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Introduction

Let M be a real analytic manifold of dimension » and let X be its complexifica-
tion. Consider a system of linear differential equations M: P;(x, /0x)u(x)=0,
(i=1, ..., m), where P;(x, 0/0x)’s are differential operators with holomorphic coeffi-
cients on X. Suppose that 9 is an elliptic system on M, — i.e., the characteristic
variety of M is contained in the zero-section MX {0} in the cotangent bundle
T*M — and let N be a real analytic subset of M of real codimension =1. If two
hyperfunction solutions coincide with each other on M—N, then they coincide
on the whole domain M. This is a direct consequence of the fact that there is no
solution whose support is contained in N since any hyperfunction solution of M is
real analytic. This means that a solution is determined by its data on M—N. How-
ever, in general, there may exist a solution supported in N when M is not elliptic,
especially when N is contained in the projection of ch (M)g—M to M, where
ch (M) is the real locus of the characteristic variety of .

In a general situation, a system of linear differential equations can be interpreted
as a left coherent 9y-module on X where 9y is the sheaf of linear differential opera-
tors on X. In particular, there is an important class of left coherent Zy-modules
called holonomic systems. The purpose of this paper is to give a natural and practi-
cal extension of the above fact when I is a holonomic system on X, i.e., a left co-
herent 2,-module whose characteristic variety is of dimension #. Namely we have
the following theorem.

Let M be a holonomic system on X. We denote by ch (IR) the char-
acteristic variety of M. Let Z be an analytic subset in ch (M). We shall con-
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sider the microfunction solution of %R. As we have seen in [Sm—Kw—Ka],
p. 273, we may identify T X with T*M. In this paper, we regard T*3{ as a
subset Ty X in T*X and deal with the sheaf %), as a sheaf on T*M. The real
loci of ch (M) and Z are denoted by ch (M)g:=ch (T)NT*M and Zy:=ZnT*M,
respectively. The spectral map from the sheaf of hyperfunctions %,, to the direct
image 7,.(%,y) by n; T*M—~M of the sheaf of microfunctions %,, is denoted by
a4. Our main theorem (Theorem 1.1) is the following.

Theorem. We suppose that Z is a conic analytic subset of complex codimension
=1 in ch (). For a hyperfunction solution u(x) of the holonomic system I, if
afe (u(x))[ch(sm)R_zkzo, then u(x)=0 as a hyperfunction on M.

When 9 is a non-trivial elliptic system, ch (M), is the zero section M X {0}
and Zg is a real analytic subset of real codimension =1. Thus the assumption
of Theorem means that u(x) is zero on M—Zy. The above theorem may be seemed
as an extension of the fact that any solution of an elliptic system is uniquely extended
to M from the data on M—N. In particular, we may put Z=ch (M),;,,:=the
singular locus of the characteristic variety. Theorem means that a solution of M
is completely determined by the value on the regular locus ch (33%),.,=ch (IR)—
ch (M),;,, and we need not pay attention to the value on the singular locus of
ch ().

The proof of this theorem is not difficult. We can prove it by some arguments
on characteristic varieties of 9% and Holmgren’s uniqueness theorem. Readers may
feel that this theorem is nothing but one easy application of Holmgren’s uniqueness
theorem. However this theorem is important from the practical point of view. For
example, we may take Z to be the set of singular points in ch (M)z. When M is
a holonomic system with regular singularity, the structure of 9 is very simple at
least microlocally near any point of ch (M)—Z (see [Ka—Kw]). In particular, as
stated in [Ka—Kw], the microfunction solution is expressed explicitly by making
use of the theory of principal symbols. It is often possible to calculate the micro-
function solution near a point of ch (M)g—Z. Thus the above theorem guarantees
that we need not consider the structure of the solution on Zy and hence it is helpful
for the proof of uniqueness of hyperfunction solutions to a holonomic system.
As far as we are dealing with the unigueness problem of hyperfunction solutions of a
holonomic system, it is desirable to reformulate the Holmgren’s uniqueness theorem
as presented in the above theorem {rom a practical position. Indeed, a weak form
of the above theorem was used in [Mr 1] and {Mr 2] in order to determine relatively
invariant hyperfunctions.
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1. Formulation of the problem and the key lemma

