
Two approximation problems in function spaces 
Lars Inge Hedberg 1) 

O. Introduction 

The first problem we shall treat is an approximation problem in the Sobolev 
space W~ (Ra). This space is defined as the Banach space of  functions (distributions) 
f w h o s e  partial derivatives D~'f of  order [~[<=m all belong to Lq(Ra). Let K be 
a closed set in R a. The problem is to determine the closure in W~(R d) of  Co(CK) 
the set of  smooth functions which vanish on some neighborhood of  K. 

The second problem is closely related to the first one by duality. It  concerns 

approximation in L p, 1 + 1 =  1, on compact sets by solutions of  elliptic partial 
P q 

differential equations of  order m. 
After some necessary (and well-known) preliminaries it is easy to give a con- 

dition that f has to satisfy in order to be approximable as above. We recall that 
W~(R d) is continuously imbedded in C(R a) if mq~d, but not if  mg<=d. (We 
assume throughout that l < q < o o . )  In the case mq<=d the deviation from con- 
tinuity is measured by an (m, q)-capacity which is naturally associated to the space. 
For  a compact K this capacity is defined by 

C,.,q(K) = inf I1~o11~,~, q~ 

where the infimum is taken over all C ~ functions tp such that q~-> 1 on K, and 
II" I1,.,~ denotes a norm on Wq(Ra). The definition is extended to arbitrary sets E 
by setting 

C,,,q(E) = sup Cm,~(K), K compact. 
KcE 
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If  a statement is true except on a set E c R  d with Cm, q(E)=O we say that it is 
true (m, q)-a.e. 

Now let fC Wmq(R a) and let {~on}~~ be a sequence of  test functions such that 
l i m n ~  I[f-q~l[m,q=0. Then it is well known that there is a subsequence {~0n,}T= 1 
such that {q~,,(x)}~~ converges (m, q)-a.e., and uniformly outside an open set 
with arbitrarily small (m, q)-capacity. This makes it possible to define f (x)  (m, q)-a.e. 
as lim~,_~ ~o (x). We then say that f is strictly defined. ~ what follows we shall 
always assume that Sobolev functions are strictly defined. In particular the (dis- 
tribution) partial derivatives D~f of order lel, which belong to wq_l~l(Rd), are 
strictly defined in that space. 

The following necessary condition for approximation is now obvious. 

Theorem0.1. Let K c R  d be closed and suppose that fcWq(Rd), l < q < ~ ,  
can be approximated arbitrarily closely by functions in Co (~K ). Then f ( x ) = 0  
for (m, q)-a.e, xEK, and D~f(x)=O for (m-[el,  q)-a.e, xEK for all multiindices 

with [eI = 1, 2 . . . .  , m -  1. 

Our problem, therefore, is to decide whether for all closed K this necessary 
condition for approximation is also sufficient. When this is the case we say that 
K has the approximation property for Wq(Rd). 

It is possible that all closed sets have this property, but we can only prove 

this for q > m a x  [ 2 ,  2 - d / ( C o r o l l a r y  5.3). I n t h e  general case we need a weak 

condition on K. The precise results are formulated in Theorems 3.1, 4.1, and 5.1. 
These results go considerably further than earlier results in this direction due to 
J. C. Polking [37] and the author [23]. 

The problem has also been treated earlier for more general function spaces 
(Bessel potential spaces, Besov spaces etc.) but to the author's knowledge only 
when K is a (d-1)-dimensional smooth manifold. See J. L. Lions and E. Magenes 
[24], [25], [26], and H. Triebel [41]. 

It must also be said that our results are new only when m r  1. The case m = l  
is much simpler because of the fact that truncations (and other contractions) operate 
on W f. The difficulty in the general case comes from the presence of  higher deriv- 
atives. It is, in fact, known that all closed K have the approximation property for 
W~(Ra), l<q<o~ .  For q=2  this is (in dual formulation) a spectral synthesis result 
of A. Beurling and J. Deny [9] (see also J. Deny [16]). For 2<=q<r the result is 
due to V. P. Havin [19], and in the general case to T. Bagby [6]. See also the author 
[21 ; Lemma 4] for a simpler proof. A similar result for Cauchy transforms of boun- 
ded functions was proved by L. Bers [8]. Our method of proof in the present paper 
goes back to that paper. 
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Dually, the approximation problem can be stated in the following way. Let 
T be a distribution in Ws l < p < o o ,  pq=p+q, with support in K. Can T 
be approximated in the Banach space W_~m(R d) by measures supported in K and 
their derivatives? 

In this formulation the problem leads directly to our second approximation 
problem. Let X c R  a be compact, and let P(x, D) be a linar elliptic partial differential 
operator of  order m with coefficients that are in C = in a neighborhood of X. We 
say that u~:g~(X) if u satisfies P(x, D ) u = 0  in some neighborhood of X, and we 
denote by ~:fP(X) the subspace of  LP(X) consisting of  functions u such that 
P(x, D)u=0  in the interior X ~ The problem is whether 9r is dense in J(fP(X). 
This problem is dealt with in the last section of the paper. Using the results from 
the earlier sections we improve the earlier results of Polking [37] and the author [23]. 

The case m =  1, i.e. the Cauchy--Riemann operator, is again special, and has 
been treated earlier by S. O. Sinanjan [38], L. Bers [8], V. P. Havin [19], T. Bagby [6] 
and the author [21]. See also the survey article of M. S. Mel'nikov and S. O. Si- 
nanjan [33]. 

In the next section we shall give some facts about (m, q)-capacities and the 
related potentials, which although known may not be well-known. Some new results 
about non-linear potentials are found in Section 4. 

The proofs of our main results depend on an estimate given in Section 2 
(Lemma 2.1), which generalizes an estimate of V. G. Maz'ja [28], and may be of 
some interest in itself. 

1. Preliminaries 

We use the abbreviated notation Vkf:{D'f;  [ctl=k }, and [Vkf[=~j,f=k IO=f[. 
Thus the space Wq(R d) is normed by ][f[lm, q=~k=O I[Vkf[lq. 

We shall use the Bessel potential spaces zeq(Rn):{J~(f);fELq(Rn)}, s~R, 
where the operator Js=  ( I -A)  -~/~ is defined as convolution with the inverse Fourier 
transform G~ of  (~(r -~/2. For 0 < s < d  the "Bessel kernel" Gs 
is a positive function which satisfies 

(1.1) AI[x[ ~-d ~ G~(x) ~ A~[x] ~-d for Ix]--< 1, 

and tends to zero exponentially at infinity. 
We write J s ( f ) = f  (s~, i.e. if fE.oc#fl we have f=Js(f(~))=Gs.f c~), f~ 

We norm ~oq by IIfll~,q=llf(~)llq. When s is an integer and l < q < o o  this norm 
is equivalent to the Sobolev space norm. For this reason we shall not distinguish 
between the norms of W~ q and S~ for integral m, and by []" [Im, q we shall mean 
whichever norm that is most convenient for the moment. For the above (and other) 
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properties of Bessel kernels and Bessel potentials we refer to A. P. Calder6n [11] 
and N. Aronszajn and K. T. Smith [5]. 

We now define an (s, q)-capacity for arbitrary s > 0  and arbitrary sets E c R  ~ 
q by setting Cs, q(E)=inf:llflls, q, where the infirnum is taken over all fEL#~(R d) 

such that f(s)_->0 and f(x)>= 1 for all x E E. The definition makes sense since f(x):3 
f R~ Gs(x-Y)  f(S)(Y) dy is defined everywhere. 

When s is an integer and K is compact this definition clearly gives a capacity 
which is equivalent to the capacity we defined before. That this equivalence extends 
to all Borel (and Suslin) sets is a deeper fact which was proved by B. Fuglede [18] 
and N. G. Meyers [34] using Choquet's theory of capacities. In fact, for any Suslin 
set E we have Cs, q(E)=sup~:Cs, q(K ) for compact K c E .  Because of this equiv- 
alence we shall not distinguish the differently defined capacities by different letters. 

Practically by the very definition of (s, q)-capacity the functions in L#~ are 
defined (s, q)-a.e. The values of  these functions agree (s, q)-a.e, with the values of  
the strictly defined functions defined before, according to a generalization of a the- 
orem of H. Wallin [42] due to V. G. Maz'ja and V. P. Havin [31, Lemma 5.8]. (See 
also T. Sj6din [39], where Wallin's proof is generalized.) Therefore we shall not 
distinguish between functions in W~ and .L~ ~ 

We also note the following Lebesgue property. I f  fE.L~efl then 

lim IB(x, 6)[-l f-:,., zc ~) [f(Y)-f(x)lqdY = 0 
r 

for (s, q)-a.e.x. (B(x, 6) denotes the ball {y; ly-x[<=6} and IB(x, 6)1 its volume.) 
Thus also lima~ 0 IB(x, 6) l - l f~(x ,o) f (y)dy=f(x)  for (s, q)-a.e.x.  This and other 
results are found in T. Bagby and W. P. Ziemer [7]. (See also Remark 2 in 
Section 2.) 

Fuglede and Meyers also proved that Cs,~ can be given a dual definition. In 
fact, for all Suslin sets E 
(1.2) Cs,~(E)l/q=suplz(E), where the supremum is taken over all positive 

measures # with support in E such that I[/~(#)[[p<=l, 1 + 1 = 1 .  
P q 

These dual extremal problems are connected in the following way" There exists 
a positive measure v supported by the closure E of  E such that 

(1.3) f (x )  = V~,~(x) = J~((J~(v))P-1)(x) >= 1 (s, q)-a.e, on E 
and 
(1.4) [[f(s)[[~ = [[/~(v)llg = C~,q(E). 

