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Asymptotics of the scattering phase 
for the Dirac operator" High energy, 

semi-classical and non-relativistic limits 

Vincent Bruneau and Didier Robert 

A b s t r a c t .  In  th is  pape r  we prove several  resul ts  for the  sca t t e r ing  phase  (spectra l  shif t  

funct ion)  re la ted wi th  p e r t u r b a t i o n s  of t he  e lec t romagnet ic  field for the  Dirac opera tor  in the  

Eucl idean  space.  

M a n y  accura te  resul ts  are now available for p e r t u r b a t i o n s  of t he  Schr5dinger  opera tor ,  in 

t he  h igh energy regime or in t he  semi-classical  regime. Here we ex tend  these  resul ts  to t he  Dirac 

operator .  The re  are several  technica l  p rob lems  to overcome because  t he  Dirac opera to r  is a sys tem,  

i ts  symbo l  is a 4 x 4 ma t r ix ,  and  its con t inuous  s p e c t r u m  has  posi t ive and  negat ive  values.  We show 

t h a t  we can  sepa ra te  posi t ive and  negat ive  energies  to prove h igh energy  a s y m p t o t i c  expans ion  

and  we cons t ruc t  a semi-classical  Foldy W o u t h u y s e n  t r a n s f o r m a t i o n  in the  semi-classical  case. 

We also prove an  a sympt o t i c  expans ion  for the  sca t t e r ing  phase  when  t he  speed  of light t ends  to 

infinity (non-relat ivis t ic  l imit) .  

1. In t roduc t ion  

We are interested here in the study of the spectral properties of the Dirac 
operator on L2(R3; C4), 

3 

H=e~-~c~j (hDj  A j (x ) )+/%2+V(x) ,  
j = l  

Dj :~ -iOx~ , 

where 3 {OZj }j=l and ~ are the 4 x 4-matrices of Dirac satisfying the anti-commutation 
relations 

o~jozk-~-akaj = 2~jk l4, l_<j,k_<4, 

(an=H, 14 is the 4 x 4 identity matrix). The vector A= (A1, A2, Aa) is the magnetic 

vector potential and V= (v+120 v_12~ ),  where V• is a scalar potential (12 is the 
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identity matrix on C2). The physical constants h (Planck's constant) and c (velocity 
of light) are parameters. 

We assume that the potentials are C ~ and there exists 8>0  such that 

IO~A(x)l+lO~V(x)l =o(@) -~-I~') for all c~EN 3, 

where (x):=(1+12;12) 1/2. T h e  operator H is a perturbation of the free Dirac oper- 
ator, 

3 

Ho = e ~ ctjhDj +c2/~. 
j = l  

The spectrum of H0 is purely absolutely continuous, 

 (Ho) = 

and, for 8> 1 (short range perturbation), we have the following properties [24], [26]: 
(i) the wave-operators for (H, H0) exist and are complete; 
(ii) the essential spectrum of H is equal to ] - o c , - e  2] U [c 2, +oc[; 
(iii) H has no singular spectrum; 
(iv) the discrete spectrum of H is contained in ] - c  2, e2[. 
According to (i), the scattering operator, S, is defined and unitary. In the 

spectral representation of H0, the operator S becomes an operator-valued function, 
S(A), on L2($2; C 4) (S 2 is the unit sphere in Ra). Moreover, S(A) is unitary and, 
for f > 3 ,  S ( A ) - I d  is a trace class operator on L2($2; C4). So, it makes sense to 
introduce the scattering phase s(A) by the formula 

(1) i 
s(A) =s(H,t/o)(A) = 27c logdet(S(A)), s(0) E [0, 1). 

According to the Birman-Krein theory [2], s(A) satisfies the Krein formula 

(2) Tr(f(H)-f(Ho)) Ls(A)f'(A)dA for all f c S ( R ) .  

By the assumption (Hs) with 5>3,  we have that scC~(] oc,-c2[U]c 2, +oo[). 
This can be proved, as for the SchrSdinger operator (see Corollary 5.8 of [20]) by 
using the stationary representation of S(A) given by E. Balslev mid B. Helffer [1]. 

In this paper, we study three kinds of asymptotics for the scattering phase. 
First of all, the high energy limit, IAl---~oc (c and h being fixed), then the semi- 
classical limit, h"~0 (c is fixed and A is in a non-trapping compact interval), and at 
last the non-relativistic limit, c ~ + o e  (h and A being fixed). 
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The non-relativistic limit (studied in Section 5) was announced in [5] and proved 
in the thesis of the first author [4]. Our proof is closely connected with the energy 
regularity and inspired by [12]. Here we show that the order of regularity (with re- 
spect to c 1) is independent of the decrease of the potentials (we need only decrease 
as (x} 0, ~>3).  

To discuss the high energy regime (in Section 3) and semi-classical regime (in 
Section 4), we use the close connection between the Dirac operator and Schrbdinger 
type operators in two ways. 

For I/~l-*oc, we split positive and negative energies (see formula (7) below), 
then some known results about local spectral densities for Schrbdinger operator [21] 
give a full asymptotic expansion of s()~) (and their derivatives). In this way, we have 
a new proof of the Weyl formula established in [7]. 

For h~-~0, we exploit the h-decoupling property of the Dirac operator (Proposi- 
tion 4.2) based on a Foldy Wouthuysen transformation. Then, we can adapt some 
classical methods to establish semi-classical estimates of the resolvent and to have 
short and long time approximations of the propagator. At last, we can prove a 
semi-classical asymptotic expansion of the derivative s~(A) for A in a non-trapping 
energy band. 

2. M a i n  r e s u l t s  

T h e o r e m  2.1. (High energy asymptotics for h = l ,  c=1.) Let us assume (Hb), 
with 5>3. Then we have the asymptotic expansions 

(a) 

j > l  

with 71 = 87c fR~ (V+ + V )(x) dx and 

~ 2 = 4 7 c / ~ a ( ( V + - V )  2 + ( V + 2  V )  2 ( V + ~ V ) 2 ) ( x ) d x ;  

(b) /f V=0,  then 

 a-  fija- J, 
j >0  

with s flo 57c fR3 B(x)  2 dx where B = c u r l A  is the magnetic field. 
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Furthermore, these asymptotics can be differentiated at any order with respect 
to )`. 

We consider now the case IAI>I fixed and h 'N0 (h=h).  To formulate the next 
result we consider the two eigenvalues A• (of multiplicity 2) of the h-principal- 
symbol of H which are defined as )`• ~ ) = + ( ~ - A ( x ) } + V ( x )  (here, we put W+= 

=v). 
Classically, we shall say that an energy band J c R  is non-trapping for a classical 

Hamiltonian A• if for every #E J, every classical path in 

:= {(x,  c ; )`• = . }  

escapes to infinity as time goes to plus or minus infinity (see Definition 4.5 for a 
more precise definition). 

Remark 2.2. The value ),E]-cx~,-1[U]1, +cxD I is non-trapping for )`+(x, ~) and 
)` (x, ~) in only two cases: 

(1)) `>u+ is non-trapping for ),+(x, ~); 
( 2 ) ) `<u  is non-trapping for )`_(x,~); 

where u+=max(1, sup V 1) and u_ =ra in ( -1 ,  inf V + I ) .  
Indeed, )~cR being non-trapping for )`+(x,~) implies that )`_>1 or {),<1 and 

Ex()`+)=0} (that is A<I  and ) ` < i n f V + l )  because for p < l ,  E,()`+) is compact 
or empty. In the same way, )`CR being non-trapping for )` (x,~) imply ~<_-1 
or { ) `> -1  and E~()` )=0} (that is ) ` > - 1  and A > s u p V - 1 )  because for # > - 1 ,  
E#()` ) is compact or empty. 

