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On the dynamics of composite entire functions 

Walter Bergweiler and Yuefei Wang(1) 

A b s t r a c t .  Let  f and  g be  nonl inear  entire funct ions .  T h e  re la t ions  be tween t he  d y n a m i c s  

of f~ and  gof are discussed.  Denote  by J ( .  ) and  ~-(- ) t he  Jul ia  and  Fa tou  sets.  It  is proved 

t h a t  if z E C ,  t h e n  zEJ(fog) if and  only if g(z)CJ(g~f); if U is a c o m p o n e n t  of -~(f~ and  V is 

the  c o m p o n e n t  of .T(gof) t h a t  conta ins  g(U), t h e n  U is wander ing  if and  only if V is wander ing;  

if U is periodic,  t h e n  so is V and  moreover ,  V is of t he  s ame  type  according to t he  classification 

of periodic c o m p o n e n t s  as U. These  resu l t s  are used to show t h a t  cer ta in  new classes of entire 

func t ions  do no t  have  wander ing  domains .  

1. I n t r o d u c t i o n  and  m a i n  resu l t s  

The Fatou set jz(f) of a nonlinear entire (or rational) function f is the subset 
of the complex plane (or Riemann sphere) where the iterates fn of f form a normal 
family. The complement of }-(f) is called the Julia set and denoted by J ( f ) .  
The Fatou set is open and completely invariant; that is, zEJZ(f) if and only if 
f(z)CJz(f). The Julia set is closed and also completely invariant. It is also known 
to be the closure of the set of repelling periodic points. If U0 is a component of 
~c(f), then f~(Uo) lies in some component Us of }-(f) and Un\fn(Uo) is either 
empty or contains exactly one point by a result of Heins [22]. If Unr for all 
n e r o ,  then U0 is called a wanderin 9 domain of f .  Otherwise U0 is called preperiodic 
and if Un=Uo for some hEN,  then U0 is called periodic. Sullivan [30] proved that  
rational functions do not have wandering domains. Transcendental entire functions, 
however, may have wandering domains, see [2], [31, [41, [16], [30], but various classes 
of entire functions without wandering domains are known [3], [6], [7], [9], [12], [13], 
[18], [21], [28]. 

Already before Sullivan's work a classification of periodic components of $c(f) 
was known. Let f be an entire function and U0 a periodic component of ~c(f), say 

(1) T h e  second au t ho r  was suppo r t ed  by Max-Planck-Gesse l l schaf t  Z F D W ,  and  by T i a n  Yuan  

Founda t ion ,  NSFC.  
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U,~=Uo. Then one of the following possibilities holds: 
�9 There exists zoEUo such that  f'*~nluo---~Zo as m--+~c, fn(zO)=zo and 

[(fn)'(zo)l < 1. Then Uo is called an attracting domain and Zo is called an attracting 
periodic point. 

�9 There exists ZoEOUo such that  f'*[uo--~zo as m--+oz, fn(zo)=Zo and 
( f~)r (Zo)=l .  Then Uo is called a parabolic domain and zo is called a parabolic 
periodic point. 

�9 There exists a conformal map  r {zEC:]z]<l}--+Uo and a E R \ Q  such that  

r162 for Iz l< l .  With Zo=r we have f~(zo)=Zo and ( f~ ) ' ( zo )=  
e 2~i~. Then U0 is called a Siegel disc. 

�9 The sequence fnmlV0-~OC as m---~,~c. Then U0 is called a Baker domain. 
We note here that  in the case of a Siegel disc U0 the limit functions of the family 

{f~ I u0 } are all non-constant, while in the other cases they are all constant. We also 
note that  if U0 is periodic of period n>2, then the components U1, ... , U~- t  of the 
periodic cycle which U0 belongs to are of the same type according to the above 
classification. 

There is a similar classification for rational functions. Here Baker domains do 
not play a special role, but there is the additional possibility of a Her~nan ring. 
As an introduction to iteration theory, we recommend Beardon's  [8], Carleson and 
Gamelin 's  [14], and Steinmetz 's  [29] books as well as Milnor's [25] lecture notes 
for rational functions and the survey articles of Baker [5] and Er~menko and Lyu- 
bich [17] for rational and entire functions. The iteration theory of transcendental 

meromorphic functions is surveyed in [10]. The classical references are Fatou [19] 
and Julia [23] for rational and Fatou [20] for transcendental  entire functions. 

