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1. Introduction

In a series of papers with the same title (as above) L, I1, IIL, IV ([6], [7], [2] and
[1]) we studied (sometimes jointly and sometimes individually) the quantity

max |C(oc+ in)

T=t=T+
where C=loglog T=H=T, «ais fixed in ; =g=1 and C is a large positive con-
stant. If a=1 we could manage even with the condition C=logloglog T=H=T.
We also studied other quantities like

TétsT IC(O!-I—H)I and oa, %§§T+H ]C(O’-I—lt)l
and so on. In this paper we continue the investigations of the paper II. In II the
second of us proved, amongst other things the following result. Let H be any pre-

DlogT)

assigned quantity with C=loglogT=H <Exp[l , where C is a large

positive constant, o fixed (—<oc<1) and D is a positive constant depending
on a. Let I run over intervals (of length H) contained in [T, 2T]. Then

loglog (mIm max [{(@+i)])~(1—a) loglog H.

Moreover in [8] the following result was proved amongst other things. Let f,=
MaX,s,=,+1 [{(¢+i¢)] where n is an integer satisfying T=n=2T. Then logf,=
1—a
M with the exception of at most O[Exp (log T——-’M)] values
(loglog T)* loglogT
of n. Here D, is an arbitrary positive constant and D, is a positive constant de-
pending on « and D,. In [4] it is conjectured by H. L. Montgomery that for all
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(log7)'~*
(loglogt)*’
ject of this paper is to prove the following theorem. An idea in [2] is very useful in
proving the theorem.

Theorem 1. Let o be a fixed constant satisfying +<a<1 and E>1 an arbi-

DlogH
loglog H
positive constant and D an arbitrary positive constant. Then there are =TK™ % dis-
Joint intervals I of length K each contained in [T, 2T] such that

(log K)t—# (log k)=
(loglog K)* (loglog K)*~
Remark 1. Here log{(s) is the analytic continuation along lines parallel to
the g-axis (we choose only those lines which do not contain a zero or pole of {(s))
of logl(s) in o=2.

t=1000, log |{(«+it)] does not exceed a constant multiple of he ob-

trary constant. Let C=H=T/100 and K=Exp( ) where C is a large

< max log ¢ (a+if)} <

Remark 2. We can only prove that as I runs over all intervals of length K
contained in [T, 277,

(log K)—* (log K)'—=

loglog K (loglog K)*~
Hence for the logarithm of the middle quantity we have the asymptotic
expression (1 —a)loglog K+0(log loglog K). We can also prove this formula for
log log (Min; Max,c; [{ (x+it)]).

Remark 3. Theorem 1 and the results mentioned in Remark 2 can be easily
extended to ordinary L-series and also to abelian L-series of quadratic fields. They
can also be extended to zeta-function of abelian extension of rationals and also
zeta-function of abelian extension of quadratic fields. The last result mentioned in
Remark 2 can be extended to ., (an+b)~* where a and b are positive integers
and also to zeta-function of a ray class in a quadratic field.

< Mlm I\t/IGaIx llog ¢ (u+in} <

2, Outline of the proof

Let By, B, and B be constants satisfying %<ﬁ0<ﬂ1<p<a<l. It is well-

known that
1 per |
T’fT C(5+lt]

From this it follows that there are >>E disjoint intervals I, for ¢ (ignoring a bit

2

dt = O(logT).
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at one end) each of length H+20(log H)? contained in [T, 2T] for which

(1) f25¢§ﬁo ftélo |C(s)l2 dt dO' <&l H
and
@ J el [C(B+it)|2dt < H.

