Sets of uniqueness for the Gevrey classes

S. V. Hruséev

0. Introduction

Let G,=G,(C,) (¢=0) be the set of all functions f; bounded and infinitely

differentiable in the closed upper halfplane C, (C+§——°f{t€C:Im t>0}), analytic

in C., and satisfying the inequalities

n

|f™(2)| = C;- Qrenton® ©0.1)
for all z, z¢C,, and n=0,1,.... We call the set G, the Gevrey class of order «.

Definition. A compact subset E of the real line R is said to be a set of uniqueness
for G, if there is no nonzero function f, f€G,, that vanishes on E together with all
its derivatives. The system of all sets of uniqueness for G, will be denoted by &,.

The main purpose of this work is a complete description of &, for all positive «.
The results are stated in the next paragraph. Here we give a brief survery of earlier
results concerning uniqueness problems for G,. All results of this article can be refor-
mulated (via conformal mapping) for classes G,(D) of functions analytic in the
unit disc D and analogous to G,(C.). We prefer the half-plane to the disc because
the formulas are simpler in the case of C, .

The results of this article were announced in the note [1].

Acknowledgement. I am grateful to S. A. Vinogradov for helpful discussions and
to V. P. Havin for the translation of the Russian version of this article into English.

0.1. It is well known that when o=1 every nonvoid subset of the real line is
a set of uniqueness for G,. In other words the class G, is quasianalytic if «=1.
So if O0<a-<1 the class G, is not far from being quasianalytic. This is the main
obstacle in the problem of describing &, for O<a<1 and influences the final
result in an essential way.

On the other hand the complete description of the sets of uniqueness for the
class Cy ofall C=(C,)-functions analytic and bounded in C. has been known for



254 S. V. Hruscev

a long time ([2], [3], [4], [5]). E(ECR) is a set of uniqueness for C; if and only if

logo(x, E)
ﬁr————%h=—“

1+x2 ’ 02)

o(x, E) being the distance from x to E.
Moreover B. A. Taylor and D. L. Williams [6] have described the sets of unique-
ness for a class of functions analytic in D somewhat larger then G,(D). This class

n

arises when n* in (0.1) is replaced by exp (#”), p>1. The subset E of the unit
circle T is a set of uniqueness for this class exactly when

k4 2 —
fwbyaﬁjﬁw—+“’ (0.3)

1 1
where —+—=1.
r 4
As to the classes G, (0<a~<1) things are more complicated here. Simple neces-

sary conditions for a set E not to belong to &, were pointed out by Carleson in the
classical work [2]:
EcCRE¢(E,=E =0, X 0L7%<+4eo,

|E| being the Lebesgue measure of E and (J,) the sequence of lengths of all finite com-
plementary intervals of E.
These two conditions can be rewritten as follows

1 dx
S m T =t 0.4)

The necessity of (0.4) for E¢ &, can be proved in the following way. If f€G,, fZ0,
d I
then log ‘f\ELl[ ud ] [this is to say _/R l—()—“’jix)-“—a7x< + 00]. For x¢R the

1+x2 1+ x*
Taylor formula implies

[f(x)| = sup |f™ ()| ]_x__—'c_]"
teR n!

¢ being the element of E nearest to x. Minimizing the right hand side with respect
to n we conclude from the definition of the class G, that

const. } 0.5)

lf(x)] = exp{—m

and so the proof is finished.
The same method is applicable to obtain necessary conditions (for non-unique-

ness) for other spaces of analytic functions. The proof of the sufficiency of such a
necessary condition usually requires the construction of an outer function whose
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modulus (on R) behaves like the quantity corresponding to the right hand side of
0.5). That is why the efforts of all succeeding authors were concentrated on the
search for sufficient conditions approaching (0.4). The proofs followed the scheme
sketched above. At first A. Chollet [7] showed that

1+a
1—-a
EcR E=0 ZB=(]] <+e=Ecd

Then Chollet [8] and Pavlov and Suturin [9], [10], obtained a weaker sufficient con-
dition

o

In these articles [9], {10}, also a totally different sufficient condition was given, namely
E¢Z,, if

f 1 dt _.__const.
G o(t, ) (x—1)* — o(x, E)'**

for every x, xéR\E, CI, being the complement of the complementary interval
I, of E containing x.
Simultaneously Korolevi¢ and Pogorelyi [11] showed that E¢ &, if |[E[=0 and

DA Sty L ©0.7)

for a positive number ¢. The article [11] differs from the preceding ones as to the
construction of the corresponding outer function. Its modulus on the interval [,

(0.6)

is here no longer exp [——(—ET);]; the more complementary intervals of E are
X,
situated near /, the smaller this modulus is.
The best (but unpublished) result in this direction is due to S. A. Vinogradov.
Regularizing the choice of the outer function by means of a conformal mapping of

D onto a suitable domain S. A. Vinogradov proved that E¢¢, if |[E|=0 and

1 ate
=i log* 1] <o, 038)
for a positive .

In spite of this progress the question of whether the Carleson condition (0.4)
is sufficient or not remained open.

In this work this question is answered in the negative. We obtain a necessary
and sufficient condition which is close to (0.6). Although more cumbersome than (0.4)
our criterion is suitable to work with. In particular we are able to deduce from it
that Vinogradov’s result is almost best possible and to give another proof of this
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result. Our criterion enables us to construct two closed subsets of R with the same
sequence of lengths of complementary intervals one of which belongs to &, and the
other does not.

And to complete our survey we will mention interesting applications of the
unicity theorems to the investigation of spectral properties of nonselfadjoint Schrd-
dinger operators with a decreasing complex potential. This approach was developed
by B. S. Pavlov in [12], (see a brief exposition in [13], [14]).

0.2. Now we list the principal symbols to be used in this article.
R — the set of all real numbers viewed as a subset of the complex plane C:
R={£€C: Im ¢=0};
Z — the set of all integers;

N — the set of all positive integers: N=Zn (0, + );
def def

R,=[0, +); Z,=ZNR,.

The letter E will be always used as a notation for a compact subset of the line R,
(1,) will denote the set of all bounded complementary intervals of E. The length of
the interval / will be denoted by the same letter /. Let x¢R\E. Then 7, will mean

d
~ ] will denote
+x?

the complementary interval of E containing x. The symbol L* [l
the space of all complex measurable functions fon R with

fR_llff_x;l dx <+ eo.

If a set E satisfies a conditien (y) (or has a property (7)) we will write E €(y). The
symbol Const. will denote a constant depending only on parameters which remain
unchanged in the problem under consideration. The condition (0.4) (see. above)
complemented by the condition [E|=0 will be noted by (C,) and will be called the
Carleson condition. The condition (0.6) will be denoted by (PS,) using the first
letters of its authors names. At last the condition (0.8) will be denoted by 7.

1. Statements of results. Discussions

Theorems stated in this paragraph are numbered by means of single figures.
Their proof requires (as a rule) a whole paragraph (for each of them).

Theorem 1. Let «€(0, 1). The set E is not a set of uniqueness: E¢¢&, if and
) such that

d.
only if there exists a function fg, fz€L* a
1+x?
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1

@ & Er

= fe(x), x€R;
(@)

()] fcx (tE(t) dt = const. fE(x) , X€R.

The condition (b) with f; replaced by (g(x, E))™* becomes (0.6).
This theorem is the main result of the article. Its proof consists of two parts
and occupies §§ 2—4. In § 2 it is proved that

E¢ 8, = Ec(a).

This implication is proved with the essential use of a property of functions of the
class C4 (n times continuously differentiable in the closed unit disc and analytic
in its interior) discovered by B. Korenblum in his well known work [15] (Lemma 4.3)*)
Roughly speaking this property means that the rates of vanishing of |f(e"®)] when
0—-d—0 and 0-a-+0 are interdependent if f(e*)=...=f®(™)=0. The influence
of this phenomenon on functions of the Gevrey class G, is much more significant
and is the cause of the non-sufficiency of the Carleson condition for G,. The proof
of this part of Theorem 1 is a modification of Korenblum’s lemma and uses the
same ideas.

In § 3 a more constructive reformulation of («) is given. To every set E, Ec(x)
corresponds a solution Uy of the non-linear equation

Upx) —fa UE(’) _dt, x€R\E,

1
satisfying the inequality UE(x)é—(—E—)— (x€R\FE). The reasoning of §3 shows
o(x, E)*

that in order to obtain Uy we have to increase the function x—(o(x, E))~°l/,, the
rate of increase depending on the amount of complementary intervals of E neigh-
bouring /,. Thus we must construct an extremal function Uy which will be called the
equilibrium function (by analogy with potential theory). The paragraph is concluded
by the investigation of the “regularity’ properties of Uy needed in the sequel.

In § 4 we show that the outer (with respect to the upper halfplane) function

o= ot [, B0 ) cec,,

belongs to the Gevrey class G, and that its boundary values on E vanish together
with all its derivatives. Clearly fZ0 ( f~Y(0)nR=E) and so E¢&,. The extremal

*) In [1] this lemma is erroreously called “Lemma 4.17.



258 S. V. Hruiéev

property of Uy is easily reformulated in terms of f. If g€G,, g™|E=0, ncZ,,
then there is a constant y=1 such that

lg@) = /(=) x€R.

Roughly speaking the outer function f corresponding to U, majorizes (on R) the
moduli of all functions belonging to G, and vanishing on E with all their derivatives.
Unfortunately it is not easy to apply the condition () to decide whether a given
set E satisfies it. That is why most of the remaining part of the article is devoted to the
study of this condition.
The following result is obtained in § 5.

Theorem 2. (S. A. Vinogradov). If |[E|=0 and for some ¢, ¢>0,

1 xte
2 l%‘“(log’“ T) <o,
then E46,. ’

For the sake of simplicity we gave here a slightly weaker -assertion then the
theorem proved in § 5. The original proof of this theorem (reproduced here by the
permission of its author) displays a very interesting connection with the distortion
estimates of conformal maps.

In § 6 it is shown that Theorem 2 is almost sharp.

Theorem 3. There exists a set E, |[E[=0, Ecé&,, such that

e (logt 1] <o

v

for arbitrary &, e=0.

The set E can be chosen to be a Cantor type set with the non-constant ratio of
dissection.