Let M be a real analytic manifold of dimension » and let X be its complexifica-
tion. We denote by Dy be the sheaf of linear differential operators on X with holo-
morphic coefficients. Following Kashiwara [Ka 2], we interpret a system of linear
differential equation M as a left coherent Py-module. Then the solution space of
I may be expressed vsing a Hom-functor. Namely, let &, be a sheaf of Zy-module
on M like, for example, the sheaf of C*=-functions or hyperfunctions on M. We
denote by Homg, (M, #;) the sheaf of P,,-homomorphisms from M to F,, and
call a section of it a %, -solution of M. For details, see [Ka 2], Chapter 2, § 1.

Throughout this paper, we always consider hyperfunction solutions, so a solu-
tion of Wi always means a hyperfunction solution or a microfunction solution
as its spectral map image. We denote by B, the sheaf of Ayperfunctions on
M and by ), the sheaf of microfunctions on the cotangent bundle 7% M. There is a
natural sheaf isomorphism 44 called the spectral map which gives an isomorphism
from By to 7, (By): 9f: Byy=7, (Gn)-

Remark. In [Ka—Kw-—Ki] the sheaf of microfunctions %,, is defined as a
sheaf on the pure imaginary cospherical bundle ¥ —1S*M, which is naturally
extended to the sheaf on 7*M—M constant to the direction by the action of
RY. The sheaf %) in [Ka—Kw—Ki] corresponds to the restriction sheaf of @),
defined above to T*M—M, ie., €ylrar_n- The sheaf €, defined above is de-
noted by ‘éM in [Ka—Kw—Ki]. See [Ka—Kw—XKi] Chapter III § 8, Definition
(3.8.1).

Let @ be a section of Homg (M, By): a hyperfunction solution of M. Then,
through the spectral map ¢, /01 1s regarded as a section of Hom, (M, 7, (Br))
naturally, and defines a section of microfunction solution of M. We call the support
of sofi in T* M the support of i as a microfunction solution. In particular, we put
S.8.(it) :=supp (s0i)— M, and call it the singular spectrum of i. The support supp (&)
(resp. supp (s40i)) is by definition U, supp (#(f)) (resp. U; supp (s/:0i( f)))
where f runs through the set of sections of 9R.

Let ch (%) be the characteristic variety of M. (Remark. ch (M) is denoted
by S.S.(M) in [Ka2].) The characteristic variety ch (M) is an analytic subset
in 7*X. In particular, M is called a holonomic system if the complex dimension of
ch (M) coincides with the dimension of X. The real locus of ch (IR) is denoted
by ch M)z, ie., ch (WM)g:=ch M)~ T* M. Then the support of any solution of
I is contained in ch (M)z. The main theorem of this paper is the following.

Theorem 1.1. Let MM be a holonomic system on X. Let Z be an analytic subset of
complex codimension =1 in ch (). The real locus of Z is denoted by Zg:=ZnT* M.
For a local section 4 of H# omg_ OR, By), if spolifenmg-2zg=0, then #=0.
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Corollary 1.2. Let M be a holonomic system on X. For a local section u of
Qfomgx(gﬁ, Brr)s if 9/00|ch @) oer =0, then u=0.

Corollary 1.2 follows from Theorem 1.1 since ch (R),;,,=ch ()—ch (M),
is an analytic subset of codimension =1 in ch ().
Lastly we give a key lemma for the proof of Theorem 1.1.

