
On functions with conditions on the mean oscillation 
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1. Introduction 

Function spaces defined using the mean oscillation have been studied by several 
authors, e.g. John and Nirenberg [5], Campanato [2], Meyers [7], Spanne [13], 
Peetre [9], [10], Fefferman [3], [4] and Sarason [12]. 

T o  define these spaces, let I(x,r) be the cube {yERd; [yi--xi[<=r/2} whose 
edges have length r and are parallel to the coordinate axis (only such cubes will be 
considered in the sequel). 

For a cube L definef(I) as m(I) - l f i f ( x  ) dx and f2(f, I), the mean oscillation 

of  f o n  I, as m(I)- l f l  lf(x)-f(I)ldx. 
We can now define 

{fE L1o~, I]fI[BMO~ = SUp co} BMO~ = 1 . f2(f, I(x, r)) < 
r :~O 

and 

A , = { f ;  []f[[A =esssup'f(x)--f(Y)[< ~o} 
x, rCR" ~ 0 ( I x - y l )  

where q~ is assumed to be a positive non-decreasing function defined on R +. BMO~, 
and A~ will be regarded as spaces of functions modulo constants and are Banach 
spaces. A~ is evidently continuously embedded in BMO~. If q~(r)=r ~, 0<a-<_l, 
then BMO~ coincide with A~, the space of (possibly unbounded) Lipschitz continuous 
functions (Campanato [2], Meyers [7]). On the other hand, if f l  q~ (r)r-ldr= co, then 
BMO~ contains functions that are neither continuous nor locally bounded (Spanne 
[13]). In the extremal case q~-1, A~ is the same as L ~ modulo constants and BMO~, 
is BMO. 

Fefferman [3], [4] have proved that bounded functions and Riesz transforms of 
bounded functions span BMO. The present paper proves the following generalization 
of this. 



190 Svante Janson 

Theorem 1. Suppose that q~ satisfies the growth condition 

r f : ~ dt <= C~o(r). ( , )  

Then BMOr = Ar q- ~ R i A~,. More precisely, if f j  E A~,, then Ilf0 +Z~RjfjIIBMo.----< 
<_- C •  IIfAA. and if fE BMOr then there exist f j  E A~, such that f=fo + . ~  Rjf~ 
and ~d  o IlfAa~ <-- CIITI[BMO �9 

C denotes always some positive constant. It is to be noted that the constants in 
the statement of Theorem 1 depend only on the dimension d and the constant in ( . ) .  

This theorem is valid for the corresponding spaces of functions on T a. However, 
in this case we will not identify functions differing by a constant. (We can take the 
norm as sup f2 (f ,  I(x, r))/q~ (r) + l[ f II LI and it is sufficient to have ~0 defined for 0 < r < 6, 
6 > 0.) This enables us to study multiplication of elements in BMO, by a function f 
The functions f such that this is a bounded operator from the space to itself are 
called the pointwise multipliers. 

Theorem 2. I f  ~o (r)/r is almost decreasing, then the set of pointwise multipliers 
for BMO~, (TO is BMO~ n L ~~ where ~t (r) = q~ (r)/f~ ~o (t) t -1 dt. 

(A positive function f is said to be almost decreasing if  supx~yf(x)/f(y)< co.) 
This theorem is proved in Section 4. We then use the duality between H ~ and 

BMO and construct a predual to H 1. This gives the corresponding result for H a. 

Theorem 3. The set of pointwise multipliers for H~(T a) is BMOizog~l_~c~L ~. 

I wish to express my thanks to Professor Lennart Carleson and others with 
whom I have had helpful discussions. 

2, Preliminary lemmas 

We state some simple lemmas without proofs. (See e.g. Spanne [13].) We write 
~(f ,  r)=supx, r,~_r f2(f, I(x, r')) and og(f, r )=ess  suptx_rl_~ r If(x)-f(y)[. 

Lemma 1. f2 (f,  1) <-. 2 infa m (I)-1 f x  If(x) - al dx. 

Lemma 2. I f  IF(x) - F(y)[ _<-- Clx -y], then f2(F(f), I) <- CO(f, 1). 

Lemma 3. Suppose that l(x' ,  r ' )c  I(x, r). Then 

lf(I(x', r')) --f(I(x, r))l <= C f~, ~ (f' t) dt. 
t 

Let ~k~ denote r-dxi~o,r~. Thus ~r*f(x)=f(I(x,  r)). 

Lemma 4. I [ f -  ~,*TIIBMo<= CQ(T, r). 
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The next lemma gives an example of a function in BMO,p which is in a certain 
sense extremal. 