Theorem 3 raises the question of whether the Carleson condition (C,) is sharp.
In § 7 we give a positive answer to this question.

Theorem 4. There exists a set E, E¢¢&,, such that for every &, =0,

3,17 flog* 1) =+

The needed example is constructed as a countable set with single limit point.
The last two theorems can be intuitively interpreted as follows. If the set E is
petfect (i.e. has no isolated points) then the condition of the non-uniqueness (E¢ &)
is so to say attracted by the Vinogradov condition (V). If the set E is countable then
the gravitation center is the Carleson condition (C,). This interpretation is of course
very vague and its more precise expression constitutes an interesting problem.
At the end of § 7 the following theorem is proved.



Sets of uniqueness for the Gevrey classes 259

Theorem 5. There exist two compact subsets of R whose Lebesguc measure
equals zero with the same family of lengths of complementary intervals and one of
which belongs to &, and the other does not.

This theorem exhibits a very interesting property of the non-uniqueness sets
for G,. If the lengths of complementary intervals decrease rapidly enough (as for exam-
ple in the condition (¥,)) their mutual situation plays no role and E¢&,. But if

3,1 (log ] =+,

then the mutual situation of the complementary intervals becomes important.

§ 8 contains various conditions implying (x) and the analysis of their intercon-
nections. These conditions involve the Hardy—Littlewood maximal function. The
aim of the investigation of § 8 is to estimate “the amount” of non-uniqueness sets not
satisfying (V). Here we give a new interpretation of the condition (PS,) (Theorem 8.2).

In § 9 wediscuss therelation of the interpolation sets for G, to the non-uniqueness
sets and the connection between the condition (x) and the well-known condition of
Muckenhoupt [16]. We show that an interpolation set E for G is an interpolation set
for G,,,, & being positive and sufficiently small (depending on E). This implies that
the interpolation sets for G, form a relatively small part of the class of all non-
uniqueness sets for G,. For other details concerning the Muckenhoupt condition
seein § 9.

Finally in § 10 the non-uniqueness sets for the general Carleman classes are
discussed. The proofs here are given in concise form. They are analogous to the cor-
responding proofs for the Gevrey classes. The mai nresult generalizes Theorem 1 to
Carleman classes satisfying usual regularity requirements.

§ 2. Theorem 1. Proof of the necessity

Suppose that E¢&,. Then there is a tunction f, f€G,, such that
fME=0, neZ,.

Without loss of generality we may assume the constant C; to be arbitrarily small and
Q, to be arbitrarily great (see (0.1)). We are going to show that the function

Je(x) =—L-log|f(x)], x€R,
satisfies the conditions (a), (b) of Theorem 1 if L is large enough. The Jensen inequality

implies
dx )
1
Jeel (H—x2 ’

Let us verify (a).
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Lemma 2.1. For every pair («, y) of positive numbers there exists a number
n, n€Z ., satisfying the inequalities

1

1 - 1
exp{- ozey“} =yntset exp{ ocey"}
and
= 1 1
=5ty

Proof. Straightforward computations show that the minimum of the function

. 1
t—y' 1" on the half-axis (0, +<) equals exp{ ———} and is attained at the
oey*

. I . . 1 1 1 1
point t=——. It is easy to see that the integer m, m¢ e +—1 has the
ey* ey* 2 ey 2
necessary properties.
Let x¢R\E. Considering the Taylor series of f (as we have donein § 0 (see [2])
and using the Lemma 2.1. we obtain
1

B 1
16 = G expf L 21
g P w03 o, B @D
1
Without loss of generality we can assume ¢,-e**<1. The condition () is obviously
satisfied if L=oeQf.
To verify (b) apply an analogue of the already mentioned Lemma 4.3 by Koren-
blum (see [15]). Let

def 1 t
4,0 = [o ~———(°g If)(2 N, xeR\E
The inequality |f{<1 implies a;>0.

Lemma 2.2. Let f€G, and c;=1 (see (0.1)). Then there is a constant ¢, >0
such that

f)=e = -exp{—cl-a ,(x)m}. (2.2)

Proof. Let x€RN\E and fix the point z=x+iy, y>0. We will proceed as
follows: using the partial sums (with variable number # of terms) of the Taylor
series of f with center at z we obtain an estimate of | f(x)|. Then employing rough

S92

estimates of the Taylor coefficients

and minimizing with respect to » and y
we come to the assertion of the lemma. Thus we begin with the inequality

reol= oG g ynt e @3
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Let T, be the circle centered at z with radius y/2. The Cauchy formula implies

k
79@) = 27 -kt max Q. 4

Now we are going to estimate the maximum in the right side of (2.4) Using the
Jensen inequality for the upper half-plane we obtain

1 I
log £ =~ fu e e iy (~loe f O

We can replace here by because |f|=1. Taking this into account and
R C

letting y satisfy

lx

0<y=<go(k E) (2.5)

elementary estimates of the Poisson kernel give

log /()] = —g—a;(x) (€T,

This inequality and (2.4) lead to an estimate of the Taylor coefficients in (2.3) which
in turn gives

f(x)] =2 eXp{——g-y; af(x)}+Q'}~y"-n7. (2.6)

Here n€Z., and y satisfies (2.5). It is clear that (2.6) is correct when n=0 (for
F)<1).

Taking infimum in the second term of (2.6) (with respect to n) and using Lemma
2.1 we obtain

)] =2 %exp{—— as(x)+ aQ¢}+e§1;eXP{—;e‘leQ'§} 2.7

Now it is natural to choose y as a root of the equation

yag(x) =y~*
1 1
If 0<af Tra <@ we can set y=[a,(x)] T in (2.7). Without loss of gene-
1 o 2 1
rality we may suppose Q, to be sufficiently large so that say ——+ g —
le 187
1 log2 1
Then we have only to put ¢, =min |——-——, ——1=0
9n  eQf aeQ}

1

If Qé[af(x)]_m then we employ the inequality (2.1) replacing ¢~ % by

[af(x)]m. This yields the required inequality.
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And now we can deduce (b). Taking logarithms in (2.2) we obtain

@

crap (¥ = —log | f(%)| +(1 +-2%)

1+

Without loss of generality suppose that ¢;-e ® <1 so that

aca 2
ay () = - log |f )
1
and
2

S

1
ClL +a

(fCl Se(®) dt)lﬂ — Ll;:i“ afl_*“(x) = Se(x).

< (=)

§ 3. The equilibrium functions U

In this paragraph we give an equivalent reformulation of the condition («) and
show that to every set E satisfying () corresponds a function U defined on R and
behaving regularly enough. In §4 we will prove that the outer function with the
modulus exp (—Uy) (on R) belongs to G, and vanishes on E with all its derivatives.

Let E be a compact subset of the line R, |E|=0. Define the linear operator

dx
Ty mapping the space I! [1 n 2] into the space of all functions (Lebesgue) measur-
x

able on R:
Tef ()= [ ax%dt, x€R\E.

d
Lemma 3.1. Let U,(x)=[o(x, E)]™* (x€R) and suppose U,cL! [ x 2].
Then for every x, x€ CE=R\E, 14x

[Te Uy = Up(x). (3.1)
Proof. Let x€l.=(a, b). We suppose that the interval (g, b) is bounded, the

case of b=+ or a=—oo being analogous. For every #¢/. we have o(t,1)=
o(t, E). Therefore

dt [a 1 dt

» 1
TgUy(x) zf—ou (—x2 (@—r1r /e (r—x)? “(—=Dby

1 1 o dt
= {(x—a)1+“+ (b—x)“’“}.f” A+0)2t*”
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, . dt . .
It is easy to see that the function a— f < is increasing on [0, 1) so that

0 : o
for every a€(0, 1) 1+t

w i w dt
fO (1+t)2ta >f0 (1+t)2 - 17
and

a
1+a

} = Uy(x).

1
(x__a)1+a’ (b_x 1+

(T2 Uy ™+ = max{

Now we want to give a criterion enabling us to verify the non-constructive
condition (x). We begin with the following remark. With no loss of generality we
may assume the constant C in (x) is equal to one. Let indeed p=Q-f;, where the
choice of the number Q will be made a little later (f; being a function satisfying
(@) and (b) of (a) with Const=C=1). Clearly

1
QEEY = p(x), x€R\E,
and
e -1
[Tppl'** = C-Q ".p.
1

“ita
=1.

Now we only have to put C-Q
Let (as above) Uy(x)=0(x, E)™* and

U,sr = [TeU T (3.2)
for n€Z,, |E|=0.

Lemma 3.2. 1. The set E satisfies («) if and only if

U,x) ,
fR—l—_l_—xde—O(l), n -+ eo, (3.3)
dx
II. If Ec(x) there exists a function Uy such that Ug=U,, UgcL! [1+x2] and
Up = [TeUsl™ (34

Proof. The assertion II will follow automatically from the proof of I. Suppose
that E€(2). According to the remark preceding the statement of the lemma we
may assume that the constant in (x) is equal to one. If U,<fg the Ty-transform of
this inequality gives

@

Uyir = [TeU < [Tg fol ™% <fs.

n
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Because U,<fy (see («)) induction shows that

Un <fE’ nEZ-%—»

d
and (3.3) is true because fz€IL! |
14+ x%

If (3.3) is fulfilled we will verify () constructing the function U, whose existence
is asserted in I1. Note that the sequence (U,),=, is increasing, i.e.

U,=U,,;, ncZ,.

This was already proved for #=0 in Lemma 3.1. Applying T to the n-th inequality

o
and taking its T -th power we pass from » to n-+1. Using the B. Levi theorem
o
dx
we conclude that the function UEd=eflim,,_m U, belongs to L1 [T_E]’ Taking the
limit in (3.2) gives (3.4). T
The equality (3.4) shows the analyticity of Ugon every complementary interval
of E. We will prove below that many “regularity” properties of U, are shared by Uy.

Lemma 3.3. The function Uy is convex (i.e. Uz=>0) on every complementary
interval of £ and
lim Ug(x) =
as g(x, E)—O0.

