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1. Introduction 1) 

In [4], B. Davis characterized those real functions in LI(T) which are rearrange- 
ments of an H1-ftmction. Let us identify T with R / Z  i.e. with [0, 1) under addi- 
tion modulo one. Then f can be rearranged to be in 9tH1 if and only if fd~ ~RHt 
where j~ is the decreasing rearrangement o f f  on [0, 1), and this is if and only if 

IMx(t)l dt <oo 
(1) t 

where 

M (O = f'_, f,,(s)ds. 
Here fd(s)=fd(s+ 1), S<0. Davis' original proof uses probabilistic methods. Later 
J. L. Lewis (unpublished) gave an analytic proof. See also [6] for another proof, and 
also see [5], for related work. 

After the initial preparation of the paper, Professor Davis informed the author 
of the existence of another solution of the rearrangement problem due to O. D. Cere- 
telli [3], who shows that f has a rearrangement in ~RH1 if and only if 

-- j =  [M2(t)] dt < o~ 
(2) 1 t 
where 

M2 (t) ----- fl:cs)l>, f ( s )  ds. 

Ceretelli's results seem to have escaped attention in the West until quite recently; 
see [7]. 

In the course of preparing [6] we also found yet another proof which has the 
virtue of  extending naturally to an arbitrary Banach space. In this note we there- 
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fore prove a theorem which extends Davis's result to an arbitrary Banach space. 
Our proof is self-contained, although the ideas intersect those of [6]. It turns out 
that our proof in fact combines both the Ceretelli and Davis solutions in the 
scalar case. 

We will work with an atomic definition of Ha (X) (cf. [8]). A Bochner meas- 
urable function a: T ~ X  is called an atom provided we can find an interval 1 c T  
such that supp acI ,  Ila(t)[]<--[I1-1, (tEl) and f a(t)dt=O. We then define HI(X) 
to be the space of  all fELI(X)=LI(T, X) such that 

f =  Z7=1 c,a, 

where each a, is an atom and Z Ic, l< ~o. We then define I] f][.~ to be the infimum 
of  ~ '  [c,I over all such representations. 

I f  f,  gELI(X) we say that f is a rearrangement of  g if  #s=~Lg where /~r is 
the Borel measure on X defined by ps(B)=2(f- l (B))  (2 denotes normalized Haar 
measure on T). 

Finally f i s  said to be almost decreasing if for 0<s ,  t < l  we have []f(t)[]= < 
[[f(s)[I whenever t>=2s. Any function fELl(X) has an almost decreasing rear- 
rangement. 

We can now state our main theorem. 

Theorem 1. Let fELl(T,  X) have mean zero and let g be an almost decreasing 
rearrangement o f f  Let 

Ml(t) = f~ g(s)ds 

Ms(t) = f ,,y(s),, >, f(s)ds. 

Then the following conditions on f a re  equivalent: 

(i) f has a rearrangement in H~(X) 

(ii) gEH~(X) 

(iii) f o  ][M~(t)]I-~ "<~176 

dt 
(iv) [IM,(t)ll 7 -  <co. 

Remarks. Note that M2 is unchanged by passing to a rearrangement of  f ,  
while M1 depends on g. In the scalar case X=  R, it is not difficult to show that 
(iv) is equivalent to the Davis condition (1) (see [6] for details). However, in the 
vector-valued case there is no apparent analogue of the decreasing rearrangementfd. 
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Condition (iii) in the scalar case is Ceretelli's criterion; it is shown equivalent to 
(iv) in [6] (see also [7] for the probabilistic setting). 

Let us also note the connection with the regular analytic definition of H~(X) 
when X is complex. Define H~,o(X ) to be the subspace of L~(X) of a l l f  such that 

f~f(t)e="i=tdt = 0 n = > O. 

Then by a result of Bourgain [2] and J. Garcia-Cuerva, Ha, o(X)cH~(X) .  H~(X) 
coincides with HI, o(X)GIT,,o(X) exactly when X is a UMD-space (see [1]); here 
Hx,o(X) is the space of a l l f such  that 

f~f(t)e-="i='dt = 0 n >= O. 

Acknowledgement. We are very grateful to Burgess Davis for his many helpful 
comments, and in particular for drawing our attention to the work of Ceretelli. 
We also wish to acknowledge some helpful remarks by Oscar Blasco. 

2. Proof  o f  Theorem 1 

Clearly (ii)=~(i). We complete the proof by showing that (iv)=*(ii), (iii):=(iv) 
and then (i)=*(iii). 

Proof of  (iv)=*(ii): Let f *  be the decreasing rearrangement of Ilf(t)ll. Then 
I[g(t)[l<=f*(}t). Let %=1 and then let % be a point in [2-", 21-"], (n=>l) so that 
llml(t)ll is minimized. "Ihus if n= > 1, 

~ 2 - -  []Ml(t)][ dt  <= 2 ~1-. , - .  I lMl( t ) l l  

For n=>0, let 1,=[%+1, %], and let 

I 
7. ---- ] '~ f , .  g(t)dt 

(=0  i f / .  is trivial). Let a . = ( g - 7 , ) l i ,  and b,=~,(1, -[/.lifo, u). Then 

g = 2~=,  an+ 2 Z 1  b. 
in LI(X). 