Baker and Singh [7] proved tha t  if 9(z)=a+bexp(27riz/c) and if f is entire, 
then fog has no wandering domains if gof  has no wandering domains. They used 
this to show that  e x p ( e x p z ) - e x p z  does not have wandering domains. Here we 
compare the dynamics of fog and gof  without assuming that  g has the special 
form above. Our main results are as follows. 

T h e o r e m  1. Let f and g be nonlinear entire functions and zEC.  Then zC 
J ( fog)  if and only if g(z )EJ(gof ) .  

It  follows tha t  if U0 is a component  of .T'(fog), then g(Uo) is contained in a 
component  V0 of .T'(gof). The result of Heins [22] already mentioned implies that  

Vo\g(U0) contains at most one point. 

T h e o r e m  2. Let f and g be nonlinear entire functions. Let Uo be a component 
of JZ(fog) and let Vo be the component of ,T(g~f) that contains g(Uo). Then 

(i) Uo is wandering if and only if Vo is wandering, 
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(ii) if Uo is periodic, then so is Vo, moreover, Vo is of the same type according 
to the classification of periodic components as Uo. 

In particular it follows that  fog has wandering domains if and only if gof  has 
wandering domains. We use Theorem 2 to show that  certain new classes of entire 
functions do not have wandering domains. 

T h e o r e m  3. Let F={eiZd=z, i(eZ~=z), s inz•  cosz=t=z} and G={glog2 ..... 
gin; g j=sinz  or cosz, j = l , 2 , . . .  ,m, mEN}.  Then for any f E F  and gcG,  fog 
has no wandering domains. 

For an entire function f ,  we denote by A( f )  the set of asymptotic values of f ,  
by C(f )  the set of critical values of f ,  and by sing(f -1) the set of singularities of 
the inverse function of f .  Then sing(f -1) = A ( f ) U C ( f ) .  

T h e o r e m  4. Let f be a real entire function satisfying If (x)] ~ [x[ for - 1  < x < 1. 
Suppose that s i n g ( f - 1 ) c R .  Then f (s inz)  does not have wandering domains. 

Here an entire function f is called real if f ( R ) c R .  To give specific examples 
of entire functions which Theorem 4 applies to we recall that the Pdlya-Laguerre 
class LP consists of all entire functions f which have a representation 

( z )  
f(z)=exp(-az2+bz+e)z n n e• , 

k~l 

where a,b, cCR, a>0,  heN0 ,  zkeR\{0}  for all k c N ,  and Ek~r 1 IZkl-2<oc. In 
particular, real entire functions of order less than two with only real zeros are 
in LP. P61ya [27] and Laguerre [24] proved that  an entire function f is in LP if and 
only if there is a sequence of real polynomials with only real zeros which converges 
locally uniformly to f .  

P r o p o s i t i o n  1. Let f = f l o f 2  ..... fn where f l , f2 , . . .  , f n ELP .  Then we have 
s i n g ( f - 1 ) c R .  In particular, s i n g ( f - 1 ) c R / f f E L P .  

We note that  f ( z ) = z  cos zELP and obtain from Theorem 4 and Proposition 1 
that  sin z cos(sinz) does not have wandering domains. More generally, an odd 
function f is in LP if and only if it has the form 

~ (  z2) 
f(z) =exp(-az2+c)z I I  1-- 

k=l ~k 

with nE{1,3, 5, ...} and a, c, zk as above. It is easy to see that  the hypothesis of 
Theorem 4 are satisfied if c_~0 and ]zkl~_l/v~ for all k c N .  
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We remark that  Theorems 3 and 4 are just examples of applications of Theo- 
rem 2 and tha t  we have not tried to state these results in their most generM forms. 
Using Theorem 2 one can find more classes of entire functions without wandering 

domains. 

Acknowledgement. We would like to thank Professor G. Frank for hospitality 
and helpful discussions. 

2. P r o o f  o f  t h e  t h e o r e m s  

We need the following lemma. 

L e m m a  1. Let f and g be nonlinear entire functions and zo G C. If Zo is a 
periodic point of fog, then g(zo) is a periodic point of gof. 

Proof. Let h-=fog and k=g~f. Suppose h'~(Zo)=zo where n E N .  Then g(zo)= 
g(hn(zo) ):kn(g(ZO) ). 