From (1) and (2) it follows by standard methods that N(B, I,)<<H'~% where ¢ is
a fixed positive constant depending only on « and B. Here N(f, I,) is the number
of zeros ¢ of {(s) with Re ¢=f and Im ¢ lying in I,. Hence if we divide I, into
abutting intervals (ignoring a bit at one end) I, each of length H®+20(log H)?
where 0=45/2, the number of intervals 7, is ~H*~% Out of these we omit those I;
for which (c=f, t in I,) contains a zero of {(s). (They are not more than a con-
stant times H'~%). We now consider a typical interval I, which is such that (c=8,
t in I,) is zero-free. Let us designate this ¢ interval by [T,—10(log H)?, To+H®+
10(log H)?]. Put

CilogH

— 9 —_—
3 H =H" and k= [—_log s 1"

where C, is a small positive constant. Then we prove the following theorem.

Theorem 2. We have

@ " log {(a+in)* dt = CRAPH,,
To
and
To+H, .
©) [ llogL(atin)|* dr < Ci+ Al < 2 CP A H,
1—a
where Ak:(log—k)“’ and C, and C, are positive constants independent of C;.

Corollary. Divide [T,, T,+H,] into equal (abuiting) intervals I each of length
K (neglecting a bit at one end). Then the number N of intervals I for which

©) [ log{@+in*dr > 3 CEAFK
1 ¢ C, \* H,
satisfies N=—1 +1_6 [ 2 CZ) —Ki and so in these intervals

max [tog ¢ (a+it)] > A,.
Proof. Put J={,.; llog{(a+it)|* dt. Then
Z1J > 5 ChAFH,
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since the contribution from the neglected bit is not more than KY2(2*C¥A* H)'/*
on using (5). Let >, J=2 s>3ckazxxJ and > the sum over the remaining inter-
vals I. Then
1
22] = ry Cé‘A%kHl.

Put 3, 1=N. Then by Holder’s inequality we have
T CEAH, < NY2(3,J2)2
= N3, [ Mog {(a+in|*de K)"
= N1/2K1/2(24k CszkAzkHl)llz.

. This proves the corollary.

1 C 2k
Hence N >—( 2 ) -}i
16 \ 4C, K

Theorem 3. Let J, be the maximum over (Res=a, Ims in I) of |log{(s)[*.
Then with the notation introduced above and with I=[a, b], we have,

) Soh=@ogHP S e 108 dodt

=2(log HY [ [ S - ¢(s)I* do dt = (log H)*Ck A% H,,
a%a——i/(—l—ogoH) t

where C, is independent of C,.

N
Corollary. Of any - of the summands J, appearing in 2,,, the minimum

J, does not exceed

2(log H):CF A% H,
® %
EPRN AN
16 \ac,) K
Hence the max, ; llog{(a+it)| over those intervals I is < A,.
1 ( C,\*H,
Combining the corollaries to Theorems 2 and 3 we have = —14+— ( 2 ) ==
32\4C;) K

(=M say) intervals I contained in I, for which there holds
9 A, < max log { (a+if)] < Ay.

Now by choosing C, small we have M=H,K £ where H,=H® and the number
of intervals I, is ~H'~®, Since I, is contained in I, and the number of intervals
I, is >TH™', we have, in all
(10) > HK-EHI-OTH -1 = TK-E
disjoint intervals of length K each where (9) holds.

This completes the proof of Theorem 1 provided we prove Theorems 2 and 3.
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3. Preliminaries to the proofs of Theorems 2 and 3

From (1) using the fact that the absolute value of an analytic function at a

) round.
H

- iy . . 1
point does not exceed its mean-value over a disc (say of radius 3
0g

that point as centre, we obtain

()l = H? in (o- éﬁ+ﬁ, Ty—9(ogHYP =t = T0+H1+9(logH)2).

