On rearrangements of vector-valued H,-functions

N. J. Kalton

1. Introduction?

In [4], B. Davis characterized those real functions in L,(T) which are rearrange-
ments of an H;-function. Let us identify T with R/Z i.e. with [0, 1) under addi-
tion modulo one. Then f can be rearranged to be in RH, if and only if f,€ RH,
where f; is the decreasing rearrangement of f on [0, 1), and this is if and only if

) [iLOL g,
where

M) = [ fu()ds.

Here fy(s)=f,(s+1), s<0. Davis’ original proof uses probabilistic methods. Later
J. L. Lewis (unpublished) gave an analytic proof. See also [6] for another proof, and
also see [5], for related work.

After the initial preparation of the paper, Professor Davis informed the author
of the existence of another solution of the rearrangement problem due to O. D. Cere-
telli [3], who shows that f has a rearrangement in RH, if and only if

@ [0 <

where

M =[ _ fOds.

£ ()=t
Ceretelli’s results seem to have escaped attention in the West until quite recently;
see [7].
In the course of preparing [6] we also found yet another proof which has the
virtue of extending naturally to an arbitrary Banach space. In this note we there-
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fore prove a theorem which extends Davis’s result to an arbitrary Banach space.
Our proof is self-contained, although the ideas intersect those of [6]. It turns out
that our proof in fact combines both the Ceretelli and Davis solutions in the
scalar case.

We will work with an atomic definition of H,(X) (cf. [8]). A Bochner meas-
urable function a: T—X is called an atom provided we can find an interval ICT
such that supp ac/, |a(t)||=|I|7, (¢¢I) and fa(t)dt=0. We then define H}(X)
to be the space of all f€L,(X)=L,(T, X) such that

f= 2:;1 Cna,

where each a, is an atom and ] |c,|<<c. We then define || f||,5 to be the infimum
of >'|c,! over all such representations.

If f,g€L,(X) we say that fis a rearrangement of g if u;=p, where p; is
the Borel measure on X defined by u,(B)=A(f"(B)) (4 denotes normalized Haar
measure on T).

Finally f is said to be almost decreasing if for O<s, t<1 we have [[f(¢)|=
1f(s)] whenever r=2s. Any function f¢L,(X) has an almost decreasing rear-
rangement.

We can now state our main theorem.

Theorem 1. Let fc L, (T, X) have mean zero and let g be an almost decreasing
rearrangement of f. Let

My() = [, g()ds

My(f) = f fs)ds.

11>t
Then the following conditions on f are equivalent:

(i) f has a rearrangement in H{(X)

(i) gEHI(X)
(i) [ 1M (0] % <o

i) [0 % <

Remarks. Note that M, is unchanged by passing to a rearrangement of £
while A/; depends on g. In the scalar case X=R, it is not difficult to show that
(iv) is equivalent to the Davis condition (1) (see [6] for details). However, in the
vector-valued case there is no apparent analogue of the decreasing rearrangement f;.
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Condition (iii) in the scalar case is Ceretelli’s criterion; it is shown equivalent to
(iv) in [6] (see also [7] for the probabilistic setting).

Let us also note the connection with the regular analytic definition of H,(X)
when X is complex. Define H; ,(X) to be the subspace of L;(X) of all f such that

/ : f(Hermdr =0 n=0.
Then by a result of Bourgain [2] and J. Garcia-Cuerva, H, o(X)CH{(X). H{(X)
coincides with H; o(X)® H,,,(X) exactly when X is a UMD-space (see [1]); here
H, o(X) is the space of all f such that

/ ; f(he=> "t =0 nz=0.

Acknowledgement. We are very grateful to Burgess Davis for his many helpful
comments, and in particular for drawing our attention to the work of Ceretelli.
We also wish to acknowledge some helpful remarks by Oscar Blasco.

2. Proof of Theorem 1

Clearly (ii)=>(i). We complete the proof by showing that (iv)=(ii), (iii)=(iv)
and then (i)=(iii).