T h e o r e m  2.3.  (Semi-classical asymptotic for c=1.) Let us assume (He), with 
8>3.  I f  J is a compact interval in ] - o % - l [ U ] l , + o c [  that is non-trapping for 
)`+ (x, ~) and A (x, ~), then, for h small enough, we have the asymptotic expansion 
of (d/d)`)sh(X):= (d/d)`)SH,H~ ()`), 

dsh 
()`) >'. (27r)-3 E cj()`)h-3+J, as h 'N  O uniformly for )` ~ J, 

d)` j>o 

where for •  we have 

8 ds 

O) for xCrt). 
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Furthermore, this expansion can be differentiated in t to any order. 

Remark 2.4. If [a, b]c]-oo,-1[U]1,  +oo[ is a compact interval such that  a and 
b are non-trapping energies for A• then Theorem 2.3 gives an asymptotic expan- 
sion for sh(b)--sh(a), by integrating in I and using weak asymptotics given by the 
functional calculus (see Section 4, the proof of Theorem 2.3). 

The above theorems hold for fixed c= 1. Now, we consider the non-relativistic 
approximation, so c is a variable parameter. 

Let us denote by H', (resp. H~,• the operators Hq:c 2 (resp. H0~:e 2) and by 
(h• h0), the Paul• operators 

1 (3) h e = ~ ( a . ( D - A ) ) 2 + V •  h0=�89 

where {~j}l<j<3 are the Paul• 2 • 2 matrices. 
Owing to (Ha), the scattering phase, sA~V~:(t), for the pair (h i ,  h0), is well 

defined as a smooth function on ]0, +oc[ (see [20], [22]). Let s• be the scattering 
phase for the pair (H~,H~,• We have s •  and we will show 
the following theorem. 

T h e o r e m  2.5. (Non-relativistic limit for h = l . )  Assuming (Hh), with 6>3, 
we have the following results. 

1 1  

(i) The limit lira ~a s i ( l ) = •  s ~ w • 1 7 7  ) for all -4-I>0. 
~ + ~  d l  d l  ' 

(ii) There exists a neighbourhood ])o of c -~ O, such that s• is of class C ~ 
with respect to (c  t)CVo • 

In particular, there exists a sequence {f~}j> l  of.functions in C~176 
such that, for all integers l and N we have 

dZ dt N . zt 

j--1 

locally uniformly with respect to 1610, +cxD[, as c-~+oo. 
(iii) I f  V=O, then 

• J for • 

3. High energies 

In this section, we fix c h=  1. First of all, we limit our work to the study of the 
positive energies. The negative case will be deduced from the following proposition. 
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P ropos i t i on  3.1. Suppose (He) with 5>3. Let S(A,v)(A) be the scattering 
phase associated with the Dirac operators 

H(e ,A ,V)=a . (D  eA(x))+/3+eV(x), Ho=~-D+/3 ,  

(e denotes the charge). 
We have the symmetry property 

where,=( ~ ) 
o v + 1 2  " 

In particular, if 7 f  (A, V) are the coefficients of A 2-j in the asymptotic expan- 
sion of (d/dA)s(A,v)(A) as A---~• we have 

7 j  (A, V) = - 7 ] ( - A ,  V). 

Pro@ 
of [24]) 

Let C be the charge conjugation operator defined by (see Section 1.4.6 

This is a unitary operator on L2(R 3, R 4) satisfying 

CH(e,A, V)C -1 - H ( - e ,  A, V) = - H ( e , - A ,  V). 

Then we obtain the symmetry property by using the Krein formula (2) and the 
cyelicity of traces. [] 

Now, we study the positive energies. 
Formally, s(X) is related to the difference between the spectral projectors of H 

and H0. As in [20], we first prove that s(A) can be computed by using only the 
spectral projector of H. Let us introduce 

Q:=H2-Hg,  A: �89 

The differential operator Q is of order 1. Its coefficients are matrices, decreasing 
as fast as A and V (see (//6)). 

P ropos i t i on  3.2. Suppose (He) with 5>3. Let fcC~(]-oc , - l [U] l ,  +c~ D. 
We have 

~ s(A) f'(A) = Tr((Q-  �89 , 4 ] ) -  1)- I f (H)). dA (H 2 
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Proof. By using the relations 

2(Hg-I)=i[H2o,A] and 2(H2-I)=i[H2,A]+(2Q-i[Q,A]), 

and the cyclicity property of traces (see Appendix A of [20]), we obtain 

Tr(f(H)-f(Ho)) = Tr((Q- �89 ~4])(H 2 - 1)-1 f ( H ) ) .  

The Krein formula (2) gives the result. [] 

Remark 3.3. Of course the operator ( H 2 - 1 )  -1 is not well defined, however 
for f c C ~ ( R \ { - 1 ,  1}), we can define (H2-1)-lf(H) as the operator p (H)  where 

E C ~  (R) satisfies 

(A2-1)-lf(A) forlA Ir 
qz(A) = 0 forlA I = 1. 

To prove Theorem 2.1, we are going to apply a result of D. Robert  [21] (The- 
orem 4.4) concerning asymptotic expansions of local spectral densities, for pertur- 
bations of the Laplacian. We will connect (ds/dA)(A) with local spectral densities 
of (H 2 - I d ) .  

Let us recall the general result we shall use here. Let w be a classical symbol 
in the symbol class S,,~({x} -~, {~}") defined by 

{8 e C (R 2n, 10;0 8(x, = O((x> 

where Ad,~(C) is the set of m x r n  matrices. 
Let L the Hamiltonian on L2(R n, C "~) defined on C ~  by 

L = - A I , ~  + a(x).D + D.a(x) + V(x), 

where for example a(x).D=-i 2jn_l aj(2C)Oxj. We a s s u m e  that  a(x)EC~(R ~, R m) 
and V(x) is a Hermitian matrix, C ~ on R ~ satisfying (Hs) with 5>n. Then, for 
f E C ~ ( R ) ,  w(x, Dx).f(L) is of trace class and we can define the local spectral 
density of L. 

Definition 3.4. The distribution a~: f~-+Tr(w(x, D,).f(L)) is the local spectral 
density of L, associated with w. 

Because the principal symbol of L is scalar, we can easily adapt the proof of 
Theorem 4.4 in [21], for matrix operators, and we obtain the following theorem. 
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T h e o r e m  3.5. (D. Robert [21]) Under the above assumptions, a,o is C ~ in 
]0, +oo[ and we have the full asymptotics 

~rw(A) xA (n+~)/2 l(~_Cw,jA-j/2), A----~@(X). 

" j > 0  

Furthermore, these asymptotics can be differentiated at any order with respect to A. 

Let us remark that this result also holds for Ag, the symmetric Laplace 

Beltrami operator associated with an asymptotically fiat metric 9 which is non- 

trapping. 

Let us introduce 

w:=}(o - l i [o ,A] )  and W ' = W H .  

As Q:=H2-Hg  and A are first order differential operators, W is a first order dif- 
ferential operator, and W ~ is a second order differential operator. Moreover, under 
the assumption (He), Q=q(x, Dx) with qES4((x) e, (~)). Then, W=w(x,  Dx) and 
W'=wt(x,  D~) with 

w c &((x) e, (r &((x)  e, (r 

The operator H 2 is not exactly of L's type (/32=Id occur), 

H 2 = A 1 4 + ( a . D V + V a . D ) - ( D . A + A . D ) - E . B + ( / 3 + V  a.A) 2, 

where B = c u r l A  and Ej (~j 0 ) 0 ~ , (crj)l_<j_<3 being the 2 x 2  Pauli matrices. 