Proof. The convexity of Uy is verified by explicit computation of the second

derivative:
1

wen o BT Ug(?)
UE(x)_-m)—Z(TEUE {fa = )3dt}

60( Ug(t) U@

+ (TEUE) 1+“ /Cl (t_x)4

and the condition Ugz(x)=0 is equivalent to the inequality

Ue®) Ug(1) E(t)
3(1+a) (fc:,, (t—x) ] = Ja. (tix)z Ja, T ¥

implied by the Cauchy—Bunyakovski inequality (I am grateful to E. M. Dynkin for
this remark) applied to the product of functions

t VUg(@) - (t—x)"1, t VU (@) - (t—x) 2.

The last assertion of the lemma follows from the inequality Ug=>U,,.
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Lemma 3.4. Let xcl.=(a, b), I, being a bounded complementary interval of E
and denote by x* the middle of the interval (@, x) or (x, b). Then

Ug(x*) < 4745 . Uh(%). (3.5)

a+x
Proof. Suppose that x*=%. The equality (3.4) becomes.

_*
1+a

Ug(1) ~ U (0 }
*) — _Yel) +eo YEU)
Uz (x*) {f ) dt+ [} 1 T dt
If ¢=b then t—x"*=t—x. If t<a then x* —t>— (x——t) Using these inequalities
the last formula gives (3.5).

Lemma 3.5. Let xéR\E and let ¢ denote the point of E nearest to x. Then

= Const. ¢(x, E) - Ug(x). (3.6)

Proof. Let I.,=(a, b), c=a. Consider the sequence (x,),=¢ of points of the
interval (g, x) defined by
a+t+x,
2

Xo =X, Xpip1=

(n=0).
By the Lemma 3.4 we have
Ug(x,) = 4™ Up(x,_,) =...= 477 U, ().

The convexity of Uy on (a, b) implies

(n+)e
Ug(t) =4 the Ug(x), t€[X4115 X4
Therefore
n+Da
J7Ueydr = 37, [ Us(0)dt = Up(®) 7o d % (x,—x,,0).
On account of the equalities x,,—x,,+1=-%+—la= Q(;:f) we obtain

1—~a

[2UL(0)dt = o(x, E)U(x) S, 27" T = Const. o(x, E) Up(x).
e 1
Lemma 3.6. Let xcR\ FE, a)xd=f(x—5,x+5), where 5=—§- o(x, E). Then

Jisom (YE(;))g dt = Const. Up(x) ' (3.7

Proof. Suppose first that I.=(a, b) is bounded. Assume for the sake of sim-
plicity that x—a=g9(x, E). Clearly I \w,=(a, x—93]u[x+4, b) Estimate now the
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contribution of the interval (a, x—3J) in the integral (3.7):

x—0 UE(t) = UE(x)
/i s ( E)2 [ Ug(9)dt = Const. EN 3]

142
= Const. Uy(x) “.

(here we have used Lemma 3.5 and the inequality Ug= U,).
Turn now to the contribution of (x+46, ). Let y denote the middle of (x+ 43, b).
It is clear that b—y<y—a, t—x=b—y if tc[y, b]. Therefore

Us(®) , -
[} e x)2 (y 3L ——— [P Uy(t)dt = Const. U,
(see Lemma 3.5). Consider now the mid-point y; of (x, b), and the mid-point y, of
(»1, b). Obviously y€(x, y,). It follows from Lemma 3.4 that

Up(t) = 16" Ug(x)
if t€(x, y,). Thus

1+
*ta

2, ZEO 4 =16 000 |2 = 5,167 . U,

f"""’ (t—x)? +9 (t )2 =

Putting all these estimates together we obtain the inequality (3.7)
Finally consider the case of the unbounded interval /.. Suppose for instance
that /., =(«, 4+ o). The function Uy decreasing on /. we have

+ oo U(t) 5
S = U [ = gy Ve

The integral over (x—96, x) is estimated in the same way as above. The lemma is
proved.

Lemma 3.7. For every x, x(R\ E, the function Uy admits a complex-analytic
1
continuation to the open disc D, centered at x with radius 5x=5=—5— o(x, E),

and (zeD,)

(Z

B U, (1) 1+a
UE(Z);(fC, T dt] , (3.8)
A3 UL (x) = [Ue(2)] = (53U (), (3.9)

Re Uy (z) > (2/3)- (1/3)"** Up(x). (3.10)
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Proof. Elementary computations show that for zeD,, ¢€CI,

1 ¢
(t—z?2  (t—xp "
2
where |Ct—1]<—3—. Thus
Us(®) , Us@®) 1 Us(®)
Re fClx (t—Z)Z /Cl (t )2 Re Ctdt— 3 ,[Cl (t x)z dt.
This shows in particular that the function
Us(®)
U = fo, g 4

has no zeros in D,, and so we can continue Uj analytically using (3.8). The same
inequality implies the left inequality (3.9). The right inequality (3.9) is deduced by
carrying the modulus under the integral sign and using the estimate [{,|<5/3.
Observe now (turning to the proof of (3.10)) that the function U|D, takes its values

2
in the angle |arg z]<f,=arc sing (because of the inequality |arg {,|<6,). Thus
V5
)= a2 =

L.
1+a

N

ReU(2) = [U3(2)| cos (00 - Us(a)] =

1t}

§ 4. Theorem 1. Proof of sufficiency

Let the set E satisfy («). Consider the auxillary function Uy (defined on R) con-
structed with the aid of Lemma 3.2. Set

f(z) = exp{ ; [;E(’) dt} (zeC,) @.1)
and define f(x)d—i—flimy_,0+ S(x+iy), x€R, (this limit exists almost everywhere
on R because | f|<1 in the upper half-plane).

We begin by showing that f is analytically extendable across every complemen-
tary interval of E. Consider the contour I' consisting of two rays of the real axis
and of the lower half of the circle centered at x(x¢R\E) with the radius 6,=

1 )
—S—Q(x, E) (fig. 1).
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The function Uy being analytically extendable into D, (see Lemma 3.7) we have

_ i Ul }
s@=epl|L [ at} @epy 2
This implies in particular that the function x—f(x) belongs to C*(R\ E).
(a, b) =1,
a X b
Fig. 1

Lemma 4.1. There is a positive constant Q such that for every x, x€R\E,
and n€Z,

1O = 0 n1 Uy exp  ~ 5 Us ), @3)

Now we will finish The proof of Theorem 1 admitting this lemma to be true.
Consider the function F defined on R by the following equalities: F|E=0, F|(R\E) =
SI(R\\E). The estimate (4.3) and the equality lim,, gy.o Ug(x)=+c (Lemma 3.3)
imply FEC*(R), F®|E=0, n¢Z,. But F=f ae. (recall that |[E|=0, see (x))
and f'is bounded in the upper half-plane and therefore coincides there with its Poisson
integral:

f(Z):%fR(xT';WF(t)dt, z=x+iy, y=0. “4.4)

This equality shows that f=F everywhere on R and the continuous extension of f

from the open upper half-plane onto its closure belongs to C=(C,) and is analytic
in the half-plane C, .

Taking the supremum in (4.3) with respect to x we obtain

iyn

oy 1\ n
lfO®)| =Q" -nlsupy®e 2 =‘lQ-[ ) enlen®,
y>0

eu

1/a
Set Q,=0- [—] . Then by the maximum principle (see (4.4))
eq

n
If®(2)] = @f-nl-n®

for every z,Imz=0 and n€Z,. It is clear that fZ0, f®|E=0, ncZ, Hence
E4&,.
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Proof of Lemma4.1. Fix x, x¢ R\ E. We have already remarked that f'is analytic
in D,. Let r>0 and denote by C, the circle centered at x with the radius r. If

1
F< 5,5:? ¢(x, E) then C,cD, and by the Cauchy formula

fM(x) = 2m_/‘c Cf(_f))n-}-l

whence

)] = e max [ O

{eC,

Consequently the required estimate will be proved if we show that

max1og f O] =~ Us() +3)

for every r="% 0<r<e(Ug(x))~ "%, where ¢ is a small positive number (we will choose

it later). Let us remark now that inclusion C,cCD, is ensured by the requirement
e<1/5 (remember that Ug(x)>(¢(x, E))~%, see Lemma 3.2).

We begin the proof of (4.5) by remarking that the function log f is analytic in
D, and log | f|=Reloeg f. This and the well known formula

log f(x) = ~UE(x)+;i ®-v) [¢ ?ET(;) dt

shows that log | f(x)|=— Ug(x).
For z€D, the Taylor formula implies

log f(2) = log f(X)+ 2z1 as(2—X)"

and

log |f (D) = —Up(X)+ 3,y la] - 1
if Jz—x|<r. Here (a,),~, is the sequence of the Taylor coefficients of log f at x.
Now if there exists a number ¢, O<¢<1/5, such that

B

|ay| - ——— = 2771 Up(x)  (nEN)

2 4.6
Up() “9
then (4.5) is proved. But we are going to prove a stronger inequality
5 n-1 1 kS
]a,, = const. [M) . UE (x) * (n EN) (4.7)

which implies (4.6) for all sufficiently small positiv ¢ (it is useful to remark once more
that Ug(x)>(o(x, E))™%). Clearly

_ (og f )("’ () _ f _Ue@
(e

x)n+1
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(in this connection see (4.2)). Therefore
T+a
U.(t) 5
|a,| = jw =0T “;\m dt +§:?‘ (__] Ug(x)

(see (3.9)). Further, using the important equality (3.4) and Lemma 3.6 we obtain

Ug(®) =1 Us(®) Ug(®)
flt—xlé&x [t-—x‘"+1 dt = 5;—1{‘/'Clx (tf_x)2 dt+flx\wx (tfx)2 dt}

1
o

=

1+L
T {UE(x) +Const. Ug(x) “ }
Thus,

3

Const. += 5 tre
| = = UE() -l -Ug(x).
o on \3

The inequality (4.7) now follows by means of elementary transformations (we have

to take in to account 54,=9(x, F) and (g (x, E))’“< Ug (x)).

§ 5. The restriction imposed on the complementary intervals.
Proof of Theorem 2

Consider an increasing unbounded function w defined on the half-axis [0, + )
and such that ©(0)=0 and

+ oo dx
fl o) + (5.1)
Theorem 2’. Let E be a compact subset of R, such that [E|=0 and
1 ( 1 ) *odx
f“ [Q(x, B “Lxmp) 152 = e (5.2)

Then E4&,.

Remark. It is easy to see that if w(x)=(max (1,log ) (x=0) then (5.2)
is equivalent to (V) with a corresponding &, ¢=>0. The method of S. A. Vinogradov
can be used to prove this theorem (stronger than Theorem 2).