Lemma 1.3. Let M be a real analytic manifold and let v(x) be a hyperfunction
on M defined near a point xo,€ M. Let p(x) be a real valued real analytic function
defined near xq such that p(x)=0 and dp(cp)=0. If supp (v(x)) is contained in
the set {x€M; p(x)=0} and, if (xo, dp(x0))4S.S.(v(x)) or (xo, —dp(x))4S.5.(v(x)),
then v(x)=0 near x,.

Lemma 1.3 is the so-called the “Holmgren’s uniqueness theorem” from the point
of view of microfunction theory. The proof of this lemma is found in [Ka—Kw—Xi],
Proposition 3.5.2 in Chapter III.

Corollary 1.4. Under the same situation as Lewma 1.3, let N be a non-singular
real analytic subvariety in M defined near x,€ M. We suppose that; 1) the support
supp (v(x)) is contained in N, and; 2) (T M—M)nn~(xp))—S.S. (v(x)) is not
an empty set where w is the projection map T* M—~M. Then v(x)=0 near x,.

Proof. Since N is non-singular, there exists a local coordinate (xy, ..., x,) near
x, whose origin is x, and such that N is defined as {x€; x;=...=x,=0}. From the
assumption 2), there exists a point (x, &)€ Tu M with &0 and (xy, £0)¢S.S. (v(x)).
We may put &=3_, ¢;-dx;(x;) with some ¢;R (i=1, ..., /). Then by putting
p(x)=3", ¢+ x;, we have p(x)ly=0, and hence supp (v(x))c {x€M; p(x)=0}.
Furthermore since (x,, &)=(Xo, dp(x0))¢5.S. (v(x)), we have v(x)=0 near x, by
Lemma 1.3. (Q.e.d.)

The next section is devoted to the proof of Theorem 1.1.

2. Proof of the main theorem

2.1. Preliminaries of the proof. Let X be a complex manifold. A subset 4 of
X is called analytic at a point xc X if there exist a neighbourhood U of x in X and
finitely many holomorphic functions f(x),..../fpi(x) on U such that AnU=
{x€U; fi(x)=...=f(x)=0}. The set A is called a locally analytic subset of X if 4
is analytic in X at every point of 4. We say that a locally analytic subset A4 is non-
singular at x,€ A if there exist a neighbourhood U of x, in X and holomorphic func-
tions f1(x), ..., fiy(x) on U such that AnU={x€U; fi(x)=...=f,(x)=0} and
dfi A ... Adfi(xg) #0. We denote by 4, the set of non-singular points of 4. We
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denote by A;,, the set A—4,., and call it the singular locus of A. A point in A,
is called a singular point of A. For a locally analytic subset 4, its singular locus is a
locally analytic subset in X and 4, is an open dense subset in A.

We want to consider a stratification of a complex manifold X. We say that
{A.)uer is a stratification of X if:

Q2.0 1) X=[] 4., (a disjoint union).
2) Fach 4, is a locally analytic subset in X.
3) [T.c1 4, is alocally finite covering of X.

We call cach 4, a stratum of the stratification {4,},c;. In particular, when the
index set I is a finite set, we say that {4,},¢; is a finite stratification. Let {4 },¢;
and {Bg}scy be two stratifications of X. We say that {4,},¢; is a refinement of {By};¢;
if any stratum in {4,},¢; is contained in one of the strata in {Bg}pcy.

Let 4 be a locally analytic subset in a complex manifold X. Then we get a
finite stratification {4,},¢; of X satisfying the conditions (2.1) in a canonical way.
Namely we put:

A=A and Ay:=X-—-A,

A(1) = Aoysing and 4,:= Aoyreg = A(O)_A(l),
and by induction on i we put:
Agy = A-1)sing and 4;:= A(i—l)reg = A(i—l)_A(i),

for i=1. Since dim Ay<dim 41y, A is an empty set if [ is sufficiently large.
We put / the number such that A, #0 and A4g.1y=0. Let [];e; 4 ; be the con-
nected component decomposition of 4;, which is a disjoint union of open subsets
in 4;. Then we have a partition of 4:

(2.2) 4= Uléiél(ﬂjeh Ai’f) = l[aﬁf Az
with I'={o=(j); 1=i=] and jcJ;}. The following lemma is easily checked.

