On functions with conditions on the mean oscillation

Svante Janson

1. Introduction

Function spaces defined using the mean oscillation have been studied by several
authors, e.g. John and Nirenberg [5], Campanato [2], Meyers [7], Spanne [13],
Pectre [9], [10], Fefferman [3], [4] and Sarason [12].

' To define these spaces, let I(x,r) be the cube {y€R?;|y;—x;|=r/2} whose
edges have length r and are parallel to the coordinate axis (only such cubes will be
considered in the sequel).

For a cube 7, define f(I) as m(I)~* f [ J(x)dx and Q(f, I), the mean oscillation

of fon I, as m(D)™* [ | f(x)—f(Dldx.
‘We can now define
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where ¢ is assumed to be a positive non-decreasing function defined on R*. BMO,,
and A, will be regarded as spaces of functions modulo constants and are Banach
spaces. A, is evidently continuously embedded in BMO,. If ¢ (r)=r O0<a=l,
then BMO,, coincide with 4,, the space of (possibly unbounded) Lipschitz continuous
functions (Campanato [2], Meyers [7]). On the other hand, if [ ¢ (r)r~"dr=co, then
BMO,, contains functions that are neither continuous nor locally bounded (Spanne
[13]). In the extremal case @ =1, 4, is the same as L* modulo constants and BMO,
is BMO.

Fefferman [3], [4] have proved that bounded functions and Riesz transforms of
‘bounded functions span BMO. The present paper proves the following generalization
of this.
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Theorem 1. Suppose that ¢ satisfies the growth condition

rfe "’(2’) dt = Co(r). (%)

Then BMO,= 4 +21R A,. More precisely, if f;¢ A,, then | f, +21 ;fJ"BMo
<CZ'||f|]A and szEBMOq,, then there exist f;€ A, such that f=f,+ 3{R,

and JL|If; ”A =C|flsmo, -

C denotes always some positive constant. It is to be noted that the constants in
the statement of Theorem 1 depend only on the dimension d and the constant in ().

This theorem is valid for the corresponding spaces of functions on T¢. However,
in this case we will not identify functions differing by a constant. (We can take the
norm as sup Q( f, I(x, r))/@ (r)+| fl .+ and it is sufficient to have ¢ defined for 0<r<4,
6>0.) This enables us to study multiplication of elements in BMO,, by a function f.
The functions. f such that this is a bounded operator from the space to itself are
called the pointwise multipliers.

Theorem 2. If @(r)/r is almost decreasing, then the set of pointwise multipliers
Sor BMO,(T%) is BMO, L™ where yi(r)=¢(r)/ [+ o (t)tdt.

(A positive function f is said to be almost decreasing if SUpP,.x, f(X) f(¥)<e=)
This theorem is proved in Section 4. We then use the duality between H* and
BMO and construct a predual to H'. This gives the corresponding result for H.

Theorem 3. The set of pointwise multipliers for H'(T% is BMOy,,,-1n L.

I wish to express my thanks to Professor Lennart Carleson and others with
whom I have had helpful discussions.

2. Preliminary lemmas

We state some simple lemmas without proofs. (See e.g. Spanne [13].) We write
o(fs r)=sup, -, (£, I(x,r")) and w(f; r)=esssup,,_, ., |f(x)—F ().

Lemma 1. Q(f, 1) = 2inf,m(1)~* [, | f(x)—al dx.
Lemma 2. If [F(x)— F(3)| = Clx— ), then Q(F(f), I) = CQ(f, I).
Lemma 3. Suppose that I(x", r'YcI(x, r). Then
e, ) —fan)=c [ @ dt.
Let ¥, denote r~%yy,,). Thus ¥, *f(x)=7(I(x, r)).
Lemma 4. || f— ¥, xf|amo=Co(f, r).
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The next lémma gives an example of a function in BMO,, which is in a certain
sense extremal.

Lemma 5. If ¢ (¢)t™! is almost decreasing, then f(x)= 1. ¢(t)t™"dt belongs to
BMO

o
Lemma 6. The growth condition (%) is equivalent fo the existence of a<1 such

that t=*@(t) is almost decreasing. In particular ¢ (t)t™" will be almost decreasing and
converging {0 zero as t — oo,

Note that

rf i(i)—dt = @(r).

r t2
The condition () thus implies that

rf:c (pt(2t) dt’

which is a continuous non-decreasing positive function, defines the same space
BMO,,. Consequently, ¢ can in this case be assumed to be continuous.

Let K be a Calderon—Zygmund kernel, K(x)=|x|~*Q(x/|x|) with f..1Q=0and
|Q(x)—Q(»)|=C|x—y| ([1]). Peetre [9] has shown that convolution by K is a bounded
operator in BMO,, for every ¢ satisfying (). The convolution can in these spaces
be defined as

. ) K(x), x|=¢
lim [(K—») =KD d @), K ()= {0

x| = e

b

The Riesz transforms R; are defined as this convolution by C,x/[x|*%, j=1, ..., d
([14]). R, is defined as the identity operator.