However, H 2 Id is of L's type under the hypothesis (Ha) with 5>3 and the 
local spectral densities cr w and ~w,, associated respectively with W and W',  are 
well defined on ]1, +oo[ by 

(4) 
(s) 

aw: f C C~( ] I ,  +oo m , , Tr(Wf(H2)) = T r ( W f ( H  2-Id)), 

Crw,: f C C~~ +oo D , > Tr(W'f(H2)),  

where f ( A ) = f ( A + l ) .  
Here (H2- Id )  is a perturbation of the Laplace operator, thus Theorem 3.5 

holds for cr w and ~rw,. Hence the existence of the asymptotic expansion claimed in 
Theorem 2.1 will be deduced from the following proposition. 
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P r o p o s i t i o n  3.6. Let us assume (Hs) with 8>3. Then the scattering phase 

s(A) for (H, H0) and the local spectral densities aw ,  aw,  are well defined. In the 
distribution sense, on ]1, +oo[, we have the decomposition 

ds 2A 2- 2 2 
(6) ~ ( A )  = ~ - ~ ( r w ( A  )+~7~_laW,(A ). 

Proof. On ]1,+oo[, the distributions crw/ (A-1 )  and crw, / (v~(A 1)) are re- 
spectively the mappings 

f E C ~  (]1, +oc[) ~ Tr (W(H 2 - 1 ) - i f (H2) ) ,  

f e C ~ ( ] l , + o o D ~ - + q S : ( W ' ( H  2 1)-IlHI l f (HS) ) .  

Then, owing to Proposition 3.2, we want to prove that  

Tr (2W(H 2 - 1)- l . f (H))  = Tr ( W ( H  2 - 1)-1f  ( v / ~ ) )  

+ T r ( W ' ( H 2 - 1 )  i I H l - l f  (vZHS)) 

for all f c C ~ ( ] I ,  +oc[). 
However, this is a consequence of the following equality, true for all f equal to 

zero on ] -oc ,  0] (and for any self-adjoint operator), 

(7) f ( H )  = �89189 lf(lH[). 

Hence, we deduce equation (6). [] 

Remark 3.7. Of course, as for (H2-1 )  -1 (see Remark 3.3), IH1-1 is not well 
defined, but for f e C ~ ( R \ O ) ,  we can define IHI xf(IHI). 

Proof of Theorem 2.1. As we saw above, the existence of the asymptotic ex- 
pansion follows from the equation (6) and from Theorem 3.5 applied to aw  and 
aw,.  This gives an asymptotic of the form 

~(),)• - 3 V ' ~ + a  2 J ) , ~ + o o .  
A..~ ~j 
j>0 

According to Proposition 3.1, we also have an asymptotic as A--~-oc with coeffi- 
cients 7 j .  

At last, the coefficients are given by the weak asymptotic in [4], [7]. This 
uses the functional calculus for h-admissible pseudo-differential operators, developed 
by B. Helffer and D. Robert [14], [19], which is based on the construction of a 
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parametrix (Seeley's method). In particular, we have %~=0 because H 2 and Hg 
have the same principal symbols. Moreover, by using meromorphic extensions of 
the zeta relative function for (H 2, Hg) and of the eta relative function for (H, H0) 
(see [4], [6]) we prove that  7 j  =73.  

The case V=0  is studied in [7], using some supersymmetry properties of H 
with only a magnetic potential, we prove (Corollary 6.3 of [7]) 

(8) stA) =-+-soo (�89 (A2-1)), i A > l ,  

where soo is the scattering phase for the Pauli operators defined by (3), with V+ = 
0. As the asymptotic expansion of s ~  is known [20], we deduce the asymptotic 
expansion of s, for V=0.  [] 

Remark 3.8. In this proof, we only use that  (H 2 - I )  is a perturbation of the 
Laplacian and the result of D. Robert [21], true in any dimension. Hence, in the 
same way, we can obtain a high energy asymptotic of the scattering phase for Dirac 
operators in R ~, for any n. 

Moreover, s'(A) is studied as a particular spectral density of H (see Proposi- 
tion 3.2). More generally, we can also prove a high energy asymptotic expansion 
for local spectral densities of Dirac operators. 

Remark 3.9. Keeping c (the velocity of light), the formula (8) becomes, for 
A>c 2, 

/) ,2-c4"~ 

Then, sc the scattering phase associated with ( H - c  2, Ho-C 2) satisfies, for A>0, 

(9) sc(A)=soo A + ~ c  2 , 

which is (iii) of Theorem 2.5. 

4. S e m i - c l a s s i c a l  l i m i t  

In this section we fix c= 1 and we study the asymptotic of the scattering phase 
as h=h tends to 0. To prove Theorem 2.3 (in Subsection 4.3), our main tool is 
h-decoupling (developed in Subsection 4.1). 

To simplify, we consider only the case V+ =17 V, hence the h-principal symbol 
of H has two eigenvalues of multiplicity two, 

a~ (x, ~) = • ({-A(x))  +V(.). 
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Remark 4.1. For V+~V_ the h-principal symbol of H also has two eigen- 
values of multiplicity two, viz. ),• (x, ~) =:J:((1 +~(x))  2 + I~-A(x)[ 2) ~/2 +v(x), with 

I(V+-V_). But in this case, when ( l+~(x) )  and (~-A(x)) ~=�89 and v=~ 
vanish together, A• is not differentiable. 

4.1. h-decoupl ing  of  the  Dirac operator  

The goal of this section is to prove the following proposition. We will use 
h-pseudo-differential calculus. To a symbol a and a real h>0,  is associated the 
operator Opt(a) defined for u E S ( R )  by 

( Op~ (a)u)(x) = (2w) - " /R , , /R , ,  ei(~-Y'~)a( �89 (x + y)' h~)u(y) dy d~. 

Let us recall that an operator A(h) is called h-admissible of weight (q,p) if there 
exists sequences (a j) of symbols and RN (h) of bounded operators (on L 2) such that 

N 

A(h) = E hj Op~ (aj) + h N+I RN (h), 
j = 0  

with RN(h) uniformly bounded for h<]0, ho], h0>0, and adeS(<x}P , <{)q), where 

S(<xF, <(>~):: {s c c ~ (n~'~): la~O~(x, ()l : O(<x>p-I< (~>~-Izl)} 

(see the book [19] or [14] for more details). 

Propos i t ion  4.2. Let HAW be the Dirac operator 

HA,.  = ~" ( h D -  A(x)) + Z +  V(x) 14, 

with A and V satisfying (Hs). 
For all N>O, there exists a unitary h-admissible pseudo-differential operator 

WN(h) such that 

W~vHA'vWN=(a+'No(h) a ,N(h)O ) § 

where a• is an h-admissible pseudo-differential operator, of principal sym- 
bol A• ~)12, and RN+I(h) is an h-admissible pseudo-differentzal operator of or- 
der ( N +  1). 

In particular, for N-O we can choose a•177 hD)12. 
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(W~v denotes the adjoint operator of the closed operator WN.) 

Let us mention that a similar result is stated by R. Brummelhuis and J. Nour- 
rigat [3] to study the scattering amplitude. This kind of decoupling is also used by 
A. Grigis and A. Mohmned (see Lernma 3.4 of [11]) to study the Dirac operator 
with periodic potentials. 

To establish this proposition, we use the following lemma proved in [15J for 
bounded operators following a method due to M. Taylor. 