For the theory of such "non-linear potentials" we refer to the papers by N. G. 
Meyers [34], V. G. Maz'ja and V. P. Havin [31], [32], D. R. Adams and N. G. 
Meyers [2], [3], other papers by these authors, and Hedberg [21]. 

We shall need the fact that there is a constant A independent of E such that 
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the capacitary potential satisfies 

(1.5) V,,~(x) ~_ A for all x. 

This "boundedness principle" is due to Maz'ja and Havin [31, Theorem 3.1] 
and Adams and Meyers [3, Theorem 2.3]. 

Throughout the paper we shall use the letter A to denote various positive con- 
st, ants that may take different values even in the same string of  estimates. 

I f  d - s q < O ,  then C~,q({x})>0. Thus only the empty set has non-zero 
capacity. If  d - s q > O ,  then 

6) (B( 6 ) ) < A 6 a - %  0 < 6 < - 1 ,  (1. A-IO d-sq "<= Cs, q x, = 

and if d - s q = O ,  then 

(1.7) A-X(log2/6) 1-q <- Cs.,(B(x, 6)) <- A(log2/6) 1-~, 0 < 6 ~_ 1. 

For any set E c R  a we define the Hausdorffmeasure A,(E), ~>0,  by 

A,(E)  = ~!mA~Q)(E), where A~)(E) = i n f { ~ ;  E c  U B(x,,  r,), ri<= Q}. 

Then, if E is Suslin and d - s q > O  

(1.8) C,,q(E) <= AA~Z)~q(E), 
and 
(1.9) Ae_,~(E ) < ~o =~ C,.q(E) = O. 

See Meyers [34], and Maz'ja and Havin [31]. 
Let E c B ( x ,  6). In the case d - s q = O  we shall sometimes use the capacity 

C~,a(E; B(x,  26)) defined by 

(1.10) Cs, q(E; B(x, 26)) x/q = sup {/x(E); I]J~(#)llLpta~,2o) <- 1, s u p p p c E } .  
It is then easily seen that 

(1.11) A -1 ~ Cs, q(B(x, i~); B(x, 26)) ~ A, 0 < 6 ~ 1. 

For any set E c  R e we set 

{ C , , , ( E n B ( x ,  6))6 *'-e, i f  d - s q ~ _ O  
(1.12) cs,~(E, x, 6) = 1, if d - s q  < O. 

For d=sq we write 

(1.13) c,,q(E, x, 6; 26) = C,,~(E c~ B(x, 6); B(x, 26)) 

Following Meyers [36] we say that E is (s, q)-thin at x i f  

(1.14) f oC~,~(E, x, 6)~-~ 6-~ d6 <co. 

Otherwise E is (s, q)-fat at x. (See also Adams and Meyers [2] and the author [21], 
where other definitions of  (s, q)-thinness are given.) Thus, if" sq>d, every E is 
(s, q)-fat at all of  its points. 
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We shall need the following generalization of Kellogg's lemma. See [21 ; Theorem 
6 and Corollaries]. 

Theorem 1.1. I f  q > 2 -  d the subset of E c R  ~ where E is (s, q)-thin has (s, q)- 

capacity zero. In particular Cs,~(E)=0 i f  E is (s, q)-thin at all of its points. 

Whether this theorem is true for all q >  1 is unknown to the author. The follow- 
ing is known, however ([21, Theorem 8]). 

We say that E is uniformly (s, q)-thin on F if there is an increasing function 
h such that foh(~)P-16-1d~<~o and limsup6~oCs, q(E,x, 6)/h(6)<oo for all 
xEF. 

Theorem 1.2. Let l<q<~o ,  s>0 .  Then any subset F of E c R  a where E is 
uniformly (s, q)-thin has Cs,~(F)=0. 

The following continuity property will be used in Section 6. See the author 
[21, Theorem 5], and Meyers [36; Theorem 3.1]. 

Theorem 1.3. Let f E . ~ ,  l < q < o o ,  s>0 .  For (s, q)-a.e. Xo the set 
{x; If(x)-f(xo)]>=e} is (s, q)-thin at Xo for all e>0.  

In Section 4 it will be convenient for us to use Riesz potentials Is(g), 

I~(g)(x) = frtd Ix--Y[s-~g(Y)dy, o < s < d,  

instead of the Bessel potentials Js(g). 
Any function f in W~(R d) or L~'ff(R d) can be represented as a Riesz potential, 

f=ls(f(~),  where f(S)ELq(Ra), but the converse is not true in general. (We have 
used f(s~ to denote two different functions, but this should not create confusion.) 

1 
1 s by Sobolev's inequality. Thus Is(g ) If  gELq(RS, then Is(g)ELq'(Ra), ~ ~ =  q 

d '  
belongs to /_aqr but not necessarily to L q. 

(s, q)-capacities, say C'~,q(.), can be defined using Riesz potentials in exactly 
the same way as for Bessel potentials, if O<sq<d. Then 

c ' , ~ ( e )  <- aCs,~(e) 
for all sets E, and 

Cs,~(E) <= AC;,q(E) 

for all sets E contained in a fixed ball. 
I f  sq=d this definition would make the (s, q)-capacity equal to zero for all 

bounded sets. In this case we modify the definition by only considering sets con- 
tained in a fixed ball, and by taking norms with respect to a ball of twice the radius. 
With this modification 

A-1Cs,~(E) <= C~',g(g) ~_ ACs~g(E). 
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In what follows we shall only use capacities in situations where Cs, q and C2,q 
are equivalent. Therefore we shall not hereafter take the trouble to distinguish 
them by differentnotation. 

The maximal function will be denoted M ( f ) ,  i.e. 

M(f)(x)  = sup In(x, 6)l- f. if(Y)[ dy. 
~ > 0  (x ,6)  

Then, by the Hardy--Lit t lewood--Wiener maximal theorem. 

(1.15) [[M(f)[[q ~_ A[[f[[q, 1 < q <oo. 

The following elementary lemma will be used repeatedly. 

Lemma 1.4. (a) Let f be measurable. I f  0 < s < d ,  then for all xER ~ and all 
3 > 0  

f B(x,~) [x-Y[S-d[f(Y)l dy ~_ A3*M(f)(x). 

(b) I f  s>0 ,  thenforall xER d andall 6 > 0  

fty-~t~-~ [x-Y[-~-a If(Y)] dy ~= A3-~M(f)(x). 

The following is a simple consequence. See Hedberg [22; Theorem 3]. 

Lemma 1.5. I f  f ~_ O is measurable on R a, 0 < s < d ,  and 0 < 0 < 1 ,  then 

I~o(f) (x) ~- A g  ( f)  ( x ) l - %  (f)  (x) ~ 

Corollary l.6. Let fEWq(Ra), and let l<=j<=k<=m. Set If(m)l=g. Then 
(j, q)-a.e. 

]vm-J f[ ~ AIi(g) <-- A g ( g ) l - j l k  lk(g)J/k. 

2. An estimate 

In this section we shall give an estimate, which will be crucial for what follows, 
for f(x) near a set where f and a certain number of  its derivatives vanish. 

Lemma2.1. Let fEW~(Rd), l < q < o o ,  mEZ +, let k be an integer, l~k~_m, 
and suppose that Vgf(x)=Oc~ (k, q)-a.e, on a set K for all j, O~_j<=m-k. 
Then, for all balls B(xo, 6), 

6(m --k .-.I- 1)q 

fB(xo.,) If(Y)]~dY <= A ck, q(K, xo, 6) Z~=l 6('-x)a f lV'-k+'f(Y)ladY. d B(xo, 2(I) 

I f  kq=d, the inequality is still true if Ck, d/k(K' XO, 6) is replaced by 
ck, a/k(K, Xo, 6; 26). (See (1.12) and (1.13).) 
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Remark 1. In the case k = m  (i.e. j = 0 )  the lemma is due to V. G. Maz'ja 
[28, Lemma 1]. He also showed that the estimate is sharp in a certain sense. (See 
also Maz'ja [29], and [30].) Maz'ja's lemma was later rediscovered by J. C. Polking 
[37; Lemma 2.10], and used in a context similar to the present one. Our proof  
follows that of Polking. 

Remark 2. T. Bagby and W. P. Ziemer [7] have proved the following related 
result: Let f~Wq(Rd), and let k be an integer, l<-k<=m. Then, for (k,q)-a.e. x 
there is a polynomial p~-k)  of  degree <=m-k such that as 6 ~ 0  

o-a f [f(Y)--PCxm-k)(Y)lq dY = O(CS(m-k)q)" 

For  a full statement of  their theorem we refer to [7]. See also Meyers [35], and 
C. P. Calder6n, E. B. Fabes, and N. M. Rivi6re [13]. 

Remark 3. Meyers [36; Theorem 2.1] has proved that if gEL q, then 

f2 f Ig(Y)lqdY}P-l( -ld(  < c o  

for (s, q)-a.e.x. 
In the case k = 1 Lemma 2.1 gives that 

1 
5-a-(m-~)q f If(y)lqdy <- Aaq-  IV'f(y)iqdY 5)" J B(x, ~) x ,  

It follows from Meyers' theorem and the definition (1.14) of  (1, q)-thinness that 
for all x such that the set K in Lemma 2.1 is (1, q)-fat at x we have 

lim inf c5 -d-(m-1)a f If(y)] q dy = O. 
~I~o .I B(x, 6) 

Thus the polynomial P~m-1)=0 for (1, q)-a.e, x E K  if  q > 2 - -  d ,  according to 

Theorem 1.1. 

Proof o f  Lemma 2.1. We prove the lemma for kq<=d, the case k q > d  being 
easier. We first let f he an arbitrary C = function. Then, for all x and y in R d we 
have by Taylor's formula 

f ( x )  = PCT'-k)(x)+ R(ym-k)(x), 
where 

p(m- k) (X) = 1 ((X-- y)" V)i f (y) ,  
z T - :  . j ,  

and 

Here 

R~,_k) __ 1 (t_z)m_k(a.V)m_k+l/(y+,ro.) &. 
(m-- k) ! 

t = I x - y I ,  and ~ = ( x -  y)/t. 

