)"=1/4" and

@
. . 0 . .
”PI'OJ[H,._ﬂ(Zse Urn,n(pn—l(PrOJ[M,(n,{b(” 1)})]b8?—1))” = 3 ”PrOJ[H"_l](pn—l(b{n)—l))”'

n=-
Lemma 6 gives that to every y=0 there is z”¢D such that

(3) ZSEUrmu NM, G, (bg.) ) (Z(”)) = 2—n 'jn ,

if n is large, where j, is the number of elements in U, ,,. But then the proposition
and the proof of Lemma 3 give that

rn.6 Ak
b 1-=3
SN W * |Projg, 3 Pnoa Gyl - 27771,
2

according to (1), (2) and (3). But since 1—r,-5/2=1/4 it follows that r,-5=3/2
hence that

l_r-,,-é
2 2
(ra—=1D-6 = 1426
R R

hence if y is samll and # is big enough it follows that X,>(1-25)".C,, because
IProjigr__ 10s—1(b%)Il=C;, which is a contradiction. Q.E.D.
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Added in proof

The results in this paper were announced in May 1973 at an international
conference on infinite-dimensional holomorphy in Lexington, Kentucky, USA.
The Theorem has been proved independently by A. Nissenzweig.
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