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Asymptotics of the scattering phase
for the Dirac operator: High energy,
semi-classical and non-relativistic limits

Vincent Bruneau and Didier Robert

Abstract. In this paper we prove several results for the scattering phase (spectral shift
function) related with perturbations of the electromagnetic field for the Dirac operator in the
Euclidean space.

Many accurate results are now available for perturbations of the Schrédinger operator, in
the high energy regime or in the semi-classical regime. Here we extend these results to the Dirac
operator. There are several technical problems to overcome because the Dirac operator is a system,
its symbol is a 4 X 4 matrix, and its continuous spectrum has positive and negative values. We show
that we can separate positive and negative energies to prove high energy asymptotic expansion
and we construct a semi-classical Foldy—Wouthuysen transformation in the semi-classical case.
We also prove an asymptotic expansion for the scattering phase when the speed of light tends to
infinity (non-relativistic limit).

1. Introduction

We are interested here in the study of the spectral properties of the Dirac
operator on L?2(R3; C*%),

3
H:CZaj(hDj*Aj(LE))—}—ﬁC?*i‘V(&‘), Dj = —i@x
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where {o; }?:1 and 3 are the 4 x 4-matrices of Dirac satisfying the anti-commutation
relations

ajoptapog =261, 1<75,k<4,

(as=p0, 14 is the 4x 4 identity matrix). The vector A=(A;, Az, As) is the magnetic
Vila 0

vector potential and V:( 0 Vo1,

), where V. is a scalar potential (13 is the
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identity matrix on C?). The physical constants A (Planck’s constant) and ¢ (velocity
of light) are parameters.
We assume that the potentials are C°° and there exists 6 >0 such that

(Hs) 102 A(z)| 4162V (2)| = 0((x) 1%y for all e N,

where (x):=(14|z|?)'/2. The operator H is a perturbation of the free Dirac oper-

ator,
3

HO :cZathj—l—czﬂ.

=1

The spectrum of Hy is purely absolutely continuous,
o(Ho) = 0c(Hp) = 0ac(Ho) =]— 00, —c?|U[c?, + o],

and, for §>1 (short range perturbation), we have the following properties [24], [26]:

(i} the wave-operators for (H, Hy) exist and are complete;

(ii) the essential spectrum of H is equal to |—o0, —c*]U[c?, +o0];

(iii) H has no singular spectrum;

(iv) the discrete spectrum of H is contained in |—c?, ¢?[.

According to (i), the scattering operator, S, is defined and unitary. In the
spectral representation of Hy, the operator S becomes an operator-valued function,
S(X), on L?(S?;C*) (52 is the unit sphere in R?). Moreover, S()) is unitary and,
for §>3, S(A\)—1d is a trace class operator on L?(5%;C*). So, it makes sense to
introduce the scattering phase s(A) by the formula

(1) SO0 = sy (V) = 5 log det(S(),  s(0) €10, 1)

According to the Birman—Krein theory [2], s(\) satisfies the Krein formula

(2) Tr(f(H)— f(Ho)) :/ s(A)f/(A\)dx for all feS(R).
R

By the assumption (Hs) with §>3, we have that s C°(]—o0, —c?[U]c?, +00]).
This can be proved, as for the Schrédinger operator (see Corollary 5.8 of [20]) by
using the stationary representation of S(\) given by E. Balslev and B. Helffer [1].

In this paper, we study three kinds of asymptotics for the scattering phase.
First of all, the high energy limit, |\| =00 (c and k& being fixed), then the semi-
classical limit, A\0 (c is fixed and A is in a non-trapping compact interval), and at
last the non-relativistic limit, c—>+o00 (A and A being fixed).
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The non-relativistic limit (studied in Section 5) was announced in [5] and proved
in the thesis of the first author [4]. Our proof is closely connected with the energy
regularity and inspired by [12]. Here we show that the order of regularity (with re-
spect to ¢ 1) is independent of the decrease of the potentials (we need only decrease
as (x)7%, §>3).

To discuss the high energy regime (in Section 3) and semi-classical regime (in
Section 4), we use the close connection between the Dirac operator and Schrodinger
type operators in two ways.

For |A|— 00, we split positive and negative energies (see formula (7) below),
then some known results about local spectral densities for Schrédinger operator [21]
give a full asymptotic expansion of s(A) (and their derivatives). In this way, we have
a new proof of the Weyl formula established in [7].

For A \,0, we exploit the h-decoupling property of the Dirac operator (Proposi-
tion 4.2) based on a Foldy-Wouthuysen transformation. Then, we can adapt some
classical methods to establish semi-classical estimates of the resolvent and to have
short and long time approximations of the propagator. At last, we can prove a
semi-classical asymptotic expansion of the derivative s'()\) for A in a non-trapping
energy band.

2. Main results

Theorem 2.1. (High energy asymptotics for h=1, c=1.) Let us assume (Hs),
with §>3. Then we have the asymptotic expansions

(a)
ds -3 2—j
V=) > wAT, Ao oo,
j=1

with ¥1 =87 [ga (Vi +V_)(z) dz and

722471'/RS<<V+;V>2+(V+V_)2<¥>2)((E) d;

(b) if V=0, then

ds

V= 2m) AT BT, A= oo,

J=0

with Bo=37 [gs B(x)? de where B=curl A is the magnetic field.
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Furthermore, these asymptotics can be differentioted at any order with respect
to A.

We consider now the case [A]>1 fixed and A\ 0 (h=Fh). To formulate the next
result we consider the two eigenvalues Ay (of multiplicity 2) of the h-principal-
symbol of H which are defined as Ay(z,&)==({— A(z))+V (z) (here, we put V, =
V_=V).