Without loss of  generality we set Xo=0. Let ~0 be a C 0~ function such that ~o(y)= 1 
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on B(0, 6 0 ~p(y)=0 off B(0, 26), and [V&p(y)[<=A6 - i  for j<=m. Let p be a positive 
measure with support on K c~ B (0, 6) such that I[ Jk (#)II p = I. Let x E B (0, 6). We have 

f(x) II P 11 = f(x) f ~p (y) dp (y) = f ~p (y) P~'- k, (X) dl~ (y) + f ~p (y) R~" - k) (x) dp (y) 

= Ii(x)+I~(x). 

Here lI2(x)[<=A jlgR~"-k)(x)[[k,q [I Jk(#)Hp- In order to estimate I~(x) it is sufficient 
to estimate l[V~(q~(y)R~"-k)(x))[[q. By Leibniz' formula and the assumption on q~ 
this reduces to estimating k 6-i k-i (m-k) Z,=o ]IVy R~ (x)llq, B(0:~)- 

We first let i=k. We have 

IR~m-~)(x)l <_- Atm-~ f lVm-k+Xf(y+ za)l dz 
,JO 

< At +'/" { f :  IV + as}" = . 

Thus, using polar coordinates centered at x, 

f. f s (o 2o [R~m-k)(X)lqdY <= Af("-k)'+'-I dy Ivm-k+Xf(y+w)l, dz 
�9 B(O, 2~) 

<= Aa(m-~)~+~-~ +d-l f d~ f'~O> dt f ' Ivr'-~ + V ( x - ( t -  ,)~r)l~ d~ 
O ] a ] = l  ,/  0 , /  0 

Aa(ra-k+l)~+d-lf IV"-~+* f(Olqlr 
a B(o, 2~) 

Integrating over Ix[<6 we obtain 

f , [IR~m-k)(x)ll~,nr <= A6~'-2k+l)~+a f Ivrn-k+lf(~)[qdr 
(o, ~) B(o, ~)  

Now let i<=k - 1. We have. 

R~'- k) (X) = V, (f(x) -- 2~._~o k ~ ((x-- y). V)/f(y)) Vy 

mk 1 �9 m k l  
= -- Zj~O ~ ((x--y)" V) J Vf(y) + 2 j Z  ~ Vx((x--y) �9 V)if(y) 

m-k 1 
==--~'/=o - f i . ( (x -y) 'V) iVf (Y)+,~ ' -~  1 ( (x_y) .Vy_xVf(y)  

( j - - l ) !  
1 

-- (m-- k)! ( ( x -  y)- V)=-k Vf(y). 

It follows from Leibrdz" formula that for O<=i<=k - 1 

IV~-*R~-k(x)l < A ~ - ~ - I  ix__ l,[m_2k+l+i+j iVm-k+l+j f(y)l 
~ . d j = O  I J I  I I 

- -  A .r162 6m--2k+l+i+j ivm_~+~+jf(y)l. 
Thus 

k-t~_~q V~_i (ra-~) 

-< Aa(m-uk+t)q S'k-x S,t~-l-x 6JqllVm-t~+x+Jfllg,~(o,Z,D 
~.ai=O -(-.~ j = 0  

A(~(m-2k + l)q " ~ k - 1 0 j  q ilvm_~+x+yfllg, n(o '20 
- -  g a  j = O  �9 
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Integrating over Ixl<6 and combining with the estimate for i=k we finally 
obtain 

f ,  <- ~,,=o a ,~o,~,) {0,n) lI~(x)Iqdx AOfm-~'+z)q+a k-1 t~jq f iVrn_k+Z+jf(x)lqdx. 

Now let f~  W~, and suppose W f ( x ) = 0  (k, q)-a.e, on K for all j ,  O~j<=m-k. 
Then there exists a sequence {f.}~ of C = functions such that lira._= IJf-f.llm, q=O, 
and such that IWf(x)-Wf,(x)l-~O uniformly for O<-j~=m-k, except on a set 

] 
G with, say, Ck, q(G)<2Ck, q(Kc~B(O, 6)). Our measure # is now chosen with 

>~-Ck, o(Kc~B(O, 6)), and Ildk(~)ll,=l. support in (Kc~B(O,f))\G, with II/~11=~ 
I f  the above Taylor expansion is applied to f .  for arbitrarily large n, we obtain 

that I~(x) is arbitrarily small, and the lemma follows by letting n tend to infinity. 
The modification for kq=d is proved in the same way since it is easily seen 

that what is really needed is only that IlJ~)llL, tn{o, za))<= 1. 

3. The approximation property for everywhere fat sets 

This section is devoted to proving the following theorem. 

Theorem 3.1. Suppose that K is compact and (I, q)-fat at each of its points. 
Then K has the approximation property for all W~, m = 1, 2, .... 

Proof. Let fC W~, and suppose that Vkf(x)=0 (1, q)-a.e, on K for 0<=k<= 
m - 1 .  (It follows that vmf(x)=0 Lebesgue a.e. on K). Suppose that K is as in 
the theorem. 

We want to construct a C = function to such that co(x)= 1 in a neighborhood 
of K and ][ftollm, q is small. Then a suitable regularization of f (1 -co)  is a C ~ func- 
tion that vanishes on a neighborhood of K and approximates f .  

We decompose R d into a mesh of unit cubes, whose interiors are disjoint, and 
we denote this mesh by ,1r By successively decomposing each cube into 2 J equal 
cubes, we obtain meshes ~r -/r .-., so that ,g/. is a mesh of cubes with side 2-". 
The cubes in ~: ,  are enumerated in an arbitrary way and denoted by Q.i, i=0,  I, 2 . . . . .  
By rQ,~, r>0 ,  we mean the concentric cube with side r2-". 

The definition of (1, q)-fatness can be formulated equivalently as 

(3.1) 2~'=o {CI, q(K n B(x, 2-"))2"{a-q)} p-* = ~ ,  x~ K. 

We set {Cz, q(K~ 5Q.~)2"{a-q)}P-z=2.i, and observe that if  Q.o intersects K, 
and Q., is adjacent to Q.o (i.e.Q.ic3Q.o), then for some xoEK we have B(xo, 2-") 
c 3 Q . o c 5 Q ,  ~, so that 

(3.2) 2,, _~ {C~,,(K c~ B(xo, 2-"))2"{a-')} "-a. 
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Lemma 2.1 applied to V ' - k f  (the components of  which belong to W~) gives 
that for each Q,~ 

(3.3) fo., [vm-kflqdx <= A,~.~i-q 2-"~  fTo. ' Ivmfl~dx. 

Using (3.1) and (3.2) we shall construct the function co in such a way that its 
derivatives match the factor 2.~ -q in (3.3). The idea of  such a weight function goes 
back to a construction of Ahlfors (see L. Bers [8], and also the author's papers 
[20] and [23]), but in the present case the construction is complicated a great deal 
by the fact that we have assumed no uniformity of  the fatness of K. An easier con- 
struction would also be possible if we only wanted to control the first derivatives 
of  09. The construction of  09 is the object of  the following lemma. 

Lemma 3.2. Under the above assumptions there exists a C ~ function o9 with 
the following properties: 

(a) og(x)=0 outside an arbitrarily prescribed neighborhood V of K; 

(b) 09 (x) = 1 on a neighborhood of K," 

(c) 0<_-og(x)<= 1; 

(d) For all x there is a Q.i containing x such that 

(3.4) IV~og(x)l <= A2.~2 "k, k = 1, 2 . . . .  ; 

(A is allowed to depend on k.) 

(e) There is a constant A, only depending on d, such that for all x 

(3.5) Z~*=o Z ,  2,,Z(x; 7Q.,) <_- A, 

where the sum is extended over only those indices i for which Vo9 is not identi- 
cally zero on Q.i. ( z ( ' ,  E) denotes the characteristic function of  E.) 

We assume the lemma for the moment, and proceed with the proof  of  the 
theorem. 

fR~ [ogflqdx<-fv [f[qdx is clearly arbitrarily small, so it is enough to estimate 
fRd [vm(ogf)i qdx" Thus, by the Leibniz formula, it is enough to estimate 

f . ,  [VkoglqlV"-kflqdx for k = 0, 1, 2 . . . .  , m. 

We decompose R a as a disjoint union 1..)~,,o~1 Q'~, where Q~i is a subset of  
Q,l such that (3.4) holds for all xEQ',i. Then, for k = l ,  2 . . . . .  m, by (3.3) and (3.4) 

f R. [Vk ogl" ]V'-* ft" dx = f oa, [Vk ogl~ lvm-k f [' dx 

~- a Z~. ,O,z 2g' 2"kg f oa, Ivm-kflqdx <= A Z~, , , ) , ,  2,, f ,o., Ivmfl~dx" 
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Here ~ '  indicates that we sum over only those Q.~ where Vto is not identically 
zero. Thus, the sum is finite, although K is covered by infinitely many cubes 7Q.~ 
with (n, i)CL 

By (3.5) we obtain 

�9 /~ tic q P 
Z t . , o ~ t  "~f7o., IV f[  dx = fv. (Z,. . , , .  2.,x(x; 7Q.i))IVmflqdx 

<= A f,,, IV'fl  dx, 
where V ' ~  V is small if V is small. 

For k = 0  we have 

f . ,  ItoVmfl qdx <= f IV"fl ax. V 

Since V"f(x)=O a.e. on K the right hand side in these inequalities is arbitrarily 
small, and the theorem follows. 

Proof of Lemma 3.2: Before constructing the function to we make some pre- 
liminary observations. 