Now 

[]a,lI,H <- 211,1 sup ]]g(t)lt <= 2(z , -%+l) f*  I1%+1] ~ 3.2-"f*(2-("+')). 
I E I  n 
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Hence 

Also 

Thus 

Z [la, lla~ ~ 24 2 2-(a+3)f*(2-("+~)) <-- 241Ifllx. 

bn aH 

1 []MI(t)H dr. 
]lb.[lol~ <- 4 f 0  t 

Hence gEH~ and 

fa  ~Ml(t) 
11 gHan <= 2411 fill  + 4.1 dt, 

o t 

completing the proof  of  (iv)~(ii). 
Before continuing we introduce some notation. Denote by ~ t h e  set of  all maps 

~o: R ~ X *  which are bounded and satisfy 

[l~o(0-~0(s)ll ~ I t - s l  s, tER. 

Let cg be the subset ofoW of all ~o such that ~o is continuously differentiable and ~o' 
has compact support. I f  opEL a then one can find a sequence ~p, Ec~ such that 

supsuplI~o(t)-~o,(t)ll < ~ ,  lim ~o,(t) = r tER. 
hEN t E R  n~oo 

To see this first approximate q~ by a function OEoL- a which is constant outside a 
compact set and then smooth by convolution with a suitable "bump"  function. 

For ~0E.W we define f2~: L I ( X ) ~ C  (or R) by 

f2~,(f) = f2 (f(t) ,  ~o(logllf(t)ll))dt 

where the integrand vanishes if f ( t ) = 0 .  Similarly define F~, by 

r (f) = (f(t), cp(log t)) dt. 

Now under the hypotheses of  the theorem, we claim: 

L e m m a  2. 

r dt 
sup IO~(f)l = sup If2~(f)l = f llM~(t)I1-7-' 
~ E L  a ~pE~ 0 

fo at sup Ir~(g)l = sup IF~(g)l - [tMl(t)ll--/-. 
q~ELa ~PE~ 

Proof. In each case the first equality is routine based on the comments preced- 
ing the lemma, q-he second equalities are similar to each other and we prove only the 
first. Note  that if cpEcg, f2~,(f) is unchanged by replacing ~p by q~+x* for any fixed 
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x* E X* since f has mean zero. We therefore assume that limt_._= q~(t)=O. 

f2~ ( f ) =  f~ --~,/'~176 (f(t), cp'(s))asdt = f~_~ (M~.(e~), ~p'(s))as 

Then 

by Fubini's theorem. Hence 

f~ f~ at sup Io , ( f ) l  = IlM~(e~)It ds = llM~(t)ll - - .  
~E~r --:o 0 t 

Proof of  (iii)~(iv). By Lemma 2 we have 

= sup ]f0 (g(t), ~(log t ) )dt .  -7- 

Now define for 0 t=  1, 

and notice that if q=< t2, 

f l ( t )=  sup Ilg(s)[1 

log fl (t2) <= log 13 (q) + ~- (log q-- log t~). 

It follows that, given ~OEL.e, there exists q)ESe with 

q~ (log 13 (t)) = ~- ~ (log t) 
as long as 13(0>0. 

We now estimate f fl(t)dt. Since g is almost decreasing, if 2-("+1)<s<-2 -", 
(n=>O) we have I[g(s)ll<-l[g(2-("+~))l[ and so if t<=s<-I 

Hence 

(+/'" I g(s)ll <= 2 [1 g(2-("+~))l[. 

(2-c~+,))1,, 
fl(t) ~ sup 2 Hg(Z-C"-~))n lt0,,-.)(t ) 

and 

-< [[g(2-(,+~))[ I lt0,2-.)(t ) 

2-(n+~} 
f13(t)dt  <= 2Z~=o 2-" [Ig(2-~"+2))1 [ ~_ 32 ~ Z o  f~_,.+o ~g(t)ll dt ~-32ng111. 

Now if ~EL t', 

f~ (g(t), g,0og 0)at = 2 f~ (g(0, ~o(log/~(0)) at 
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and, using the inequality x log 1/x ~_ l/e, 0 < x _  ~ 1, 

l f2 (g(t), ~o(log fl(t))-- ~p (log ][g(t)][)) at I ~_ f2 Ilg(O[l log ~ dt 

-- - 7  Ilgh. 

so that 

Hence 

f ;  . ~  64 f~ (g(t), ~,(log t))dt <- IIM~(t)ll + - 7  Ilgh 

1 d@ dt 64 
f0 [[Mt(t)[[ __ -<- f 2  t lM~( t ) l l -7+e  tlgll~ < ~o, 

i.e. (iii)=~(iv). 
In order to complete the proof we need to introduce the dyadic H~-space, 

Hf(X). A dyadic atom is an atom a such that the associated interval I is a dyadic 
interval D(n, k ) = [ ( k -  I)2 -n, k . 2  ~) for 1-<k<=2". We say that fcHd(X) if it 
can be writ tenf=~c,a,  where each an is a dyadic atom and Z I c . l <  co. We set 
II flldH to be the infimum of ~Y Ic.I over all such representations. 