Lemma 5. I f  ~o(t)t -1 is almost decreasing, then f (x )=f~ i~o( t ) t -~d t  belongs to 
BMO~. 

Lemma 6. The growth condition ( . )  is equivalent to the existence of  ~ < l such 
that t -~9( t )  is almost decreasing. In particular cp(t)t -1 will be almost decreasing and 
converging to zero as t ~ ~.  

Note that 

r f~~ ~ 2 )  dt >- ~o(r). 

The condition ( . )  thus implies that 

9 ( 0  dt 
' 

which is a continuous non-decreasing positive function, defines the same space 
BMOt~. Consequently, 9 can in this case be assumed to be continuous. 

Let K be a Calderon--Zygmund kernel, K(x) = I x l - d ~ ( x / I x l )  with fs .-1 f~ =0  and 
I Q (x) - ~? (y)] ~ C [x-y l  ([1 ]). Peetre [9] has shown that convolution by K is a bounded 
operator in BMO.  for every q~ satisfying ( . ) .  The convolution can in these spaces 
be defined as 

lim f (K,(x-y)-Kl(-y))f(y) dy ([31), K~(x) = ~K(x), Ix[ > 
~ 0  10, Ixl < ~. 

The Riesz transforms Rj are defined as this convolution by Caxfllxl a+l, j =  1 . . . .  , d 
([14]). R0 is defined as the identity operator. 

3. Proof  of  Theorem 1 

In this section (*)  is assumed. Also 9 is assumed to be continuous; this can as 
stated in Section 2 be done without losing generality. 

Since the Riesz transforms are bounded operators in BMO~, they are bounded 
as operators from A~, to BMO,.  Thus 

IIRjfIIBMo~ -<- Cll/lla~. 

(This corollary to Peetre's theorem can also be proved by partitioning f and directly 
estimating the integrals.) This gives the first half of Theorem 1. 

Now assume that fCBMOe and []fHBM%=I." All signs of equality between 
functions in BMO or BMO~ are interpreted modulo constants. 
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Choose r~ such that 9(r3--2~q~(rj) for some r 0 and every integer i such that this 
is possible, say iE[ 'L ,  M] when L and M are finite or infinite. 

Lemma 4 shows that I l f -  ~,, *fllaMo ~-~ C~o (ri). Thus 

I[~.,*f--~.'.~-*fllB~o ~ Ccp(ri)+fr = Cg(ri) ( - L  ~ i < M); 

Thus there exia functions u} such that 

Ilu~llz~ <= C~o(r3 and ~r * f -~lr,+ * f = ~ao RjU ~ 

(Fefferman [3]). We introduce 

' ' = 4- ~ ( o )  vj = (~k n + ~k,,+~). u) E C(R") and wj 

to(w~-, r) = w(v},r) ~= c f r +  r~] llU~IIL- <= Cr r 
[ri ri§ ri 

We also have 
~o(w~, r) = o~(~., ~) _<- 21]~-]1r -<- 4 ] t ~ t ] ~  -<- c~o(~3. 

Since w]-(O) = O, Iw~.(x)] ~_ ~(w~., [xl). 

~d o Rjw~ = z ~  g~v~ = ~(~ , .  + ~ , + ) .  Rsu ~ = (~. +~k~,./*(~0, --~k.,+x)*f-- 

= ~ k . . r 1 6 2  
We have 

Z ,  09 (w~., r) ~_ Z,,~=~ Cq~ (ri) + Z, ,>,  Cr q~ (r,) < = 
r~ 

~= ao (r) + Cr f7  ~ at <- c~o (0, 

since 

Z~'  r = 2 Z ~ '  q~(ri)-qg(r'-O -- -- 
ri Fi 

+ 2  <_ 
= 2 Y~"~-~ t ri r~+ ! ) rm r~ 

< 2 x P " - I  @3 f r'+ldt f;=dt ~ ~o Jr, ~+2~o(rm) . , 7 < 2 f ~  ~o(t) dt. 
= ~--- d r ~  t 2 

i Consequently ~,iwj converges absolutely to a continuous function gj with 09 (g j, r)<_- 
~- Cq~ (r). Thus I[ gjlla, ~- C. 

Let ~/be a function in C o with f ~/=0. Then (q, Rjg)=(~jrl ,  gj)=z~,i (l~gl, wS)= 
= z~i (q, Rj w~) as can be easily verified. Thus 

(,, ZaoRigy) = Zi(rl, Zg  Rjw 3 = 

= Z i  ((", ~O., * •., * f )  -- (,, ~., +x * ~kr, +~*f)) = 

= ---Llim (r/, ~.,* ~Or, * f )  -- lim~ (n, ~k,,. Or *f ) .  
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We have to t reat  this in different ways depending on  the behavior o f  q9 (r) when 
r-~O and r ~ o .  