Let xoEK, and let {Q.0}~=0, Qno C'r be a sequence of  closed cubes that con- 
tain x0. There is some arbitrariness in the choice only if x0 belongs to the boundary 
of some of  the cubes. Consider the sequence {3Q~o} o. 

Set _2.=min{2.i; Q.~c3Q.0}. It follows from (3.2) and (3.1) that z~__2.=o~. 
Set ~.=max{;t . i ;  Q.ic3Q.o}. If  Q.ic3Q.o we have 

~ni : { C  1, q(K~ 5ani)2n(d-q)} p-1 =>: {C  1, q ( g n  5Qn+l ,  j)2(n+l)(d-q)}P-12-(d-q)(P-1). 

for all Q.+x,~C3Q.+l,O. Thus, 
(3.6) & => M-~.+~, 
where M =  2 ~a-a)r 

Now to the actual construction. For each Q.~ we define 2.* by 

2~*i 2" = max {)-mj 2 m; Q,~j ~ Q.i}. mr~z. 
We set 

Thus Q.(x)<=2.i2" 
B(0 ,2  -"-2) and f~odx=l, then 

(3.7) (0 .*  ~p)(x) <= 2.i2" 

We denote by G. the union of  Q.~ such that 

3 
O.(x) = m~n {2.i2"; xE-~Q.i}. 

for x~Q.~. It follows that if 

for x~ Oni. 

(3.8) 2.~ > -~-M-x2.~, (2oi > 0 for n = 0) 

~o~0 has support in 
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and we set 

(3.9) G" = {x~ G.; dist (x, 0G.) -> 2-"-~}. 

We define a function co o by setting 

o~o(x)=O for xeG~, 

wo(x) = min {1, inff~(x ) Oo(t)ldt[} for xE G~, 

where the infimum is taken over all paths 7 (x) that join OG" o to x. coo is clearly 
Lipschitz, and [Vwo(x)l ~ Qo(x). 

Let q~ =~0 be a C ~ function with support in the unit ball such that f q~ (x) dx = 1. 
Set q~.(x)=2"a~o(2"x), n = l ,  2 . . . . .  We observe that the convolution ~o.*q~.+l.... 
�9 q~.+,, has its support in B(0, 2 -"+z) for all m. 

We regularize coo by setting ~o=coo.~oa. It follows from 0.7) that 

[V&o*q~4*...*cPt(x)l ~-20~ for xEQoi and for all I, 

and that for all k 

]V~(~o* ~0~* ... * ~o3(x)l ~ IVcoo* V~-l~o3* ~o4.... * ~ot(x)l ~- a,h~ 

for x E Qoi and all 1. Here A is allowed to depend on k. 
We now assume that corn and &m=m,,.~o,,+3 have been defined for m =  

1, 2 . . . . .  n -  1. We define co. by setting 

co . (x )=~ ._ l (x )  for xeG~, 
and 

= { L maxo"(t)Idtl} for xEG', o~.(x) min 1, in f (~ ._ l (y) )+  @,x) ,.~_. 

where the infimum is taken over all y E OG" and over all paths 7 (Y, x) joining y to x. 
We then set ff~.=co., ~o.+ 3. 

We assume that ~ . - z  has the following property: Suppose m ~ n - 1  and 
let Q,.icG,,. Then for all .-1 Q.,\(U.+I cj) 
(3.10) lV~._l .~o.+8. . . . .q~.+,(x)l  < * " =2m~2 for all l, 
and 

_ _  A ,~ * "~mk (3.11) ]Wc~247 ~----m~- for all k and l. 

where A is allowed to depend on k. 
We claim that th. has the same property. Let Q.icG.. On G" we have Vco.(x)~_ 

max~.~.0m(x), and outside G" we have Vco.(x)=Vth._z(x ). It follows easily from 
(3.7) and (3.10) that 

IVy.* ~ 2"i2", 
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and 

A,~* 9 nk <=----.i- , for x~Q.~. 

For xCG. we have dist(x, G~)_->2 -"-2. Thus ~. (x)=~._l .~O.+3(x) ,  and VkcS.= 
vktS._l*tp.+s. The claim follows from (3.10) and (3.11). 

Let QmicGm, x~Q.,i\[_J*~+ 1 Gj. By (3.8) we have 

(3.12) ]vk~.(X)I __~ AM)..,~2 "k for all n _-> m. 

We claim that r 1 in a neighborhood of K if n is sufficiently large. Con- 
sider again xoEK and the sequence {Q.0}~~ of cubes containing Xo. 

Let {~.v2"v}~~ be the sequence of  succesive maxima of {)[.2"}o, i.e. ~ .2"< 
~[.2 "v for n<n., ,~.2"<=I.v2"v for nv~n<nv+l, I .  2"~<X.~+12"~+1. 

Then ~ans~.Xl-1~n~n,,mn,,z~+12-n:~n, so that ~ '=0  )~._-< 2 ~[~ 1. , 
which implies that the last series diverges. It follows from (3.6) that also 

Z T = 0  2.v--1 =OO. 
Moreover, (3.6) implies tha t  3Qn_l, oCGn,,_m . In fact 2._~=>M-1~.~ by 

(3.6) and _._I 9 ~*>...~_1,~_~* 9.~-1 for all i such that Q._l,  iC3Q._l,  o. Thus 2. _1,,> 
~ r - x ~ .  for these i, which is (3.8). 2 " *  "'nv--l,i 

Thus 5 -~Q._l, o C G . _ l .  Since 3Q. ,oc2Q._l ,  o, it follows that the distance 
from 3Q.~, o to 0G~_ 1 is at least 2 -"v-1. Thus, if xE3Q.~, o and yEOG'._x, we have 
fr(,,~) max,.~._~ Om(t)ldt[>=2-"~-1__2._12"~-l=�88 1. If xEQ.~,o the integral 
is _->~_2._ 1. Consequently, if ~._z(x)>-_L on 3Q._~, 0, it follows that 

:=. 1 o9 ._~(x )=L+~_2 ._  1 on 3Q.~,0, and that the convolutions ~o._~.~o.~+s.. . .  
.~0.~+, satisfy the same inequality, as long as L+~_2._1<=1. In any case, the 
divergence of ~*=o _.2. _~ implies by induction that &.(x)= 1 in a neighborhood 
of x0 for sufficiently large n. It follows from the compactness of  K that ultimately 
&. (x)= 1 in a neighborhood of K. 

We set to=&.  for some sufficiently large n. It is clear that by starting 
the construction from ~g.o for some large no instead of  from ~/0 we can construct 

with support in an arbitrary neighborhood of  K. 
All that remains to prove now is (e). Let x be arbitrary and let N(x )=N be 

the largest index n that appears in the sum in (3.5). Let x0 be the point in K that 
is nearest to x, and let xo~Q.o, n=0 ,  1, ... ,  as before. 

Suppose x~7Q.i. For each n there are only Ae such cubes, where A d only depends 
on d, so that ~ Z ( x ,  7Q.~)<=Ad. Moreover, if 2.~>0 the cube 5Q.~ intersects 
K, so that 5Q.~AQ.o for some A. It follows that 2.,~A~[._.0 for some A and 
no, and hence that ~2 .~Z(x ,  7Q.~)~-AI,_, o. 

On the other hand ,~N.=o,[.<=Ao~(xo)=A by the construction above. Since 
,l,~ is always bounded by a fixed constant (3.5) follows. 
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4. The approximation property for sets with zero capacity 

Theorem 4.1. Suppose that K is compact, and that Ck_l,q(g)=o for some 
integer k, 2<-k<=m. Then K has the approximation property for 14/'~(R d) /f 
lim infa~oCk, q(K, x, 3)>0 for all xEK (thus in particular i f  kq>d). In the case 
kq=d  the result is true with Ck.q(K, x, ~) replaced by Ck.~(K, x, ~5; 2~). 

The plan of the proof is the following: We assume that fE  W~, and that f(x) = 
Vf(x)=.. .=V'~-kf(x)=O (k,q)-a.e. on K. (Note that the higher derivatives, 
Vm-k+~f(x), i=  1, 2 . . . . .  automatically vanish (k - i ,  q)-a.e, on K, since Ck_i,q(K ) =0.) 
Again we shall estimate IIf~Ol[m,q where the function 09 equals 1 in a neighborhood 
of K and this time is such that Ilcoll~_~,~ is small. 

co will be constructed by modifying a non-linear potential, and the additional 
information we need about such potentials will be given in a series of lemmas. 

The information we need about f i s  contained in Lemma 2.1, and in the follow- 
ing lemma. 

Lemma 4.2. a) Let f C ~ ( R d ) ,  where l<q<oo ,  s>0,  and sq<-d. Let E, denote 
the set of  points x where 

Mq(f)(x) = s u p f r - d f  lf(y)lqdy}Vq> 1/~. 
r>0 t B(x, r) 

Then C,.a(E,)<=Adllfilq.q. 

b) Let f 6~_ t (Ra) ,  where l<q<oo ,  0 < t < s ,  and sq<=d. Let E: denote the 
set of  points x where 

Mt,~(f)(x) = sup r i {r -d fB ,>0 o,,,'J If(Y)I~ dy}llq> lie,. 

Then C~,q (E,) <=AA~),q(E,) <- Ae q I]f]]~_t,q. 

The lemma is contained (somewhat implicitly) in the papers of A. P. Calder6n 
and A. Zygmund [12; Theorem 4, p. 175, and 195--197] for t>0 ,  and T. Bagby 
and W. P. Ziemer [7; Theorem 3.1 (c), p. 136] for t =0. For the reader's convenience 
we prove the lemma here. 