Proof of Theorem 1. Let zoCJ(fog). Since the Julia set is the closure of the 
set of repelling periodic points, there are periodic points zj of fog such tha t  zj---~z0. 
By Lemma 1, g(zy) are periodic points of gof and hence g(zo) is a limit of periodic 

points of gof because g(zy)-*g(zo). It  follows that  g(zo)E,7(gof). 
Interchanging the role of f and g we see that  if WoEJ(gof), then f(wo)e 

J ( g o f ) .  Suppose now tha t  z 0 e C  and g(zo)Cfl(g~f). Then f(g(zo))efl(fog). 
Because of the complete invariance of the Julia set we conclude that  zo Gfl(fog). 
The proof is complete. 

Proof of Theorem 2. Let h=f~g and k--g~f. For h E N ,  let Un be the com- 
ponent of J(h) containing h~(Uo) and let V,~ be the component  of fl(k) contain- 
ing kn(VO). Since g(h"(Uo))=kn(g(Uo)) for all n G N  we see that  g(U,~)cVn and 
analogously f (Vn) C Un+ 1. We conclude that  if Um = U~, then V,,, = V,~ and if Vm = V,~ 

then Um+l =Un+l .  In particular, if Uo=Un, then Vo=V,. 
Let now Uo=Un. Suppose that  hn~]vo--~O as j--,oc where r Take a 

domain V* in V0 such that  a branch g*: V* --~ U* C U0 of the inverse function of g is 
defined. Then k~lv . =goh~og*[v . and hence k ~j Iv*--*~P:=g~176 If U0 is a Siegel 
disc, then r is nonconstant,  hence r is also nonconstant and thus V0 is a Siegel 
disc. If U0 is an at t ract ing domain, then r is a constant lying in ~ (h ) ,  hence ~p is 
a constant in Y(k) and thus V0 is an at t ract ing domain. The case of a parabolic 
domain is analogous, except that  r and ~ are in J ( h )  and J ( k )  now. 

The arguments show that  if V0 is an at t ract ing domain, parabolic domain or 
Siegel disc, then so is U1 and hence U0. I t  follows that  if U0 is a Baker domain, 
then so is V0. This completes the proof. 
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Remark. The above proof also shows that  if V0 is periodic, then U1 is periodic. 
We note that  U0 need not be periodic. To see this simply take f = g  such that  9v(f) 
has an invariant component V0 which is not completely invariant. Then take U0 as 
a component of f-i(Vo)\Vo. 

To prove Theorems 3 and 4, we also need the following results. 

L e m m a  2. Let f and g be two entire functions. Then 

and 

C( f  og) C C(f)U f(C(g) ), 

A ( f  og) c A( f )U f ( A(g) ), 

s ing( ( fog) - l )  C sing(f-1)Uf(sing(9-1)). 

Proof. We have (fog)'=f'(g)g' and thus C(fog)cC(f )Of(C(g)) .  If fog tends 
to a E C  along a path 7 tending to oc, then along ~/either g tends to oc or g tends 
to a point /3  satisfying f ( / 3 ) = a  (see [7] for details). We have s E A ( f )  in the first 
case and a~f(A(g))  in the second case. Now the second and the last conclusion 
follow. 

L e m m a  3. (Denjoy-Carleman-Ahlfors theorem [26, w / f  the inverse 
function of a meromorphic function f has n direct singularities, n>_2, then 

lim inf T(r, f__~) > O. 
r~oc rn/2 

Consequently, the inverse function to a meromorphic function of finite order 0 has 
at most max{20, 1} direct singularities. Moreover, an entire function of finite order 
0 has at most 20 finite asymptotic values. 

Proof of Theorem 3. The functions sin z and cos z have the critical values 
•  and no asymptotic values. And any f c F  has at most finitely many asymp- 
totic values by Lemma 3. Thus g(f) has only finitely many asymptotic values by 
Lemma 2. (In fact, it is not difficult to see that  functions in F and hence the 
function g(f) have no asymptotic values at all.) Since all the critical values of g(f) 
are among the finitely many values • g l ( •  glog2(:kl),... ,  glog2 . . . . .  g ,~ ( i l ) ,  

glOg2 . . . . .  gm(:~(17~-~i)), .qlo~2 . . . . .  ~m-- l ( -{ -g , , ( i ) ) ,  .q1:~2 ..... Cgm_l(Q-gm(0))  , and 
glog2 .. . . .  gm-l(•189 again by Lemma 2, g(f) has only finite many critical 
values. Hence g(f) is of finite type (i.e. the inverse function to g(f) has only a finite 
number of singularities) and thus g(f) has no wandering domains by [18] or [21]. 
We now apply Theorem 2 to conclude that f(g) has no wandering domains. This 
completes the proof. 
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Remark. It is not hard to see that  such fog has infinitely many different critical 

values and is not of finite type. 