Case 1. I f  L = ~ ,  then r ~ 0 : w h e n  i ~ - L .  Thus 

lim (q, ~k,, , ~ , ,  , f )  = il~m_L (~lr* *~Cri * t l , f )  = (q,f) .  

Take ~ - 0. 

Case 2. I f  L <  o% then q~(r)>�89 for  every r. 

][ f -- ~k,_L * qt ,_ ~ * f lI,MO ~-- 2 [l f -- ~,_ L * f llBMO <= C~O (r ' L). 

Thus we have 

f--lpr_L *r * f  = .~  Rjg) with II~llL- < Cq~(r_D. 
1 . .< ~o(g~, r) = 211~l[L ~ <-- C~o(r_L) <-- Cq~(r) and thus I[~IIA~ ~-- C. 

lira (q , f )  - (q, Z Rig)). i . _ L ( q , ~ k , , . r  = 

And similarly at  infinity 

Case 1. I f  M = o o ,  then r ~  when i--~M. Suppose tha t  s u p p t l c I ( 0 ,  r~). 
Then  we have 

(t h ~., . ~ . ,  . f )  --- ( ~ . , . ~ . , . t / , f )  = 

= ft(o. 3,,) (Or,* ~k . , . ,  (x))(f(x) - f ( I (O,  3ri))) dx <= 

<-- sup Ir *~O,, *~l(3r,)df~(f, 3ri) ~-- Cri-d-lrftP(ri) ~ O, i ~ oo. 

Take  g~ = 0. 

Case 2. I f  M < o% then q~ (r) < 2~0 (rM). Thus ]If IIBMO <= 2~0 (rM) and 

f =  a , ~ o R j h j ,  IlhjllL~ <= C~(rM). 

We write g.2j = ~ , , ~ .  ~ .  hi. 

co (g~, r) <- C r - -  llhjllL- <-- Cr ~o(r~) 
FM /'M" 

For  r<r~t Lemma  6 gives og(g~, r)<=Cq~(r). For  r>rM we use  

~o(g~, r) <= 2 IlgyllL-<= Cq~(rM) <= Cq~(r). 
Thus IIg~llA <=C. 

Consequently we have, for  any (p, 

(q, ,~g Rjg  j) = Qh f )  - (tl, ,~oa Rjgj)l _ Q1, ,~od Rjg~).2 

Thus  a f-=.~o Rj(gj + ~  +gj). Q.E.D. 
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4. Pointwise multipliers 

Given two spaces B~ and B2 of functions on some set X, the pointwise multipliers 
from B~ to B2 are defined as the functions g such t h a t f ~ f g  is a continuous operator 
from B1 into B2. In many cases, e.g. for the Banach spaces treated here, it is sufficient 
that fCB~=~fgEB2; the continuity will then follow by the closed-graph theorem. 
Note also that the following proof shows that the pointwise multipliers from the 
subspace of BMO~ consisting of continuous functions to BMO~ are in fact point- 
wise multipliers for BMO~ (i.e. from BMO~ to itself). This will be used in the proof of 
Theorem 3. T d is identified with I(0, 1 ) c R  d. 

5. Proof of Theorem 2 

First we see that if r <  1, then by Lemma 3 

[/(z(x, '))l <-- f{Z(x, +)) + o i l  o(f, t) at <= 
t 

= : C 1 (t) art. -< 2dllf[{Ll+Cllfll,~% f ~ ~o(t) dt "< Llfll.~oofr 9 
t t 

Now, suppose that gEBMOac~L = and fEBMO~. Let I=I(xo,  r) be any cube with 
r <~. Then 

r-a f l Ifg(x) --f(1) g(1)l dx <= 

<= r-  a f t  I g(x) f (x)  - f ( I )  dx + r-  a f1  If(I)} ]g(x) -- g (I)I dx <= 

=< [IgllL~2 (f, I) + lf(1)lf2(g, I) <= 

<_ ~o(r) l[fl[~Mo~llgllL~+fl[f{iB~o~f ~ ~o(t) dtr 
- -  t 

9 (r) [If IIBMo. (Jlgl[L ~ + C l l g  [IBMO,). 
Thus, fgE BMO,. 