Proof of  a). We have f=d,(f@)), f(S)ELq. It is no loss of generality to assume 
that f(~ 

Suppose that r- ~ f ~(x, ,) f (  Y)q dy > e, - q. 
Then, either r-afn(x.,)dy{fn(x,~oa,(z-y)f@)(z)dz}q>=A-le,-q, or else 

fR,  Gs(z-Y)f(*)(z) dz>=A-le,-1 for all yEB(x, r). 
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In fact, for any yoEB(x, r) we have 

f l,_~l~2rGs(z-yo)f")(z)dz_ ~= A , ~ infs(~, ,) f lz-xL~_2, Gs(z-y)f(~)(z)dz" 

But for any yEB(x, r) we have by Lemma 1.4 and (1.1) 

f s G~(z-Y)ffS)(z) dz <= AM(ff~))(y)r ~. 
(x, 2 0  

Thus, either 

r~g-a f B M(f~))qdy >= A-I~-~, (x, 0 

or Js(ffs))(y)>=A-a~ -1 on B(x, r). 
By definition a union U a of balls where the second alternative holds has 

C,,o(U1)<=A~qllfll~,q. If  d>sq any union U~ of disjoint balls such that the first 
alternative holds h a s  Cs, q(U2)<=AA~_)sq(Ua)<=A~q f M(f(s))qdy<=A~ q f ( f ( s ) ) q d Y  = 

A~qHfH~,q, by (1.8)and (I.15). I f  d=sq the first alternative is impossible if e is 
small enough. Art application of a well-known covering lemma finishes the proof. 
(See e.g. Stein [40; Lemma I. 1.6], see also Bagby and Ziemer [7; Lemma 3.2].) 

Part b of Lemma 4.2 is a consequence of the following lemma. (Notation as 
in Lemma 4.2). 

Lemma4.3. Let fE.~q_t(Ra), l < q < ~ , ,  0 < t < s ,  sq<=d. Then Mt, q(f)(x) ~ - 
AMs, q(f~'-~ 

Proof. We set x = 0  and assume that f(~-~ For [zl~_r we obtain 

fitly-2, G~- ' (Y-z) f~176 ~- A f lY-zl~-t- ' l f~176 

<- a f~ lyl~-'-dfC~-O(y)dy = A Z~~ f,~--~_~,t<,~-[YI~-'-nf<~-~ yl~_r 
< a v -  ,,2"-~, "-'-" { f  <:"-")'ay}'/'fr2") "/" : ~.,a n =1 ~, J lyl:~ r2n 

<= AM~,a(f ~-`)) (0) r -t Z7=1 2 - "  = AMs, a(ft'-t))(O) r-'. 

On the other hand, for the same values of  z we have by Lemma 1.4 

fir:J, G~-'(Y- z)fts-~ <- A f t,l~_2, [Y- Zl'-'-a f(~-t)(y)dy<=AM(fC'-'))(z):-" 

where M ( f  c,-o) here denotes the maximal function of the restriction of f o - o  to 
the ball B(0, 2r). 

Thus, for all r>0 ,  

<= AM~,~ (-f~176 f~ ,i~-, M(f~ dz 

~.-,) ~ . - .  f , ~.-,, , ~y~'-")(o),. ~_ AM,. ,( f  )(0) +At  z _,1~-, ( f  ) az <- AM,,, 

Here the second inequality follows from (1.15). 
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Lemma 4.2 now follows, because it is easily seen that the set G~ where 
Ms, q(g)>l/~, gEL q, has A~Z~q(G~)<A~qllgll~. 

We now turn to the function co. In section 3 we defined meshes ~r162 of cubes 
Q with side 2 -". According to a well-known lemma of H. Whitney (see e.g. Stein 
[40; Theorem 1.3]) the complement ~K is a union of cubes Q with disjoint interiors, 
such that each Q belongs to some r162162 and such that for each Q 

diam Q ~ dist (Q, K) ~ 4 diam Q. 

We choose such a covering of ~K. In what follows the cubes in this covering 
will be called Whitney cubes with respect to K. 

For technical reasons it will be more convenient to prove the following lemmas 
for Riesz potentials than for Bessel potentials. 

Lemma 4.4. Let V~q=/~(g), g=(I~(v)) v-l, where v is a positive measure with 
compact support, 0 < s < d ,  and l<q<oo .  Let Q be a Whitney cube with respect 
to supp v with side 2-L Then V~,q has the following properties. 

a) For O<=j<s and xEQ 
tWV~,a(x)I <- AIs_2(g)(x ). 

b) For any x and y in Q 

a-lI,_.i(g)(y) ~_ Is_j(g)(x ) ~_ AIs_)(g)(y ) 

(the Harnaek property). 

c) For all integersj and for all xEQ 

[ViV~5(x)[ <_- A2 j. V~,~(x). 

d) There is a function h~=O with 

[]hl[q <~ Al[gllq, 

such that for all j ~  s and x E Q 

and for all x and y in Q 

]W~,~q(x)] ~ A2r 

A-lh(y) <= h(x) <= Ah(y). 

Proof. (a) follows immediatelly from the fact that ]Wlxl~-al<=,,llx]~-~-d. 
We prove (b) by proving that for any ~ and fl, 0<~, fl<d, V(x)= 

f Ix-y[P-a{f ly-zl~-ddv(z)}p-ldy has the Harnack property, A -~ V(y)<= V(x)~ 
A V(y) for x and y in a Whitney cube Q. Essentially the same result was proved 
by Adams and Meyers [2; Theorem 6.1] and the author [21; p. 305], but we include 
a proof here for the sake of completeness. 
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For  

and thus 

Thus 

Let x = 0 ,  and suppose dist(0, s u p p v ) = 6 > 0 .  It is enough to prove that 
V(y)<=AV(O) for [y[~�88 Set (Ia(v))P-I~-g. Then 

= + 

< l a ' < = [ t [ ,  ly-t[>=[t[-]y]>=]lt ]. Thus For  [t l=>{ 6 we have [y[ = g _  =~  
f !,l~_(3/s)n lY-ttS-ag(t)dt<=A f ltl~_(3/8}a ]tle-ag(t)dt<=AV(O) �9 On the other hand, 

fltl~_(3/s)n [y -  t f -ag( t )  dt = f l~-,l~_(a/s)n ]*IP-dg(Y - ~) d~ 

<= f ,~,~,~,,, l*I"-d { f  ,=,~, ly-~-zl ' -d dv(~)}"-* &. 

Izl<--{6 we have [z+~l>-_lzl-l~t>=lzl-{Izl=}lzl, <1 .<= [yl = ,  lzl =~ Iz+*l, 
lY- -Z-z l>J I lY] ~} I =z+z-- >= z + z .  

<- A s }'cltJ-d {f,,,~, I* +zl =-d av(z)}'-*d, 

=. ]~[~-dg(z)dz <= AV(O), which proves (b). 

<:I Now let j be arbitrary, let [yl=~6,  and consider WI,(g)(y).  We split the 
kernel Ix] ~-d by setting [XI'-d=Ra(x)+R~.(X), where R~EC ~, and 

1 
RI(x) = Ix[ *-a for Ixl <_-~a; 

R l ( x ) = O  for I x t ~ 3 6 ;  

]V'R,(x)] <-- a6  *- ' -d  for I 6 _<- Ix] -<- 3 6. 

We have VJ(R1. g)(y)=(Rx . V-fg)(y) 

= f R , ( O W g ( y - J d z  = ~,t~a~/, R,(z)V{ {f~=~, [y -* - z l* -ddv( z ) }" - ldz .  

1 3 1 j s - - d  . ~  Now [.v-v-zl>=lzT-ly[-l~l=6-~a--ia=~a, and thus [V, l y - v - z l  [-- 
a a - J l y - z - z }  *-d for all .L Thus 

IVJl,(v)(y-,) l  = [vJ f ly--v--z[~-ddv(z) <= Aa-JI , (v)(y-*) .  

By Leibniz' formula and induction we obtain [VJg(y-  ~)1 = 1Vj (I~ (v) ( y -  z))v-a[ ~_ 
AO- ig (y - , ) ,  and hence 

(4.1) ]VJ(Rl . g)(y)] <- Aa-J(Rl  . g)(y). 
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Moreover, we have g(y-z)<=Ag(O), so 

(4.2) IV j (R1 * g) (Y) I <- A f -  Jg (0) f R1 (,) dr <- A g (0) 6 s -  J. 

On the other hand, [W(R2* g)(y)l=lf WR2(y--t)g(t)dtl<=Ag-J f R2(y-t)g(t)dt. 
Together with (4.1) this proves (c). 

But for j > s we also have 

f wg2(y- t )g( t )d t  <= • f , ]y--tl~-j-dg(t)dt <-- A6~-Jm(g)(y), 
y -  t l_~ (1/2)6 

by Lemma 1.4. 
Since ][M(g)llq<=A ][grlq, and since it is easily seen that M(g)(y)<=AM(g)(O), 

this proves (d) (with h=M(g)) for j>s .  
The case j = s has to be treated separately. It is easy to see that 

IV J (R2 * g) (y) -- V j (R2 * g) (0) l =< f IV JR2 ( y -  t) - VJR2 ( -  t)[ g (t) dt 

~_ f }y]]t]-d-Xg(t)dt <-- A]y]6-aM(g)(O) <= AM(g)(O) 
l t l-~(l/2)b 

by Lemma 1.4. According to (4.2) we have ]VJ(R1. g)(y)]<=Ag(O). 

Thus [W(Ij(g))(y)[<=A[W(Ij(g))(O)[+AM(g)(O). The lemma follows since 
[[W(Ij(g))[[q<-A [[g[]q by the theory of singular integrals. 

Now let V v sq<=d, be the capacitary potential for a compact set F,  so that s ~ q  ~ 

V~'q(x)=l on s u p p v = F .  Then V~q(x)<=A for all x by the boundedness prin- 
ciple (1.5). Let ~(r), r=>0, be a non-decreasing C = function such that ~(0)=0,  
and ~(r)  = 1 for r->_ I. Set o9 = ~o V~ q. 