Lemma 2.1. The above partition (2.2) of the set A is a stratification of A. Each
stratum is a connected non-singular locally analytic subset in X. In particular, if A
is a closed analytic subvariety of X, then (2.2) is a finite stratification.

Definition. (Canonical stratification.) We call the stratification {4,},¢; defined
in (2.2) the canonical stratification of X by A.

Next we shall consider the conormal bundle of a stratum of a stratification
{4,},c; whose strata are all connected non-singular locally analytic subset. Let
{4,}.¢; be a stratification of a complex manifold X consisting of non-singular con-
nected strata. The conormal bundle of 4, in X is denoted by Ty X.
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Here (T* X), is the cotangent vector space of X at x and (T'4,), is the tangent
space of A, at the point x€X. Then we see that:

Lemma 2.2. Let {4,},¢; and {Bg}sc; be two stratifications of X. We suppose that
{Bs}scs is a refinement of {A,},e; and that each strata A, and By are connected and
non-singular. Then we have:

Uper Ta. X < Uy, T, X
This is easily checked.

We shall construct the characteristic variety of a holonomic system R by a
stratification of X. Let (J!_, 4,=ch (M) be the decomposition into irreducible
components of ch (). As stated in [Ka 2], each 4, is an irreducible conic Lagran-
gian analytic subset in T*X. We put X;:=n(4;) where = is the projection map
from 7% X to X. Then X; is an irreducible analytic subset in X. We put:

Yii= (XD and Aj:=T3,X for i=1..,1

Then Y; is a non-singular locally analytic subset in X and A, is a closed conic Lagran-
gian analytic subset in 7 X which is contained in A;. It is easily checked that there
is a finite stratification consisting of non-singular strata of X which is a refinement
of all the canonical stratification of X by X; (i=1, ..., [}. Let {Cy};¢; be one of such
finite stratifications of X. By Lemma 2.2, we have

(2.3) ch(M) = U;_, 4; € Uy T8 X.
For the proof of Theorem 1.1, we need a slightly finer stratification than {Cp}zc/.-

Definition. (Full-fiberness) Let 4 be a connected non-singular locally analytic
subset in X and let Z be an analytic subset in T5X. We say that Z is full-fiber with
respect to A at xo€ A4 if 77 x)NT X =n"1(xe)NnZ.

Lemma 2.3. Let Z be an analytic subset of codimension =1 in ch () and
let {Cy}ycyr, be a finite stratification of X. Suppose that {Cy}sey is a refinement of the
canonical stratification of X by X; for all i=1,...,1. Let Cj be the subset of Cy
consisting of the points at which Zn TiiﬁX is full-fiber with respect to Cy. Then Cy
is a strictly less dimensional analytic subset in Cpy.

Proof. We shall show that C,; is a closed locally analytic subset in Cy. Let
xo€Cy—Cp. From the assumption that Z is of codimension =1 in ch (M), there
exists a point (x,, £)ET, Q‘BX such that (x,, )¢ Z. Since ZnTé‘ﬁX is a closed
set in TS‘B X, there exists an open neighbourhood U of (x,, &) in T*X such that
UnZ=¢. The projection image =(U) is a neighbourhood of x, in C; and =n(U) is
contained in Cy—Cj. Hence C,—Cj is an open set in Cy. Thus Cp is a closed
set in Cy. Next we show that Cj is a locally analytic subset in C,. Let x,6C} and
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let (xy, ..., X,) be a local coordinate of X defined in a neighbourhood U of x, such
that C; is written as {x,=...=x,=0} in U. Then

