
Multipliers in HP(Rn), O<p<  
J. C. Peral and A. Torchinsky* 

O. Introduction 

In this paper we develop some recent results of  Calderdn and Torchinsky [2] 
concerning H p multipliers in order to present sharp conditions in terms of direc- 
tional derivatives of  the multiplier function m(~) which will assure that  the as- 
sociated translation invariant operator T defined by means of  its Fourier trans- 
form by 

(Tf)  ^ (4) = m(~) f(~) 

for f (~ )  in C o (R n) and 0~ s upp f ,  preserve the Hardy spaces HP(R"), 0 < p <  ~o. 
In our context a tempered distribution f is in HP(R ") if 

M(u,x )  = sup lu(y, t)l 
Q(x--y)~=t 

is in LP(R~), ItfLlup=llM(u)IIp, 0<p<~,  where O(x) denotes the parabolic metric 
associated to the group {tP}t>0 with (Px, x ) ~ ( x , x ) ,  trace P = ~ ,  and u ( y , t ) =  
(f,q~t)(Y) is an extension o f  f to R+ +1 by means of  convolution with a function 
q~t(y)=t-r~o(t-Py) in the Schwartz class S with non-vanishing integral, see [1]. 
When P=I ,  ~=n and ~ (x )=[x  I these spaces coincide with the H p spaces of  
several real variables considered in [5]. A bounded function re(C) is an H p multi- 

plier with norm ~ K  if [IZfl]np<=gIIfll~t,. 
Since H P = L  p for p > l  and m is a multiplier in L p if and only if it is an 

L p' multiplier with lip § l ip '= 1 we will assume throughout that p<=2. Bounded 
functions m(r are the L2(R ") multipliers. We study here conditions on the smooth- 
ness of  rn(~) and on its decay, together with its derivatives, at infinity that  will 
imply that m(~) is also a multiplier for some p < 2 .  

* The first author was supported in part by a grant from Ministerio de Educaci6n, Spain, 
and the second author by the National Science Foundation and a Faculty Research Grant from 
Indiana University. 
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1. Multiplier theorems 

As is well known the function m(~)=O(4)e IIr 0 d e < l ,  0(4) vanishing near 
0 and equal to 1 at infinity which satisfies 

is only an L2(R ") multiplier. So no condition weaker than (1) above with e = 0  
will insure positive results. It follows from Proposition 1.2 that if this is the case 
then indeed we have an HP(R ") multiplier for l i p -  1/2< 1/n. It is also well known, 
see Proposition 2.2, that there are such rn(~) which fail to be multipliers for 
1/p-1 /2>l /n .  Actually a stronger result follows in the spirit of  [10] and [2] The- 
orem 4.7, for it suffices to assume a H6rmander type condition [7] for {(OlO~)rn(4)l 
in L"+"(Rn), see Proposition 1.1. We also point out that for radial functions m([4[) 
a local L2(R 1) condition on m'(t) will suffice but then the result holds for 
1/p-1/2<1/2n,  see [8] and Theorem 1.4. We will also extend these results to 
functions m(~) with k derivatives, k ~  1. Multiplier results for analytic H p spaces 
were first discussed in [16]. A related result we consider in Proposition 2.4 is the 
following: given l < p < 2  there exists a bounded, C=(R ") function m([~[) so that 
it is a multiplier in L~(R ") for p < q < p '  but it does not map L~(R ") into weak 
L b" (R") or L p' (R") into weak L p'(R"). The construction of this example, which 
has been given in a more general situation in [4], requires some ideas of [13]. 

