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Introduction 

Let M be a real analytic manifold of  dimension n and let X be its complexifica- 
tion. Consider a system of  linear differential equations 93l: Pi(x ,O/Ox)u(x) - -O,  

( i= 1 . . . . .  m), where Pi(x,  O/Ox)'s are differential operators with holomorphic coeffi- 
cients on X. Suppose that 9J~ is an elliptic system on M, - -  i.e., the characteristic 
variety of 99l is contained in the zero-section M •  {0} in the cotangent bundle 
T * M  - -  and let N be a real analytic subset of  M of real codimension -> 1. I f  two 
hyperfunction solutions coincide with each other on M - N ,  then they coincide 
on the whole domain M. This is a direct consequence of  the fact that there is no 
solution whose support is contained in N since any hyperfunction solution of 93l is 
real analytic. This means that a solution is determined by its data on M - N .  How- 
ever, in general, there may exist a solution supported in N when ~0l is not elliptic, 
especially when N is contained in the projection of  ch (gJI)R--M to M, where 
ch (gJI)R is the real locus of  the characteristic variety of  99I. 

In a general situation, a system of linear differential equations can be interpreted 
as a left coherent Nx-module on X where Nx is the sheaf of  linear differential opera- 
tors on X. In particular, there is an important class of  left coherent Nx-modules 
called holonomic systems. The purpose of  this paper is to give a natural and practi- 
cal extension of  the above fact when 93l is a holonomie sys tem on X, i.e., a left co- 
herent Nx-module whose characteristic variety is of  dimension n. Namely we have 
the following theorem. 

Let flY/ be a holonomic system on X. We denote by c h ( ~ )  the char- 
acteristic variety of  92/. Let Z be an analytic subset in ch (9)1). We shall con- 
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sider the microfunction solution of .q0L As we have seen in [Sm--Kw--Ka],  
p. 273, we may identify T~tX with T*M. In this paper, we regard T*M as a 
subset T ~ X  in T * X  and deal with the sheaf cg~ as a sheaf on T*M. The real 
loci of ch ( ~ )  and Z are denoted by ch 0J~)R:=Ch ( ~ )  c~ T*M and Za:=Zc~ T*3I, 
respectively. The spectral map from the sheaf of hyperfunctions NM to the direct 
image ~z.(cgM) by re; T*3/I-~M of tile sheaf of microfunctions WM is denoted by 
~fi. Our main theorem (Theorem 1.1) is the following. 

Theorem. We suppose that Z is a conic analytic subset o f  complex codimension 
E1 in ch (93l). For a hyperfu~Tction solution u(x) of  the holonomic system ')JL i f  
~fi(u(x))[~(~)a-za=O, then u(x)=0  as a hyperfunction on M. 

When ~ is a non-trivial elliptic system, ch (gX)R is the zero section MX {0} 
and Z a is a real analytic subset of real codimension => 1. Thus the assumption 
of Theorem means that u(x) is zero on M - Z a .  The above theorem may be seemed 
as an extension of the fact that any solution of an elliptic system is uniquely extended 
to M from the data on M - N .  In particular, we may put Z = c h  (gJl)~ing := the 
singular locus of the characteristic variety. Theorem means that a solution of 9)1 
is completely determined by the value on the regular locus ch (~l)r~=ch 0 J l ) -  
ch (~0lLf,g and we need not pay attention to the value on the singular locus of 
ch 0X). 

The proof of this theorem is not difficult. We can prove it by some arguments 
on characteristic varieties of 9X and Hotmgren's uniqueness theorem. Readers may 
feel that this theorem is nothing but one easy application of Holmgren's uniqueness 
theorem. However this theorem is iraportant from the practical point of view. For 
example, we may take Z to be the set of singular points in ch (g31) R. When ~IJ~ is 
a holonomic system with regular singularity, the structure of 9)~ is very simple at 
least microlocally near any point of ch (gX)-Z (see [Ka--Kw]). In particular, as 
stated in [Ka--Kw], the microfunction solution is expressed explicitly by making 
use of the theory of principal symbols. It is often possible to calculate the micro- 
function solution near a point of ch (~IX)R--Z R. Thus the above theorem guarantees 
that we need not consider the structure of the solution on Z R and hence it is helpful 
for the proof of uniqueness of hyperfunction solutions to a holonomic system. 
As far as we are dealing with the uniqueness problem of hyperfunction solutions of  a 
holonomic system, it is desirable to reformulate the Holmgren's uniqueness theorem 
as presented in the above theorem from a practical position. Indeed, a weak form 
of the above theorem was used in [Mr 1] and [Mr 2] in order to determine relatively 
invariant hyperfunctions. 