Lemma 5.1. Let E, be a compact subset of R, E€(C,), and Ty the operator
corresponding to it (see § 3). Suppose there exists a constant C, C=0, such that

o 1+a

(fR !7"15+(§)I adx] ’ =C [y Ilffrx)ld (5.3)

d
for every f, fell u , li.e. Ty is of strong type (1, __oc_} . Then E4é&,.
1+ x2 1+a
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Proof. Use Lemma 3.2 (assertion I) and Theorem 1. Let (U,),=, be the sequence
from § 3 and set for the sake of brevity

If(x)l
Il = fai e d
Then
@ e _x (%) _a 2
[Unrall = W TUNH*| = CHHU ) = 2 (=) MU,,-lli(”“)
a a \2 a \n+l n+l
= C1+a +(1+a) +"'+(1+a) .”U()”(l'l-u) .
But
2 n n
o o o . o
1+oc+(l+oc) +'"+(1+oz] <o and liril(lw) =0
Hence

Ul =0(), n—+-e,

and E¢&, (by Lemma 3.2, see (3.3)).
Define now the auxiliary operator Sg:

5pf 228D o pe),
(Q(x, E)]
dx
where fELl[1 xz] and x€R\ E.

d.
Lemma 5.2. If S is continuous in the space L' * | and E€ (5.2), then
; 1+ x2
E4é,.
Proof. We will prove that condition (5.3) of the preceding lemma is satisfied.

1
Apply the Holder inequality with the exponents p:—il, g=1+a. We have
o

_x_
1+a

L= o ol

1
14a

s (o] 1

The integral in the second bracket is finite because of (5.2). The lemma is proved.

Jx Tef (1™ 5

dx
Proof of Theorem 2. 1t is sufficient to prove that Sg f¢ Ll[1 - 2] for every non
x
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d
negative function f, feLl[ ~ ] (see Lemma 5.2). We have the following obvious

14 x?
identity:
dx 1 o(x, E) dx
/RSEﬂx)m—fRf(z)dtfc,,(t_x)z-w[ ; ]-1 = 69
o(x, E)

For the sake of brevity we denote by g(¢) the interior integral in the right side of
(5.4). The set E being compact it easy to see that

g0 =0(%) K-+ 55

Let t€l,=(a, b). Then obviously

— fie L . o(x, E) ) dx . 1 . o(x, E) . dx
g(t):f” (x—Db)? w( 1 ]1+x2+f“°° (a—x)? a)[ 1 ]1+x2'
o(x, E) o(x, E)
(5.6)

Estimate now the first integral in (5.6) (the second is estimated analogously). Note
that ¢(x, E)<x—b(x>b) and so o~ (g1 (x, E))<w~'((x—b)~1). Thus this integ-
ral does not exceed

dx
Jo = I(b) < -+ o=.
X (-)17) (1+(x+b)?)

It is clear that the function »—I(b) is continuous. The compactness of E-implies
dx
supscg [(t)< -+ and g€ L= (R). This, (5.5) and (5.4) prove that SgfcL! [1 n 2].
x
We finally give S. A. Vinogradov’s proof of Theorem 2. This proof is interesting
in itself since it exhibits the connection of the problems under consideration with
distortion problems for conformal mappings. The proof is published with the per-
mission of its author.
Let 0 be an increasing bounded function defined on R such that

0(0) =0;
f;"is—(tﬂdt<+oo, (5.7)
0=0(5)—8(x)=0o(y—x) if O<x=y, (5.8)
() _

ok 5Q) 9)
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1 -1
Remark. According to previous notations é(x)= [co [—]] . If we only want
x

—l-z
to prove Theorem 2 then we may choose 6 so that 6(x)=[log——] , &¢=0, for
all small values of x. *

Now we will construct an auxiliary domain G containing the lower half-plane
Im z=0. We define G as the subgraph of a non negative function Az vanishing
exactly on E. We will seek A in the form

45(0) = [ ().

Set Y|E=0. Let / be a bounded complementary interval of E and let F the three-
point set consisting of the end-points and the mid-point of 7. Set y(x)=d(e(x, F))
if x belongs to the left half of /, ¥ (x)=—6(e(x, F)) if x belongs to the right half
of I It is clear that |/ is continuous, that its integral taken over / is equal to zero
and that the continuity modulus of y|/ does not exceed the function & (verifying the
last assertion one must use (5.8) and the symmetry of ¥|/). On both the half-bounded
complementary intervals we define ¥ so as to preserve the mentioned properties.
The graph of Ay is represented on the figure 2 below (in the case when E consists of
four points).

1///////)._ .//////l.- V7 /////A /////Illlln...
i

Fig. 2

Lemma 5.3. Let w be the conformal homeomorphism of the upper half plane
onto G. Then w is smooth up to the boundary and is distortion-free, i.e.

cwD| =1 =Clw()], ¢,C=0,
for every interval J, JCR.
Proof. The continuity modulus of Az does not exceed the function . It is easy
to see that the angle formed by the tangent to the boundary G of G and the line

R considered as a function of the arc-length parameter on 0G has a continuity modu-
lus with the same estimate. The lemma now follows from the Kellog’s theorem [17],
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p. 411 (remember that ¢ satisfies (5.7)). Strictly speaking this theorem is proved in
[17] only for 8(f)=t*, O<a<1, but the proof is easily generalized to the general
case (see [18)).

Lemma 5.4. Let a€(0, 1) and A(x)= [73(t)dt, x=0. Then

x dt 4 X
fom'\'(l—(x) Aa—(x)-, x—>0+
Proof. Use de I’Hospital’s rule twice and apply (5.9).
The proof of Theorem 2. Let W be the inverse of the mapping w (Lemma 5.3).
Set E*=W(E) and construct the function A Consider the outer function f; in
the upper half-plane which is defined by

log | fo(?)| = t€R, a€(0,1).

1
(4 @)’
Then f=fyo WEG, (in the lower half-plane) and vanishes with all its derivatives on E.
Indeed if {€dG and {*is the point of E nearest to { (with respect to G) then

@I =foo WOl = CXP[ Ay (W(C)) ]

=P [‘ A(IW(C)_IW(C*)D“ ] = o [" A(lC—C*fl' Const.)“]’

where A(x)= f o 0(2)dt (see Lemma 5.4). If now x€R\E, then by the Cauchy
formula (n=1):

= 7'— Const. - s%p |{~x|~C=V.exp [ —(4(|{—{*| - Const.))~*]
G
exp [—(4([{—{*]) - Const.) %]

=

T + (Const.)"- cers  (Consty—(A(C—C Dy

n

= (Const.)"-n!lsup t~"-exp(—t~* = (Const.)*-n!-n

t=>0
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§ 6. Cantor sets. Theorem 3

Let (/),=0 be a decreasing sequence of positive numbers such that
v, =1. 6.1)

Remove the open interval of length /, centered at 1/2 from the segment [0, 1].
Denote by E, the union of two remaining segments. Remove from each of them the
concentric interval of length /;. The union of the four mutually disjoint remaining
segments is denoted by E,. Condition (6.1) makes it possible to continue this proce-
dure indefinitely. The union of the 2**! closed mutually disjoint segments arising
at the n-th step (we call them “the segments of the rank »’*) will be denoted by E,.
The open intervals of length I, removed at the n-th step will be called “intervals
of the rank »”. The set

E = m En
n=0
is called the Cantor type set corresponding to the sequence (/,),=o. It is obvious that
|[E]=0. In this paragraph we will prove

Theorem 3’. There is a sequence (/,),=, of positive numbers satisfying (6.1) and
such that the Cantor type set E corresponding to it has the following properties:

a) E€é,;
1 x—Eg
b) St 2. [log [—] <+4oo
for an arbitrary £=0.
The proof of the theorem will be preceded by two lemmas.

Lemma 6.1. There is a sequence (/,),=, of positive numbers such that:

(l) ln>ln+17 I’IEZ_,_;
(ii) the identity (6.1) holds;
(iii) there is a constant C=>0 for which

Z:=n+12klk<c'2nlm n€Z+;
(iv) there is a constant a=0 for which

1 - _ 1
2n+1ll—a Zk=n+12klii LIS alogl—.

Proof. Let A 'be a large positive integer. We define /, by means of the equation

i L (6.2)

n1+a
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if n=A. It is possible to choose the values /,>/,>...>[, satisfying (6.1) (because
1

of 2"1,,=o[——] , n—>+o<o). Then conditions (i) and (ii) will be satisfied. For n=4"
n

we have

1— n+1 _ 1+« n 14a 1

2" bot1 1 1 1 1=
2n1"+ =2 "l =2 T n+]) e T <242 * =1
n B

Thus (iii) holds also. Let us verify (iv). Suppose #n=>.4. Then

1 plte - 1 it . dx

NTee kjl—a __ . .
ontifl—a et k=n+1 2 lk ) k=n+1 pita = 2 n+l yI+a
n .

R O (n)‘z
T 20 (n+1D)*T 20 \nt1)7
But (6.2) implies
log2 1+4o

n-+
s -« I—o

log n.

—o
Therefore we can take a=

if A 1s sufficiently large. Such an « satisfies
4alog2

(iv) for all n=>.4. Diminishing a if necessary we obtain (iv) for all n, n€Z .

Lemma6.2. Let (C,),-, be an increasing sequence of positive numbers and
suppose the function f satisfies
G,

L

fx) =

for every x from every interval @, of rank »n. Then

[Ty f ()] = (_“_] .cm.(logi] T
E C? " I, I

for all x, x€w,.

Proof. Let 4, be the segment of rank » neighbouring w, by the property (iii)
we have

4, <2701 Co2rel, = €1,

because |w,[=/, and

1 ”
Al = = 2w 2
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Thus for x€w, and ¢€4,
(t—x2 = (1+ ] 2 <cC22

because without loss of generality we may assume C=2. Consequently for all x,
xX€w,,

RION

t—x)?