Lemma 4.5. There is a function h>=O and constants A such that for any Whitney 
cube Q with respect to F with side 2-" 

(a) f~  h(x)~ ax <- AC~,q(F). 

(If  sq=d the integral is taken over a fixed ball containing F.) 

(b) A-~h(y)<=h(x)<=Ah(y) for x and y in Q 

(c) [VJog(x)l<=Ah(x) i/~ for j<=s and x(t F 

(d) [Wo(x)<=Ah(x)2 "~-~) for j > s  and x~Q. 

Proof Cf. Littman [27], and Adams and 
g=Is(v) p-1. 

Then Vco= # ' .  V~b, IV~col <= I~"l IVr I~'l Iw01, 
A Z,=I I~~162  where the last sum is taken 
(~1, �9 ~1) such that i _ �9 . . ,  ~z=xctl--J, and all ct~=>l. 

Polking [4]. Set ~O=V~,q=I~(g), 

etc., IV ~ o91 ~_ 
over all i-tiples 
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If  cq<s we have by Lemmas 4.4 (a) and 1.5 

(4.4) IW, O[ <_- AI~_~,(g) <= AM(g)~176 where 01 = ~ .  
S 

By Lemma 4.4 (c) we also have 

(4.5) IW'Ol <- A2"~'O in Q. 

For al => s Lemma 4.4 (d) gives 

(4.6) IW'01 <- A2~%-~)h, 

where h has the Harnack property. 
Thus, for j < s ,  we find by (4.4) and (1.5) 

IW~I < i  J /]~=1 <= AM(g)J/~ i-i/~ ~- AM(g) i/~, 
- -  Zi=l ~ox+...+0,=j/~ M(g) ~176 

and similarly by using (4.5) and (4.6) IV~ml<--_A(M(g)+h) (if s is an integer), 
and for j > s  IWo~[<=A(M(g)+h)2 ~(j-s). Since both M(g) and h have the Har- 
nack property the lemma follows. 

For technical reasons we shall need the following lemma. 

Lemma 4.6. Let F be compact, and let v be a positive measure such that V~q(x)= 
I~(Is(v)P-1)(x)>=l (s,q)-a.e. on F, and V~q(x)<-_M everywhere. Suppose that 
F contains a cube Q. Then there is a constant c>0,  independent of  F and Q, such 
that V~,q(x)>=c for xC2O. 

The lemma follows immediately from the following somewhat more general 
lemma. 

Lemma 4.7. Let F be compact, and let v be a positive measure such that V~, q(X) = 
Is(Is(v)p-1)(x)>=l (s,q)-a.e. on F, and V~q(x)<=M everywhere. Suppose that 
C,,q(Fc~B(Xo, 5))~s~-~_->c>0 (C,,,(Fr~B(Xo, 6); B(Xo, 2~))=>c /f sq=d) for some 
5>0.  Then V~q(xo)>=Ac p-l, where A is independent o f  v, F, Xo, J, and c. 

Proof. The proof is basically the same as that of the Wiener Criterion (Theorem 
2) in [21]. 

Set x0=0. Let aa be a unit measure on Fc~B(O, 5)=F~, such that 
IlZs(trn)llp<=2Cs, q(F~) -1/q (such that { f  lyl~_(z/mI~(a6)P dx}l/v<=2Cs,~(F~; B(O, 25)) -vq 
if sq=d). Such a measure exists by the dual definition of Cs, q. Then 1 <=f V~,qda~= 
fRaI~(a~)I~(v)p-ldy. We denote V~,q(O) by V and assume that V<I .  If  ly[_->-~5 
we have Is(a~)(y)<-Alyl ~-d, and thus 

v= f lyis-dI~(v)p-l dy >= A-~ f ~ I,(a6)I~(v)n-a dy 
y l ~ ( a / ~  

~- i -1 (1 -- f I~(tr,) I~(v)P-l dy) . 
x. ,J lyj~_(a/2)dl 
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We denote the restriction of v to B(0, 46) by v46. Using the definition of a 6 and the 
boundedness of V~q, H61der's inequality gives 

flyl~_(3/2)~ ls(t76) Is(v4~)V-x dy <= 2C~,q(F~)-l/qllls(v4~)l[~ -1 

~_ 2C~,,(F~)-I/,M 1/~ v(B(0, 4~)) 1/~. 

We want to estimate f ryl~_t3/2)~ I~(a6)I~( v -  v4~)V-l dY = 
fd~(x) flyt~_r3/~)6 Ix--YlS-d{fl,l~_4a [Y-t[~-adv(t)}n-ldy �9 For these x, y, and t we 
have l y - t l ~ _ ~ l t - ( y - x ) ] ,  and thus ly--tl~-d~_Alt--(y--x)l ~-e. It follows that 

yt~- (a/2)a a 

= iz1~(5/2),~ 

Thus f~,._~s/3~, Is(~)/~(~) ~-~ dY<='4C~,~(F~) -l/q v(B(0, 4~))~/~+AV. 
But according to [21 ; (4), p. 303] we have for sq<=d 

v ~_ A f~(v(B(o, ;~):-~)'-lr-~dr ~_ A(~(S(O, 4~))~-")'-~. 

By assumption C,,~(F~)>-c6 e-'q. Thus Cs, q(F~)-I/qv(B(O, 4t~))Vq<=Ac-X/qV x/v, and 
thus 

f, is( )Is( ) dy = A(c-VgV +V) <= Ac-~/~V ~/v. Yl~-- (312) c$ G 6 V p--I -< lip 

Hence, either Ac-VqvVv>lvVv~_~A-Ic~/q, or else A V ~ I - - A c - 1 / q v 1 / v ~ .  
But since V<= V vn, the last inequality gives Ac -~/~ VVP>=l. The lemma follows. 

Proof of  Theorem 4.1. K is the given compact set, C~_z.~(K)=0 for some 
integer k, 2<=k<=m. Let {Q} he a Whitney covering of [K. 

Let f ~  W~(R~), and suppose that f (x )=Vf(x)  . . . . .  vm-~f(x)=O (k, q)-a.e. 
o n  K.  

Lemma 2.1, applied to f and to vm-Sf, j = k ,  k + l  . . . .  , m - l ,  gives for a 
Whitney cube Q with side 2 -" and center x~ 

(4.7) 

fo t V ' n - J f l ~  <= Ac~,~(K, x a ,  L t 2 - " ) - 1 2  - t j-k+l)"~ Zi=lk 2--(,--X),~ f L'Q lV=-k+, f l~ dY. 

Here L1 and Lz are suitable constants, only depending on d, chosen so that L12-"= > 
2dist(xe, K), and L~Q~B(xo,  Lz2-'). 

Let e>0  and denote by G '=  I.J,.~ Q,~ the union of all Whitney cubes Q.~ 
such that 
(4.8) ~ 2 "~-(~-z)"~ [ IVra-k+~f{~dy > r 

Z i = l  d LsQ. I 
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o r  

(4.9) 2nd f ~,, Ik_t(fr > ~-~. 

By Lemma 4.2 we have ' q q Ck_I,q(G~)<A~ Ilf[lm, q. Therefore we can choose a neigh- 
borhood G~ of  K such that G~cG~, and such that Ck_I,q(G~)<A~ q f[]~ q. We 
can also assume that C,~\K is a union of Whitney cubes. 

Let v be the ( k - l ,  q)-capacitary measure for G,, so that V[_l,q(x)=>l on G~. 
Let U~= U(9Qnt), the union being taken over all Whitney cubes Q.z~G~. Then 
V~,_l,q(x)>=e>O on U~ by Lemma 4.6. 

Now set o9= Oo(e-lV~_l,q), where O(r), r =>0, is a non-decreasing C ~ function 
such that O ( r ) = 0  for < <1  0 = r =  7 and O ( r ) = l  for r=>l. Thus o~ has compact sup- 
port and og(x)= 1 on U~. 

Consider a Whitney cube Q contained in G~. Then cg(x)= 1 on 9Q. Since any 
Whitney cube adjacent to Q has at most 4 times the side of  Q, it follows that 
co(x)=l  on any such cube. Thus, for a Whitney cube Q with side 2-"  such that 
Vo~ (x) ~ 0 on Q, we have dist (Q, OG~) ~A dist (Q, K)->A2 -n. Therefore Lemma 
4.5 applies to o~ and the Whitney covering of  ~K, although v is supported by G,. 

We now assume for the moment that ek, q(K, x, 6)=>tt>0 for all x~K as soon 
as 5<=50 . 

We have to estimate fR~ ]W~ qdx for all j, O<=j<=m. Let Q be a 
Whitney cube where V(o does not vanish identically. 

First we consider the case k<=j<=m, i.e. O<=rn-j<=m-k. For large enough n 
we have by Lemma 4.5, (4.7), and (4.8) 

f o  [VJ~ IVm-J f l q d x  

Ah(xQ)qZO-k+a)"qq -12--O--k+X)"~ ~ = 1  2-(i--1)nq f Ivm-k+if] ~ dx 
�9 / L2Q 

<= A~-Xh(x~)q2-"% -q <= A~-l~-q f o fi(x)qdx. 
Thus 

fR~ [W o~l q IVm-J f[ a dx <= ~Q f o Iw~l~ Ivm-J f[ q dx 

< Aq- le-qfR h(x)qdx <= A~/-ll[f[l~ a ,q" 

Now let l<=j<=k--1. Set j /(k-1)=O. We can assume that fcm)>=O. By Lemma 
4.5, Corollary 1.6 and (4.9) we have 

fo I vml '  Ivm-J f[q dx <= Ah(xa)q~ f Q Ivm-'i flq dx 

<= Ah (XQ) ~~ f o M(ftm))O-O)qlk_a (f(m))Oq dx 

<= A(h(XQ)q2-na)~ {fo M(f(m))qdx}l-~ f o  Ik-t(ftm))qdx}O 

<= A {fQ h(x),dx}~ M(f'm').dx}l-%-. ~ 
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By H61der's inequality for sums 

La ]VJog]qlvm-Jfl q dx ~= A { L  a h(x)qdx}~176176 

ACk_l,q(Q) ~ [Ifl[~�89176 -q~ <- A Ilfll~,q. 