L e m m a  4.3. Let M~(h) be a matrix h-admissible pseudo-differential operator, 

Mk(h)= ( a+(h) h~b*(h) ) 
hkb(h) a (h) , k> 1, 

where a• and b(h) are m x m  matrices of h-admissible pseudo-differential oper- 
ators satisfying 

(i) ~• is of weight (1,0) and b(h) is of weight (q,O), q<_l; 
(ii) the principal symbols of a• (h) are of scalar type, i.e. there exists ;~• (x, ~) C 

R such that ap(a• ~)1,,~; 
(iii) there exists c>0  and C > 0  such that for all (x, ~ )ER 2n we have 

c(~> _> ;~+(x, ~) - ;~  (x, ~) _> c(~>. 

(This implies, in particular, that for h sufficiently small, the operator a+ (h) -  a (h) 
has an inverse of weight (-1,  0)). 

Then, there exists a unitary, h-admissible pseudo-differential operator W(h) 
satisfying 

a+,l(h) hk*lb~(h) 
W(h)*Mk(h)W(h)= hk+lb,(h ) a_ ,(h) J ' 

where a• is an h-admissible pseudo-differential operator of principal symbol 
A• ( )1~  and bl(h) is an h-admissible pseudo-differential operator of weight (q-  
1,0). 

Proof of Proposition 4.2. The proof is performed by induction on N, beginning 
at N = 0 .  The Dirac operator without electric potential, HA,O, is a particular case 
of supersymmetric Dirac operators (see Chapter 5 of [24]). For W0, we will take the 
Fold~Wouthuysen  transformation (Section 5.6 of [24]). More precisely, let 

(10) u( Ho(~) ) := [21Ho[( l + lHo[)]-l/2( Ho/~+ lHol)(~) 

the unitary transformation which brings H0(~)=a-~+/~ to the diagonal form 

/3,Ho(~), =/~(~} = ( (~)12 0 ) 
0 -({)12 " 
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Let Wo(h)=u(HA,o). This is an h-admissible pseudo-differential operator  (see 
functional calculus in [14], [19]) and from the definition of u we get that  W0(h) is 
unitary and satisfies 

Wo(h)*HA,oWo(h) = ~IHA,0I, 

where I HA,o l= (H~, o)1/2 = 12 @ ((or. (hD - A))2 + 12)1/2. 
Using functional calculus and (cT. (hD - A)) 2 = (hD - A) 212 - ha .  B (B = curl A), 

it follows that  there exists an h-admissible pseudo-differential operator ro(h), such 
that  

W0(h)* A 0W0(h) = 0 ) 
' 0 - ( h D - A )  12-hro(h) " 

For V r  we consequently get that  Wo(h)*H&vW~)(h) is equal to 

((<hD-A> + oV)l +h o(h) 0 +hRl(h), 
( - ( h D - A ) + V ) 1 2  

where R1 (h) = h -1 (Wo (h)* VWo (h) - V14) is an h-admissible pseudo-differential op- 
erator of order - 1  (we use that  V is a scalar potential).  Thus, we get the proposition 
for N = 0 .  

We can now start  with the induction argument.  Let N_>0 and let us assume the 
existence of a unitary, h-admissible pseudo-differential operator WN(h) satisfying 

a+,N(h) hN+lb~(h) ) 
VFN(h)*HA,vWN(h)= hN+lbN(h ) a ,N(h) ' 

where a• is an h-admissible pseudo-differential operator of principal sym- 
bol A=L(X,~)12 and bN(h) is an h-admissible pseudo-differential operator of order 

- ( N +  1). Observing tha t  the principal symbol of a+,N (h) - a ,N (h) is 2 ( ~ -  A(x)) 12, 
we can apply Lemma 4.3. Then, there exists a unitary, h-admissible pseudo-differ- 
ential operator W(h) satisfying 

W(h)* f a+,N(h) hN+lb*N(h) ) w(h) = ( a+,N+l(h) hN+2b*N+x(h) ) 
k hN+lbN(h) a ,N(h) hN+2bN+l(h) a ,N+l(h) ' 

where a• is an h-admissible pseudo-differential operator  of principal sym- 
bol X• and bN+l(h) is an h-admissible pseudo-differential operator of or- 
der - ( N + 2 ) .  The ( N + l ) t h  proper ty  is satisfied with the unitary operator 

WN+I (h) = WN (h)W(h). 
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Thus Proposition 4.2 is proved. [] 

Proof of Lemma 4.3. This lemma is proved in [15, Corollary 3.1.2] for bounded 
operators following a method due to M. Taylor. Here, the principal symbol is not 
bounded, but it is diagonal. 

We get from (iii) that a+(h)-a_ (h) is invertible, hence we can define 

J = ( a+-a_)  

which has the principal symbol av(J)=(;%-~ ) ~1,~ of weight (-1, 0). 
Let W(h) be the operator 

( I d  -h%*J(h) ) 
W ( h ) =  h bj(h ) Id 

We have 
- -  ( 1 , ~  hk+lr~(h))+O(h2k), 

W*(h)W(h)= hk+lrl(h ) 1,~ 

where r~ (h)=h ~ [b, J] is an h-admissible pseudo-differential operator of weight (q-  
2, 0) and 

(11) W*(h)Mk(h)W(h)= { a+(h) hk+lb*(h)) ~hk+lb(h) a (h) +hk+lRk+l(h)' 

where 
l)(h) = h-l(-Jba+ +b+a b J), 

and Rk+l(h) is an h-admissible pseudo-differential operator of weight (q-  1, 0). Us- 
ing (ii) (i.e. that the principal symbol of a• commutes with all matrices), we obtain 
that b(h) is an h-admissible pseudo-differential operator of weight (q-1,0).  

At last, to have a unitary transformation, we put, for sufficiently small h, 

W(h) =W(h)(W*(h)W(h)) -1/2, 

N 

which also satisfies the relation (11) because h -k l(W(h)- W(h)) is an h-admissible 
pseudo-differential operator of weight (q-2, 0). [] 

Corol lary  4.4. Eet H be the Dirac operator with A and V satisfying (H~) 
with 5>0. 

For all N>O, there exists a unitary h-admissible pseudo-differential operator 
WN(h) such that 
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(i) for all tcR, 

W~eith-ttt(h)WN=(eith';+N(h) O )  eith ta- N(h) ~-~ hN+l-l), l �9  

uniformly with respect to (t, h)�9 h0]; 
(ii) for f �9  

W[vf(H)WN= ( f(a+'oN(h)) .f(a ,N(h))O )+o(hN+IIIf,,,LI(R)) ' 

where a• is an h-admissible pseudo-differential operator, of principal symbol 
a• ~)12. 

Proof. According to Proposition 4.2, there is a unitary h-admissible pseudo- 
differential operator WN such that,  W~v eith ~H(h)WN=eith zfi1(h) with 

~I=W[vHWN = ( a ;  N a_,NO ) +hN+IRN+I' 

where RN+I(h) is uniformly bounded for hE]O, ho], ho>O. 
Then, (i) is a consequence of the Duhamel formula 

f0' eith-z~I(h) =eith-tDN(h)@ihN4-1 1 eish tH(h)RN§ tDN(h) d8, 

where DN(h)=( a+'N(h) O(h ) ) 0 
Part (ii) is a direct consequence of (i) (for l=0) using the Fourier transform 

f(H) = ~ e~tI~ f(t) dr. 

4.2.  Semi -c las s i ca l  e s t i m a t e s  

We are interested here in quantmn propagation estimates controlled in the semi- 
classical parameter. For that, we introduce an assumption on the corresponding 
classical systems. For a classical Hamiltonian k(x,{) defined in the phase space 
R 2n, let us consider the flow defined by the Hamiltonian vector field ( 0 ~ , - 0 x k ) ,  

�9 ~: (x, ~) - -~  (z(t, x, ~), ((t,  x, ~ ) )  
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Definition 4.5. We say that an energy band J c R  is non-trapping for A(x, ~) 
if for every R > 0  there exists TR>0 such that 

[z( t ,x ,~) l>R f o r A ( x , ~ ) e J ,  It{>TR, IxI<R. 