The results of [2] that we will use are the following. Let d(t) be art infinitely 
differentiable non-decreasing function in [0, ~)  such that d ( t ) = 2  in [0, 1/2) and 
d( t )=t  for t>3 .  Then for a complex number z we define 

(Dzf) ^ (4) = d(o*({))=f(4) 

where 0*(4) is the metric associated to the adjoint group {tP*}t>0. Let 0(4)= 
0(0"({)) be a function in C o ( R  ") with support in 1 / 2 < 0 " ( 4 ) < 2  and = 1 in 
1<Q*(4)<3/2.  I f  1/q=l/p--1/2 and 

(2) []Da[m(te*r <= K <oo, t >  O, 

for some 2 > ? / q  then m is a multiplier in LP(R ") with norm bounded by 
c(K+ I[rnl[=). I f  on the other hand 

(3) [[D~[m(te*~)O(~)][12 <= K < 0% t > O, 

for  some 2>?(1/p--1/2), and p<=l, then m is an HP(R n) multiplier with norm 
bounded by c(K + ]]mll ~). 

We begin by obtaining a useful estimate in terms of  directional derivatives 
of  m(~), similar in general character to those of  [12], that will insure that (2) or 
(3) above hold. 
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Proposition 1.1. Let m (4) be a bounded function so that for vectors vl . . . . .  v j, 
1 ~-j=k, l < q <  ~o and t > 0  the directional derivatives o f  m satisfy 

H,=I 0*(v,)) 
~-~*(~)~-~ vl,-ff- ~ .., vj, m (tP*O d~ ~ < - K  tj 

Then ][ak[m(te*4)~(4)][lq<=c(J[ml[~ + K). 

Proof. First some notation. Given a multi-index a = ( a  1 . . . .  , a,) denote by 
(O/Ox)"f(x)=(Ol~L/9"~xl...O*,x,)f(x), and x*=x~. . . x~  ~. 9/9~ denotes the gra- 
dient. As is wellknown, for  0"(~)_->1 we have that 0*(~)-<I~[ and [(0/04)~0"(0[= < 
cQ*(O ~-t*l, see [1]. Thus we may apply for instance (2) above to 

(4) rag(C) = d( l r  

to obtain that rnk(r ) is a multiplier in Lq(R ") for l < q < o o .  Also it may be seen 
that (cf. [17] Section 32) 

(5) d(14[) k = ~(~)+  I~lk/~(O 

where q~EL~(R n) and # is a finite measure. Indeed we just choose a smooth func- 
tion Ip(4)=l  for [41-<_3 and vanishing for [41>4 and then set ~(O=d(l~l)*r 
and /2(0 = 1 - ~b (4)- Moreover  

where as is well-known each R,(4) is a multiplier in Lq(R"), l < q <  oo. Thus com- 
bining (4), (5) and (6) we obtain that 

(7) IIDg[m(tP*4)fl(~)]ll~<= c[Imll~+c Zl~l~_k m(te*~)O(~)) = cllmll~+ J. 
q 

Let Z(r denote the characteristic function of {I=Q (~)=2}. It  is then readily 
seen that if  [a[=j 

0 " 

with Iv~l=l, l~=i<=j. 
Substituting (8) in the corresponding term of  J in (7) above we have 

1 

J < - c  

<: CK Zo<IaI<_I,I~_k,H i=~ e*(tP* vi)) tlal ~-cl[mll~ <= c(K+llml[~). 

This completes our proof. 
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Our next result deals with functions m which have the smoothness, and decay 
discussed in the introduction. 

Proposition 1.2. Let mECk(R"\0) ,  and suppose that for O<-j~k 

Nen m is an H~(R ") multiplier for 1/p-1/2<k/?, with norm not exceding cK. 

The proof  follows at once from Proposition 1.1 and (2) and (3) above. 
Our next Theorem extends this result to fractional decay as well. 

Theorem 1.3. Let mEck-I(R"\O) and suppose 0<c~<= 1 is such that 

, (~*~h)) ~-~+~ a s  h ~  (9, I m , x + h ) - z ~ , ~ = ~ _ ~ l [ ( - ~ )  m)(x) [ - - ~ )  

for e*(x)_->2e*(h). Then m(~) is an HV(R ") multiplier for 1 /p -1 /2<(k - l  +cO/? 
with norm <=c(llmll~ + g). 