Acknowledgement: The author expresses sincere gratitude to the referee for 
the kind and useful advice. He also expresses deep appreciation to the editor Pro- 
fessor Jaak Peetre who has encouraged him while he was revising the paper. 
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1. Formulation of the problem and the key lemma 

Let M be a real analytic manifold of dimension n and let X be its complexifica- 
tion. We denote by Nx be the sheaf of linear differential operators on X with holo- 
morphic coefficients. Following Kashiwara [Ka 2], we interpret a system of linear 
differential equation ~lt as a left coherent @x-module. Then the solution space of 
9~ may be expressed using a Hom-functor. Namely, let Gs-M be a sheaf of ~x-module 
on M like, for example, the sheaf of C~-functions or hyperfunctions on M. We 
denote by 2 / E ~ x  (~l, 5M) the sheaf of ~M-homomorphisms from ~ to ~-~ and 
call a section of it a ~f-solution of ~J)l. For details, see [Ka 2], Chapter 2, w 1. 

Throughout this paper, we always consider hyperfunction solutions, so a solu- 
tion of ~Jl always means a hyperfunction solution or a microfunetion solution 
as its spectral map image. We denote by ~d M the sheaf of hyperfunctions on 
M and by c~ M the sheaf of microfanctions on the cotangent bundle T* M. There is a 
natural sheaf isomorphism @ called the spectral map which gives an isomorphism 
from ~ to ~, (~'M): ~ :  ~M ~lr, (cgM). 

Remark. In [Ka Kw Ki] the sheaf of microfunctions c~ M is defined as a 
sheaf on the pure imaginary cospherical bundle ]/----'IS* M, which is naturally 
extended to the sheaf on T * M - M  constant to the direction by the action of 
RX+. The sheaf c~M in [Ka- -Kw~Ki ]  corresponds to the restriction sheaf of cg~ 
defined above to T ' M - M ,  i.e., ~MIT*M-g. The sheaf c~ M defined above is de- 
noted by c~ M in [Ka--Kw--Ki] .  S~e [Ka--Kw--Ki]  Chapter I I I w  8, Definition 
(3.8.1). 

Let g be a section of Y f ~ , ,  (~01, NM): a hyperfunction solution of 9Jl. Then, 
through the spectral map @, @off is regarded as a section of ~ ' ~  (~Jl, re. (c~M)) 
naturally, and defines a section of microfunction solution of ~Jl. We call the support 
of ~fiog in T*M the support o fg  as a microfunction solution. In particular, we put 
S.S.(g) := supp ( @ o ~ ) - M ,  and call it the sir~gufar spectrum of ~. The support supp (~) 
(resp. supp (~fio~)) is by definition I.)~ supp (~(f))  (resp. CJy supp (@o~(f ) ) )  
where f r u n s  through the set of sections of 9)l. 

Let ch (~1~) be the characteristic variety of 93l. (Remark. ch (g)l) is denoted 
by S.S.(9)I) in [Ka 2J.) The characteristic variety ch (~0l) is an analytic subset 
in T*X. In particular, g)l is called a holonomic system if the complex dimension of 
ch (9)l) coincides with the dimension of Jr. The real locus of ch (~0l) is denoted 
by ch (~Jt)R, i.e., ch (gJl)R:=Ch (gJl)ca T*M. Then the support of any solution of 
~ll is contained in ch (~0I)R. The main theorem of this paper is the following. 

Theorem 1.1' Let 9)l be a holonomic system on X. Let Z be an analytic subset of 
complex codimension ~ 1 in ch (9~l). The real locus of Z is denoted by Z R := Zc~ T* M. 
For a local section ~ of  ~ (gJt, ~ ) ,  i f  ~fiOOIeh(~)R--ZR=0, then g=0.  
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Corollary 1.2. Let ?Ol be a holonomic system on X. For a local section ~ o f  

~zr~Nx(gJ~, ~M) , i f  df iO~lchCigl ) regR=0 , then ~=0.  

Corollary 1.2 follows from Theorem 1.1 since ch (gJl)~ing=ch (~0l)-ch (gJl)reg 
is an analytic subset of codimension -> 1 in ch (9)l). 