Hence in this region Relog{(s)=2log H. Now log{(2+it)=0(1) and hence
by Borel—Carathéodory theorem we have

log{(s) = 0(log H) in (o =(a+p)/2, T,—8(log H)? =t = To+ H,+8(log H)?).
Now put
1y X = (log H)®

where B is a large positive constant.
We have

s P ___1_ 2+ioo w
2P exp( X]_ 5 fz_imlogC(s+w)X I'(w)dw+0(1)

where To—7(log H?=t=Ty+H;+7(log H)? and o=a. Here first break off the

portion [Im w|=(log H)* and move the rest of the line of integration to Rew
given by Re (s+w)=(a+p)/2. Also observe that

s P _

Dozxtl exp(—y] = 0(1).
Collecting our results we have (since |I'(w)|<cexp (—|Im w]))
(12 log?(9) = Z,sxp~exp(~ 2 +00)
where o=a and T,—T7(log H?=¢=T,+H,+7(log H)?. Let

k
(13) X% = H}?* and [2p§xzp_s exp [--{%]] = D.cxwa(nm)n=s = F(s),

say.

Then we have
(19 [F(s)? = (llog L (s)] + Co)™ = 2%[log { (s)* +(2C5)™,
and also

(15) log { (s)|* = 2" F(s)*+(2Cp)™.
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We now integrate these inequalities from t=T, to ¢=T,+ H;. Also we note

, To—6(log HR=

11
that these inequalities are valid even when —=Res=a—
10 log H
11
t=Ty+H,+6(og H)®.. Now in 05—16, we have |log{(s)]<277 and so

(16) ffaé(ll/lo), Tg~1St=Ty+H,+1 llog {(s)** do dt < ffz—m Cidodt < H,C5.

Therefore in order to prove Theorem 3, it suffices to consider

17) 2k j f |F(s)|? do dt+H, C¥
11
where the area integral extends over —=Resz=a— , To—1=t=Ty+H,+1.
10 logH
By a simple computation, we have since X*=H]",
(18) G(o) < Fl- j:°+f‘_1 |F(s)[2dt < G(0)
1 o
where
a(nm))?
19 G(o) = Z”§x2k ( ';1(20)) .

4. Upper and lower bounds for G(o)

Things similar to G(o) were first studied by H. L. Montgomery (see [5]). We
consider upper and lower bounds for (G(o))*. Let p,=2, p,=3,...,p, be the
first k primes. By prime number theorem
20) P1..-Px = €xp(p+0(k)) = exp (klog k+kloglog k+0(k)).

AR
Taking only the contribution to G(¢) from n=p,...p,, we have since exp (——p—] 2—2—-

X
(i=1 to k),

k!)22-2k 1/2k Ki—e
21 Ga””‘z(( ) > = A, (o) say.
@b O™ =\ Grp™) ™ Toglyy = 4D
This proves the lower bound
22) G(0) = (4, (o)) CE~.
As regards the upper bound we write
3 Sewron (- L) = 3+ 3,

where >, extends over p=klogk and 3, the rest.
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Note that
24) |F(s)|2 = 2% 12112k+22kI22I2k_
Put

b

@5 =320 _ k) sy,
and
(26) Sh=34 ) sy,
By a simple computation we have
Qn — f Tot IFi()Pdt < Gy(0) and — j I Fy(s)2 i << Gy(o)
where

(28) Gi(0) = 2 5~ (bk(n)) = (Z M)z = [Zpéklogk r~° eXP(—'%)]zk

and " " N
(29) Gylo) = 5 ~—5" (Ck(n)) =kl Y —- Ck(n) =K [Zpéklogkp_% CXP[——%]] )

If o<1 we have easﬂy

1o (klog kyt-e _ kt—¢
G0) (Gu(a)* = logk ~ (logk)

and by Sterling’s approximation for k! we also have

(klog k'~ ]1’2 K

(1) (Ga())/** < kM 2( log k = Qoghy*

This proves the upper bound
1/2k
32) @@ = [ F O dt) = 4400)

which in turn gives an upper bound for (G(0))"* if y=06=1-—5, uniformly in ¢
11 . .
for every §,=0. If —l—aéazl —§, the bounds for the area integral are negligible

if §, is small since it is

= 2320 )2 =2 [Zpgxzp‘”* exp ("ﬂk

no:

where o;=1-96.
This completes the proofs of Theorems 2 and 3. Thus the proof of Theorem 1
is complete.
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