Proof. As condition (9) is invariant under dilations x~se*x, h~se*h we have 

that 

, 1 = t, Q - - ~ - ) - 5  (10) re(s" ( x + h ) ) + Z ~ _ l ~  m (sP*x)(~*h) o < K(  a*(h)] 

with the same K as above independent of  s. Let now 9~S(R") be supported in 
Q(x)<=l, 0 (0* (x)) -- q~ (x) be such that 0(tV*x)~-0 as a function of  t > 0  for 
x # 0  and have all moments up to order j + k - 1 ,  where j is the smallest integer 
=>k--l+c~, equal to zero. If b is such that 0(x)b<=IX[ for lx[<=l (see [1]) let 
0 < t < 4  -b. It then follows that if we set M(x, s, t)=(m(se*(y)O(y))* ~o,)(x), then 

(11) ]M(x, s, t)l <= c(K+limll=)tk-X+~Z(X) 

where X is the characteristic function of  {O*(x)<5}. Indeed, since the convolution 
is seen to vanish whenever )~(x)=0, it only remains to show that the appropriate 
bound holds. Write 

O(x--y) = Zl~l<J ( O(x)+R(x, y), 

where JR(x, y)[<=c [ylJz(x). We then have 

M(x, s, t) = z~j,t<j~.~ ~ r/ ( x ) fm(s  (x-- y))(-- y) (pt(y)dy 

+ f m (~* (x -  y)) R (x, y) ~, (y) dy 

= ~ lo l< j -~ -  ! O(x)I~(x, s, t)+J(x, s, t). 
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Since m is bounded  and t <  1 we have 

(12) [J(x, s, t)[ <= c Ilmll=z(x) f lyl j ko,(y)[ dy 

= c II ml1~ X ( x ) f  [teYl j lop (y)[ dy <~ ct j I[mll ~ x(x) <= ct k-l+" I[m[l~x(x). 

As for  each I,(x,  s, t) we have 

P* (sP* (~v.Y))t~ ( ( ~___~)t~ml (se*x) (_ y)~ cpt(y) dy" I~(x, s, t) = f m(s ( x - Y ) ) - 2 1 p l ~ J - 1  

N o w  since we are only interested in those x in supp 0 and r vanishes unless 
O ( y ) < t  we have that  r for  those x. So 
f rom (lO) we obtain 

lI~(x, s, t)[ < (e* cKtk-l+~t ]~1 
= t , ~ - ~ y  lye] I~0t(y)[ dy ~= O.(x)k_X+ ~ . 

Thus we have 

(13) ~'1< <J-~ .  O(x)Ia(x, s, <= cg tk - l+~z(x  ). 

Combining (12) and (13) we get (11) and we are ready to complete our  proof.  
First  notice that  for  t>=4 -b we have for  any q > l  

I[M(x, s, t)lla <= Ilml[~ I]011qll~o~ll~ = cllmll~. 

Also for  t<-4 -b and f rom (11) it follows that  

IlM(x, s, t)lla =< c[g+llmll~]t k-~+~. 

Let 0 < ~ < k - - 1  + e .  Then it is readily seen [1] Lemma 4.1, that  there is a smooth 
funct ion ip so that  for  ~ ~ 0 

=fo 
Therefore  if (Aaf )^ (~)=O*(r162  then 

dt 
(Aa [m (s~'*y) O (Y)])" (r = f o t -a [m (s~'*y) O (Y)] ̂  (~) ~9 (t P*{)~b (tP*O 

t 
and for  q@l  we have 

t-a dt IIh~[m(se*y)O(Y)llq <= f o IIM(x, s, t)*~P,lla 
t 

f o ~ dt f~ -b  dt <-- ][r []M(x, s, t) l l~t- - -7  <= cil~1111]m[[= tk- l+' t -b  t 

+cll~lll(K+ilml[~) f~_b t -~ d___t_t : c(K+llml[~). 
t 
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But as in (5) it may be shown that there exist a function 9CL101 ") and a finite 
measure p so that 

a (~* (O) ~ = r (4) + ~* (4)~ (O 
and so independently of s 

(14) ][Da[m(se*y)t~(y)]llq <= c[Im][= + cl[Aa[m(sP*y)O(y)]l[,~ 

<= c[K+llmll=]. 