Classically, we shall say that an energy band JCR is non-trapping for a classical
Hamiltonian Ay (z,£) if for every peJ, every classical path in

D) = {(,€) €ER*™; Ap(x,6) = i}

escapes to infinity as time goes to plus or minus infinity (see Definition 4.5 for a
more precise definition).

Remark 2.2. The value A&]—o0, —1[U|1, +-00[ is non-trapping for A, (x,¢) and
A_(z,€) in only two cases:

(1) A>v, is non-trapping for A (z,¢);

(2) A<v_ is non-trapping for A_(z,&);
where v, =max(1,sup V —1) and v_=min(—1,inf V41).

Indeed, AeR being non-trapping for A, (z,£) implies that A>1 or {A<1 and
Ya(A,)=0} (that is A<1 and A<infV+1) because for u<1, ¥,(A;) is compact
or empty. In the same way, A€R being non-trapping for A_{x,&) imply A<—1
or {A>—1 and Xx(A_)=0} (that is A>—1 and A>sup V' —1) because for p>-—1,
¥, (A_) is compact or empty.

Theorem 2.3. (Semi-classical asymptotic for e=1.) Let us assume (Hs), with
6>3. If J is a compact interval in |—o0,—1[Ul1, 400 that is non-trapping for
Az, &) and A_(x,€), then, for h small enough, we have the asymptotic expansion
of (d/dN)sp(N):=(d/dN\)sm, m, (N),

ﬁ()\) = (27m) 73 Z c;(ART37, as AN, 0 uniformly for A€ J,
dA c
iz0
where for £A>1, we have
_,8md 2 1\3/2_ \2_ 1\3/2
coM)=F o+ [ (A=-V(2))" -1 =N =1)"") dzx
3 dA Jrs

(z, =max(z,0) for z€R).
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Furthermore, this expansion can be differentiated in X\ to any order.

Remark 2.4. 1f |a, b]C]—o0, —1[U]1, +oo[ is a compact interval such that a and
b are non-trapping energies for Ay then Theorem 2.3 gives an asymptotic expan-
sion for s,(b)—sp(a), by integrating in A and using weak asymptotics given by the
functional calculus (see Section 4, the proof of Theorem 2.3).

The above theorems hold for fixed ¢=1. Now, we consider the non-relativistic
approximation, so ¢ is a variable parameter.

Let, us denote by H (resp. Hy 1) the operators HFc? (resp. HoFc?) and by
(ha, ho), the Pauli operators

3) he=3(0-(D—A)°+Vily, ho=3}(c-D)’1,

where {0;}1<j<3 are the Pauli 2x2 matrices.

Owing to (Hg), the scattering phase, SAva (A), for the pair (hi,ho), is well
defined as a smooth function on ]0, 00| (see [20], [22]). Let s¥()) be the scattering
phase for the pair (H., H} ). We have s*(X)=s o) (A£c?), and we will show
the following theorem.

Theorem 2.5. (Non-relativistic limit for h=1.) Assuming (Hs), with §>3,

we have the following results.

. o d . d
(i) The limit Cginoo e (A):id—)\SA,Vi (£X) for all £2>0.
(ii) There ezists a neighbourhood Vy of c™*=0, such that st ()\) is of class C™

with respect to (™!, +£X)€Vyx]0, +00].
In particular, there exists a sequence {ff}jzl of functions in C°°(]0,+o00[)
such that, for all integers I and N we have

d . d a dh (N4
TMS ()\):ﬂ:WsA’Vi(i)\)‘FZC ij (Zt)\)+O(C ),
7j=1

locally uniformly with respect to A€)0,+oo[, as c—+oo.
(iii) If V=0, then

2
sT(N) =+5%, <i)\+ %) for £A>0.
: c

3. High energies

In this section, we fix c=hA=1. First of all, we limit our work to the study of the
positive energies. The negative case will be deduced from the following proposition.
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Proposition 3.1. Suppose (Hs) with §>3. Let 5(4,v)(A) be the scattering
phase associated with the Dirac operators

H(e,A,V)=0a-(D—eA(z))+B+eV(x), Hy=a -D+8,

(e denotes the charge).
We have the symmetry property

savy(A) =—s_a,_v) (=),
where V= ( V7012 V+012 ) .
In particular, if fyji (A, V) are the coefficients of A\>~7 in the asymptotic expan-
sion of (d/d\)s(a,vy(A) as A—=+oo, we have

V5 (A V) =—v (=4, -V).

Proof. Let C be the charge conjugation operator defined by (see Section 1.4.6
of [24])
Cy =ifas.

This is a unitary operator on L*(R?, R*) satisfying

CH(e,A,V)C™' = -H(—e,A,V)=—H(e,—A,—V).

Then we obtain the symmetry property by using the Krein formula (2) and the
cyclicity of traces. [

Now, we study the positive energies.

Formally, s()) is related to the difference between the spectral projectors of H
and Hp. As in [20], we first prove that s()\) can be computed by using only the
spectral projector of H. Let us introduce

Q:=H*-HZ A= %(x-D—i—D-m).
The differential operator () is of order 1. Its coeflicients are matrices, decreasing

as fast as A and V' (see (Hy)).

Proposition 3.2. Suppose (Hs) with 6>3. Let feC§e(]—o0, —1[U]1, +00]).
We have

/ SOV (V) dA=Te((Q— LilQ, A)) (H? 1)L (D).

R
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Proof. By using the relations
20HS—T)=4[HZ Al and 2(H%-1)=i[H?, A+ (2Q-1]Q, A]),
and the cyclicity property of traces (see Appendix A of [20]), we obtain
Te(f(H)— f(Ho)) =Tr((Q—3ilQ, Al) (H?>—1)~" f(H)).