3. Proof of Theorem 1

In this section (%) is assumed. Also ¢ is assumed to be continuous; this can as
stated in Section 2 be done without losing generality.

Since the Riesz transforms are bounded operators in BMO,,, they are bounded
as operators from A4, to BMO,,. Thus

IR; S lemo, = Cll.f ll4,-

(This corollary to Peetre’s theorem can also be proved by partitioning f and directly
estimating the integrals.) This gives the first half of Theorem 1.

Now assume that f€BMO, and |f []BMOQ’——- 1. All signs of equality between
functions in BMO or BMO,, are interpreted modulo constants.
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Choose r; such that o(r)=2'¢(r;) for some r, and every integer i such that this
is possible, say i€[—~L, M] when L and M are finite or infinite.
Lemma 4 shows that || f—, * fllgmo = Ce(r;). Thus

”"//ri*f_l//r,wl*f”BMO = C(P(ri)+c¢(ri+1) = CQD(I',) (—L =i< M).
Thus there ¢Xist functions u} such that
)= = Co@) and Y, xf—V, *f= iR
(Fefferman [3]). We introduce
= Wy, + ¥, ) *u;€CRY and  wj = v} —15(0)

‘] nu = Cr 2V (0(";)

i

oW, ) =o@r = C[%ﬁ-
We also have ) l » 1+ _
oW, r) = o}, r) = 2|vjlc = 4]~ = Co(r).
Since w(0) = 0, [wi(x)] = W, [x|).
SaRwh = SERV = S+, VxRl =, ¥, Vx W~V Yxf=
- !// *wr *f '//r ‘erl f:
We have

; i r;)
S0y 1) S 3,z Co)+ 3y, O =
oo 4
= Cop()+Cr [ q)—t(z)—dt = Co(r),
since

m(p(’t)__zzrm (p(rl) (p(rl 1)
r;

g [qo(r»_ @(ri)] L2 20w 200 _

1™ ¥y

r; rl+1

=230 00 [1n Srapen [2 G =2 [7 20 ar

Consequently >, w' converges absolutely to a continuous function g; with w(g;, r)=
=Ce¢(r). Thus | gJﬂA =C.
Letn be a function in C;° with fn=0. Then (1, R;g)=(R;n, g)) =2 (R;n, wh)=
= (n, R;w") as can be easily verified. Thus
(, Zdo R;g;) = 2. (n, S Ryw)) =
= 3.0 U 5 2N = (0 U, 20, ) =
= l}r_nL (’77 lpri* lpr.- *f) - 11_13;1/[ (77’ lpr,-* wr *f)
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We have to treat this in different ways depending on the behavior of ¢ () when
r—>0 and r— oo,

Case 1. If L=-co, then r;,—~0'when {— —L. Thus
iEIPL (77: ll’r,*l//ri *f) = ilir—nL ('pr;*l//ri*”:f) = (",f)
Take g}=0.
Case 2. If L< oo, then ¢ (r)>=%¢(r_.) for every r.

If =Y >V, *fllemo=2lf—¥r_,*fllamo = Co(r_1).
Thus we have

=Y o ¥¥e o xf = 2 Ryg; with  |lgjl- = Co(r_y)-
¢ (g}, 1) = 2|gil- = Co(r_) = Cop(r) and thus |gjfs, =C.
Lm, (1, Y %Y, %) = 0.0)— (1, 3 R;gj).

And similarly at infinity

Case 1. If M=o, then r;—~c when i—~M. Suppose that suppncI(0,r).
Then we have

1, Y 2 Wy, %F) = by Yy %1, ) =
= [r0 0y Wr ¥V xR —FUQ, 3r))) dx =
= sup [, * ¥, *9|Gr)'Q(f, 3r) = Cri*rio(r) = 0, i— oo,
Take g¥=0.
Case 2. If M <oo, then ¢ (r)<2¢ (ry). Thus || f [pmo = 2¢ (r5) and
F=ZaRihy lhjll= = Co(ry).
We write gi=1, %, +h;.

r (4
w(ghr = Cr'— Wl = Cr%(—y—)-.
M M

For r<ry Lemma 6 gives (g}, r)=Co(r). For r>ry we use

. w(gi r) = 2| gfll- = Co(ry) = Co (1)
Thus [g}+,=C.

Consequently we have, for any ¢,
(1, Za Rg) = (0. )=, S Righ)— (1, 35 R;gl).
Thus /=37 R;(g; +8&} +£). QE.D.
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4. Pointwise multipliers

Given two spaces B; and B, of functions on some set X, the pointwise multipliers
from B, to B, are defined as the functions g such that f—~fg is a continuous operator
from B, into B,. In many cases, e.g. for the Banach spaces treated here, it is sufficient
that f€B,=fg€B,; the continuity will then follow by the closed-graph theorem.
Note also that the following proof shows that the pointwise multipliers from the
subspace of BMO,, consisting of continuous functions to BMO,, are in fact point-
wise multipliers for BMO,, (i.e. from BMO,, to itself). This will be used in the proof of
Theorem 3. T¢ is identified with 7(0, 1)cR*.