TEX = {06, OET*X; Xy == X, = 0, Epiy == &, = 0}

where £=(¢;, ..., &,) is the dual coordinate of (xy, ..., x,). Weput&:=(§, ..., &)
and Ap=n(Zn{(x, HETE X5 & = (¢, 0))). Then Ay is an analytic subset in U.
Since CpNU=[y¢c» 4o and since any intersection of analytic subsets is an analytic
subset (by the Nullstellensatz), Cj; is an analytic subset in U, which means that C} is
a locally analytic subset in C;. Thus Cj is an analytic subset in Cy. Since Z is of
codimension =1 in Tf X, there exists at least one point in T, é‘BX —Z, hence
Cy—Cp is not empty. Then Cj is strictly less dimensional than Cp.  (Q.e.d.)

By Lemma 2.3, C} is a strictly less dimensional analytic subset in Cy. We take
the canonical stratification of Cy by C}; and denote it by {Dy ,},¢ r, Then {Dy,,},c r,
is a finite stratification of C; and each stratum D; , is a connected non-singular
Jocally analytic subset in X. Then

24 Dslsea with A= {5=(B,y); BEL, yeI 'y},

is a finite stratification of X and it is arefinement of {Cy};c;. After all we have the
following proposition.

Proposition 2.4, Let M be a holonomic system on X and let Z be a conic analytic
subset of codimension =1 in ch {(M). Then there exists a finite stratification {Ds}sc 4
of X satisfying the following conditions:

(2.5) 1) Each Dy is a connected non-singular locally analytic subset in X.
2) ch (M) UseaTp, X
3) For any stratum D, Z is not full-fiber with respect to D at any point x€Dj.

Proof. We may take the stratification {D;};¢, given by (2.4). We see easily
that the conditions (2.5) 1) and 2) are satisfied from the definition of {D;}sc4 and
Lemma 2.2. We shall prove 3). The stratification {D;}sc, is a refinement of the
stratification {Cj}pc.. The subset Cy in Cy is the set of points where Z is full-fiber
with respect to C,. If D, , is a stratum in {D, ,},¢ r, is contained in Cy;~—Cj, then
Z is not full-fiber with respect to D, , at any point of Dy . This is because Dy ,
is an open set in C;. Otherwise Dy , is contained in C} and it is strictly less dimen-
sional than C;. Then we have:

1 (%) N Tp, , X 277 (x) N T, X = 7 (x0) N Z,
for any x,€D, . This is because Z is full-fiber with respect to Cj at x,. Thus Z is

not full-fiber with respect to D, , at xo€D, . Hence {D;}sc, satisfies the condi-
tion 3) of (2.5). (Q.e.d.)
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2.2. Proof of Theorem 1.1. Let @I be a local section of Homg (M, By) sat-
isfying szoiilch@mp-zg=0. We shall show that the hyperfunction #(f)=0 for
any section f of M. From Proposition 2.4, we have a stratification {D;};c4 of X
satisfying the condition (2.5). Then we have:

(2.6) supp (s£08(f)) < (Use , T3, XN T*M) € U, , Tos M

where D,p:=Ds;nM. Since D,pg is a real locus of Dy, we have Ty XnT*Mc Thsg M
because the real dimension of D,y is not greater than the complex dimension of D;.
Here Ths M means the real conormal bundle of D,y in M.

The support of soii is contained in ch (M) and s£0i=0 on ch (W) —Z
from the assumption. That is tosay, s4oii=0 on T*M—Zg. Inparticular, /40 =0
on JsesTosg M—Zy. We shall show in the following that #=0 from the assump-
tion that s40ii=0 on Usc Tpse M —Zy.-

Since {D,}sc4 is a finite stratification, there exists a partition of 4:

(2.7) A(O)UA(l)U..UA(m) = A,
satisfying the following condition:

(2.8) We put A*:=UJ;=, 4y, and D*:=[[5cuD; with k=0,1,2,.... For any
0€ 4y, and x,€ Dy, there exists a neighbourhood U of x, satisfying UnD*c D;.