Finally frtd [ogvmf[qdx~f~ppo [vmft qdx is arbitrarily small, since rues K=0 .  
Thus by the Leihniz formula fR~ [ Vm (ogf)l qdx is uniformly bounded, independently 
of e. On the other hand, r pointwise on gK as e-+0. By weak com- 
pactness there is a sequence {o9~} such that {og~f} converges weak* in Wmq(Rq a). 
By the Banach--Saks theorem there exists a sequence of  averages o9~ such that 
{og~f} converges strongly in W~(Ra), which finishes the proof under the restriction 
made on K. 

(Instead of  using the weak compactness argument we could also use a strong 
type estimate of D. R. Adams [1]. His estimate implies in fact that 

�9 - - q  , '  

l immf,_0e Ck_l,q(G~)=0, which is all we need.) 
Now assume that K satisfies only the hypothesis in the theorem. We can write 

K : U ~ K  n where Kn={xEK; Ck, q(K,x, 6)>=2 -n for 6<=2-~}. Then it is easily 
seen that the closure K~CKn+v By the above proof  f can be approximated ar- 
bitrarily closely by a function that vanishes on a neighborhood of  K'~ for each n. 
By the compactness of  K one of these neighborhoods is a neighborhood of  K, which 
proves the theorem. 

5. The approximation property for general sets 

Putting the results from Sections 3 and 4 together we obtain the following 
theorem. 

Theorem 5.1. Let K c R  d be a closed set. Then K has the approximation pro- 
perty for W~ if the following conditions are satisfied. 

(a) The subset E l c K  where K is (1, q)-this has CI, q(EI)=0. 
(b) For 2 ~ k ~ m  the subset EkCER_ 1 where liminf~0ck, ~ (K, x, 6 )=0  

(Ck, q(K, x, 3; 26) in case kq=d) has Ck, q(Ek)=0. 

Lemma 5.2. Let fE  W~(Rd), and let F o R  d with CI, q(F)=0.  Then for any 
e > 0  there exists a function OgE W~ such that o9=1 in a neighborhood of  F, 
f(1-o9)E Wq c~L ~, and [[fo9l[m,q<e. 

Proof We assume, without loss of  generality, that f c a n  be written f=Im(f(m)), 
f(m)>=O. Let Gz={x;f(x)>2-x}.  Then G~ is open and Cm,~(Ga)<A2q[[f(m)llq. 
There is a function o9 such that og(x)=l  on Ga,0<-og(x)-<_l, and [[og[]~.q-<_ 
ACm, q(G.~). 
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We want to estimate flf6911m, q. It is enough to estimate f IWoalqlV"-Jflqdx 
for O~j<=m. The term for j = 0  is easily seen to be arbitrarily small. For 0 < j < m  

q . < :  we use Lemma 4.5. Thus IW~(x)l<-Ah(x) j/'', [Ih[]q=hf,,,,~(Ga). By Corollary 
1.6 we also have 

]Vm-Jf] < Al j ( f  (m)) < AM(fO"~)l-~ ~ 0 - j 
m 

Since V&o(x)=0 wherever f ( x ) > 2  -1 we obtain 

f g, IV/ ~ flq dx <- h).-qJ/m f R a (hJlmM(f(m))l-jlm)q dx 

,4;~-,'/m { fR h 'dxI ' /"{ fa  M(f'm')'dx}~-'/" 

< A Ilff")llgJ/m IIM(f(=))ll{tx-J/') ~ A Ilfl[~ 

Again an application of weak compactness and the Banach--Saks theorem or of 
D. R. Adams' estimate [1] finishes the proof. 

Proof of Theorem 5.1. Suppose that K satisfies the above conditions, and that 
f ~  Wm q and Vm-Jf(x)=0 (j ,  q)-a.e, on K for j = 1, ..., m. Since we can always 
assume t h a t f h a s  compact support, it is no restriction to assume that K is compact. 
It is clear from the proof of Theorem 3.1 that K \ E  x is a countable union of compact 
sets each of which has the approximation property, and similarly it is clear from 
the proof of Theorem 4.1 that each of the sets EI\E=, ..., E,,,_I\E,,,, is also a 
countable union of compact sets with the approximation property. Now by Lemma 
5.2 f can be approximated by a function f~ that vanishes in a neighborhood of E=, 
and still satisfies the hypothesis of the theorem. Then, by Theorem 4.1, f~ and thus 
f can be approximated by a function f ,  that also satisfies the hypothesis and 
vanishes on a neighborhood of a part of Em-~, etc. By Theorem 3.1 f c a n  be app- 
roximated by fm+:t that vanishes in a neighborhood of a compact part of  K. The 
theorem now follows from the compactness of K. 

The following corollary follows immediately from Theorems 5.1 and 1.1. 

Corollary 5.3. Every closed K c R  d has the approximation property for W~ 
for allm if q > m a x ( ~ ,  2 - ~ ) .  

Remark. That the approximation property holds for q>d was known before. 
See. J. C. Polking [37], and V. I. Burenkov [10]. 

Remark. If  we could weaken the hypothesis (b) to requiring only that the set 
E k c  E k_ x where K is (k, q)-thin has Ck, ~ (Ek) = 0, it would follow that the approxi- 
mation property holds for q > 2 - - ~  for all K. If  in addition Theorem 1.1 could be 
extended to l < q < ~  the approximation property would follow for all K and 
W q, l < q < ~ .  
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We give another corollary that can be formulated without using capacities. 

Corollary 5.4. Let K ~  R d be a closed set, and suppose that every compact subset 
of  K has finite k-dimensional Hausdorff measure for some integer k, 1 <:k~_d. Suppose 
furthermore that K is sufficiently regular so that for (m, q)-a.e, xCK there exists 
a truncated cone V x c K  with vertex at x such that Ak(Vx)>O. Then K has the 
approximation property for W~(Ra), 1 < q <  ~. 

Proof. The assumption that Ak(KnB(O,R))<oo implies that Cj, q(K)=0 
for j q ~ d - k ,  by (1.9). Let J0 derfote the integer part of (d-k)/q.  Then (J0+ 1)q> 
d - k , k > d - ( j o + l ) q ,  and it follows that Cj0+l.q(Vx)>0. (Maz'ja and Havin 
[31; Theorem 7.1]). Then it is easy to prove by a homogeneity argument that 
Cjo+a,q(KnB(x, 6))=>CA+a,q(Vxc~B(x, O))=>A6d-(Jo+l)qCjo+l,q(Vx) , if  d>(jo+ l)q, 
for 6 small enough, and that Cyo+l.q(KCaB(x , 6); B(x, 26))= > 
Cjo+l.q(VxnB(x, 6); B(x, 26))=>ACjo+l,q(Vx) if d=(jo+ l)q. 

6. Approximation in L p by solutions of elliptic partial differential equations 

We first state as a theorem the dual formulation of the approximation property 
given in the introduction. 

Theorem 6.1. A closed set K c R  d has the approximation property for W~m if 
and only i f  (signed) measures with support in K and their partial derivatives are dense 
in WP_m(K), the distributions in W_Pm(R d) with support on K. 

Proof. A distribution T in W~ m (Ra), i.e. a bounded linear functional on Wq(Ra), 
belongs to W_P,n(K) if and only if (T, 9 ) = 0  for all C = functions ~p with support 
off K. 

Denote by L(K) the linear span of all distributions in WPI(K) that are measures 
or derivatives of measures. Suppose f E  Wq(Ra). It is easily seen that (T, f ) = 0  
for all TCL(K) if and only if Vkf(x):O (m--k, q)-a.e, on K for k = 0 ,  1 . . . . .  m - 1 .  

Thus L(K) and WP_m(K) have the same annihilators if and only if K has the 
approximation property for Wmq(Ra), which proves the theorem. 

Now let P(x,D)=~l~l~_ma~(x)D ~ be a linear elliptic partial differential 
operator of order m with C = coefficients defined in an open set 12=R ~. If  F is 
relatively compact in ~ we denote by ~ ( F )  the set of all functions u that satisfy 
P(x,D)u=O in some neighborhood of F. We let l<p<~o, pq=p+q,  and we 
set ~g'P(F)=3ff(F~ i.e. the subspace of LP(F) that consists of functions 
u such that P(x, D)u(x)=O in the interior of F. 
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Following Polking [37] we assume that P(x, D) has a bi-regular fundamental 
solution E(x, y) on O. I.e. E(x, y)EL~oc(f2Xf2), is infinitely differentiable off the 
diagonal in f2• and satisfies the equations P(x ,D)E(x , y )=b  x, and 
tp(y, D)E(x, y)=tSy. 

It follows moreover that for each compact F c f 2 ,  and each multiindex 0~, 

and 
ID=e(x, y)I --< A Ix-yl "-l=l-d, 

IO'ZE( X, Y)I ~ AI-[-A9 Ilog Ix-yt[, 

x, y6F,  if ] ~ [ + d > m ,  

x , y r  if [ ~ l + d = m .  

(See also Fernstr6m and Polking [17] for more details.) 
Let G c  f2 be open and relatively compact. It follows from the above that 

if # is a measure with compact support in f2 \G ,  such that Jm_k(l~)~LP(R d) for some 
k = 0 , 1  . . . .  , m - - l ,  and l < p < ~ ,  then u(x)=fD~E(x,y)@(y)CggP(G) for 
[~[<=k. The following is an immediate consequence of Theorem 6.1. 