The Krein formula (2) gives the result. [

Remark 3.3. Of course the operator (H?—1)7! is not well defined, however
for feCs?(R\{—1,1}), we can define (H?>—1)"! f(H) as the operator ¢(H) where
peC§°(R) satisfies

(N2 =1)71f(A) for|A]#1,
p(A) = {
0 for{A| =1.

To prove Theorem 2.1, we are going to apply a result of D. Robert [21] (The-
orem 4.4) concerning asymptotic expansions of local spectral densities, for pertur-
bations of the Laplacian. We will connect (ds/d\)(XA) with local spectral densities
of (H?—1Id).

Let us recall the general result we shall use here. Let w be a classical symbol
in the symbol class S,,({(x) =%, (€)*) defined by

{s €C® (R, M0 (0)): 1059 5(x, )| = O(() > ()~ 1)},

where M,,,(C) is the set of m xm matrices.
Let L the Hamiltonian on L2(R", C™) defined on C§° by

L=-Al,,+a(x).D+D.a(z)+V(x),

where for example a(z).D=~i3"7_, a;(x)d,;. We assume that a(z) eC(R",R™)
and V(z) is a Hermitian matrix, C* on R™ satisfying (Hs) with §>n. Then, for
feCR), w(z,D,).f(L) is of trace class and we can define the local spectral
density of L.

Definition 3.4. The distribution o, f—Tr(w(z, D;).f(L)) is the local spectral
density of L, associated with w.

Because the principal symbol of L is scalar, we can easily adapt the proof of
Theorem 4.4 in [21], for matrix operators, and we obtain the following theorem.
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Theorem 3.5. (D. Robert [21]) Under the above assumptions, o, is C™ in
10, +oo| and we have the full asymptotics

gw()\)x,\(mru)ﬂ1(2:%’],)\‘1‘/2)7 A — —o00.

Jj=0

Furthermore, these asymptotics can be differentiated at any order with respect to A.

Let us remark that this result also holds for Ay, the symmetric Laplace-
Beltrami operator associated with an asymptotically flat metric g which is non-
trapping.

Let us introduce

W:=3(Q-1i[Q,A]) and W =WH.

As Q:=H? - H¢ and A are first order differential operators, W is a first order dif-
ferential operator, and W' is a second order differential operator. Moreover, under
the assumption (Hs), Q=q(z, D,) with ¢€S,({z)~%, (¢)). Then, W =w(z, D,) and
W'=w'(z, D,) with

weSy((z) %, (6), w'eSi((x) %, (&)Y
The operator H? is not exactly of L’s type (82=1d occur),

H?=Al4+(a-DV+Va-D)—(D.A+A.D)-%.B+(+V —a-A)?,
_ Y 0
where B=curl A and E]f( 0 o,

However, H?>—1d is of L’s type under the hypothesis (Hs) with §>3 and the
local spectral densities oy and oy, associated respectively with W and W, are
well defined on |1, +oo[ by

), (05)1<j<3 being the 2x 2 Pauli matrices.

(4) ow: f € C3° (11, +oo]) — Te(W f(H?)) =Tr(W f(H* -1d)),
(5) ow: £ € C5(]1, +o0]) s Te(W' f(H?)),

where f(\)=f(A+1).

Here (H?—1Id) is a perturbation of the Laplace operator, thus Theorem 3.5
holds for oy and ow-. Hence the existence of the asymptotic expansion claimed in
Theorem 2.1 will be deduced from the following proposition.
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Proposition 3.6. Let us assume (Hs) with 6>3. Then the scattering phase
s(A) for (H, Hy) and the local spectral densities ow, ow: are well defined. In the
distribution sense, on |1,+o00|, we have the decomposition

ds .. 2\ 9 2 9

Proof. On ]1,+o0c], the distributions ow /(A—1) and ow'/(VA(A—1)) are re-
spectively the mappings

FECE (L, +ool) — Tr(W(H? ~1) " f(H?)),
F€CF (1, +oo) — Tr(W'(H?* 1) H| " f(H?)).

Then, owing to Proposition 3.2, we want to prove that

Te(2W (H?~1)" f(H)) =Te(W(H?-1)" f(VH?))
T (W/(H?-1) 7 H | F(VH?))

for all feC§o(]1, +oo]).
However, this is a consequence of the following equality, true for all f equal to
zero on |—o00,0] (and for any self-adjoint operator),

(7) FUH) =5 f({H)+ 3 HIH| 7 F(|H)).

Hence, we deduce equation (6). O

Remark 3.7. Of course, as for (H?~1)"" (see Remark 3.3), |H|™! is not well
defined, but for feC§°(R\0), we can define |H| "L f(|H]).

Proof of Theorem 2.1. As we saw above, the existence of the asymptotic ex-
pansion follows from the equation (6) and from Theorem 3.5 applied to ow and
ow:. This gives an asymptotic of the form

d ,
BN =E0 PN, A ko
j=0

According to Proposition 3.1, we also have an asymptotic as A——oc with coeffi-
cients 7 .

At last, the coefficients are given by the weak asymptotic in [4], [7]. This
uses the functional calculus for h-admissible pseudo-differential operators, developed
by B. Helffer and D. Robert {14], [19], which is based on the construction of a
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parametrix (Seeley’s method). In particular, we have 7& =0 because H? and HE
have the same principal symbols. Moreover, by using meromorphic extensions of
the zeta relative function for (H?, HZ) and of the eta relative function for (H, Hy)
(see [4], [6]) we prove that v, =v;.