Suppose p > l .  Let e = k - - l + ~ - - 6 > 0  and pick 2 < : q : 6 / ( k - l + ~ - 2 e )  so that 
?/q<3.  Then from (2) and (14) it follows that m is multiplier in L" (R n) for lip -- 1/2= 
(k- l+~--2e) /y .  But e>0  is arbitrary, so that our conclusion follows in this 
case. If  p< : l  choose q = 2  instead and combine (3) and (14) to obtain the desired 
conclusion also. 

Our next theorem applies to radial functions m and allows the relaxation of 
the assumption q=>2 in Proposition 1.1 to any q > l  in the H6rmander type 
conditions that appear. 

Theorem 1.4. Let re(t) be a bounded functwn defined for t>=O with absolutely 
continuous derivatives up to order k and such that for some r, l<r-<:~o, and all 
s > 0  we have 

1 

j. [s-L (u) a :<:K. 

Then the function m(p*(~)) is a multiplier for l / p -  1 / 2 < ( k -  1/r)/7 with norm not 
exceeding c(K + I[ml[ =). 

Proof. We begin by observing that for h and ~ the directional derivatives 
((h, a/04)... (h, a/Or of re(e*(4)) or order j<=k are given by linear com- 
binations of the form 

Z~:a  m e*(r Ii(h, 4) 

where the /~(h, 4) are all possible linear combinations of products of the direc- 
tional derivatives of Q*(4) of the form [((h, a/ar (h, a/o4))e*(4)] where the order 
of each monomial does not exceed k + l - i  and for ~*(x)~2~o*(h) and 0<=s-<_l 

O (h) , h i (15) [Ii(h, x~sh)l <= c ~ (x+s ).  

Let now M(x, h) denote the remainder of order k of the Taylor expansion of 
m(x+h) about x, where C(x)>=2e*(h). Then 

(16) M ( x , h ) = f : I ( h , ~ ) . : . l h , ~ } m ) ( x + s h ) k ( 1 - s ) k d s .  
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Combining (15) and (16) it readily follows that 

I IM(x, h)l--< ~ ' ,=1 / s  m (O*(x+sh)) O*(x+sh)ids 

( Q*(h)~ k k x 

In each of  the above integrals J~(x, h) we set u=~*(x+sh),  and then du= 
[(h, O/Ox)e*(x +sh)]ds, and get 

If  r =  co then the conclusion follows at once from Proposition 1.2. I f  r < : ~  we 
apply HNder 's  inequality to obtain 

(X) ~l/r 
J~(x, h)<= cK~* (h)-l  + I/e ~* (x) t/" = cK l,~, (h) 

and the conclusion follows now from Theorem 1.3. 

2. Applications 

Parabolic Riesz transforms and smooth functions homogenous of  degree zero 
with respect to the metric ~*(~) are some of  the multipliers covered by our results, 
the L p results are better known and they are discussed, for example, in [14]. 