In the following, we consider the two eigenvalues A• (of multiplicity 2) of the 
h-principal-symbol of H which are defined as A4-(x, ~ ) = •  

Assuming (He) with 5>1,  for # E ] - o o , - I [ U ] I ,  +c~[, the following limit exists 
in the uniform operator topology of L2(R 3, C4), uniformly on compact sets: 

(x}-S(H-#:J_iO)-l(x} " =  lim (x ) -~(H-#+ie )  a(x)-" 
c~0+ 

for every real s>�89 (see [1], [12], [26]), and for every s > � 8 9  it is of class C k with 

dk [ ( x ) - S ( H - ~ t - ~ i 0 ) - l i x  )-s] ~_ k!ix}-s (H--~t~l:iO)-k-1 (x)-S. 
d# k 

Under the non-trapping assumption, we also have the following result. 

P r o p o s i t i o n  4.6. Assume (Ha) with 5>0 and that Jc]-oo,-1[U]1, +oo[ is 
a non-trapping compact interval for A~(x, ~). Then, for every s > k -  1 3, 

]] (x} ~(H-#•  ~[[=O(h-k) ,  as h "~O uniformly for #E J. 

This estimate is established by S. Cerbah [8] (for A = 0  and V E C ~ ( R 3 ) )  and 
by T. Jecko [17] (for A = 0  and assuming (He) for V). As in [8] and [17], our proof is 
based on Mourre's commutator method (see [18], or [16] for the semi-classical case) 
and a construction of global escape function given by Gerard Martinez [10]. 

According to Remark 2.2, for A0 non-trapping for A+ and A_, only one of the 
two surfaces E~0(A+) , Eao(A_ ) is non-empty. Then it is sufficient to construct 
escape flmctions 9+(x, ~) of A+(x, ~). 

L e m m a  4.7. Assume (He) with 5>0.  Then, for any energy level •  
non-trapping for )~:, there exists g• in the symbol class SI((X) 1, (~}1), c > 0  and 
Co > 0 such that 

{A~, g~ } > Co 

on A~l(])~0-e, A0+c[) :=~,c]xo ~,Xo+~[E,()~• where {a,b}:=0~a0~b O~aO~b is 
the Poisson bracket. 

Proof of Lemma 4.7. We construct an escape function g+(A, V) for/~+(A, V), 
then the function g = - g + ( A , - V )  will be an escape function for .~ , because 
A _ ( A , V ) - - A + ( A , - V ) .  
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Let (x,~)EA+I(]Ao c, A0+c[), 

A(x) 
{A+, x . ( } ( z ,  ~) - <~-A(x)) �9 ~-x . (V~V V~(~ A(x))2"~ 

2([-A(x)} ]" 
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Then, owing to (He), for A0>I, there exists _R>0 such that, for e>0 small enough, 

l {A+,x-~}(x,~) _> g(AQ--1) for Ixl > R. 

Let qJEC~({xERa:lxl<_2}) such that ~ ( x ) = l  for Ix]_<l and 0 < q < l .  Let us 
denote qJR(x)=q(x/R) and 

~+ (~, ~) = - ~ R  (z+  (1, x ,  ~ ) )  d~ 

where z+(t, x, ~) is the first component of the flow defined by A+. The non-trapping 
condition implies that ~+ is bounded and of class C ~ on A+I(]Ao e, A0+c[), and 
{A+, ~+ }(x, ~)= ~R(x). 

Then, we introduce 

g+(x, ~) := c+ ,~.R(x)O+(x, ~)+x.~. 

The function g+ is of class C ~176 o,1 A+l(]A0-c, A0§ belongs to Sl(<X> 1, <~>1) and 
satisfies 

{a+, g+} = C+~R+{A+, x.~}+C+O+ {a+, ~MR(X)}. 

Moreover, by the definition of R and ~R, we have 

{A+, x .~} (1 -~R)  > �89 (A0 - 1 ) (1 -~R) ,  

hence, for C+ >0 large enough, 

C+q,R+{a+, x.~} > ~(Ao-1). 

Here we have used that {A+,x.~} is bounded on A+~(]Ao-c, A0+c[)r4{Ixl_<2R}. 
Next, we choose a large M > I  such that 

IC+.O+{A+, ,.I,.~(~)}l _< ~(Ao- ~), 

and we obtain that for such C+ and M we have 

{A+,9+} > l(Ao 1) 
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on ),+1(])~ o s, Xo+r This proves the lemma with Co=1(3,o-1).  [Z 

Proof of Proposition 4.6. We consider the case Ao>l, the same proof works for 
,_, 0 o~)) .  

A0 < - l  (replacing '+'  by and (100) bY(0  

Let 

G+(x, hV)=Wl(h) (g+(x,s 0 o) w:(h), 
- - 0  w where Wl(h) is defined in Proposition 4.2 (for N = I )  and g+(x, hD)- Ph (9+), g+ 

being the escape function of Lemma 4.7. 
Using functional calculus [14], [19], we easily prove that G+ is a conjugate 

operator of H (in the sense of Mourre) and that H is k-smooth with respect to G+. 
The main property is the so-called Mourre estimate 

(12) x(H)[H, G +]x(H) > ChxZ(H) 

uniformly for small h and for xcC~(]A0 s, Ao+C[) such that X(A0)=I. 
According to the definition of W1 (h) (see Proposition 4.2), and to Corollary 4.4, 

we have 

where 

C+ (x, hD) x(a+,l(X, hD))[a+,l (x, hD), g+ (x, hD)12]x(a+,1(x, hD)) 

which, by the construction of g+, is bounded from below by Chx(a+,l (x, hD)) 2. 
Let us recall that 

x(H) Wl(h) (x(a+ , l (x ,  x(a_,l(x, ) W~(h)+O(h2), 

with x(a_,l(cc, hD))=O(h~ because ~0>1 non-trapping implies that )~--1()~0):= 
Ea0(a )=0, i.e. for small s and for any kCN, X(k)(a (x,~))=0. 

This gives the Mourre inequality (12). Then using Mourre's results [18], we 
have Proposition 4.6 for #E]A0-e, ~o+e[, and at last, using compactness of J we 
deduce the Mourre estimate uniformly for #CJ.  

The following crude estimate will be used later. 
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Corol lary 4.8. Assume (He) with 6>3 and that J c ] - o c , - l [ U ] l ,  +ec[ is a 
non-trapping compact interval for A• ~). Then 

d dd2sh(A) ~h(a) + =O(h-~), as h \ O  u~iformly for he  J. 