1
Tef0=f, o E [ f@®ar.
Estimate the last integral from below. It equals the sum of integrals taken on all
intervals of rank =n which are contained in 4,. Inequality (6.3) being true for all
intervals of rank » we have

1 - C
fAn fOde = W2k=n+1 2klk"l_£'

Using the monotonicity of the sequence (C,),=, and property (IV) we obtain the
inequality

1 1
Tef(x)= C2 R -C,-a- Iogl

. . a .
for every x€w,. All that remains now is to take the I -th power in both parts

of the last estimate. T

Proof of Theorem 3’. Define by induction the family i—(C, )=, i€Z, of
sequences (C, )y=o. Let
Coo=1, néZ,.
Note that for x€w,

1 1
WO m T T ¢
Set for i=0 inductively
N
Cri= (&) (er) -cIE (65

It is obvious (see Lemmas 6.2 and 6.4) that

Co
Ui) > =3t

for every x€w,. The equality (6.5) implies
1:a+ '+(1:a)l

a
Cri = [65'1°gz]
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Since the function U majorizes every U; we have
_lfa 1]“
Ux) = I—Z[Eélong- (¢Caw,).
Consequently
aY o 1Y
f; U(x)dx = (?2] C e 2L (log—l;].

But the series to the left diverges because

1}*  Const.
2n 1—a ( _] ~ bk e oo,
I.=*log T s n—+
Therefore E€&, by Lemma 3.2. On the other hand it is easy to see that condition b)
of Theorem 3 holds.

Unfortunately we do not know whether E¢&, or not, if

> lt"“(log—ll—) <+ oo,

§ 7. Countable sets with a single limit point

Let the decreasing sequence (x,),= o of positive numbers tend to zero and consi-
der the compact set E={0, x,, x;, ...}. We number its complementary intervals as

follows:

A E(—,0), AyeZL(xg,+ ),

Angg(xn7xn*1)7 nEN

The length [,=1,(E) of the interval 4, (n€N) equals x,_,—Xx,. Suppose that the
sequence (J,) satisfies the following conditions

0<l =1 (EN), (1.1)
lim n2 = 0, (1.2)
n>+ oo
lim 2=~ o0, (1.3)
H>+Foo &p
1 B-% < } oo, (7.4)

Theorem 4'. E4¢&,.

Remarks 1. Conditions (7.1) and (7.3) require that the sequence (/,) tends to
zero with a certain regularity while the condition (7.2) restricts the rapidity of con-



Sets of uniqueness for the Gevrey classes 279

vergence (from above). If [}17*=0(n"2), then E{&, by Theorem 2. However the
method of proof of Theorem 4 does not allow to drop condition (7.2).

2. Since conditions (7.2) and (7.3) being purely technical the following assertion
seems to be true.

Conjecture. A countable set E with the single limit point does not belong to &,
if and only if E€(C)).
Now we are going to deduce Theorems 4 and 5 from Theorem 4.

Proof of Theorem 4. Construct the set E so that for every n, n€N,

l-a 1

W= nlog (L+n)(loglog2+n))”
It is easy to see that (7.1)—(7.4) hold and thus E4¢é&,. Moreover

logn, n —>+-co.

lo —1- 1
gl,, l—o

Therefore for every ¢, =0, we have
o T1-g 1Y
n=1 li (logl_) =+ oo.

Remark. Let peN and plogxg——eflog ... logx. Then for an arbitrary p there
N—— ———

p times

exists a set E, E4&,, such that
o 1Y
ol (plog ) =+

for every e, e=0. The proof requires only obvious modifications of the formula
defining the sequence (/}=%),=1.

Proof of Theorem 5. Let E, be the Cantor typeset constructed in § 6 and denote
by m, the length of interval of rank #. If » is large enough then

2n_m%—a = p—A+y (75)

(see (6.2)). Set l,=m for 2*=n<2*"' (k€Z,) and construct the set E, with a
single limit point such that /,(E)=I,, n€N. We have E,€8, by Theorem 3’. It is
clear that E; and E, have the same family of lengths of complementary intervals
(counting multiplicities). We have only to prove that E,¢&,. To do this we check
conditions (7.1)—(7.4) with:respect to (J)=1. The condition (7.1) obviously holds
and (7.4) follows from (7.5). If now 2*=n-<2%*1 then

nZI}‘—a = 22km%—oz — 2k.k—(1+a)
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and

Do _ Mer _ 571w [_]l._]
l” my, k+1

which implies (7.2) and (7.3).

The remaining part of the paragraph is devoted to the proof of Theorem 4’

which consists of verifying the condition (x). Define the auxiliary function

20

max (1, o(x, E) ) if x=0
Je(®) =1 o(x, E)~* if 0<x<x
max (1, ¢(x, E)~%) if xp<x
and show that for every x, x€R\F,

1
o

T, £,(x) = Const. f,(x) .

(7.6)

Then E4&, will follow from theorem 1 because fy(x)=o(x, E)™* and fg¢€

dx
It .
1+x2

Lemma 7.1. The inequality (7.6) holds if x<0.

Proof. It is sufficient to prove (7.6) near the origin and near infinity because

(—,00nE=0. If x—-—c then

. . 1+l
lim Ty fz =0, limfg(x) * =1.
Let now x—0—. Then

1

+eo fu(@®) 1 +oo JE(E)
To fo) = [ (Egr @t = g gy o S @i+ [~ 2= i

It remains only to notice that fz(x) “=p(x, E)~? if —1<x<0.

Consider now x>0. Estimate first the contribution of the interval 4__ to the

integral Ty f5.
Lemma 7.2, If x=0 then

./ - ({E—(gz dt = Const. fE(x)l.Jr?'
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Proof. Elementary computations show that

f fE(t) /'1 dt 4 [ dt  _ Const.
°°tx)2 —Jo 2 Ot_{_x)z: 1422
( (t+x)2t1+¢ ( x 1+a
if 0<x<xy+1. If x=xy+1 then the required inequality becomes obvious, because
1
1+—

in this case fz(x) ” =1. Itis therefore sufficient to show that

1 20

¥ 1+e = Const. Q(x, E)-1-2 0<=x< Xo+ 1) (77)

If xo=x we can obtain (7.7) by choosing Const. sufficiently large. Suppose now
x€4, (n€N) It is then obvious that

ksnl<x and 77 < o(x, E)"1%,
Consequently (7.7) is implied by the inequality

20

1+
B+e= Const. (3. k) "™ (neN). (7.8)
Condition (7.3) implies

Sionle = o L, = Const. nl,

and (7.8) follows from the estimate
200

1422
II*¢ = Const.(nl,) **
which holds because of (7.2).

So we only have to prove that for every x, x=0,

N fE(t) S04t = Const. fy(0) °. (1.9)

The proof of (7.9) is an easy matter if x¢A_. Therefore we will assume that 0<x—<
<X,. We recall that in this case

fe(®) = o(x, E)~*.

The next lemma allows us to estimate the above integral over a bounded com-
plementary interval of E.

Lemma 7.3. Let A=(a, b) be a complementary interval of E, [=b—a, x¢A.
Denote by d=d(x) the distance from the point x to the interval 4. Then two positive
numbers C;, C, exist, depending only on «, and such that

dfi“ mm{ [ ] } f Q((: ]:;)): dtédfiamin{l,(é]l—a}.
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Proof. Without loss of generality we may assume A4=(0, ), x<0. Denoting
the integral to be estimated by I(x) we have

dt 1 dt
7 = 12 — 1/2d
) fo 1(t+dyR  dite /0 *(1+1%
[t is also obvious that J(x) does not exceed the integral in the right side of the prece-
ding inequality multiplied by two. Now the completion of the proof is an elementary
task.
Let x€d, (neN). Lemma 7.3 implies that

f fx@® dt = Const,
dap1 (t—x)2 ~ olx, E)X*t*

(we assume here 4, (—1-—-e=fAv). First we discuss a finite family of intervals
4, (k=n—2, ...,0) and estimate their contribution to the integral Ty fz. By Lemma
7.3 we have

fE(t) - 1 —
=i, ey 4 = Const 2y gy =

1 1 _ Const. 1
= Const. Z’k =0 71%% . (l 1 T = [+ Zk =0 (n4-k—1)3+=
e

l I

n L4

A .
(see (7.1)). Since the inequality ¢(x, E) = 3 holds on 4, this contribution does not

exceed
Const. g(x, E)—-t—=,
Finally we estimate the sum
aer fx®
Sy ()= Zsnin /Ak (tix)z dt.

It follows from lemma 7.3 that

Su(x) = Const. >, ., a

1—2a
l

ko1t ety

because the length of 4, is less than the distance from x to 4, if k=>nr+1. Divide
the last sum into two parts and estimate each of them separately. Using (7.3) we have

2 lllcﬂa — 2n ll_a
e R A lk 1 Liv1)?
Bl—+ .. +2=
lﬂ ln
Const. _ Const.

1
< e 2k

1+a °
ln
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And
ll a ll—a
2en T T 2o (o o)
2 +.o+
L, L
Const. _ Const. 1 _ Const.
= nzlz 2k>2nl = li+a .nZI'll-ac: l%+a ‘

(the first inequality depends on (7.3) and the last depends on (7.2)). The proof of
the theorem is now finished.

§ 8. Safficient conditions

We have already seen that the testing of the condition (x) is not an easy matter.
It is natural therefore to sacrifice the generality and seek simpler sufficient conditions.
This is partly done in § 0 and § 5. Here we give some sufficient conditions expressed
in terms of the maximal function of Hardy and Littlewood. On the other side this
will enable us to estimate the gap between conditions (C,) of Carleson and (V) of
Vinogradov. Moreover we will give a new interpretation of the condition (PS,)
of Pavlov and Suturin (see § 0). For technical reasons it will be convenient here to
replace the half-plane by the disc. Now G, will stand for the Gevrey class in the open
unit disc D, T for the unit circle, m for the normalized Lebesgue measure on T.
We will identify T with the group R/27Z and use symbol x to denote the identity
map of R/2rnZ. Let K(t)=t"*% (J¢|=n) and continue K 2r-periodically onto the
whole axis R. For fc¢I*(T), f=0, we consider

M (x) = sup 50 @

the Hardy—Littlewood maximal function. The symbol f* will be used to denote the
non-increasing rearrangement of a non-negative function f. Recall that f* is defined
on the segment [0, 1] and is decreasing there and that for every 4, 1=0,

m{f =2} =sup{t:f*() = 1}.