Proof of Theorem 4. We define h(z)=s in  f(z).  Then 

sing(h -1) C { -1 ,  1}Usin(sing(f-1)) C [-1,  1] 

by Lemma 2. It now follows from a result of Er~menko and Lyubich [18] that  there is 
no component U0 of ~'(h) such that  hn]vo-~oc as n--*~c. Thus if h has a wandering 
domain U0, then there is a sequence (nk) of positive integers and a E C  such that  

h nk ]Uo--~a as k--~cc. Clearly we have aEff(h). Let P(h)=[.Jn~__0 hn(sing(h-1)). It 
follows from a result of Baker [1] that  aEP(h). (Actually we even have that a is 
a limit point of P(h) ,  but we do not need this result proved in [12] here.) Our 
hypotheses imply that  ]h(x)]<lx ] for 0<]x[_<l. We conclude that  P ( h ) c [ - 1 ,  1], 
that  hn][_l,1]--~0 as n - - - ~  and that  0 is an attracting or parabolic fixed point of h. 
If 0 is attracting, then [-1,1] C~'(h) and thus P(h)NJ(h)=O, contradicting a c  
P(h)QT(h). If 0 is parabolic, then [-1,  0) and (0, 1] are contained in the parabolic 

domains associated to 0. We conclude that  [-1,  1 ] n J ( h ) = { 0 } ,  so that  a=0 .  The 
dynamics near parabolic fixed points are well understood. In particular, it is known 
and not difficult to see that  a parabolic fixed point cannot be a limit function of a 
sequence of iterates in a wandering domain. Thus we again have a contradiction. 
Hence h has no wandering domains. Theorem 2 now implies that f (s in  z) does not 
have wandering domains. 

3. P r o o f  o f  P r o p o s i t i o n  1 

L e m m a  4. ([11]) Let f be a meromorphie function of finite order. Ira is an 
asymptotic value of f ,  then a is a limit of critical values ak ~a  or all singularities 
of f -1  over a are logarithmic. 

Proof of Proposition 1. Let f E L P .  It follows from the characterization of LP 
mentioned in the introduction that  f~E LP. Hence all critical values of f are real. 

We now assume that  f has an asymptotic value ~ c C \ R  and seek a contra- 
diction. Clearly c~ is also an asymptotic value of f .  It follows from Lemma 4 that  
f - 1  has logarithmic (and hence direct) singularities over ~ and 6. From a theorem 
of Lindel5f [26, w we deduce that  between the paths where f tends to a and 
5, there must be paths where f tends to oc and thus there are also two direct 
singularities over oc. Thus f - 1  has at least four direct singularities. By Lemma 3 

we thus have 

(1) l iminf log M(r, f )  > O. 
r--~oc 7 "2 



O n  t he  d y n a m i c s  of compos i t e  ent ire  func t ions  37 

We may write f in the form f(z)~-e--aZ2p(z), where p is an entire function of genus 
0 or 1 and akO. It follows that logM(r ,p)=o(r  2) as r--*oo and hence a>O by (1). 
This implies that  f(z)---~O as z-~oo along the positive or negative real axis. Using 
Lindel6f's theorem again we conclude that  between the real axis and the paths 
where f tends to a and a there must be paths where f tends to oc. This leads to 
four direct singularities of f - 1  over oo and thus altogether to six direct singularities 
of f - 1 .  Hence 

l iminf log M(r, f )  > 0 
r - - ~  ~3 

by Lemma 3. On the other hand, we have log M(r,  f ) = O ( r  2) as r--+~ by the form 
of f .  This is a contradiction. Thus all asymptotic values of f are real. 

Altogether we see that  s i n g ( f - 1 ) c R  if f E L P .  The case that  f has the form 
f = f l o f 2  .. . . .  f~ with f l ,  f2, . . .  , f.~ELP now follows from Lemma 2. 
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