Proof. It follows from the definition of s(A), (1), that 

ds~(a) = ~ Tr (~S~ Sh(a)*) 
2i7c 

where Sh(A) is the scattering matrix for the pair (H(h), Ho(h)). Then, as in Corol- 
lary 5.8 of [20], the above corollary is a consequence of trace norm estimates for 
Sh(h)-Id deduced from Proposition 4.6 and from the stationary representation of 
Sh(A) [i]. [] 

4.3. P r o o f  of  T h e o r e m  2.3 

Keeping h fixed in the proof of Proposition 3.2, we obtain that (d/d)~)Sh is the 
distribution 

f,  ~ Tr(W(h)(H 2 1) - i f (H) )  for all f �9 C ~ ( ] - o c , - l [ U ] l ,  +oc[), 

where W(h)= (Q- �89 A])(h) with Q(h)-H 2-Hg and A(h)= �89 (x.hD+hD.x). 
That is, in the distribution sense, on ] - o o , - l [ U ] l ,  +oc[, we have 

( ~8h =Tr W(h)(H2-1) ldSh~ 
T 2 - /  

(Eh is the spectral projector associated with H). 
For I c ] - o c ,  - l [U]l ,  +oc[ non-trapping for A=E and J a compact subset of I, 

let us introduce 

Tr(h, A) 1 s 27ch e -ith-lx Tr(W(h)(H2-1) lg(H)e ith 1H)O(r-lt) dr, 

where gEC~(I) such that g(A)=I for AEJ and OEC~(] 2, 2[) such that 0( t )=l  
for Itl_<l, 0_<0<1. 
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L e m m a  4.9. Under the hypothesis of Theorem 2.3, for all MEN, we have 
(i) d~h(~) Vh-M)(h,a) O(h ~ 9; 
(ii) for fixed T>0 ,  ,-(h-M)(h, A) --TT(A, A) = O ( h  ~ )  as hX.~O uniformly for Ae d. 

Pro@ To prove (i), we use a classical method of smoothing by convolution. 
Indeed, we have 

/ d  . 0 ~  "-(~_.)(h,a)= ~gjds~ M](;9, 

where OM(t) O(h~). Using that IOM(X)d;~=OM(O)=< (i) follows from Corol- 
lary 4.8 (see step (4) in the proof of Theorem 0.1 of [23]). 

The proof of (ii) is based on the h-deeoupling of the Dirae operator (Subsec- 
tion 4.1) and on some known results concerning the scalar case. 

For r=h -M or r--T, Corollary 4.4 gives 

"-~ (h, a) = ~r +'~ (h, A) +"-,. '~ (h, A) + R y  (h, a), 

whe l ' e  

"-?,N(h,~) 

1 /Re-iU~ O, Tr{W;vWWNp~ ) 2 - [(~• b(a• ~)~h-~'~]}0(r-~t)dt, 
27rh 

(100) ( ~ 0 )  andforanoperatoraonL2(R3, C2), wherep+=  o ' p = 1 

a 0 0a) 
P + |  00), P - |  

are operators on L2(R 3, C4), and 

1 JR e ith laO(itlhN)O(r-lt) dt. 

Because the support of O(hMt)-O(T it) is a subset of {t:T<ltl<_h-M}, we have 

(13) /I~--M) (h, A)--[~TN(h, ~) : o(hN--M--I). 

At last, following the proof of Lemmas 3.2 and 3.3 of [23], we get 

~-(h -M)+'N (h,A)_"-~,N (h,A)=O(h~) 

under the non-trapping condition. The methods used in [23] (or in [13]) work in the 
same way, because the principal symbol of aJ_,N is of scalar type (=,~+ (x, ~)12). [] 

Then, asymptotic expansion of (d/dt)sh(A) is a consequence of the following 
lemma. 
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L e m m a  4.10. Under the hypothesis of Theorem 2.3, there exists T > 0  such 
that for h small enough, TT(h, A) has an asymptotic expansion in h, 

• as h \ O  niformly for A e J. 
j > l  

Proof. We can prove this lemma in two different ways: using h-decoupling and 
studying short time parametrix for e ~th 1• (as in [13]), or using directly short 
time parametrix construction for e ith ~H developed by K. Yajima in [25]. 

In the same standard way, as in [23] (proof of Lemma 3.1) (or for example in [9], 
[13]), short time parametrix construction for the propagator gives an asymptotic 
expansion of ~-T(h, A). [] 

Proof of Theorem 2.3. The existence of the asymptotic expansion is given by 
Lemmas 4.9 and 4.10. For computation of c0(A), we use weak asymptotic which 
is a direct consequence of functional calculus on pseudo-differential operators, as 
settled in [14], [19]. We have 

/ sh(A)f'(A) dA = T r ( f ( H ) - f ( H o ) )  = h -3 ~ 7j(f)h j 
j>_o 

with 

f 
(14) 70(f) = (27c) a JR6 tr{f(c~. (~-A(x))+fl+V(x)li)-f(c~.~+fl)} d~ dx 

(tr is the trace of the matrix). 
The unitary transformation u(H(x,{)) (defined by (10)) brings H(x,~):=a. 

({-A(x))+fl+V(x)14 to (aol" x_l,~ ). Then, the integrand term in (14)is  equal 
to 

2 ( f (A+)+f (A ) f ((c))  f (_(~)) ) .  

This gives 

c~ 2 d /R3 ( fX+(x,~)<~d~-/~><~d~) - (f~_(~,~)>_~d~-S(~)>~ d~) dx" 

Putt ing ( = ~ - A ( x )  and ( = r w  (cvcS2), we have 
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for ~ A > u •  defined in Remark 2.2. Thus, we obtain c0(A) as claimed in Theo- 
rem 2.3. [] 

Remark 4.11. In the same way, known methods can be easily adapted to apply 
Tauberian theorems like in [22], to get a Weyl type formula when A+ have trapped 
trajectories. More precisely, if I c ] - c o , - 1 [ U ] 1 ,  +co[ is such that A+ and A_ have 
no critical values in I, then we can prove the Weyl formula 

sh(A)=(2~) ~Co(A)h-~+O(h-~), as h \ o ,  

uniformly for A in each compact subset of J ,  where 

C0(A) z ]R 3 (~+(X,~)<~ d{--ff(~)<a d ~ ) - - ( j /  (X,~)>~ d{ f__<~)>a d~)dx. 

5. N o n - r e l a t i v i s t i c  l imit  

In this section, we introduce again the parameter c (keeping 8=1)  and we 
will study the behaviour as c ~ + c o  of the scattering phase, s--(A), related to the 

IH'  H '  s where operators ~ • 0,• 

H~ : = H : F c  2, H~,__ :=H0:Fc 2. 

The operators H~ (resp. H ' )  and H'o,+ (resp. H~,_) have the same essential spec- 
trum 

~o(Hi) :~(U;,§ ]-co,-2~2]u[0, +col, 
of which the negative part "tends" to co, as c ~ + c o ,  and 

o-JH' ) = o-o(H;, ) = l - co ,  0]u[2c ~, +col, 

of which the positive part "tends" to +oc, as c--~+oo. 
In the following, we study only s+(A) (the same proof works for s (A)) and to 

simplify the notation, we drop the sign %'.  Thus, we write H' (resp. H~) for H+ 
(resp. H~,+), and for s+(A) we write s~(A), where 

1 
24" :~  

C 

tends to 0 +, as c-++co.  
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The operators acting in L2(R3; C 2) (resp. C2@L2(R3; C2)) will be denoted, in 
general, by small (resp. capital) letters. Let us introduce some matrices, I=12@12 
the identity on C2| 4 and the matrices on C 2, 

0 . 1 : (  0 ~ )  0.a (~  _01) Y (10 00) 
1 ' ' ' 

:(o 0o) ~ 0 , r /  , . 

These matrices satisfy 

(15) /'/0-1 =/1 '  0.1/] =/1 '  

#0.1 =rj, 0.1#=r/. 

So, the Dirac operators, H and H0, can be defined in the Hilbert space 

Tt := C2 | C 2) 

by 

(16) 

(17) 

H= Hx = ~(o-3@12+ a40.1| z2r'| + x2#| 
1 

H0 =H0,~ = ~ (0.a|174 

In this section, our goal is to compare s,(A) with soo(A), the scattering phase 
for (h+, h0) (see (3)), as a4~0 + (for A fixed). We will give a Taylor series expansion, 
in z, of sx (and also for its derivatives with respect to ~>0). It will be a consequence 
of the C~176 of s ,  with respect to (x, ~) near z=0 .  