Conversely, suppose that g is a pointwise multiplier from the subspace of con- 
tinuous functions in BMO, to BMO~o. Again, let I = I ( x  o, r) be any cube with r<{ .  
Let f be the function defined in Lemma 5 and let h (x) be sup ( f (x-Xo) ,  f~ ~p (t)t-adO. 
h will be continuous and [[h[IBMO,<=CIIfI[BMO, by Lemma 2. Thus gh6BMO, and 
I[ ghlIBMO~ ~ C independently of I. This gives 

r-a f ~ [gh(x)[ dx <= O(gh, I) + Igh(I){ < 

f l  ~o(t) dt -< C ;1.q~(t) dr. <= IIghllBM%~~176 ~ t = a ,  t 

But h(x)= f~ r dt, x~ I. Consequently r-d f ,  Ig(x)]dx<=C and g~ L ~. 
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Thus 

Take the same I and h. Then, since h is constant on I 

~2 (gh, I) = f t  q~ (t) dt a (g, I). 
t 

c~0 (r) 
~2(g,I) <= - -  . =  C~(r) and gEBMO~,. 

at 
t 

H !  is the space of functions belonging to L ! together with their Riesz transform. 
(Note that this is not the same H i ( T )  as the classical space of boundary values o f  
analytic functions.) Fefferman [3] has shown that BMO is the dual space to H 1. 
The duality is given by ( f , g ) = f f g ,  e,g. when f is a trigonometrical polynomial 
and g belongs to BMO. By continuity this also holds when fE H 1 and g E L = c  BMO. 

We will now show that a certain subspace of  BMO is a predual of HL 

Lemma 7. The following two conditions on f E BMO(T a) are equivalent: 

(i) o(Z  r)-~O, r ~ O  
(ii) f = f0 + ~ d  .Rjfj, f j  E C(Td). 

Proof. Suppose that 0 ( f ,  r ) ~ 0 ,  r~0 .  We would like to use Theorem I 
with ~o (r) = 0 ( f i r ) ,  but this does not necessarily satisfy ( . ) .  However, it is possible to 
construct a function 91 satisfying ( . )  such that O(fi r)<=~ol(r) and qh( r )~0 ,  r ~ 0 .  
Thus, there exist f j E A , 1 c C  such that f = f o + ~ R j f j .  The converse is proveff by 
the same method. 

CMO is defined to be the set of functions in BMO satisfying the conditions in 
Lemma 7. The first condition shows that this is a closed subspace of BMO. Also, 
it shows that the Fej6r sums of a function in CMO will converge in norm ([6]). 
Thus, trigonometrical polynomials are dense in CMO and CMO is the closure o f  
trigonometrical polynomials (or equivalently continuous functions) in BMO. 

Theorem 4. H 1 is the dual space o f  CMO. The duality is given by f fg,  e.g. i f  
fE  C c CMO and g E H 1. 

Proof. I f f E  C and gEH ~, then as stated above 

f i g  <- C ][ f [IBMo [lg l[H1 = C l[ f llcMo l[g [lu~ ' 

Conversely, suppose that Z E CMO*. R j: C ~ C M O  are bounded j =  0 . . . . .  d, and thus 
R~.ZE C* =M.  Consequently Z is a measure whose Riesz transforms are measures and 
by the F. and M. Riesz theorem it is a function in HL 

Remark. Sarason [11], [12] denotes the space {fEBMO; 0( f ,  r ) ~ 0 ,  r~0 }  by  
VMO. In the case of functions on R a, VMO is strictly larger than 
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C M O =  {f ;  f = f o q - ~ R j f j ; f C C o } ,  proved to be a predual o f H  1 by Neri  [8]. C M O  is 
the closure of  C O in BMO.  

Finally we give the p r o o f  o f  Theorem 3. 

Suppose that  g is a pointwise multiplier for  B M O  and  hE//a .  Let  f E C .  Then 

f g E  L =. T h u s  [f  ghf{ = I f  hfg[ <= C[[h[lnl [IfgliaMO <- C[Ih[IHIIIflIBMO and gh gives a boun-  
ded linear functional on  the dense subspace C o f  CMO.  Thus g h E H  1 by Theorem 4. 

Conversely, suppose that  g is a pointwise multiplier for  H 1 a n d f E  C. Let  h E H L  

T h e n  [ f f g h  I<- CIIfIIBMo [I gh[lnx <- C[[f[IBMo I[hl[~. Thus f g E B M O .  
Consequently,  H ~ and B M O  have the same pointwise multipliers, i.e. 

BMOllog t[- x N L~.  
Lemmas  5 and  2 show that  s inlog Ilog x~l gives an  example o f  a pointwise mul- 

tiplier for  H ~ that  is no t  continuous.  
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