In the case of the circle the condition («) gets the following form:
There is a function fg, fg€ L*(T), such that

(i) o(x, E)™* = fp(x);

14~ (o)
(i) [o KGx—0fe(t)dm(t) = Const. fz(x) *.
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A well known estimate of the Poisson integral (see [19], p. 77—80) shows that
(%, E)- [, K(x—1)fg(t)dm(t) = Const. Mfy(x).

Using this inequality we can weaken (o) to («*):
There is a function fy, fr€L*(T) and f;=0 such that

142
Mfr(x) = Const. g(x, E) -f(x) “. (a*)

Notice that the inequality fp{x)=Const. ¢(x, E)~* follows from («*) and from the
trivial estimate fz= .#fg, and so (@*)= ().

Replacing o(x, E)-fz(x)"* by one in the right side of (x*) we obtain the
condition («**) which obviously implies («*):

There is a function fz, f5€L*(T), such that

@) e(x, B)™* =fp(x);
(ii) Afg(x) = Const. fz(x).

Our first aim is to show that (V,)=(«*). Let F, be the decreasing rearrangement
of the function x—~g(x, E)™%, E;={tcT:g(t, E)=4} and w the function from § 5
satisfying the condition (5.1).

Theorem 8.1. Each of the following conditions:

(™)

fT[Q(xl,E).w[g(xl,E))]adm<+°° 8.1
Ih (z‘fﬁ]mdt <t 8.2)
ih [%5]_? =te (8.3)

implies F¢{a*) (and consequently E4¢,).

Remark. It is easy to see that (8.2) and (8.3) are equivalent. Moreover (8.1)=(8.2)
(see the proof of Lemma (5.2)). It is therefore sufficient to prove that (8.2)= E€ (a¥).
It will be convenient to divide the proof of the theorem into two lemmas.

Lemma 8.1. The inclusion E¢(a*) holds if it is possible to find a decreasing
function F defined and summable on (0, 1] and such that

3

1+a

[Fo(t)--i— 1K F(S)dS] =F@t) (1€(,1]). (8.4)
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Proof. It is easy to see (compare with Lemma 3.2) that E¢(o*) if and only if
the sequence (f),=0:
def def '_au‘
Jo) =0 E)7% fym =Lfel-Mf,]T (n€Ly) (8.5)

is bounded in L'(T). It is well known (see [20]) that
(f-9)=f*g"
() =o(f")

for an arbitrary increasing function ¢. By the theorem of Hardy and Littlewood
(see [20D)

and

Y (0) = 2 [ 7*($)ds.

Using the definition of the sequence (f,),=o and the facts mentioned above we
conclude that

%

1+«

f= B fia® =[R2 firusyas| (5.6

The function F decreases and so
g
F(t)=— [oF(S)ds.

Thus it follows from (8.4) that Fi=F. From this and (8.6) we deduce inductively
that

f¥=2F (neZ,).
Hence

[ fudm = [3frdt =27 [3 F(t)dt.

Lemma 8.2. The equation (8.4) admits a decreasing solution F, FeL'(0, 1),
if and only if
[EFRT @)t Tt < oo 8.7)

Proof. Tt follows from (8.4) that

=
1+a

(O o
t =
LfsF(syas])™*
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Integrating this equality from #, to ¢ (0</,<1) we obtain

fto[FO(t)]H“d (= U a(fs F(S)ds)

t
[/ F(S)ds]”“

=(1+o)(f3 F(S)ds)”“—(l +a)(/'0F(S)ds)”“
Therefore

/gF(S)dsz{(fo F(S)ds)”“ lid [F"(S)] } . (8.8)

Hence the summability of F implies (8.7). Suppose now that (8.7) holds. Differen-
tiating formally the equality (8.8) we define F by means of the formula

L

The function F is obviously summable and satisfies (8.4). To prove that F is dec-
reasing notice first of all that F is continuous on (0, 1}. This follows from (8.9} and

F ()11
Dt( )] decreases on (0, 1]. Thus

from the continuity of F,. The function t—»[
— . . |
(8.9) implies the inequality F= [1_;_] F?, and consequently
o
tlj{)ri F(t) =+ oo.
Suppose F is not decreasing. Then two values t,, £,, 0<#,<?, exist such that
F(t) < F(ty).

Without loss of generality we may assume that

F(t) = . <iltl<ft2 F(1).

Since F is continuous it is possible to find for every y, F(t;))<y-<F(t,), numbers
a,, a,<t;, and b,, b,,>#;, such that

F(a))=F(b,) and F(@)<y
for every ¢, 1€(a,, b,). But F, decreases and F satisfies (8.4). Hence

L ay - 1 by
ny F(S)ds = - [ F(S)ds
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and so

1 ay - 1 by
a_yfo F(s)ds = 5 Ny fay F(S)dS <.

If now y { F(#) then a,t a, a=t;. Therefore
1 r
- [aF(S)dS = F(1).
But this is impossible because F(S)=F(1,) if S€(0,q), and F(S)=F(t,), if S
is small enough. This contradiction completes the proof of the lemma.
Corollary. (V)= ().

Proof. Set w(x)=(log x)!** (¢=0) in (8.1).
The following example shows that («*) does not follow from (a).

Example. Let E be the set with a single limit point constructed in § 7 and let

B W
" n(log (1+n))+*’

where the constant C,, C,>0, is defined by the equality
Dazi =T

Denote the image of the set E under the standard map R—~R/2nZ by the same letter.
It is not hard to see that

-

néN,

T+a = o
N (1og2—”] o(x, E)
x
(Cy>0) if 0<x<m{(mod 2m). It follows from Theorem 4’ that E4&,. We have
to prove now that E¢(¢*). This will be shown if we prove that

lim [, fodm =+

n-> oo
(the definition of £, is given in (8.5)). Using (8.10) and the definition of £, it is easy
to verify that

(8.10)

From this we deduce inductively that

f(x) =
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It remains only to notice that

f”_ﬁ__—+oo
0xlo 2_— '
gx

In conclusion we will discuss the condition (PS,). Remember that E€(PS,)
(see § 0) if for every x, x¢ R\ E, we have

1 dt Const.
f o (PS,).

. =
—x) o(xt,E)* T o(x, E}™"
Here it will be convenient to return again to the case of the half-plane.

Theorem 8.2. Let E be a compact subset of the real line R. A function f, f€G,,
with the property

T [

o(x, E)

exists if and only if E€(PS,).

(8.11)

Proof. If Ec(PS,) then the existence of an outer function f€G,, satisfying
(8.11) is proved in [10] (or can be deduced from Theorem 1). The inverse follows
from Theorem 1.

§9. Condition (¢**), the Muckenhoupt condition and interpolation
sets for Gevrey classes

9.1. The Muckenhoupt condition. Let W,0<W=+, be a measurable func-
tion on the circumference T and let L?(W,T) be the space of all functions f whose
p-th power is summable with the weight W:

S\ Wam <+,

Consider a linear (or even sublinear) operator T in the space L?(W,T) defined
on a dense set. Condition (4,) we are dealing with in this section turns out to be
necessary and sufficient for T to be of strong type (p, p) provided T belongs to
a suitable class of operators (for instance T is the Hilbert transform or the Hardy—
Littlewood maximal transform).

This fact was first discovered by Muckenhoupt in [16] for the Hardy—Lit-
tlewood maximal transform. Following Muckenhoupt we say that the weight W

*) The symbol a><b means that there are nurabers Cj, C;>0 such that C;+b=g=C,b.
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satisfies condition (4,) (I<p< <o) if there exists a constant C,, C,>0, such
that for every interval I, ICT, the following inequality holds

(lllf de] (\Ilf w " ldm)p—lé C,. (4,)

In the case p=1 this condition becomes

K f Wdm = C; - essilét;W(x) (4)

It is easy to see that (4,) is equivalent with
MW (x) = Cy-W(x)

for almost all x,x¢T (may be with another constant C;, C;=>0). We will use
(4,) in this last form.

By the Minkowski inequality (4,)=>(d4,) if r=p. Muckenhoupt found the
highly nontrivial and deep result that (4,)=(4,-,) for a positive ¢, &>0, if p=>1
(more precisely: for every W€ (4,) thereis a positive number ¢ such that We(4,,_,)).
We need two main lemmas of the article [16] (see Lemma 3 and 4 respectively).

Lemma A. Let 1=p< -+, W=0, I be a fixed interval, /T, such that for
every interval J, JCI,

1 p-1

[|J[dem)[|J|f w - 1dm] =K

7
Then for every S, 0< S<|5(l) we have

[oW*(@)dt =20 K371 SW*(S)
(recall that W™ denotes the decreasing rearrangement of the function W |I).

Lemma B. Let A, 7=0, be a decreasing function defined on (0, /) and suppose
there is a constant D, D=1, such that

[5 h(&)dt = DSh(S)
for every S, 0< S<—l—. Then
20

1, w 20 1
[Tf;h (t)dt] §—D_1—llr-7f(’,h(t)dt
1—r ) ]

if 1=r<
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9.2. Conditions (C,,,) and (*"). Let U,0<U= 4+ be a measurable function
on the circumference T.

Theorem 9.1. A majorant W, W=U satisfying (4,) exists if and only if
UeL?(T) fora p,p=1.

Proof. Suppose such a majorant exists. Apply Lemma 4 to the function W and
to the interval I, I=T, and then Lemma B to the function A, A=W?*, and to the
interval (0,1). Hence W (and U) belongs to L?(T) for a p, p=1.

Suppose now that UcL?(T), p>1, and let

11, ([ | fI2dm)H?

be the standard norm in L?(T). By the theorem of Hardy-—Littlewood on the maxi-
mal function (see [19], p. 15)

14111, = Cpllfll,

for every f, f€LP(T). Define the sequence of elements of L?(T) inductively:

UodzeiU’ Un+1d"it:MUna n€Z+~
Consider the function W,
def 1

W Z e ey U

This function belongs to L?(T) (because of the inequality | U, =C3[U|) and more-
over
1

MW = Znéow

- MU, = 2C,(W —U)
whence
U=Ws=MW=2CW
i.e. W majorizes U and W€ (4,).
Corollary. The set E satisfies («™) if and only if E¢(C,,,) for a positive e.

Proof. Notice that E¢(«*) if and only if there exist W, W¢(4,), majorizing
the function x»(g (x, E))™* and we only have to apply the preceding theorem with
this function playing the role of U.