For that, we study the smoothness of 

T~(A) := Id S~(A), 

where Sx(A) is the scattering matrix for (H', H~) which is related to sx(~) by the 
relation 

/ / 

Introduce z and substitute (H, Ho) for (H', H~) in the proof of Theorem 4.2 
of [1]. Then for A and V satisfying (He) with 5>1, we obtain 

Tx(A)=2ircTo,x(A)(V~ V~:R,(A+~§ 



24 Vincent Bruneau and Didier Robert 

with 
N 

x ~ - i O )  , V~ V - I - - a . A ,  R x ( A + 1 2 + i O ) = ( H , ~ - A  - 1 -1 

and To,x is the trace operator for Ho,~-(1/x2),  

1 1/2 To,~(A) = (~0) ~o(0)S~+,~, 0 = (A+�89 1/2, 

where 5 c is the Fourier transform on C2| 3, C2), %(0) is the trace operator for 
the free Schr5dinger operator, (%(o)f)(w)=f(oaJ).  The operator P+,~ is defined 
by 

1 q(z2)~ , zD)P+G~,  q(x2A, xD) = ( ( 1 + z 2 0 2 ) l / 2 + x 2 A + l )  1/2, 

where G~ is the Foldy-Wouthuysen transformation, 

O,~ = (2(I + --2D2)I/2 +( I  +( I  § x2D2)I/2))-I/Z(12| +(1+ x2D2) I/2) 
(18) 

and P+ :=y| 
Let us introduce the dilation group/~(0), gt(o)f(x):=03/2f(ox) .  

L e m m a  5.1. For A>0 and 0=(A+�89 1/2 we have 

~ _  0 -1 T0,x(.~ ) = ~/0(1).~V+,x(0)/~(0--1), T{~*z(/~) = 7 U(0)~r)~'a4(~0)'~'*~0 (1)*' 

where 7)+,~(0) and its adjoint are operators of the form 

r)+,~(o) - . o p ~ ( o ) +  - ~ o g ~ ( o ) ,  

p~(o) and qx(o) are operators on LU(R 3, C2), and they are C ~ with respect to 
(z, 0)eR• +oc[ in s  e-~/2,*) for all t and s reals. 

The space H e'~ is the weighted Sobolev space { f:H <x>Sf llHt <oo}. 

Proof. Owing to 70(0) 0 3/u%(1)/A(0) and b/(0)5 c be-L/(0-1), we deduce that 
T0,.(A) is of the claimed form, with 

1 q(xZA, xoD)P+G~e. 

Now by using z~r/=r/and t,r/=0 (resp. ~W=0 and ~lz,=rl) we obtain that P+G~ o (resp. 
c*0P+ ) has no term with V (resp. ~). Thus, ~+,.(O) and r)2,~(0) are of the claimed 
form. 

Prom the smoothness of the symbol of q(a42A, zoD)P+Gxe,  in S((~}1/2), with 
respect to (z, 0), we deduce the result. [] 
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Lemma 5.2. Let H~ and Ho,~ be the Dirac operators defined by (16) 
(17) such that the potentials A and V satisfy the hypothesis (He) with 5>1. 
A>0 and 6>0, let 

/ ~ (6  1,'~-}-~2~-i0 ) :=U(L0-1'/~x(-~@~2~-i0)~/(a0), 

Then, there exists a neighbourhood 12o of ~r and s>�89 such that the map 

(z, 6, A), , R . ( 6  1,A+x~--ff+i0 ) 

is C ~ from 12oX]0,+oc[x]0,+oc[ to C(L2'~,L2'-Q. 
Moreover, there exist some operators to, rl, rl in s 2,s, L 2,-s) such that 

(19) J~(O -1 ) = b'@ro (6) -}- 24"( O@T1 (6) -~7]@rj. (6)) ~- O(x2) �9 

and 
For 

Pro@ A straightforward calculation gives 

Rx(Q 1):=R~(6 1,a+l/x2+i0) 
1 . 1 

~ (l~r)A(6)@12/3@V(Lo 1) A - ~ - ' t 0 )  , 

where~DA(6) /'/(6 1)c~'(D-A)bt(6)=6c~'(D-o 1A(6-1)), V(6 1)=Z//(co-1)g///(6) 
is the multiplication operator by V(6 *x), and A(6-1)=bI(O 1)A/A(6) is the mul- 
tiplication operator by A(p-lx). 

1 For s>~, we have, in s 

1 1 /~(6-1,A 1-12@ i0) RA,~(a0 ,A@X2q-i0 ) 

(20) x ( I + V ( 6  1 ) R A , ~ ( 6 - 1 , A + ~ + i O ) ;  1, 

where 
RAx( l + +i0) 1 1 1 1 

According to properties of the Dirac matrices, we obtain 

RA,x(O-1, A+-~ +iO) = (Zg)A(g)+/3+ l + x2A) 2162 KA,o(l +iO), 
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where 
KA,o(I+iO) = (�89 1. 

Let us put M(p) (0 2~D2A(O)-�89 then 

KA,o(I+iO)=(�89 1)1. 

1 such that the Moreover for A and V satisfying (H6) with 6>1, there exists s > g  
maps 

O' ~V(0-1), ~' )A(~ 1), 0' 'A(0)  

are Coo in L;(L 2, ~, L2,~), s  2,-~, (L2,~) 3) and s  1,-s, L2,~), resp. Hence from 
the previous equations, we deduce the existence of a neighbourhood )2o of a4=0, and 
s > �89 such that the map 

(X,O,z\)' ) / I~(0--1 ,~-J-~2+i0 ) 

is C ~ from F0x]0,+oc[ to/2(L2,S,L2,-s). 
Now, to obtain (19) we prove that  the limit of R~(O 1,A+l/z2+iO), as x 

tends to 0, belongs to u| 2's, L 2' ~), and its first derivative, with respect to x, 
at x O, belongs to r]| 2,s, L2,-~)|174 2,~, L 2, ~) for s>�89 

We let 
To(0) = 1(1 +/3)KA, o (1+i0), 

T1 (O) = i 0--2~)A (0)KA,o(1+i0), 

T2(O) = �89 

We have 

x (I+V(0-1)(T0(Q)+xTI(P)+~2T2(0)))  1. 

Then, the limit as ~ tends to 0 of R~(0 1 A+i/x2+/0) is 

(21) To(@)(I+V( @ 1)To(@) ) i, 

and its first derivative, with respect to x, at a~=0, is 

(22) 
TI(@)(1-FV(@-I)To(@)) 1 

_To(O)(Z@V(L 0 1)To(O))-IV(LO 1)TI(O)(Z_FV(o-1)To(O) ) 1 
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Let us study the matrix representation of these terms. As @=r]| and owing 
to 

r]r]=#, Or ]=u,  r]2=r]2=0, 

we deduce that DA(Q) is of the type ~|174 and also that 7P~(Q)= 
u|174 Then KA,o(l+iO)Cu| 2''~, L2 , -Q|174163  2'~, L2'-Q and 
as �89174 To(~)Eu| Lastly, by assumption, V(Q -1) be- 
longs to u| 2'-', L2,~)|174163 2'-~, L2,~), thus, the limit as z tends to 0, given 
by (21), belongs to u|163 L2'-~). 