Lastly we give a key lemma for the proof of Theorem 1.1. 

Lemma 1.3. Let M be a real analytic manifoM and let v(x) be a hyperfimction 
on M defined near a point xoEM. Let p(x)  be a real valued real analytic function 
defined near xo such that p(xo)=O and dp(co)r I f  supp (v(x)) is contained in 
the set {xE M; p(x)>=O} and, i f  (Xo, dp(xo))~S.S.(v(x)) or (:co, -dp(xo))~S.S.(v(x)),  
then v(x)=0 near Xo. 

Lemma 1.3 is the so-called the "Holmgren's uniqueness theorem" from the point 
of view of microfunction theory. The proof of this lemma is found in [Ka--Kw--Ki] ,  
Proposition 3.5.2 in Chapter III. 

Corollary 1.4. Under the same situation as Lemma 1.3, let N be a non-singular 
real analytic subvariety in M defined near x0E M. We suppose that; 1) the support 
supp (v(x)) is contained in N, and; 2) ( (T;  M - M ) n ~ - I ( X o ) ) - S . S .  (v(x)) is not 
an empty set where ~ is the projection map T * M ~ M .  Then v(x)=0 near Xo. 

Proof. Since N is non-singular, there exists a local coordinate (x~, ..., x,) near 
x0 whose origin is x0 and such that Nis  defined as {xEM; xa . . . . .  xl=0}. From the 
assumption 2), there exists a point (x0, ~0)E T ~ M  with ~o ~ 0 and (x0, ~o)~ S.S. (v (x)). 
We may put ~0=z~[=~ e~.dxi(xo) with some c~ER (i=1, ..., l). Then by putting 
p ( x ) = ~ ] ;  1 C i .Xi, we have p(x)l~=0, and hence supp (v(x))c{xEM;p(x)>=O}. 
Furthermore since (x0, ~0)=(x0, dp(xo))~iS.S. (v(x)), we have v(x)=0 near :Co by 
Lemma 1.3. (Q.e.d.) 

The next section is devoted to the proof of Theorem 1.1. 

2. Proof of the main theorem 

2.1. Preliminaries of  the proof. Let J( be a complex manifold. A subset A of 
X is called analytic at a point x E X  if there exist a neighbourhood U of x in X and 
finitely many holomorphic functions fl(x), ...,fk(x) on U such that A n U =  
{xE U;f~(x) . . . . .  fk(X)=0}. The set A is called a locally analytic subset of X if A 
is analytic in X at every point of A. We say that a locally analytic subset A is non- 
singular at x0E A if there exist a neighbourhood U of :Co in X and holomorphic func- 
tions f i (X) , . . . , fk(X)  on U such that A n U = { x E U ; f ~ ( x )  . . . . .  fk(X)=0} and 
df~^ ... ^dfk(xo)r We denote by Areg the set of non-singular points of A. We 
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denote by Asing the set A-Areg and call it the singular locus of A. A point in Asi,g 
is called a singular point of A. For a locally analytic subset A, its singular locus is a 
locally analytic subset in X and Areg iS an open dense subset in A. 

We want to consider a stratification of a complex manifold X. We say that 
{A~}~c I is a stratification of X if: 

(2.1) 1 ) X = ~ , c I A ~ ,  (a disjoint union). 
2) Each A, is a locally analytic subset in X. 
3)/T/,~IA~ is a locally finite covering of X. 

We call each A~ a stratum of the stratification {A~}~. In particular, when the 
index set I is a finite set, we say that {A~}~cg is a finite stratification. Let {A,}~cx 
and (Bp}~Ej be two stratifications of X. We say that {A~}~ci is a refinement of {Bp}pcs 
if any stratum it1 {A~}~I is contained in one of the strata in {Bp}pcs. 

Let A be a locally analytic subset in a complex manifold X. Then we get a 
finite stratification {A~}~I of X satisfying the conditions (2.1) in a canonical way. 
Namely we put: 

A(0):=A and A o : = X - A ,  

Ao) :---- A(o)sing and A1 := A(o)reg = A(o)-A(1), 

and by induction on i we put: 

A(~) := A(~_l)~.z~g and A~ :~  A(i_l)reg = A(~_~)-A(~), 

for i_-->1. Since dim A(o<dim A(~_~), A(~) is an empty set if i is sufficiently large. 
We p u t / t h e  number such that A(z)r and A(t+~)=9. Let ] J j ~  A~,j be the con- 
nected component decomposition of A~, which is a disjoint union of open subsets 
in A~. Then we have a partition of A: 

(2.2) A = I-[l~_i~=, ([[jEJ, Ai, j) = : / / ~ e ,  A~., 

with I:={e=(i, j);  l<=i<=l and JEJi}. The following lemma is easily checked. 