The case V=0 is studied in [7], using some supersymmetry properties of H
with only a magnetic potential, we prove (Corollary 6.3 of [7])

(8) s(A) =800 (3(N 1)), EA>1,

where so, is the scattering phase for the Pauli operators defined by (3), with V. =
0. As the asymptotic expansion of s, is known [20], we deduce the asymptotic
expansion of s, for V=0. 0O

Remark 3.8. In this proof, we only use that (H?-—1) is a perturbation of the
Laplacian and the result of D. Robert [21], true in any dimension. Hence, in the
same way, we can obtain a high energy asymptotic of the scattering phase for Dirac
operators in R™, for any n.

Moreover, s'()) is studied as a particular spectral density of H (see Proposi-
tion 3.2). More generally, we can also prove a high energy asymptotic expansion
for local spectral densities of Dirac operators.

Remark 3.9. Keeping ¢ (the velocity of light), the formula (8) becomes, for

A>c?,
)\2*04

Then, s, the scattering phase associated with (H —c?, Hy—c?) satisfies, for A>0,
)\2

9 A) =80 A+=—5 1,

0 se(N)=ss (M 33 )

which is (iii) of Theorem 2.5.

4. Semi-classical limit

In this section we fix c=1 and we study the asymptotic of the scattering phase
as h="h tends to 0. To prove Theorem 2.3 (in Subsection 4.3), our main tool is
h-decoupling (developed in Subsection 4.1).

To simplify, we consider only the case V. =V_=V hence the h-principal symbol
of H has two eigenvalues of multiplicity two,

As(2,8) = H{E—Az)) +V (2)-
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Remark 4.1. For V_#V_ the h-principal symbol of H also has two eigen-
values of multiplicity two, viz. Ay (z,&)=+((1+0(2))?+|6—A(x)|?)Y/2 +v(z), with
v=2(V,+V_) and 5=5(V, —V_). But in this case, when (1+%(z)) and (§—A(z))
vanish together, Ay is not differentiable.

4.1. h-decoupling of the Dirac operator

The goal of this section is to prove the following proposition. We will use
h-pseudo-differential calculus. To a symbol @ and a real A>0, is associated the
operator OpY (a) defined for ueS(R) by

O @ =0 [ [ S0 ary), he)uly) dyde.

Let us recall that an operator A(h) is called h-admissible of weight (g, p) if there
exists sequences (a;) of symbols and Ry (h) of bounded operators (on L?) such that

N
A(h) =Y W Opf(a;)+hN ! Ry (h),

=0

with Ry (h) uniformly bounded for h€]0, hy|, ho>0, and a; €S((z)?, (£)9), where
S((x)P,(6)7) :={s € C=(R*™):020] 5(x, £)| = O({z)P~ 1=l (g) =181y}

(see the book [19] or [14] for more details).

Proposition 4.2. Let H,4 v be the Dirac operator
Huyy=a-(hD-A(z))+8+V (x)l4,

with A and V satisfying (Hs).
For all N>0, there ezists a unitary h-admissible pseudo-differential operator
Wi (h) such that

aJmN(h,) 0

WKIHA,VWNZ( 0 o n(h)

) +hN TRy (),
where ax n(h) is an h-admissible pseudo-differential operator, of principal sym-
bol Ay(x, €)1z, and Ryy1(h) is an h-admissible pseudo-differential operator of or-

der —(N+1).
In particular, for N=0 we can choose ay o(h)=Ai(x, hD)1ls.



12 Vincent Bruneau and Didier Robert

(W5 denotes the adjoint operator of the closed operator Wy .)

Let us mention that a similar result is stated by R. Brummelhuis and J. Nour-
rigat [3] to study the scattering amplitude. This kind of decoupling is also used by
A. Grigis and A. Mohamed (see Lemma 3.4 of [11]) to study the Dirac operator
with periodic potentials.

To establish this proposition, we use the following lemma proved in [15] for
bounded operators following a method due to M. Taylor.

Lemma 4.3. Let My(h) be a matriz h-admissible pseudo-differential operator,

C(ah) B
= (i "y ) k2

where ax(h) and b(h) are mxm matrices of h-admissible pseudo-differential oper-
ators satisfying

(i) ax(h) is of weight (1,0) and b(R) is of weight (g,0), ¢<1;

(ii) the principal symbols of ay(h) are of scalar type, i.e. there exists Ay (z,8)€
R such that op(ag(h))=Ax{z,&)1y;

(iii) there exists c>0 and C>0 such that for all (z,&)ER?*™ we have

C<§> > )‘+($7§)_)‘- (.%‘,f) 20<§>

(This implies, in particular, that for h sufficiently small, the operator a,(h)—a_(h)
has an inverse of weight (—1,0)).
Then, there exists a unitary, h-admissible pseudo-differential operator W(h)

satisfying
W a1 kL
(M )= (h’“rlb(ﬁ)h) hat f)(fgl)> 7

where a+ 1(h) is an h-admissible pseudo-differential operator of principal symbol
As(x,8) 1y and by(h) is an h-admissible pseudo-differential operator of weight (q—
1,0).

Proof of Proposition 4.2. The proof is performed by induction on N, beginning
at N=0. The Dirac operator without electric potential, H 4,9, is a particular case
of supersymmetric Dirac operators (see Chapter 5 of [24]). For Wy, we will take the
Foldy—Wouthuysen transformation (Section 5.6 of [24]). More precisely, let

(10) w(Hy(€)) :=[2|Ho|(14|Ho|)] /2 (HoB+|Hol)(€)

the unitary transformation which brings Hy(§)=a £+ to the diagonal form

B Ho(&)| = B(€) = ( @la <§>12) |
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Let Wo(h)=u(Ha4,0). This is an h-admissible pseudo-differential operator (see
functional calculus in [14], [19]) and from the definition of u we get that Wy(h) is
unitary and satisfies

Wo(h)"Ha,oWo(h) = B|Haol,

where |H 4 o|= (Hfl,o)l/2 =1,®((0.(hD—A))2+14)1/2.