The matrix representation of DA(~), KA,e(I+iO), and the equations 

(23) r]u=r], 0#=r],  r ]#=r]u=0,  

give that T1 (p), T1 (a0)(I-TV(Lo-1)T0 (~0)) -1 e~']e~C.(L 2's, L2'-~)|174 2'~, L2'-~). In 
the same way, using the transposition of the relations (23), we obtain that (22) are 
in r/| 2,~, L2,-Q|174 2,~, L2,-~). [] 

Before expressing the main theorem of this section, let us give some relations, 
resulting from the properties of u, #, r] and 0- 

L e m m a  5.3. Let 7 9, 79*, V and R be matrices on C 2 |  2, of the types 

7 9 = u | 1 7 4  

79* = uQp+ xr]| R = p @ r + x ( r ] e r l  + 0 @ ~ I )  + x 2 R 2 ,  

u, #, r] and O being the matrices defined at the beginning of this section. 
Then, 79V79 * and 79VRV79* are polynomials with respect to x. In particular 

the singularity of V vanishes. 

T h e o r e m  5.4. Let H• and Ho,~ be the Dirac operators defined by (16) and 
(17) such that the potentials A and V satisfy (H~) with 5>1. Let T~: I d - S . ( A ) ,  
with S~(A) being the scattering matrix associated with (H~ 1 / z  2, H o , , - 1 / z 2 ) .  

If  5>1+2/19, p>l ,  then Tx(A) is a Schatten class operator, i.e. T~(A) is in 
a~(C2| C~)). In particular, if ~>3, T~(A) is a trace class operator; if 5>2, 
T,~( A ) is a Hilbert Schmidt class operator. 

Moreover, there exists a neighbourhood )2 o of )r such that the map 

A), 

is c f<om v0• to  p(C2| 2, C2)). 
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Pro@ Our starting point is the formula 

• (v,~(o 1) v~(o z ) R ~ ( o  ~, ~+  ~ + i o ) v ~ ( o - ~ ) ) p : , ~ ( o ) f * ~ r o ( 1 )  *, 

where 0 is the smoothness function (with respect to (~, x), A>0) ~) (A+�89 */2. 
Let us recall that %(1)Y(x)  S(Dx} "~ is a Schatten class ap/2(L2(R3), L2($2)) 

operator for any m c R  and for s > l / P + � 8 9  (see Lemma 5.7 of [20]). Then we are 
going to prove that there exists s > l / P + � 8 9  and ml,  rn2 in R such that the map 

(24) (x, 0 ) ~ 7 ) + , ~ ( 0 ) ( V ~ ( t ) 1 ) - V ~ ( o - 1 ) R ~ ( O - 1 , A + 1 2 + i O ) V ~ ( o  1))~+,~(0) 

is C ~ from V0 x]0, +oo[ to s  '~,-*, H . . . .  ) where V0 is a neighbourhood of x = 0 .  
Under the assumption (He), with 5> 1+ 2/p, according to the previous lemmas, 

the main problem is to make the singularity of V~(0-1), at x = 0 ,  

V,(O-*) V(O 1 ) - l xA( t ) - l )  

vanish. But, according to Lemmas 5.1 and 5.2, we can apply Lemma 5.3 to V =  
Vx(~) 1), p P+,a4(D), ~*--'~+,x(~ 0) and R = R ~ ( Q - 1 , ) ~ + I / x 2 + i 0 ) .  

Thus, we obtain the smoothness of the map (24) from V0x]0,+oc[ to 
s  "~l'-s, H ...... ). This ends the proof of Theorem 5.4. [] 

Remark 5.5. This smoothness result is better than the result we could get from 
(2) of Theorem 4.2 in [12]. In [12], the order of the regularity of the scattering am- 
plitude (the integral kernel of T~(~)) is connected to the decrease of the potentials. 
Here, we need only a fixed decrease, of the order (z} e (for an arbitrary fixed 8>3),  
to obtain Coo-smoothness of T~(A). 

Proof of Theorem 2.5. Owing to the formula 

(A) = 27 tr (A)S;(A) , 

and to Theorem 5.4, we obtain the smoothness of s .(A) claimed in (b). 
To prove the convergence to soo (A), we will establish it in the weak sense, which 

means that for all ~ocC~(]0, +ooD, 

/7 /7 lim s~(A)~'(A) dA = soo(A)g/(A) dA. 
x---+0 

It will be a consequence of the following proposition, using the Krein formula (2). 
At last, the case V = 0  is discussed in Remark 3.9. [] 
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Propos i t ion  5.6. Let H~ and Ho,~ be the Dirac operators defined by (16) 
and (17) such that the potentials A and V satisfy the hypothesis (He) with 5>3. 

For aZl ~cCg~ +oo[), in th~ trace class, we ha~e 

l i m ( ~ ( H ~ - ~ ) - ~ ( H o , ~ - ~ ) ) = t , |  
~:-+0 \ 

where h+ and ho are the Pauli operators defined by (3). 

Proof. Our starting formula, owing to (7), is 

(25) qo ( H ~ -  ~ )  1 +lz2H~p2(;4 ' = ~(/91(X , Hoo (2~')) Hoo (24")), 

where, for A > - I / 2 z  2 and for a4/~0, 

(1+2~ ~a) ~/~-1"~ 
~(~'~)=~( 7~ )' 
qo2 (a~, A) = (1+2a42A)-l/2g)l (x, A) 

and 

1 
(26) Hoo (a4):= ~ (x4H~-I ) .  

On C2| a, C 2) we have 

1 2Tr2 Hoc(z)=z~@h+p@h- +ZDA,V+~X v , (27) 

where 

h ._ (  ( 55'cr"D-AH2-1/ and DA,V=C~'(D-A)V+V~'(D-A).  
2m 

First of all, let us remark that the convergence property is formally obvious (in 
the space of bounded operators). Indeed, as z tends to 0, pl(Z, A) and ~2(z, A) 
tend to ~o(A) and H a ( x )  tends to t,|174 Then, formally, for j 1, 2, we have 

Thus, owing to (25) and (16), we have, as x-+0, 

( ') H ~ - ~  ~ [1(12+~3)O12].[,o~(h)+,O~(h-)] 
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1 ( 1 2 q _ O . a ) = U  ' then we deduce that  formally Moreover 

This formal approach can be justified using functional calculus. For j = l ,  2, we 
have 

z & d s ,  (28) 

where Fs is a path  in C (which does not contain the semi-bounded spectrum of 

Hoo(--)) and Ad[~j (x , .  )](s) is the Mellin transform of qoj, 

/7 
After the change of variable x 2 t ' = ( l q - 2 x 2 t )  1/2 1 we have 

= ~(l+~r2t)(t+�89 1 (/,) dr, J ~  [~91 (24" , �9 

/7 
which tends to Ad[%o] (s) as x tends to 0. 

As Hoo(x) is a polynomial with respect to >r then (H~(z)-z) -1 is smooth 
with respect to z and tends to (Ho~(0) -z )  -~. Thus we have easily the convergence 
of p ( H , - I / z  2) to v| in the space of bounded operators. 

To obtain the convergence of ~o(H~- I /x  2) -~(Ho,~-I/x 2) in the trace norm, 

we construct a parametr ix  for (Hoo(x)-z) ~, and the functional calculus by the 
Mellin t ransform gives the expression 

N 1 [ e+ioo 
M (. , .)]  (s) ~Y(x'H~176 (b~5'k)+~e ioo 

k 0 

s 

with OF~ and 0F~ in a trace class for N large enough. Because 

Hoo(a4) is a polynomial with respect to a4, we deduce that  ~Yv+l,~ is also a polyno- 
mial, and the control with respect to small x,  is not difficult. Thus, we have proved 
Proposit ion 5.6 (see Par t  4 of [4] for more details). [] 

Remark 5.7. As remarked by the referee, it would be nice to prove multipa- 
rameter  asymptotics in the three parameters  (h, A, c). This problem seems difficult. 
However, we can get partial  results when one of the parameters  is fixed. 
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