9.3. Interpolation sets for the class G,. Let 9, be the set of all C*-functions on
T satisfying the inequalities

n

O] = Cp@honten®, neZ,.
Clearly 9,0G,.



Sets of uniqueness for the Gevrey classes 291

Definition. A closed set E, ECT, is said to be an interpolation set for G, if
G,|E=9,E.
Interpolation sets for G, and for other Carleman classes were described in the articles
213, [22].
Denote the class of all interpolation sets for G, by £,. It turns out that E€.f,
if and only if for every interval I, ICT, the following inequality is valid:

%ffg(‘jjnﬁ; = Const. |7]7%. 9.1

Thus the inclusion E€.£, implies Ec(z**) and so E4¢é&, (the last being inciden-
tally obvious).

The following theorem shows that the part of the class of all non-uniqueness
sets for G, occupied by £, is not too large.

Theorem 9.2, For every E€.#, there is a positive number ¢ such that E€.#, ..

Remark. Tt is not hard to deduce from (9.1) that .#,5.%; if a<p. Thus the
theorem asserts that for every closed set E, ECT, there is a number oz, ay=0
such that {o: E€S,}=(0, o).

Proof of the theorem. Let ﬂ)g—e—fg(x, E)~*, W=f/I and apply lemmas 4 and B.
Notice that in the case under consideration the constant K occurring in Lemma A4
does not depend on I but is determined only by the constant from condition (9.1).
Hence there is a number r, r=>1, such that

R T (- )m< 1 e
[III fo Ww*dt] = Const. 7 f(, W*dt,
or
1 v 1
(W [ fgdm) = Const. 77 [ fodm,

whence

1 , . Const.

m/}fg dm = —T”’,T

e=({—Da

In conclusion we indicate a simple proposition characterizing the interrelation
between conditions (4,), (PS,) and E€(I)).

Proposition 9.1.1. If Ec#,, then fy=(g(x, E)) *€(4,).
2.If fy€(A4,) then E¢(PS,).
The proof is not hard and we leave it to the reader..
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§ 10. Carleman classes

In this paragraph we prove the analogue of Theorem 1 for the general Carle-
man classes C,{M,}, i.e. the set of all functions f infinitely differentiable in the
closed upper half-plane Im z=0, analytic in the open half-plane Im z=0, and
such that

sup [f"W(2)|=Cp-Q%-nl-M,, ncZ,,

Imz=0
(M,),=o being a preassigned sequence of positive numbers. Suppose that (M ),=0
satisfies the usual regularity conditions:

(1) the sequence (M,),=, is increasing;

. X"
2 llmn_>+mﬁ=0 for every x, x=1;

(3) the sequence (log M,),=, is convex;

@) My=e?
(the last condition is introduced only for technical reasons).

The sequence (M,),=, generates a function ¢, (the so called characteristic of
(M,),=0) defined on (0, + <), namely

@ {X) g sup [n log %——log M,,].
n=0

The sequence (M,,),= o grows faster than every geometric progression (see (2)) and so
@y (X)< + o for every x, x>0, and the supremum occurring in the definition of
@y (x) is attained at a point n=n(x)€Z,. Note that ¢, is non increasing,
lim, o4 @y (x)=+ and @, =1 (see (4)).

We have to impose two supplementary conditions on the sequence (M,),=o:

(5) there exists a constant C, C=0, with

[3ou@®dt = Cox-gu(x), x> 0;
(6) the function x-x - @, (x) is increasing in a neighbourhood of the origin, and

Jim x- gy (x) = 0.

The condition (6) is not restrictive, for if f s @u(t)dt=+co then the class C,{M,}
is quasianalytic. As to the condition (5), it restricts our consideration to the Carle-
man classes containing some Gevrey class G, with a<1. Thus we don’t succeed in
describing the sets of uniqueness for the non-quasianalytic classes C,{M,} satisfying
. N 1G“ D Cy{M,} D G,.
<<

Note that a necessary and sufficient condition for the quasianalyticity of the class
C,{M,} was obtained in [23].
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It is possible to reformulate conditions (5) and (6) in terms involving the sequence
(M)),=, only. We will use the following condition equivalent to (6):

1 log M, n lo Mn
(6a) All sufficiently large positive integers n satisfy —-+ e g+ 1+1‘
n n n

Remarks. 1. If 0<a=<1 and M,=n"", n=1, then C,{M,}=G, and ¢ (x)=
=x"% x-0+4 . Itis not hard to see that all conditions (1)—(6) hold.

1)¢
2. Set p>1 and M,=¢e", n=z=1. Then (pM(x)x[Iog—] , x>0+, where
x
q:—p—l. Conditions (1)—(6) hold again.
p—

Now we are going to construct an auxiliary function &,, that will occur in the
statement of the theorem below. The function

o Pu (x)
X

X

is strictly decreasing from infinity to zero when x is increasing from zero to infinity.
This function being continuous has the inverse function, ¥,, say. It is clear that

P, (EM;(ZQ) =x, x>0, (10.1)

Let now @, (y) ?——e—fy' Yu(y), y=0.
The following elementary identity will be useful in the sequel

Dy () = o (¥ (), y=0. (10.2)

This identity follows from (10.1) (we only have to put y= )

to the equality

) and is equivalent

oue)

Dy (V) = ou(x), y= p

Let us discuss the simplest properties of @,,. The function ¢,, being constant in
a neighbourhood of infinity, so &, isconstant in a neighbourhood of zero. Moreover
&,, is not decreasing on the half-axis (0, 4+-<) and lim,, &, ()= + . Further,

if Q=1, then @ (QY)=0y¥y(Q»)<0y¥y(»=0-Py(y) (we must take into
account the monotonicity of ¥,,) and so

Py (Qy) <08y (»), y=0, Q=1 (10.3)

Definition. A compact subset E of the real line R is said to be a set of uniqueness
for the class C,{M,} if there exists no nonzero function f, f¢C,{M,}, satisfying
SfPIE=0, n=0, 1, .... The collection of all sets of uniqueness for the class C,{M,}
will be denoted by & {M,}.
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Theorem 6. A set E, ECR is not a set of uniqueness for C,{M,} if and only

. . . d
if there exists a function f¢, fp€L* [TTX_Z]’ such that
x

(@) oule(x, E)) =fe(x), x€R;

M
() &, ( fa (IE(’ ) dt] = Const. fy(x), x€R. )
Remark. Condition (a) implies that
eulex, E))
Jo P dx < . (Cu)

Let us now ask under what condition imposed on ¢,,, (Cy) isequivalent to E¢& {M}?
It turns out that such a condition is

Pu(®) = O(pu(Vx)), x—0+. (104)
We will prove this supposing that Theorem 1 has been proved. Let fy=¢y (0 (x E)).
d.
It follows from (Cyy) that fz€ Lt [l +x 2]. Clearly,
x

f fE(t) /= Const.
o (—xF ' = o BY

and so the inequality (M), (b) follows from the estimate

D, [%) = O(pu(x), x—-0+.

1 t
Now change the variable: == %;( ). Then
X

-l )

But ¢, =1 and therefore 7=

. Now we have only to use the monoto-

ou(?)
nicity of ¢,, and to apply the estimate (10 4).

If, in particular, M,=¢", p=1, then ¢,, obviously satisfies (10.4) and we
obtain the result of Taylor and Williams mentioned in the introduction.

10.1 The proof of the necessity of (M) follows the scheme exposed in § 2.
We retain here the notation from § 2.
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Suppose E¢& {M} and take a function f, f€C{M,}, f@|E=0, n=0,1,2, ...
but f#£0. For every x, x€R, we have

/1 = 2exp ]~ a0+ M, (10.9
(see (2.6)).

The following lemma is analogous to Lemma 2.1.
Lemma 10.1. Let m be an integer satisfying

X" M, = irll;f X" M, = exp (— @y (x)).

Then m=gq,(x) for all sufficiently small positive x.

1
Proof. We see, letting y=log—, that the supremum
x

M(y) = sup (ny—log M,)

is attained for m=n. The function y—~M(y) is convex being the upper envelope
of a family of linear functions. It is easy to see (using the convexity of the sequence
(log M,),=0) that

M(y) = ny—log M,

if
10g Mn_log Mn—l =)y=< IOg Mn+1_10g Mn7
1
Thus m is the positive integer » satisfying the above inequality for y=—.
x
To finish the proof we only have to verify the inequality
m = M(y).
But this inequality obviously holds if

m < (m(log M,,—log M,,_;)—log M,,),
or

1 + logM,,_; _ long.
m—1 m—1 m
It remains to apply condition (6a).
Taking now the infimum (with respect to n) in (10.5) and using the lemma we
have just proved we obtain

700 = exp{ — 2 2,09+ 108D 0ur(0 )} +exp (~ 9@y )

We recall that (10.5) is proved under the assumption 0<ypy=g(x, E). Let us forget
this restriction for a moment and pick a number y to make both exponents in the
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right hand part of the last inequality equal:

—9{? ap(x) = (log2e) - 9y (Qy y)
whence
_ Y
Qry ="y [9n(log 26)Q; ]

If the inequality y=g¢(x, E) turns out to be true such a choice of y will be
admissible and we obtain

Ifx) =2 eXp{ [m]} (10.6)

If, on the other hand y=g(x, E) then we apply a simpler estimate
[f ()] = exp {— @y (Qro(x, E))}. (10.7)

But Q;-0<Q;y and so —@y(Q;0)<—y(Q,y), Whence

el =exp{-o [%ao;f—%a)}

fe= CQf'(_IOngD

Let

1
[here C denotes a constant from (5) and | f l<3] We have

108111 = 0.1(0,0) = 5~ Pu(0

(see (10.7) and (5)). Thus
(pM(Q(x’ E)) §fE(x)’ XER,

i.e. f satisfies (M), (8). We may assume without loss of generality that
1
~log [f] <f-

This inequality and (10.6) imply

1
@M[9n(1og2e)CQ3'C'Qf'“f) =/
or

[[C, (tE(t) dt)<9n(1og2e)-c-Q}fE.
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10.2. To prove the sufficiency of (M) for E¢& we will use the scheme of rea-
soning of §§ 3—4. However the consideration of general Carleman classes, unlike
the Gevrey classes, is connected with some technical difficulties. In §§ 3—4 replaced

the function @, (M,=n"") by the function y—p'** with the same order of
growth at infinity. After that we used the analytic continuability of the latter function
into the right half-plane and some properties of the continuation. Thus we begin
the general sufficiency proof with the construction of a function @ analytic in the
right half-plane and such that ®(»)=<®,(»), y=0. Recall that @, was defined by
means of ¢,,. It is natural therefore to find a suitable analytic substitute for ¢,,.
Let

0= [y~

Lemma 10.2. The function 0 is analytic in the half-plane Re z>0. The ine-
qualities

22+t2 @(t)dt, Rez=0.