Using functional calculus and (0.(hD—A))2=(hD—A)*15—ho-B (B=curl A),
it follows that there exists an h-admissible pseudo-differential operator ro(h), such
that

Wo(h)* HaoWo(h) = <<hD—A>12+hr0(h) 0 ) |

0 —(hD— A5~ hro(h)
For V #0 we consequently get that Wo{h)*Ha v Wy(h) is equal to

((hD—A)+V)1z+hro(h) 0
< 0 2 0 (_<hD4A>+V)12_h,r0(h))'f—th(h),

where Ry (h)=h~*(Ws(h)*VWy(h)—V1,) is an h-admissible pseudo-differential op-
erator of order —1 (we use that V is a scalar potential). Thus, we get the proposition
for N=0.

We can now start with the induction argument. Let N >0 and let us assume the
existence of a unitary, h-admissible pseudo-differential operator Wy (h) satisfying

Nt1px
W’N(h)*HA,VWN (h) = (h]?]:l]\ll)gl()h) ha’li)l(\f}f)h) ) )
where ay n(h) is an h-admissible pseudo-differential operator of principal sym-
bol Ay (z,€)1, and by(h) is an h-admissible pseudo-differential operator of order
—(N+1). Observing that the principal symbol of a; n(h)—a_ n(h)is 2(€—A(x))12,
we can apply Lemma 4.3. Then, there exists a unitary, h-admissible pseudo-differ-
ential operator W{h) satisfying

e RV ([ awn(B) RVRb ()
Wik) <hN+1bN(h> an(h) >W<h)‘<hN+2bN+1(h) anor(h) )

where a y41(h) is an h-admissible pseudo-differential operator of principal sym-
bol Ai(z,£)12 and byy1(h) is an h-admissible pseudo-differential operator of or-

der —(N+2). The (N+1)th property is satisfied with the unitary operator

WN+1 (}’L) = WN (h)W(h) .
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Thus Proposition 4.2 is proved. [

Proof of Lemma 4.3. This lemma is proved in [15, Corollary 3.1.2] for bounded
operators following a method due to M. Taylor. Here, the principal symbol is not
bounded, but it is diagonal.

We get from (iii) that a, (h)—a_(h) is invertible, hence we can define

J=(a,—a_)7?

which has the principal symbol oy, (J)=(A.—X_)"'1,, of weight (—1,0).
Let W (h) be the operator

S TR
W(h)_<h’“bJ(h) 1d )

We have
1, RE+Lrx(h)

W*(h)W () = <hk+1r1(h) -

) o),
where r1(h)=h"1[b, J] is an h-admissible pseudo-differential operator of weight (¢—
2,0) and

— — a k+17x 11
an T msmmTm= (e ) e ),

where
b(R)=h"Y(—Jba, +b+a_bJ),

and Ry4+1(h) is an h-admissible pseudo-differential operator of weight (¢—1,0). Us-
ing (ii) (i.e. that the principal symbol of a1 commutes with all matrices), we obtain
that b(h) is an h-admissible pseudo-differential operator of weight (g—1,0).

At last, to have a unitary transformation, we put, for sufficiently small A,

W (h) =W (h)(W* ()W (h))~"/2,

which also satisfies the relation (11) because h =%~ (W (h)— W (h)) is an h-admissible
pseudo-differential operator of weight (¢g—2,0). O

Corollary 4.4. Let H be the Dirac operator with A and V satisfying (Hs)
with 6>0.

For all N>0, there exists a unitary h-admissible pseudo-differential operator
Wi (h) such that
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(i) for all teR,

eith fay, N (R) 0

% _ith™! —
Wit Wy = ( 0 Jith~ta— (h) ) +O(tpN ), 1eN,
uniformly with respect to (t,h)€Rx|0, hol;

(it) for feS(R),

flay n(h)) 0
0 fla_.n

where ax n(h) is an h-admissible pseudo-differential operator, of principal symbol
)\i (ZL‘, &)12 .

Proof. According to Proposition 4.2, there is a unitary h-admissible pseudo-
differential operator Wx such that, Wj‘{,e”hilH (MW =eith ' H(h) with

Wi Ay = oy ) FOUH L),

. N 0

ﬁﬂWMW:(O o n

) +hN+1RN+17

where Ryy1(h) is uniformly bounded for k€]0, hgl, ho>0.
Then, (i) is a consequence of the Duhamel formula

. t -
eith‘lH(h) :eith‘lDN(h)_F,ihNJ—lfl/ eish*lH(h)RNH(h)ei(t—s)h*lDN(h) ds,
0

where Dy (h)= ( M’Ig(h) a—,z(\)f(h) ) '

Part (ii) is a direct consequence of (i) (for [=0) using the Fourier transform

ﬂ&:%AﬂW@ﬁ[]

4.2. Semi-classical estimates

We are interested here in quantum propagation estimates controlled in the semi-
classical parameter. For that, we introduce an assumption on the corresponding
classical systems. For a classical Hamiltonian A(z,£) defined in the phase space
R?", let us consider the flow defined by the Hamiltonian vector field (OcA, =0 N),

(I)g\: (ac,&) — (Z(t7 x,é)a C(t7x7£))'



16 Vincent Bruneau and Didier Robert

Definition 4.5. We say that an energy band JCR is non-trapping for A(z, &)
if for every R>0 there exists T >0 such that

|2(t,z,&)| >R for XNz, &) € J, |t|>Tr,|z| <R.