We shall show that #=0 near any point of D, for any Jd€4; by induction
on i. First suppose that 6€4,. Then, from the condition (2.8), D; is an open set
in X. Hence the real locus Dy is an open set in M. Since supp (a/0i(f))C T M=
D, X {0}, @(f)is a real analytic function on D, for any section f of M by Proposi-
tion 1.1 2), and @#(f)=0 on D,p—Zz from the assumption. The subset Zg is
of real codimension =1 in D,y because Z is of complex codimension =1 in D,.
Thus #(f)=0 on the whole D, for an arbitrary section f of M and hence #=0
on Dy for any 6€4,.

Next we suppose that we have proved the induction hypothesis for k:

(2.9) For any 5EA(0)UA(1)U...UA(k_1)=A——Ak, fi is zero near any point in Dyg.
Then we have:
(2.10) 1) supp(@(f)) c D*n M = U, 4 Disrs

2) supp (s408(f)) C Uy e Tosg M-

from (2.9) and (2.6), (2.8). We shall show that #i=0 near any point in Dy for
0€A4y,. Take 6¢€A4yy and xy€Dzz. From the condition (2.8), we can take U a
neighbourhood of x, in X satisfying UnD*c D;. Let f be a local section of 9 and
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consider the hyperfunction #(f). Then since (Un(D*nM))CD,p, we have:
(2.11) 1) supp(a(f))nU C Dy,

2) supp (90 (Nly) C T M,
by (2.10).

Lemma 2.5. For any fixed xo€D,g, there exists a point (xy, o) Thsg M such
that £,7#0 and (x,, £)¢Zg.

Proof. Let A be a real conic subset in T* M, i.e., if (x, £)€4, then (x,c-&)¢cA
for all c€RY. We define the fiber complexification AQC of A4 by:

(2.12) AQRC = {(x, y)ET* X, there exists a point (x, £)¢ 4 such that
¥ = ¢+ ¢ with some c€C*}.

Since Z is a conic subset in X, Zp:=ZnT*M is a real conic subset in 7* M. For
a point x,€n(Zg), (77 (x)NZy)®C is contained in n~(x,)nZ. On the other
hand, we have 771(x,)n T;dX:n‘l(xo)m(TgéXmT*M)®C<:(n’1(x0)nTi§5RM)®C
for any x,€Dg.

For a fixed point xo€ D,g, if there is no point (x,, &)En"(x)NTHr M such
that &0 and (x,, &)¢Zg, then we have:

(2.13) (n 2 x) " T,a M) = w7 (x0) " Zg,

since Zy is a real conic subset. Thus (x,,0) is automatically contained in
n Y (xg)nZy. Taking the fiber complexifications of both sides of (2.13), we have:

(2.14) 1 x) 0T, X < (7 () N T M)®C
= (17 x) N Zg)QC < =71 (x)) " Z.

This contradicts the condition that Z is not full-fiber with respect to D; at x,€D;:
the condition 3) of (2.5). Thus we have the result. (Q.e.d.)

We shall apply Corollary 1.4 to our case: N=D,; with 6€4,, and v(x)=
u(f). From the condition (2.11) 1), the assumption 1) in Corollary 1.2 is satisfied.
On the other hand, we have supp (s400(f)ly) = Thr MnZy. By Lemma 2.5, there
exists a point (Xo, £)€Thr M such that &0 and (xo, &)¢supp (a0 (f)ly)-
This means that the assumption 2) in Corollary 1.4 is satisfied. Thus we have #(f)=0
near x,. That is to say, we have i1( /=0 for any section f of MM near any point x,
in Dy for all 6€4,,. This means that #=0 near any point x, in D,z. We have:

(2.15) For any 6¢4yu...udy,, i is zero near any point in D

in addition to (2.9). Thus by induction on k, we have #=0 on M. We complete
the proof of Theorem 1.1.
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