Theorem 6.2. ~ P  (G) is spanned by solutions of  the form u (x) = f O~ E(x, y) d# (y), 
supp IIC f2\G, i f  and only i f  CG has the approximation property for W~(Ra). 

We now assume that G is the interior of a compact set X c  f2. We ask if the 
measures in Theorem 6.2 can be replaced by point masses in 12\X, in other words 
if gg(X) is dense in 9r That this is the case if CX is not too fat on too big 
a part of  OX is the content of  the following theorems, which improve on earlier 
results of Polking [37] and the author [23], to which papers we refer for more in- 
formation concerning the problem. In particular necessary and sufficient conditions 
are given in the case when X has no interior, so that gg~(X)=LP(X). A related 
problem is solved by Fernstr6m and Polking in [17]. 

Theorem 6.3. ~ ( X )  is dense in Jet~P(X ~ i f  ~X ~ has the approximation property 
./'or Wq(Rn), and i f  furthermore CX is (k, q)-fat (k, q)-a.e, on OX for k = l ,  2 . . . .  , m. 

Theorem 6.4. ~tt~ is dense in [,~gP (X ~ i f  CX ~ has the approximation property 
for Wqm (R n) and if  furthermore there is an q > 0 such that Ck, n ( U \ X )  ~ ~1Ck, n ( U \  X~ 
.for k= 1, 2 . . . .  , m and all open sets U. 

Proof Suppose that gCL~(X) and that ~(y )=fg (x )E(x ,  y)dx=O for all 
yC f2 \X .  Thus ~C W q and ~(y) vanishes on ~X. I f  X satisfies either of  the assump- 
tions, it follows that ~(y) and Vk~(y) vanish ( m - k ,  q)-a.e, on OX for k =  
0, 1 . . . . .  m -  1. In the case of Theorem 6.3 this is a consequence of  Theorem 1.3, 
and in the case of Theorem 6.4 the result is found in [21 ; Theorem 11]. 

By the approximation property ~ can be approximated in W~01 n) by C = func- 
tions q~ with support in X ~ But if uELP(X) (we set u = 0  on ~X) and P(x, D)u(x)=O 
on X ~ we have (g, u)=CP(y, D)~, u)=(~,  P(x, D)u)=limq,.o(tp, P(x, D)u)=0.  
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It follows that u can be approximated in L p (X) by linear combinations ~'~ a i E(-,  y~), 
y~CO\X, which proves the theorems. 

Finally we apply Theorem 5.1 to obtain a result where the approximation 
property does not enter explicitly in the assumptions. 

Theorem 6.5. oCt~ is dense in ~P(X) if CX is (1, q)-fat (1, q)-a.e, on OX, and 
if liminf~-,oCk, d(CX, X, 6)>0 (k, q)-a.e, on OX for k = 2  . . . . .  m. 
(liminf~_.oCk, a(gX, x, 6; 26)>0, if kq=d.) 

Proof. By Theorem 5.1 the conditions imply that CX has the approximation 
property. The theorem follows as before. 

The question of the necessity of the above conditions is somewhat mysterious. 
The condition Cm, q(U\X)=Cm,~(U\X ~ for all open U is necessary (Polking 
[37: Theorem 2.7]). In the case when X ~ is empty this condition is both necessary 
and sufficient (Polking [37; Theorem 2.6]), in particular ~ ( X )  is always dense 
in LP(X) if mq>d. It might be tempting to believe that ~r is always dense 
in ~'P(X) if mq>d, even if X has interior. This would be analogous to the fact 
that for holomorphic functions in the plane (m= 1) one always has density in 
:~P(X) if p < 2  (q>2), but not i f p ~ 2 ,  whether or not X has an interior. However, 
the following example shows that the presence of an interior really complicates 
the situation, and that 9~'(X) is dense in ~'r (X) for all X only if q>d. (I am grateful 
to A. A. Gon~ar for prompting me to construct such an example.) 

Example 6.6. Let q=d, and let m _  >- 1. Then there is a compact set X c R  d 
such that ~ ( X )  is not dense in a~P(X) for any P(x, D) of order m satisfying the 
above conditions. 

Proof. It is enough to construct a set X and a function q~ W~(R n) such that 
supp~ocX, and V/- lcp(x)~0 on a subset of 0X with positive (1, d)-capacity. 

Denote the unit ball in R n by B 0 and the (d-1)-dimensional ball {xCRd; 
[x]<=~, Xn=0 } by D. We shall choose suitable disjoint balls Bk, k =  1, 2 . . . .  , Bk= 
(x; IX--XkI<rk},XkED, and set X=Bo\(U:=xBk). 

Let Rk>rk, and let xkEC=(0, co) be such that xk(r)=l  for O<=r<--rk, xk(r)=0 
for r~=Rk, 0--<_Xk<=l, and IDJxk(r)l<=Ar-JOogRk/rk) -x, l<=j~=m. Set ~bk(X)= 
x~(Ix-x~l), and choose a function q~o~Co(Bo) such that r "-x in a neigh- 
borhood of D. 

It is easily verified that f [Vm(q~o~bk)lddx<=A(logRk/rk) l-d, if Rk is small 
enough. Now choose R k so that ~alR~-l<2 l-d, and x k so that the balls 
{X; IX--Xkl<=Rk} are disjoint. Finally choose r k so that .~ak=l(logRk/rk)l--d< ~o, 
and set ~o=tpo(1--~l~kk). Clearly tpCW~, and supp~0cX. But every xED 
that is not contained in one of the balls {x; [X--Xk[~Rk} is a boundary point of 
X. On the line perpendicular to D through such a point we have q~ = (P0, and thus 
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07 -1~0 (X) : (m-- 1) !. Since the set of such points has positive ( d -  1)-dimensional 
measure, ~o has the desired properties. 

An easy modification gives the following example. 

Example 6.7. Let d = q + l ,  and let m=>l. Then there is a compact set X c R  a 
with connected complement which has the properties of Example 6.6. 

Proof. Let XoCR d-1 be the set constructed in Example 6.6, and set 
X=X0• 1]. Let q~CWa-I(R a-l) be the function constructed in Example 6.6, 
and set r = ~0~O, where ~O C Co [0, 1]. Then r has the desired properties. 

Remarks added in November 1977: After this paper had already been accepted 
for publication I became aware of some earlier related work that deserves comment. 

The problem of approximation in L 2 by solutions of elliptic equations was 
raised in 1961 by I. Babugka [43; Section VI] in connection with a study of the 
stability of the Dirichlet problem for the polyharmonic equation A mu=O. It is 
easily seen that Babu~ka's definition of Am-stability can be formulated in the follow- 
ing way (See [43; Def. 5.1], and also the recent monograph by B.-W. Shulze and 
G. Wildenhain [44; Def. IX. 5.6].): 

Let G be a bounded domain which is equal to the interior of its closure. Then 
G is Am-stable i f  every function f i n  Wm~(R a) that vanishes off G can be approximated 
in W~m (R d) by functions in C O (G). 

Thus, as Babugka observed [43; Theorem 6.3 and Remarks] (See a/so Polking 
[37; Theorem 1.1].), approximation in L2(G) by solutions of  an elliptic equation of  
order m is equivalent to the Am-stability of G, and our Theorems 6.3--6.5 give 
sufficient conditions for Am-stability. Babugka gave some geometric sufficient condi- 
tions for Am-stability, and he also gave examples of a domain in R 2 which is A- 
unstable, and a domain in R s which is A2-unstable. Our Example 6.6 gives a domain 
in R 2 which is Am-unstable for all m>= l. 

A necessary and sufficient condition for Am-stability, expressed in terms of 
a different capacity, was given by E. M. Saak [45]. Let the capacity Nm.q be defined 
for compact F by Nm,~(F)=inf{[log[Iqm,~; ~oCC o, co(x)= 1 in a neighborhood of F}, 
and for arbitrary E by Nm,~(E)=sup {Nm, q(F); F c E ,  F compact}. (Then it is 
known that Nm, q(F ) and Cm,~(F ) are equivalent in the sense that they have bounded 
ratios. See [32, w 5], or [4].) Then Saak's necessary and sufficient condition can be 
formulated as follows: G is Am-stable if  and only i f  Nm,2(B\G)=Nm, 2(B\G) for 
all open balls B. (In order to facilitate comparison we have modified his statements 
somewhat. Also, Saak assumes 2m<d. 

The approximation property for Wm q studied in this paper (in its dual formula- 
tion as given in Theorem 6.1) was introduced by B. Fuglede in 1968 in the case 
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q = 2  (unpublished, see [44; IX.  w 5.1]). Fuglede called this p roper ty  the 2m-spectral 

synthesis property. H e  noticed tha t  the fine Dirichlet problem for  the polyharmonic 

equation Amu=O in a domain G has a unique solution i f  and only i f  CG satisfies 

2m-spectral synthesis. In  other  words,  2m-spectral  synthesis is t rue for  ~G if and 
only if  every u in Wm~(R a) which satisfies Amu=O in G and vanishes on CG together  
with its derivatives o f  order  up to m - 1  (i.e. V k u = 0  (m--]k] ,  2)-a.e. on ~G for  

Ikl--0,  1, 2, . . . ,  m - 1 ) ,  has to vanish identically. 
I t  is p roved  in [44; Satz IX. 5.4] tha t  the fine Dirichlet p rob lem for  A m is uniquely 

solvable in G i f  G is Am-stable, and  a weaker  result  was given by Babu~ka [43; The- 
o rem 7.3]. This is an  immedia te  consequence o f  Theorem 6.1 above.  Moreover ,  
our  Corol lary  5.3 shows tha t  the fine Dirichlet problem for A m is uniquely solvable 

in all G in R ~ and R 3. 
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