In the following, we consider the two eigenvalues A+ (of multiplicity 2) of the
h-principal-symbol of H which are defined as Ay (x,£)=1((—A(z))+V (z).
Assuming (Hjs) with §>1, for p€]—o0, —1[U]1, +o0[, the following limit exists
in the uniform operator topology of L2(R?3, C*%), uniformly on compact sets:
(x)75(H—p+i0)"Hz) "= lim (x) " *(H—pxic) {z)~°

e—0*t

for every real s> (see [1], [12], [26]), and for every s>3 +k, it is of class C* with

k
C;iwuxrsw‘mor%xrﬂ:k!<m>—5<H~uiio>*’“'1<x>—s.

Under the non-trapping assumption, we also have the following result.

Proposition 4.6. Assume (Hs) with §>0 and that JC]—o00, —1{U]1, 4+o00[ is
a non-trapping compact interval for Ay(x,&). Then, for every s>k-%,

| (@)~ (H—p+i0)"F(z) =% |l=O0(h™%), as h\,O uniformly for pe J.

This estimate is established by S. Cerbah [8] (for A=0 and V €C§°(R?)) and
by T. Jecko [17] (for A=0 and assuming (Hs) for V). Asin [8] and [17], our proof is
based on Mourre’s commutator method (see [18], or [16] for the semi-classical case)
and a construction of global escape function given by Gerard-Martinez [10].

According to Remark 2.2, for A\g non-trapping for A, and A_, only one of the
two surfaces Yy, (X)), Ea,(A) is non-empty. Then it is sufficient to construct
escape functions g+ (z, ) of Ay (z,§).

Lemma 4.7. Assume (Hs) with 6>0. Then, for any energy level £Ao>1,
non-trapping for A+, there exists g4 in the symbol class S1({z)',(€)'), >0 and
Co>0 such that

{Aia g:l:} Z CO
on A;l(])\oﬂz,/\O—I-ED::UME])\WE’)\OH[EH()\i), where {a,b}:=0¢ad,b—0,ad¢b is

the Poisson bracket.

Proof of Lemma 4.7. We construct an escape function g, (4, V) for A, (4,V),
then the function g_.=—g,(A,—~V) will be an escape function for A_, because
A(A,V)==X,(4,-V).
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Let (z,6)eX; (Ao —¢, Aot+e]),

)@ 9 = g -§—x-(V5V—M>.

(§—Alz) 2(¢—A(z))

Then, owing to (Hs), for Ag>1, there exists B>0 such that, for £>0 small enough,
A, 2z, &) > L (Mo—1) for |z|>R.

Let WeCge({zeR3:|z|<2}) such that ¥(z)=1 for |z|<1 and 0<VU<1. Let us

denote U (z)="(z/R) and

+o00
g+($’§):_\/() \IIR(Z+(t7$>€)) dt

where z, (¢, z,€) is the first component of the flow defined by A,. The non-trapping
condition implies that g, is bounded and of class C™ on A[!(|Ag—¢, Ag+€[), and

{Ass G Ha, §)=Vr(2).
Then, we introduce

g+(337§) = C U yr(2)7, (z,8)+2-E

The function g, is of class C* on A\;!(JAg—¢, Ag+e[), belongs to S1{(x)', (£)!) and
satisfies

A9} =CoUr+{ A, 2 &3+ C g N, Ymr()}
Moreover, by the definition of R and ¥g, we have
Az} (1-Vg) > 3 (Ao —1)(1-Vr),
hence, for C, >0 large enough,
O\ Up+{A,2-6) > Hho D).

Here we have used that {\,,z-£} is bounded on A7 (JAg—¢e, Ag+e[)N{|z|<2R}.
Next, we choose a large M >1 such that

|O+§+{A+7 \IJMR(x)}l S %()‘0_1)7

and we obtain that for such C, and M we have

{/\+7 g+} > i(/\ofl)
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on ATH(JAo—€, Ao+e[). This proves the lemma with Co=3(Xo—1). O

Proof of Proposition 4.6. We consider the case Ag>1, the same proof works for
Ap<—1 (replacing ‘+’ by ‘~” and (33) by (3?))-

Let

G (z,hD) =Wy (h) <g+(”c’gD)12 8) Wi (h),

where Wy (h) is defined in Proposition 4.2 (for N=1) and g, (z, hD)=0p% (g, ), 9+
being the escape function of Lemma 4.7.

Using functional calculus [14], [19], we easily prove that G, is a conjugate
operator of H (in the sense of Mourre) and that H is k-smooth with respect to G .
The main property is the so-called Mourre estimate

(12) X(H)[H, G.]x(H) = Chx*(H)

uniformly for small h and for x €C°(JAo —¢, Ao +€[) such that x(Ag)=1.
According to the definition of W1 (h) (see Proposition 4.2), and to Corollary 4.4,
we have

C,(z,hD) 0

6, bt = wan) (O D

) wim+ou)
where
C. (l’, hD) - X(a+71(m’ hD))[a+,1(x, hD)v g+ (ZL‘, hD)12)X(a+,1(‘r7 hD))

which, by the construction of g,, is bounded from below by Chx(a, ;(z, hD))2.
Let us recall that

(z,hD)) 0

. x(ay,
X(H) =Wi(h) ( 10 x(a_1(z,hD))

) wim+00),
with x(a_1(z, hD))=0(h*), because A\o>1 non-trapping implies that A=1(Xo):=
Y, (A_)=0, i.e. for small € and for any k€N, x®(A_(z, £))=0.

This gives the Mourre inequality (12). Then using Mourre’s results [18], we

have Proposition 4.6 for p€]Ag—e, Ag+e[, and at last, using compactness of J we
deduce the Mourre estimate uniformly for peJ. O

The following crude estimate will be used later.
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Corollary 4.8. Assume (Hs) with 6§>3 and that JC|—o0, —1[U]L,+o0[ is a
non-trapping compact interval for Ay(x,€). Then

‘ sn(A) ‘ ‘d;sh()\)\:O(h‘ﬁ), as h ™\, 0 uniformly for Ae J.