Lemma 2.1. The above partition (2.2) of the set A is a stratification of A. Each 
stratum is a connected non-singular locally analytic subset in X. In particular, if A 
is a closed analytic subvariety of X, then (2.2) is a finite stratification. 

Definition. (Canonical stratification.) We call the stratification {A~}~ x defined 
in (2.2) the canonical stratification of X by A. 

Next we shall consider the conormal bundle of a stratum of a stratification 
{A~}~(~ whose strata are all connected non-singular locally analytic subset. Let 
{A,}~cz be a stratification of a complex manifold X consisting of non-singular con- 
nected strata. The conormal bundle of A, in X is denoted by T~X.  
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Here (T*X)x is the cotangent vector space of X at x and (TA,)x is the tangent 
space of A~ at the point x6X. Then we see that: 

Lemma 2.2. Let {A~}~ t and {Bp}pes be two stratifications of X. We suppose that 
{Bp}ac s is a refinement of {A~}~ct and that each strata A~ and B a are connected and 
non-singular. Then we have: 

U~cx T~ Xc Up~ T~a X. 
This is easily checked. 

We shall construct the characteristic variety of a holonomic system 9)l by a 
stratification of X. Let Ul=l Ai=ch  (~ )  be the decomposition into irreducible 
components of ch (~IY/). As stated in [Ka 2], each Ai is an irreducible conic Lagran- 
gian analytic subset in T*X. We put X~:=~z(Ai) where rc is the projection map 
from T*X to X. Then Xi is an irreducible analytic subset in X. We put: 

Y~:=(X~)reg and A~:=2c~,X for i = l , . . , , l .  

Then Y, is a non-singular locally analytic subset in X and A i is a dosed conic Lagran- 
gian analytic subset in T*X which is contained in A i. It is easily checked that there 
is a finite stratification consisting of non-singular strata of X which is a refinement 
of all the canonical stratification of X by Zi ( i=  1 . . . .  ,1). Let {Ca}at L be one of such 
finite stratifications of X. By Lemma 2.2, we have 

(2.3) ch (93l) = U i= IA I  c UacLTffa X. 

For the proof of Theorem 1.1, we need a slightly finer stratification than {Ca} a c c- 

Definition. (Full-fiberness) Let A be a connected non-singular locally analytic 
subset in X and let Z be an analytic subset in T]X. We say that Z is full-fiber with 
respect to A at XoEA if ~z-l(xo)nT2Z=z~-l(xo)c~Z. 

Lemma 2.3. Let  Z be an analytic subset of  codimension >= 1 in ch (~0~) and 
let {Ca}p~ r be a finite stratification of J(. Suppose that {Cp}aE z is a refinement of  the 
canonical stratification of X by X i for all i =  1 . . . . .  l. Let C'p be the subset of C a 
consisting of  the points at which Zc~T~ X is full-fiber with respect to C a. Then C~ 
is a strictly less dimensional analytic subset in C a . 

Proof. We shall show that C~ is a closed locally analytic subset in C a. Let 
xoECa-C" ~. From the assumption that Z is of codimension =>1 in ch (9~), there 
exists a point (x0, ~o)~T~X such that (x0, ~0)d/Z. Since Z c a T S X  is a closed 
set in Tga 2", there exists an open neighbourhood U of (x0, r in T*X such that 
Uc~Z=~o. The projection image ~(U) is a neighbourhood of x0 in C a and re(U) is 
contained in Ca-C" ~. Hence Cp-C'p is an open set in C a. Thus C~ is a closed 
set in C a. Next we show that C; is a locally analytic subset in C a. Let xoCC'~ and 
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let (x~ . . . . .  x,) be a local coordinate of X defined in a neighbourhood U of x0 such 
that C a is written as {xx . . . . .  Xp---0} in U. Then 