Proof of (iv)=(ii): Let f* be the decreasing rearrangement of | f(z)]l. Then

eIl éf*(%t). Let t,=1 and then let 7, be a point in [2~", 2'~"], (n=1) so that
1M1 ()|l is minimized. Thus if n=1,

ACY S N VACTPTEDY i DYAC R

For n=0, let I.=[1,,1,7,), and let

1
=/, 801
(=0 if I, is trivial). Let a,=(g—v,)1; and b,=y,(1; —IL|1,1y). Then

g=2 " a,+ 2 b,
in L,(X).
Now

"an”aH = 2]Inl sup ”g(t)“ = 2(“'-11_"'-n+1)f>‘< (% Tn+1J = 3‘2—"f*(2_(n+2))'
tel,
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Hence
2 Naglag =24 3 2709 f*(2-0+2) = 24| f|);.
Also
”bn”aH = h’nl = ”Ml(‘vn+1)][+”Ml(1n)“'
Thus

2 bullen = 4f1 ”Ml(t)ﬂ
Hence g€H? and

Ml(t)

I8ln = 241 /L3 +4 [ d,

completing the proof of (iv)-=>(ii).
Before continuing we introduce some notation. Denote by £ the set of all maps
¢: R—X* which are bounded and satisfy

lo(®—e@G)| =t—s| s, teR.

Let ¥ be the subset of & of all ¢ such that ¢ is continuously differentiable and ¢’
has compact support. If ¢<€.% then one can find a sequence ¢,€% such that

sup sup [@ () —@,(1)] <o, lim @, () = ¢(?) t€R.
nEN téR n>co

To see this first approximate ¢ by a function €% which is constant outside a
compact set and then smooth by convolution with a suitable “bump” function.
For ¢€% we define Q,: L;(X)~C (or R) by

2,(f) = [, {f@), p(log | FO)])ydt

where the integrand vanishes if f(t)=0. Similarly define I';, by

1
r,(N) = [, (f®, p(logn)d.
Now under the hypotheses of the theorem, we claim:

Lemma 2.
sup 12, ()] = sup 12,(N1 = [~ 1401 Z,
ocz pce 0 t
sup IT, ()] = sup I, (@)l = [ M0 2.
0cg oce 7 0 t
Proof. In each case the first equality is routine based on the comments preced-

ing the lemma. The second equalities are similar to each other and we prove only the
first. Note that if ¢€%, Q,(f) is unchanged by replacing ¢ by ¢+x* for any fixed
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x*¢X* since f has mean zero. We therefore assume that lim,._.. ¢(#)=0. Then

1 plogllf@ , e N
2,(N=[ [0 (0. o (ydsdt = [~ (My(e), ¢'(s))ds
by Fubini’s theorem. Hence

sup 2, = [~ M) ds = [ 1240 G-

Proof of (iii)=(iv). By Lemma 2 we have

1 dt 1
[ 101 % = sup | [, (g, v Gog )d].
Now define for 0<t=1,
1/2
b= sup (2] 150
t=s=1

and notice that if ,=1,,

log B(t;) = log f(t,)+3 (log #, —log t5).

It follows that, given €%, there exists @€.% with
¢(log B(1)) = 5 ¥ (log?)
as long as B(1)=0.

We now estimate f B(t)dt. Since g is almost decreasing, if 2~ "+D<g=2-",
(n=0) we have [g()|=]gR~*+?)| and so if r=s=1

(i]llz le@)] =2 (2"(n+2) ]llz ﬂg(z—-(n+2))u_

t t
Hence
2-(mt2) \12
ﬂ(t)_s_sunp2( P ) 1g(2=C=2)|1g0,2-(2)
- 2—(n+2) 1/2
= 32.2(55) 15 liaen )
and

[B@dr=23m 27 [ =32 37, [erw g®ldt =32gls.

Now if ¥€.2,

[, (8, ¥ Qognyat =2 [ {g(s), p(log (1)) dt
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and, using the inequality xlogl/x = 1/e, O<x=1,

| [, (2(®), o(tog B®)— p(loglgI)) df| = [ I2(t)] log uﬁgn a

== [ 0 ar=Z g1,

Hence

[} e, yogydr = [T 1m0 %+ S 1,

so that

Lm0l = 17 an o1 242 g <o,
(1] .t 1]

i.e. (iii)=(iv).

In order to complete the proof we need to introduce the dyadic H,-space,
HA(X). A dyadic atom is an atom a such that the associated interval I is a dyadic
interval D(n, k)=[(k—1)27" k-2") for 1=k=2". We say that fcH¥(X) if it
can be written f=_ c,a, where each a, is a dyadic atom and > |c,|< <. We set
| fllag to be the infimum of >'|c,| over all such representations.