5. Proof of Theorem 2

First we see that if <3, then by Lemma 3-

s = s D) 25 =
=2 “f”Ll'{_C”f“BMo?‘/;lit(L)dt = C”f”BMOo./‘rlio}(—Qd{'

Now, suppose that geBMO, A L~ and f¢BMO,,. Let I=1I(x,, r) be any cube with
r<%. Then

4 [ f2()—fD (D) dx =
=174 [, 12 S —f D] dx+r=4 [, /(D]g(x) - g (D] dx =
= gle-QUs D+ /D)2 D) =

= 0017 Iavo, €l=+C1 luso, [-LL-dt v () g lasso, =

= ()| Ismo, (I1gllL~+Clgllzmo,)-
Thus, fg€¢ BMO,,.

Conversely, suppose that g is a pointwise multiplier from the subspace of con-
tinuous functions in BMO,, to BMO,,. Again, let /=1(x,, r) be any cube with r<i.
Let f be the function defined in Lemma 5 and let 2(x) be sup (f(x—x,), f+ o ()t "dr).
h will be continuous and ||Allgwo, =CIf ”BMo,,, by Lemma 2. Thus gh¢ BMO, and
I ghlgmo, =C independently of I. This gives

r= [11gh(x)| dx = Q(gh, I)+|gh(D)] =
= lighilemo, @ (") +Clighlimo, f:—(—’)t(—t)dt = Cf,lit@dt.

But A(x)= [} @(t)t~"dt, x€I. Consequently r~f, [g(x)|dx=C and g€ L".
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Take the same I and 4. Then, since 4 is constant on F

o 1) = [ 2D dr o, 1),

Thus

e D) =—20 _ _cy) and geBMO,.
1 (p(t) dt
rot

H1 is the space of functions belonging to L1 together with their Riesz transform.
(Note that this is not the same H*(T) as the classical space of boundary values of
analytic functions.) Fefferman [3] has shown that BMO is the dual space to H.
The duality is given by (f, g)= f fg, e.g. when fis a trigonometrical polynomial
and g belongs to BMO. By continuity this also holds when f€ H* and g€ L cBMO.

We will now show that a certain subspace of BMO is a predual of AL

Lemma 7. The following two conditions on f¢ BMO(T?) are equivalent:

@) e(f,r)~0, r—0
(i) f=fo+ 31 R;f;> f;€C(T.

Proof. Suppose that o(f,r)—0, r—-0. We would like to use Theorem 1
with ¢ (r)=¢(, r), but this does not necessarily satisfy (). However, it is possible to
construct a function ¢, satisfying (*) such that ¢(f, ry=¢.(r) and ¢,(r)—0, r->0.
Thus, there exist f;€ 4, cC such that f=f;+>R;f;. The converse is proved by
the same method.

CMO is defined to be the set of functions in BMO satisfying the conditions in
Lemma 7. The first condition shows that this is a closed subspace of BMO. Also,
it shows that the Fejér sums of a function in CMO will converge in norm ([6]).
Thus, trigonometrical polynomials are dense in CMO and CMO is the closure of
trigonometrical polynomials (or equivalently continuous functions) in BMO.

Theorem 4. H* is the dual space of CMO. The duality is given by f fg, eg. if
f€eCcCMO and ge H.

Proof. If f€C and g€ HY, then as stated above

| [ 72| = Cllf lsmo gl = €11/ e Il -

Conversely, suppose that y¢ CMO*. R;: C~CMO are bounded j=0, ..., d, and thus.
Rj.‘xé C*=M. Consequently y is a measure whose Riesz transforms are measures and
by the F. and M. Riesz theorem it is a function in H1.

Remark. Sarason [11], [12] denotes the space {f¢BMO; ¢(f, r)—~0,r—0} by
VMO. In the case of functions on R?, VMO is strictly larger than
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CMO={f; f=fo+ > R;f;; f€C,}, proved to be a predual of H* by Neri [8]. CMO is
the closure of Cy in BMO.

Finally we give the proof of Theorem 3.

Suppose that g is a pointwise multiplier for BMO and A¢H!. Let fc¢C. Then

fee L. Thus lfghf];”hfglé Clihl s f2ll emo=C Al 2l fll gmo 2nd gh gives a boun-
ded linear functional on the dense subspace C of CMO. Thus gh< H* by Theorem 4.
Conversely, suppose that g is a pointwise multiplier for H* and f€C. Let h¢ H.

Then |f fgh|=CIlf lsmoll &kl n=Clf Igmo /4l . Thus fgeBMO.

Consequently, H' and BMO have the same pointwise multipliers, i.e.
BMO,, 10 L7

Lemmas 5 and 2 show that sinlog|log x;| gives an example of a pointwise mul-
tiplier for H* that is not continuous.
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