= {(x,  0 < T ' X ;  . . . . .  xp  = 0,  p+l . . . . .  4 .  = o} 

where ~ = ( ~  .. . . .  , ~ )  is the duaI coordinate of (x 1 . . . . .  x,,). We put r ..-, ~p) 
and Ar ~)<Tg X;  ~ = (~',0)}). Then A t, is an analytic subset in U. 
Since C~c~ U =  f'lr c~ Ae, and since any intersection of analytic subsets is an analytic 
subset (by the Nullstellensatz), C~ is an analytic subset in U, which means that C~ is 
a locally analytic subset in Cp. Tiros C~ is an analytic subset in C~, Since Z is of 
codimension =>1 in T ~ X ,  there exists at least one point in T ~ X - Z ,  hence 
Cp-C'p is not empty. Then C~ is strictly less dimensional than C~. (Q.e.d.) 

By Lemma 2.3, C~ is a strictly less dimensional analytic subset in Cp. We take 
the canonical stratification of C~ by C~ and denote it by {D<,j}~cr~. Then {Dp,~}~cr~ 
is a finite stratification of C~ and each stratum Dp,~ is a connected non-singular 
locally analytic subset in X. Then 

(2.4) {Da}aca with A := {6 = (13, V); flEL, 7EFe}, 

is a finite stratificatio!a of X and it is a refinement of {Ce}e< L. After all we have the 
following proposition. 

Propos~r 2.4. Let 9J~ be a holonomic system on X and let Z be a conic analytic 
subset of  codimension >=1 in ch (~) .  The~ there exists a finite stratification {Da}ac a 
of  X satisfying the following conditions: 

(2.5) 1) Each Da is a connected non-singular locally analytic subset in X. 
2) ch (~IR)cUa~aT~ X. 
3) For a w  stratum Da, Z is not full-fiber with respect to D o at any point xEDa. 

Proof. We may take the stratification {Da}a~a given by (2.4). We see easily 
that the conditions (2.5) 1) and 2) are satisfied from the definition of {Da}a<a and 
Lemma 2.2. We shall prove 3). The stratification {Da}a< a is a refinement of the 
stratification {Cp}ee L. The subset C~ in C~ is the set of points where Z is full-fiber 
with respect to C~. If De, ~ is a stratum in {D~,~}~er~ is contained in C e - C '  ~, then 
Z is not full-fiber with respect to D~,,~ at any point of Dr This is because D~,~ 
is an open set in C~. Otherwise D~, ~ is contained in C; and it is strictly less dimen- 
sional than C~. Then we have: 

zc -~ (Xo) c~ r . . , ,  X ~ re-* (Xo) c~ Tc, X = rc -~ (xo) c~ Z, 

for any xoED~, r. This is because Z is full-fiber with respect to C~ at Xo. Thus Z is 
not fuU-fiber with respect to D~,~ at xoED~,,~. Hence {Do}o~a satisfies the condi- 
tion 3) of (2.5). (Q.e.d.) 
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2.2. Proof of Theorem 1.1. Let ~ be a local section of ~ o m ~ ,  (gJ/, ~'M) sat- 
isfying Opo~lch(~)a--Za=0. We shall show that the hyperfunction i f ( f ) = 0  for 
any section f of 93t. From Proposition 2.4, we have a stratification {D0}0c a of X 
satisfying the condition (2.5). Then we have: 

(2.6) supp (~fiog(f)) c (t,.Joca T~,Xn T 'M)  c Uoc,J T~RM 

where DOR:=Doc~M. Since D6R is a real locus of D0, we have T~Xc~T*McT~oRM 
because the real dimension of DOR is not greater than the complex dimension of D0. 
Here T~oRM means the real conormal bundle of D0R in M. 

The support of ~flog is contained in ch (gYC)R and ofiofi =0  on ch (~Jt)R--Z R 
from the assumption. That is to say, ~flog =0  on T * M - Z  R. In particular, ~fio~ =0  
on UoEAT~oRM--ZR . We shall show in the following that g = 0  from the assump- 
tion that ~fio~=0 on UoEAT~oRM--Z R. 

Since {D~}0ca is a finite stratification, there exists a partition of A : 

(2.7) A(0)uAo)u... WA(m ) = A, 

satisfying the following condition: 

(2.8) We put Ak :=u~kA(0  and Dk:=l[or with k = 0 , 1 , 2  . . . . .  For any 
5EA(k ) and xoEDo, there exists a neighbourhood U of x0 satisfying UnDkcDo. 