Proof. 1t follows from the definition of s(\), (1), that

d . 1 dSh *
aSh()\)——* " TI'('KSh()\) ),

where S, (A) is the scattering matrix for the pair (H(h), Ho(h)). Then, as in Corol-
lary 5.8 of [20], the above corollary is a consequence of trace norm estimates for

Sp(A)—1d deduced from Proposition 4.6 and from the stationary representation of
Skp(A) [1]. O

4.3. Proof of Theorem 2.3

Keeping h fixed in the proof of Proposition 3.2, we obtain that (d/d)\)sy, is the
distribution

fr—Te(W(h)(H?-1)"'f(H)) for all feC(]—o0,—1[Ull,+o0[),

where W (h)=(Q-3i[Q, A])(h) with Q(h)=H?—H¢ and A(h)=3%(z-hD+hD-z).
That is, in the distribution sense, on ]—oo, —1[U]1, +oo|, we have

%sh—”ﬁ<W(h)(H2—1)l%>

(E}, is the spectral projector associated with H).
For IC]—o00,—1[UJ1, +00[ non-trapping for Ay and J a compact subset of I,
let us introduce

1

7 (A A) = 21h

/ =D TN T (W (RY (H2 = 1)~ g(H)ei™ 1Y o(r="4) d,

where g€ C§°(I) such that g(A)=1 for AeJ and 0€C§°(]—2,2]) such that 6(¢)=
for Jt|<1, 0<6<1.
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Lemma 4.9. Under the hypothesis of Theorem 2.3, for all M &N, we have

. d _

(i) ash(A)fT(h\M)(h, N =0(hM~5);

(ii) for fized T>0, 7(p~r1y(hy \) =77 (h, \)=0(h*>) as h’\\0 uniformly for A€ J.

Proof. To prove (i), we use a classical method of smoothing by convolution.
Indeed, we have

d ~
T(h-M)(h, )\) = (gaSh*0M> ()\)7

where 8y (t)=0(hMt). Using that [0 (\)dA=0(0)=1, (i) follows from Corol-
lary 4.8 (see step (4) in the proof of Theorem 0.1 of [23]).

The proof of (ii) is based on the h-decoupling of the Dirac operator (Subsec-
tion 4.1) and on some known results concerning the scalar case.

For r=h~M or r=T, Corollary 4.4 gives

7o (R, A) = 7N (B ) +7,N (B A+ RY (R, V),
where

7 (s )
1

=57 e~ith A Tr{W;\}WWNpi®[(aivN—1)7lg(ai7N)e”h41“i’N]}H(T‘lt) dt,
R

where p+:((1) g), p,:(S (1]) and for an operator a on L?(R3,C?),

a 0O 0 0
p+®a—<0 0)7 p-®a_<0 a)

are operators on L?(R?, C*%), and

1
2h

RN(h,A) = / e X O(E RO (r ) dt.
R

Because the support of 6(hMt)—0(T %) is a subset of {t:T'<|t|<h~ ™}, we have
(13) R{,-ary(hy \) = RF (B, A) = O(RN M ~1),
At last, following the proof of Lemmas 3.2 and 3.3 of [23], we get
Tty (B ) =77 (B, ) = O(h™)

under the non-trapping condition. The methods used in (23] (or in [13]) work in the
same way, because the principal symbol of ay y is of scalar type (=4 (z,8)12). O

Then, asymptotic expansion of (d/d))s; () is a consequence of the following
lemma.
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Lemma 4.10. Under the hypothesis of Theorem 2.3, there exists T>0 such
that for h small enough, Tr(h, \) has an asymptotic expansion in h,

7p(h, ) = (2m) 73 Z c; (MR as h\,0 uniformly for A€ J.

i>1

Proof. We can prove this lemma in two different ways: using h-decoupling and
studying short time parametrix for it lasn (as in [13]), or using directly short
time parametrix construction for e H developed by K. Yajima in [25].

In the same standard way, as in [23] (proof of Lemma 3.1) (or for example in [9],
[13]}, short time parametrix construction for the propagator gives an asymptotic
expansion of 7r(h,A). O

Proof of Theorem 2.3. The existence of the asymptotic expansion is given by
Lemmas 4.9 and 4.10. For computation of co()), we use weak asymptotic which
is a direct consequence of functional calculus on pseudo-differential operators; as
settled in [14], [19]. We have

/ snOVF () dA="Te(f(H)~ [(Ho)) =h™* 3" 7;( )b
ji=0

with
1) () =em [l Aw) 8+ Vi)~ St ) de do

(tr is the trace of the matrix).
The unitary transformation w(H(x,¢)) (defined by (10)) brings H(x,&):=a-

(§—Ax))+5+V(z)14 to (/\‘612 kf]lz). Then, the integrand term in (14) is equal

to

20£(A)+F )= F(&) — F(—(€)))-
This gives

o= 26% /RB </A+(w,5)<A dgv/<5><x dg) - (/uz,&)zx dg_/@)zx dg) o

Putting (=¢—A(z) and (=rw (w€S?), we have

4
/ dgz/ dgzg (A=V(2))*-1)**dz
Ak (2, £) <N (O () <A RS
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for £A>vy defined in Remark 2.2. Thus, we obtain ¢g(A) as claimed in Theo-
rem 2.3. U

Remark 4.11. In the same way, known methods can be easily adapted to apply
Tauberian theorems like in [22], to get a Weyl type formula when A, have trapped
trajectories. More precisely, if IC]—o0, —1[U]1, +00[ is such that A\, and A_ have
no critical values in 7, then we can prove the Weyl formula

sn(A) = (21) 2Co(MR > +O0(h™?), as h\,0,

uniformly for A in each compact subset of J, where
- [ ([ i [ ) (] i [ )
R3 \JAp(2,6)<A &)< A(z6)=X —{&)>A

5. Non-relativistic limit

In this section, we introduce again the parameter ¢ (keeping A=1) and we
will study the behaviour as ¢—+o0 of the scattering phase, s* (N), related to the
operators (H%, Hj 1), where

Hi:=HFc®, Hj.:=HyFc’

The operators H (resp. H') and Hg , (resp. Hj _) have the same essential spec-
trum
oe(H,)=0c(Hy ) =]—00, —2¢2]U10, 4-o0],

of which the negative part “tends” to —oo, as c— 400, and
o(H )= ae(H('),f) =]—o00,0]U[2¢?, +-00],

of which the positive part “tends” to o0, as c—+00.