Another important class of  examples are those multipliers which arise form 
some partial differential equations�9 For  instance, as in [11] p. 205 let R"+5= 
{(x, y)[x~R", y~RS}, denote by (4, t/) the dual variables, and consider the differential 
operator D=O~]Oyl...Oys--Ax. Let P = P *  be the diagonal matrix with entries 
pu=5,1<--i<:n and --2 for n+l<:i<=n+5 so that 7 = 5 n + 1 0 .  Given g in 
HP(R "+5) we wish to solve Du=g and obtain estimates on u and its derivatives 
in appropriate Hq(R n+5) classes. For  derivatives of  lower order, the question may 
be settled by means of an argument similar to [2] Theorem 4.1, As for the estimates 

][Lul[H.(R-+5) =< cIIg[IHP(R"+O), 0 < p < co, 

where L is a differential operator of the form OZ/OxjOxk or Os/O~ylO~y,z for instance, 
they are readily seen to follow from Proposition 1.2 by direct inspection of  the 
multiplier m(~, z)= 

~ j ~ k  and z~z~ 
�9 �9 ,[7 n 
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respectively. Indeed these are smooth homogeneous functions of degree zero with 
respect to 0*(4, z)=0(~,'c), Le. if te(~, 'c)=(t2~,  . . . ,  t2~n, t5"c1, . . . ,  t5"C5), then 
m(te(~, z))---m(~, z). Obviously the number 5 can be replaced by any odd number 
and the Laplacian A~ by a more general elliptic operator. The operator O/Oyl-A~ 
is also discussed in [3] pp. 601--605. 

Still another class of examples corresponding to some strongly-weakly singular 
integrals [15] is as follows. 

Proposition 2.1. Let F(s) be a possibly complex-valued function defined for  
s>0 ,  vanishing near the origin and of  class Ck(R) with derivatives satisfying 

I sJ F(s) <- K1, O<= j <= k. 

Further assume that qo(r is a positive, real valued function defined in R" such that 
l ima , (o~  ~o(~)= ~o and for  O~=j<=k 

[(Vl, ~'--~-~} ... [Vj, ~-~)} (~9(~) < K2(]-/]=l t o*(Vl))q)(r 
= o,(0j 

Then the function m (4)= F(~o (~)) is a multiplier for lip - 1/2<k/;~ with norm not 
exceeding cK1K ~ . 

Proof. The proof of this proposition is similar to that of Theorem 1.4. As is 
readily seen we have 

[(vl, ~-~)...(vj, ff-~)}m(~) <=CKl Kj, O~=j<=k, 
and we can therefore apply Proposition 1.2 to obtain the desired conclusion. 
Notice that a possible choice for ~0(~) is 0*(4). 

Proposition 2.2. Let F(s)=O(s)e~"/sb, a, b, s>O, O(s) a smooth positive func- 
tion vanishing near zero and equal to 1 at infinity. Let k be the smallest integer >=b/a. 
Let ~o(~) be as in Proposition 2.1 and let 0(4)  be a function in R ~ so that for  
O~=j<=k and any 8>0 

(17) lim l[[v!,_~_j...[v,_~_?_j~,j(~ ) [ t  z ,  [ ~ a 3  0,(r =0 

Then m(~)=F(~o(~))O(~) is a multiplier for l /p-1/2-<b/ay.  This result cannot 
be improved. 

Proof. First assume that ~(~)= 1. If  b = k a  for some integer k, then F(s) 
verifies the assumptions of the preceeding Proposition and m is a multiplier for 
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l/p-- 1/2<k/? as we wished to show. If  not, let k be the integer such that ( k -  1)a< 
b<ka and consider the multiplier 

m({, z) = F(~0({))~0({) -z+b. 

When Rez=ja,  m({, ja+iv) is a multiplier for 1/p-1/2<j/? for j = k - 1  and k; 
when k = l  and j = 0  we just mean L=(R"). Therefore by the theorem on analytic 
families of operators, see [2] Theorem 3.4, it follows that for z=b, m({, b)=m({)  
is, a multiplier for lip -- 1/2<b/a?. 