-Z—goM(x) = 0(x) = 2Cop(x)

hold for every x, x>0, (C is the constant occurring in (5)). If |z—x|= —Z—then
16(2)] = 60(x).
For every x, x=0, and n,n€Z, we have

6™ (x)] = 6-2"-n'~—0—>(;g.
The proof of the lemma is elementary and we leave it to the reader. See an
analogous assertion in [22].

To build an analytic equivalent for ¥,, we have to construct the inverse function

0(2) et
- = 3(2).

of the function z—

Lemma 10.3. The function z--3(z) is analytic and univalent in the angle
larg z|<m/8.

Proof. The analyticity of 3 in the right half-plane is obvious. If |arg zK]<_
k=1,2, z,5#2,, 3(z,)=9(z,) then
oo 1 _
I} T 0% =0
But
Re(12+2H)7 112+ 2D = |e2+ 23 2 e 2+ 23) 2 - Re (£ 2+ zy (12 + 279 = 0

and the proof is finished.
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Now we are able to define the function @ on the 3-image of the angle |arg z{<
8 ®(3(2)) = 0(2).

Its analyticity follows from the identity ®(w)=w.3*(w). We have to prove
that the set 3 [{z: )argz)<%}) contains the angle l|argzl<eg; for a sufficiently

small positive g, . We are going to apply the distortion theorem of Koebe.
Koebe’s one quarter theorem: Let f be a conformal and univalent mapping of

1
the disc D(x, R). Then the f-image of this disc contains D(f (x),XR[ f'(x)!).

See [24] p. 455 for the proof.
Put f=9, R=c-x, where C,C=0, is chosen so that the disc D(x, ¢x) is

T
contained in the angle |arg z|<§. Then

t=Sx

|9 ()| = 2f§°°zﬁf72)—2(pM(t)dt -2

2 ppe 1 _ 2 L dt
=;§fo m-ﬁoM(Sx)dS:-x—zcoM(x)'fom-
0(x )
By Koebes theorem the 3-image of D(x, cx) covers the disc centered at &) with
radius not smaller than *
12 , dt p(x) _ . 6()
Zcx-?(pM(x)fo T = Const.—x~ =oa— (10.8)

Since the function 9 maps the real axis onto itself it is possible to find a positive g
such that

{w:largw| <&} c 8{z:§arg z| = %}

The function @ is therefore analytic at least in the angle |arg w|<e;.

Note that @ is increasing on the half-axis R, lim, ., ®(y)=+ and
lim, o ®(»)=0.

Lemma 10.4. Let y=0, let ¢, be the constant from (10.8) and let weD(y, ¢1)).

Then
Const. ®(y) = Re ®(w) = |@(w)| = Const. ®(y). (10.9)

Proof. Let y=9(x). We have seen that 3(D(x, cx))DD(y, c;y). The equality
@(9(z))=0(z) shows that it is sufficient to prove the following chain of inequalities

const. 8(x) = Re 0(z) = |6(z)} = const. 6(x)

in the disc D(x, c¢x). This is not hard to do using the integral representation of .
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Remark. Lemma 10.4 is a substitute for Lemma 3.7.
We can now proceed to the construction of the equilibrium function Ug fol-
lowing the scheme of § 3. For the convenience of the reader recall that the roles of

o
the functions y—~y'**, x ~x~* are now played by ® and 6 respectively. The function
Uy was defined as the limit of the recurrent sequence {U,),=, Whose monotonicity
was the consequence of Lemma 3.1. Put

Us(x) = £6(e(x, E),

where &, £=>0, is chosen so that
D (TUy) = U,.

Such a choice of ¢ is indeed possible. It is easy to see (compare with the proof of
Lemma 3.1) that

ToUp () = efsﬁ%ds,

1
where d=9(x, E). The above integral is not smaller than B 9(8) (restrict the

integration to (0, ) and apply the monotonicity of 6). Thus
O(T,U,) = @ (% 9(5)] (10.10)
(® is increasing). We will prove below that
@ (ax) < V;(I)(x)
e3(0)
2

2
for every a, a=>1. Putting x= and a=— (a=>1 if £<2) we obtain
g

6(8) = ®(ax) < ]/f:m [%9(5)].

Hence

O(7;Uy) > ]/23 0() > U,
if g<—.
2
Now we put, of course,
Un+1:®(TEU")’ n :O, 1,.‘.,

and the last inequality shows that U, is increasing with n. Using (10.10) we verify
(as in § 3) that without loss of generality we can take Const=1 in (M). Thus there
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exists a function Uy, Ug=>U, such that
(T, EUE) = Ug,

this equality implies the analyticity of Uy on each complementary interval of E.
The convexity of Ug on these intervals was used in the earlier variant of the
proof only to prove that Uy has exactly one minimum on every bounded complemen-
tary interval and is monotone on the unbounded ones. But now it is easy to deduce
these properties directly by considering 7xUg and using the monotonicity of ®@.
The following proposition will be needed to reproduce our reasonings used in
the proof of lemmas 3.4—3.6.

1
Proposition. There is a number J, 66(0, —2—], such that
®(ay) = a’®(y), y=0,
for every a, a=1.

Proof. The identity ®(x)=x.9371(x) shows that the inequality we want to
prove is equivalent to the following estimate

a=29"1(ay) = $71()

which is in its turn equivalent to

ad(t) = 9[a1t_,,)9(bx)

(we set y=98(z) and use the monotone decreasing of 9). At last putting r=xb,
1

5"’ =a reduces our inequality to the inequality

9(x) = b % 9(bx)
or (10.11)
0(x) = b*0(bx)

)
where b=>1, yzl—:—(s—. The function 5—»1_5

sufficient to prove the existence of a number y, y€(0,1) such that (10.11)
holds for every b,b<1, and x, x>0. We have (using the integral representation
of 0 and condition (5), see (10.0)).

1
maps [0, —2—] onto (0,1). Thus it is

0(x) = 3"1—i7<p(xt)dt=j;° {f;q;(xS)ds}-%dz (10.12)

(here we omit the index M of ¢ for the sake of simplicity). On the other hand con-
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dition (5) implies that
i =C. x(P—(x)_ .
x [ o@)dt

Integrating this inequality (we use here a reasoning of [16], see Lemma B) we obtain

()} = Lo

X1/ :j:1¢dt,

Now put x,=tx, x,=tbx. Then

bYE [F o (S)dS = [ p(S)dS
or changing the variable,

B [1o(xS)dS = b [, ¢ (bxS)dS.

Substituting this inequality into the expression (10.12) for § we obtain (10.11) with
y=1—1/C (note that the constant C in (5) is greater than one because of the mono-
tonicity of ).

The analogue of Lemma 3.6 in the present situation is

0<x1<x2.

Lemma 10.5. Let x€CE, and o, ‘li—f(x —d,x+406), where d=c0(x, E)
(0<e,<1, ¢, the constant from the inequality (10.8)). Then

f L\ (:J_Egz dt = Const. d)‘l(UE(x)).

Proof. See § 3 and the preceding proposition. Define the sought function f by the
formula (4.2) (now D,=D(x, ¢; 0)).

Lemma 10.6. There is a constant Q, Q=0, such that for every x, x€R\E,
and n=0,1, ...

01 = 0%t [y ] exp (5 veto).

Proof. See the proof of Lemma 4.1.
It remains only to deduce the inclusion f¢C,{M,} from the preceding lemma.
But

sup [ fM(x)| = Q0" n! sup—ln—exp [—l()(y)].
x€R y=0 ) 2

1 T 1
Note that ~3 0= ~3 Oy= 3 ¢ and hence

1
sup |f™(x)| = Q" n! sup—ln exp{—-—(3n10gi—10gM3n]} = Q"-nl- M3l
xE€R y=0 Y 3 y
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Thus feC,{M;?}. The transformation (M,),=,—(M2?) does not change the cor-
responding Gevrey class but it is not true for general Carleman classes. Nevertheless
it is not hard to finish the proof of Theorem 6. Let us state the above result as follows.

Proposition. E¢& (ML) if Ec(M).

Thus it is sufficient to construct a sequence N=(N,),=, such that E¢(N)
and NMP=M, for n=0,1,.... Put log N,=3log My if n=3k and continue
the functlon n—log N, onto Z+ linearly. For ¢y the supremum

sup (n log-l——log N, ]

r=0

is attained at n=3k and is thus equal to

sup [3Klog ——log N3KJ =3 sup (Klog—l——log MK) = 3+ pp(x).

K=0

Hence E€(N), and Theorem 6 is proved (it is trivial to verify that the sequence
(N,),=, satisfies conditions (1)—(6)).

Let A be a function increasing on [1, + ), A(1)=1. Suppose that A satisfies
the following natural conditions concerning its regularity and growth:

(a) the function y—log A(e”) is convex on [0, + =);

1
(b) the function x—x log A (—] is increasing near the origin and
x
. 1
lim x log A (—]z 0;
x-0 X

1
(©) / g log A ( ) dx=B0o log 4 (5) for all sufficiently small positive 4.
x

xd
(d) lim, _, ;.. —— =0 for every «, a=0.

A(x)

Consider the class 4(4) of all functions analytic in D and satisfying the estimate

f(z)—o(( H]] |z| - 1—0.

The norm [ f|,=sup,cp |/(@)|-A7*((1—[z[)~') makes 4(1) a separable Banach
space. The well-known duality between uniqueness and approximation gives the
following
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Theorem 7. Let E=ECT. Then the set of all rational functions with poles on E

is dense in A(4) if and only if Ec&(A) where

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

x}l
A= (A)p=o; 4, = illzr;T(x—), n=20,1,....
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