We shall show that ~ = 0  near any point of D0R for any 5EA(~) by induction 
on i. First suppose that lEA(0). Then, from the condition (2.8), D0 is an open set 
in X. Hence the real locus D0a is an open set in M. Since supp (~fi o~ ( f ) ) c  T~0R M =  
Doo • {0}, ~ ( f )  is a real analytic function on D0R for any sec t ion fo f  9Yr by Proposi- 
tion 1.1 2), and ~ ( f ) = 0  on DoR--Z a from the assumption. The subset Z R is 
of real codimension _->l in D0a because Z is of complex codimension -> 1 in D0. 
Thus / i ( f )  =0  on the whole D0R for an arbitrary section f of !if/and hence 5 = 0  
on D~R for any SEA(0 ). 

Next we suppose that we have proved the induction hypothesis for k: 

(2.9) For any 5EA(o)uAa)u...wA(~_~)=A-A k, ~t is zero near any point in DOR. 

Then we have: 

(2.10) 1) supp(O(f)) c Dk n M  = (36ca~DoR, 

2) supp(~fio~(f)) c (_Joe,,,,T~oR M, 

from (2.9) and (2.6), (2.8). We shall show that ~ = 0  near any point in D0R for 
5EA(k ). Take SEA(k) and xoEDoR. From the condition (2.8), we can take U a 
neighbourhood of x0 in X satisfying UmDkcDo. L e t f b e  a local section of gJt and 
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consider the hyperfunction ~( f ) .  Then since (Un(D~nM))CD6R, we have: 

(2.11) 1) supp (fi (f))  n U c Dog, 

2) supp(~fiofi~(f)lv) c T~R M , 
by (2.10). 

Lemma 2.5. For any fixed xoC D~R , there exists a point (Xo, ~o)CT~,~RM such 

that ~o#0 and (xo, ~0)([Z R. 

Proof. Let A be a real conic subset in T'M,  i.e., if (x, ~)EA, then (x, c. ~)CA 
for all cERX+. We define thefiber complexification A| of A by: 

(2.12) A |  := {(x, y)ET*X; there exists a point (x, OEA such that 

y = c .~  with some c~C• 

Since Z is a conic subset in X, Z R:= Z n  T*M is a tea! conic subset in T* M. For 
a point x0E~(ZR), (z~-l(x0)nZR)| is contained in ~- l(x0)nZ.  On the other 
hand, we have ~-  1 (x0) n T~  X = ~-  1 (x0) n ( T ~  Xn T* M) | C c (z~- t (x0) n T~OR M) | C 
for any xoED~R. 

For a fixed point XoED~R , if there is no point (x0, ~o)EZc-~(xo)nT~oRM such 
that ~0~0 and (Xo, ~0)~/ZR, then we have: 

(2.13) (n-~(x0) n T~RM ) = ~-~(Xo) nZa,  

since Z R is a real conic subset. Thus (x0, 0) is automatically contained in 
r~-~(x0)nZR . Taking the fiber complexifications of both sides of (2.13), we have: 

(2.14) ~-1 (x0) n T ~ X  c (~-1 (x0) n T~oRM) |  

~- (7~--1(X0) (~ZR)@C C 7~-l(x0) f"~Z. 

This contradicts the condition that Z is not full-fiber with respect to D~ at xoEDe: 
the condition 3) of (2.5). Thus we have the result. (Q.e.d.) 

We shall apply Corollary 1.4 to our case: N=D~R with bEA(k ) and v(x)= 
~ ( f ) .  From. the condition (2.11) 1), the assumption 1) in Corollary 1.2 is satisfied. 
On the other hand, we have supp (ofiog(f)lv)c T~RMnZ  g. By Lemma 2.5, there 
exists a point (xo,~o)ET~RM such that ~0~0 and (Xo,~o)(~supp(~fiog(f)[v). 
This means that the assumption 2) in Corollary 1.4 is satisfied. Thus we have g ( f )  =0  
near x0. That is to say, we h a v e / ~ ( f ) = 0  for any section f of ~l near any point xo 
in D,~ R for all fiEA(~). This means that ~ = 0  near any point xo in DaR. We have: 

(2.15) For any ~EA(o)U...uA(,), ~ is zero near any point in D~R 

in addition to (2.9). Thus by induction on k, we have ~=0  on M. We complete 
the proof of Theorem 1.1. 
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