~Ihe following lemma is essentially known (cf. [2]). 

Lemma3.  Let fCH~(X). Then there exists O, 0 < 0 < 1  such that focHd(X) 
and II JOl]dn <- 321] f][aH where fo(t)=f(t+ 0). 

Proof. First suppose a is an atom supported on an interval L Let j=[ct,  fl) 
be a half-open interval containing I with [Jl<-21II and I J l=2  -m for some m=>0. 

> 1 Suppose then m =  > 1. I f  m = 0  then we note that I[aoIIdH<--2 for all 0 as 1II =-r .  
Define k=k(O) to be the unique k so that 1 <- k _  <- 2 m and JocD(m, k) w D(m, k+ 1). 
Here Jo={t: t+O~J} and we interpret D(m, 2re+l) as D(m, 1). Let r=r~=r(O) 
be the greatest integer such that 2" divides k. I f  r = 0  then D(m, k)wD(m, k+ l) 
is a dyadic interval and so [laoNda<=2.2-m111-1_<-4. 

I f  r > 0  set 

ao(t)dt = "  2m f ao(t)dt. X = 2ra a fD(m, 
k) ,I D(m,k+l) 

Then Ilxll=<lll-l<-2 ~+1. Now 

If  1Ns<-r-1, 
] a o  1 1D('~,k) - - T  XlD(m-l,k/2)UdH ~ 6. 

s x X 1D(m_s 2- k)--~"~-4"f" 1D(m s 1 2 - t ~ + l ) k )  
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with similar equations on the other side of 2-=k.  Also 

~- ~_4. 

Thus 
[laol[a. <= 2(6+2( r -1 ) )+4  = 4 r +  12. 

Now 

f~ r(0)a0 ~-= s 'v~ (ar k+12) m 2_(,+1)(4r+12) 16. 
- -  ,d..~ k =  1 

Now if f~H~(X) we can write f = ~ c . a ,  where each an is an atom and Z le.I <-- 
2 It flla~t. Then 

I[an, el[aH ~ on(O) 

where f e.(O)dO < - 16. Thus there exists 0 such that 

Z~=! ICnlO.(O) <- 32[IfLH 
and so 

}!f ]Ian ~ 32IJfLH. 

Completion ofprooJ: (i)=~(iii): It suffices to show that if fEH~(X) then (iii) 
holds. We suppose f = ~ c . a n  where each an is a dyadic atom and c . ~ 0  with 
~ '  c~< oo. We may further suppose that each a, is supported on a distinct dyadic 
interval I n and that the sequence {I/.1} is nonincreasing. 

Let a = ~ ' c , .  Define also o-0=0 and then o- .=c~+. . .+c ,  for n~N. We 
define a piecewise linear map F: [0, o-]~LI(X ) by 

F(O) = o, 
n F(cr.) = z~k=l Ckak nEN, 

F(~) = f  

and such that F is linear on each interval [~r._ 1, ~r.]. Similarly define a piecewise 
linear map G: [0, a ] ~ / ~  by 

G(o)  = 0, 

a(cr.) = Z~=~c~llkl-~lx~ n~N, 

G(a) = ~ = 1  ckllk]-11,k, 

and G is linear on each [o._1, o-.]. By construction, if a._ l<z<a,  we have F'(z)=a n 
and G'(-c)=lI.l-llx . For convenience we write F(z)(t)=F(z, t) and G(z)(t)= 
G(z, t) and we similarly define F'(z, t), G'(z, t). Notice that for all 0<=x<-a, 
0<- t< l ,  we have [IF(z, t)ll<=G(z, t). 
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For any q~ ~ we define 

~ ( z ) =  I~ (F(~, O, ~o(logG(z, t)))dt, 

where the integrand vanishes whenever F(z, t)=O. Then ~ is continuous on [0, cr], 
~(0)=0 and if a , _ l < z < ~ . ,  

.,~\ G'(z, t) . .  
='(z) -- f , .  (a,(0, ~0 (log G(v, t))} dt + f , (F(,, t), ~o' (log G(,, '))2 ~ a,. 

Note here that G(, ,  t) cannot vanish on In. 
Now G(,,  t) is constant, as a function of t ,  on I, since for k<=n, either lnClk 

or lnc~Ik=O. Ihus  the first integral in the above formula vanishes and we have 

f ,  , , , , ,  ,, G'fz, t) I ,  G'(,, I='(~)1 --< IIF(~, t)H ~_~. ,~ dt <- t)dt = 1. 
n 

We conclude that [~(a)l---tr. Now 

1 t ~( t r ) -  O~(f)  = fo  ( f ( ) '  ~o(log a(o', t ) ) -  ~o (log Ilf(t)[I)} dt 
so that 

fxo IIJU)ItG(a't) ~ f~ 1 I~(cr)--f~(f)l--< I l f ( t ) l I 1 o g ~ d t  ~- G(~, t)dt <- --tr  
o e 

1 1 < 1  again using x o g T =  7 for 0<x_<-l. q-hus 

Now by Lemma 1 we obtain 

and the theorem is proved. 
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