Let now 0({) be arbitrary, b=z and 2>p>2~, / (2+?)  be given. Consider 
the multiplier 

m(~,  z )  = F , ( e ( ~ ) ) ~ ( ~ ) - z + " ~ , ( r  

When Re z = ~ > 0 ,  then m(r e+iv) is a bounded function and consequently an 
L2(R n) multiplier and when Re z=a+6,  6>0,  from the assumptions on r and 
it readily follows from (17) that m(~, 6+iv) is an H r multiplier for 2=>p>r>  
2?/(2+?). Let (1/r-1/2)(1/p-1/2)=l+~l and let e=a/2, 6=aq/2. Then by inter- 
polation we have that for z=a m(~, a)=m(~)  is a multiplier for H a with 
(a+6--~)/(a--~)=(1/q-- 1/2)/(1/p-- 1/2)= 1 +6/(a--~)= 1 +q and the desired con- 
clusion holds for q=p as we wished to show. The proof for other values of b 
follows as in the preceeding Proposition. 

We remark that a possible choice of ~({) is In q~({). For m({)= 
O({)e ilr176 In ]{]/lr b, with a > l ,  b>0,  it is not hard to check that our result cannot 
be improved. Indeed it suffices to set f ( x ) =  [xI -nIp (In Ix]) -1 near zero and smooth 
at infinity, where l i p -  1/2=b/an and to use results from [9] and [19] to show that 
m ( { ) f  (4) is not the Fourier transform of an LP(R ") function. An improvement 
on the HP(R ") result would imply a corresponding improvement of the LP(R ") 
result and this we have seen is not  possible. 

Possibly a more interesting example is the following. 

Proposition 2.3 Let 1 < p < 2  be given and suppose that n>=3. Let Jt~(t) denote 
the Bessel function of order fi, see [18], and let a and s be parameters such that 
O<a=(n-1)(1/p-1/2)+ l/2 and s > l .  Set 

re(C) = J . - ~  (l~f) [ln ( 2 +  I~l)] s 
- r -  Ir a 

Then the multiplier transformation associated to m({) is bounded in U(R") with 
p<r<p" but fails to map LP(R ") into weak-LP(R ") or LP'(R ") into weak-LP'(R"). 

Proof. It is clear that a<(n--2)/2 so m({) is a bounded function. It is shown 
in [13] that J(,_2)l~(l~l)/]~l a is a bounded L'(R") multiplier for lllr--ll2I<= 
(a+ 1/2)/(n-1) and by an argument similar to the one in the preceeding Proposi- 
tion we can check that m({) is bounded in U(R") for [1/r-1/2]<(a+ 1/2)/(n-1). 
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Let  now f ( x ) = l x [  -"/p (In Ix[) -1  near  zero  a n d  smoo th  a t  infinity, so tha t  

f ~  L p (R"). Then 

( T f )  ^ (r = m(r ~ J , -~( [ r  [In ( 2 +  I~1)] *-1 

at  infinity. Thus i f  6 = a + l + n ( 1 / 2 - 1 / p ) = l - - 1 / p > O ,  for  large values o f  x we 

have tha t  T f ( x )  can be wr i t ten  as 

f (ln [ 2 +  I ~ [ ] ) ' - l ) V , ,  
~[~ -) ~x) + e r r o r  

where the e r ror  is negl igible  wi th  respect  to the  first term.  But  then  T f ( x )  is basical ly 

the rad ia l  funct ion which  is the  convo lu t ion  o f  the funct ion  (In Ixl)S-l / lx l  ~-~ with 

the measure  # co r re spond ing  to  the  un i fo rmly  d i s t r ibu ted  mass  over  the  uni t  sphere 

Ixl=l. Let  now 1 / 2 < [ x ] < l .  A simple geometr ic  a r g u m e n t  readi ly  shows tha t  

[Tf(x) I >= c Iln (1 - - lxl ) l  s - x  (1 --  Ixl)  . - 1  ~_ c [In (1 - Ixl)[ ~ -1  

(1 - r x l ) " - '  -- (1 - t x l )  

Therefore  IT f (x) f>=c Iln ( l - l x l ) l c~- l )p / (1 -1x l )  for  those  values o f  x and  ou r  

conclus ion follows.  S imi lar ly  for  p ' .  This  comple tes  our  proof .  
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