The following lemma is essentially known (cf. [2]).

Lemma 3. Let fcH{(X). Then there exists 0, 0<O0<1 such that f,c HY(X)
and || follan=32| fllan where fo(t)=f(t+6).

Proof. First suppose a is an atom supported on an interval 1. Let J=[x, )
be a half-open interval containing I with |J|=2|I| and |J |-—2“"' for some m=0.

If m=0 then we note that |a,ll;z=2 forall § as {I|=+. Suppose then m=1.
Define k=k(6) to be the unique k so that 1=k=2" and J, CD(m, kyuD(@m, k+1).
Here J,={t: t+0¢J} and we interpret D(m,2™+1) as D(m,1). Let r=r,=r(0)
be the greatest integer such that 2" divides k. If #=0 then D(m, k) D(m, k+1)
is a dyadic interval and so [a,fl;z=2-2""{I|1=4.

If r=0 set

x=2 j Dby ap(dt ==2m f U as (1) dt.

Then |x[=|I]7*=2"*1 Now

It Lpgm, 1y —';‘ X1pm-1,8/2)lamr = 6.
If 1=5=r-1,

x
g 1pem-s, 275K) ™ DsTT Ipm—s—1,2- G+,

=2
au
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with similar equations on the other side of 2~™k. Also

X X
hadt A o =4.
or 1D(m—r,2 k) r 1D(m—r,2 k+1) i =4
Thus
Now

f:r(e)dG =27 3 (4r+12) = 3" 270D (4r +12) = 16,

Now if f€ H{(X) we can write f=2 c,a, where each g, is an atom and J [c,|=
2{ fllarr- Then
1w 0llan = €.(0)

where [ 0,(0)d0=16. Thus there exists 0 such that

2:;1 lcnlgn(e) = 32Hf”aH

W oz = 32| S llamr-

Completion of proof. (i)=(iii): It suffices to show that if f€ H?(X) then (iii)
holds. We suppose. /= c,a, where each a, is a dyadic atom and ¢,=0 with
2 ¢, <. We may further suppose that each g, is supported on a distinct dyadic
interval I, and that the sequence {|/,|} is nonincreasing.

Let 0=2c,. Define also ¢,=0 and then o,=c,+...+c¢c, for neN. We
define a piecewise linear map F: [0, o]—L,(X) by

and so

F0)=0,
F(o,) = Z’Z=1 cxa, nEN,
Flo)=f

and such that F is linear on each interval [o,_,, ¢,]. Similarly define a piecewise
linear map G: [0, 6]>L, by

G(0) =0,
G(G'") = Z’::l CkIIkl_llIk n,EN’

Glo) = 3, a1,

and G is linear on each [o,_;, 6,]. By construction, if ¢,_;<t<0, wehave F'(t)=a,
and G’(v)=|L,|*1, . For convenience we write F(t)(z)=F(t,t) and G(1)(¢)=
G(r,t) and we similarly define F’(r,?), G'(z, f). Notice that for all 0O=rt=o0,
0=t<1, we have ||F(z, 1)|=G(x, 1).
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For any ¢c¥% we define
1
a() = [ (F(z, 1), ¢(log G(z, D))ds,

where the integrand vanishes whenever F(t, t)=0. Then « is continuous on [0, ],
«(0)=0 and if ¢,.,<1<0,,

o(7) = fx,, {a,(1), ¢(log G(z, 1)) dt + f1 (F(, 1), ¢’(log G(z, 1)) G((: tt)) dt.

Note here that G(7,t) cannot vanish on I,.
Now G(z, t) is constant, as a function of ¢, on I, since for k=n, either [, I,
or I,nI,=0. Thus the first integral in the above formula vanishes and we have

G'(t, 1)
G(z, 1)

(@) = [ . |F(z, 9] di= | . G'(r, Hdt = 1.

We conclude that |a(s)|=0¢. Now

2(0)~2,(f) = [.{f (1), o(logG(s, 1)~ (log | f () dt
so that
G(o, 1)
0]

again using xlog 2= for O<x=1. Thus

(@)~ 2,(NI = [ 170)]log dt = —f;j: G(o, f)dt = %a

12,()] = (1 +%] .

Now by Lemma 1 we obtain
o dt 1
[oimaon % = (14 1) o <

and the theorem is proved.
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