In the following, we study only s*(A) (the same proof works for s~(A)) and to
simplify the notation, we drop the sign ‘+’. Thus, we write H' (resp. Hy) for H’,
(resp. Hy ), and for s*(X) we write s,.(\), where

tends to 07, as c—+o0.
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The operators acting in L2(R?; C?) (resp. C2® L%(R3; C?)) will be denoted, in
general, by small (resp. capital) letters. Let us introduce some matrices, [=15®15
the identity on C?®C?~C* and the matrices on C?,

0_01 ({1 0 1/*10

“\10) P o -1 " \o o)

(0 0 (0 0 (01

F= o 1)> ""\1 0)° ""\o o)
These matrices satisfy

voy =1, o1v=r,

(15) _
po1=mn, oi="1.

So, the Dirac operators, H and Hy, can be defined in the Hilbert space

H = 02 ®L2(R3, CZ)

by
1
(16) H=H,= ;(03®12+%al®o-(D—A)+%21/®V++%2u®V_),
1
(17> HO:HO,x:?(03®12+%01®O"D).

In this section, our goal is to compare s,,(A) with s.0(A), the scattering phase
for (h,,hg) (see (3)), as »—0* (for A fixed). We will give a Taylor series expansion,
in s, of s,, (and also for its derivatives with respect to A>0). It will be a consequence
of the C*°-regularity of s, with respect to (3¢, \) near s»=0.

For that, we study the smoothness of

T (A) :=1Id —S,.( ),
where 5, () is the scattering matrix for (H’, Hj)) which is related to s..(A) by the

relation p ) s
i . .
Introduce » and substitute (H, Hy) for (H’, H}) in the proof of Theorem 4.2
of [1]. Then for A and V satisfying (Hs) with §>>1, we obtain

T =205, () (Ve Vil (A 5 10) V2 ) 37,0,
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with )
1 I IR
V%:V*——Oé'A, Rx A+ —+i0) = H%_A——‘ZO ’
4 272 %2
and Ty, is the trace operator for Hy , —(1/5?%),
1/2
To (V) = (30) " 0(QFPs s 0= (A+1A32)"%,

where F is the Fourier transform on C2® L#(R?, C2), vo(p) is the trace operator for
the free Schrodinger operator, (vo(0)f){w)=f(ow). The operator P, , is defined
by

1/2

1
V2
where G, is the Foldy-Wouthuysen transformation,

Go=(2(14+ 52 D)2 L (14 (142D V) "2 (1,0 (1 (1452 D?)H/?)
+#(7Qc.D—n®0o.D)),

and P :=v®ls.
Let us introduce the dilation group U(o), U(o) f(z):=0%/? f(ox).

P, o= q(2N, 2DYP, G,y (32X, %D) = (1432 D*)V 2 15204 1)1/2

(18)

Lemma 5.1. For A>0 and Q:()\+%)\2%2)1/2 we have

—1 —1

T, (M) = f—é WWFP, (U™, Tg,. ()= % UQ)P () F* (1),

where P, ,.(0) and its adjoint are operators of the form

P e(0) =v@p.(0)+ 2724, 0),
Py .(0) =v@p,.(0)+1m®4.(0);

p,.(0) and q,.(0) are operators on L?*(R3 C?), and they are C™ with respect to
(3¢, 0)ERX]0, +00] in L(HDS, H Y25 for all t and s reals.
The space H* is the weighted Sobolev space {f:||{z)? fllz: <oo}.

Proof. Owing to yo(0)=0 3"y (1)U(0) and U(0) F=FU(p™1), we deduce that
To,.(A) is of the claimed form, with

1
PJr,%(Q) :u(gil)Pﬁ%u(Q) = ﬁ Q(%2/\; %QD)P+G%Q'

Now by using vij=1 and vn=0 (resp. =0 and nv=n) we obtain that P, G, (resp.
G,,Py) has no term with 7 (resp. 7). Thus, P, ..(e) and P , (o) are of the claimed
form.

From the smoothness of the symbol of q(2), D) P, Q,,,, in S({¢)}/?), with
respect to (s, 0), we deduce the result. O
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Lemma 5.2. Let H,. and Hy, be the Dirac operators defined by (16) and
(17) such that the potentials A and V satisfy the hypothesis (Hs) with §>1. For
A>0 and p>0, let

1 1
R, <gl, A+ E—HO) ::L{(g_l)R% </\+ %—Z—I—iO)U(Q),

1 1\
R, (M —+i0) =(H,.~A———-i0) .
M M

1

5, such that the map

Then, there exists a neighbourhood Vy of »=0, and s>
1 1
(%a QaA)HR% Y a)\+_2+20
>

is C° from Vyx|0, +00[x]0, +00[ to L(L>%,L>~%).
Moreover, there exist some operators ro, r1, T1 in 5(1,2,57 LQ"S) such that

(19) Ry(07!) =v@ro(0) + (@71 (0) + n®r1(0) +0(5%).

Proof. A straightforward calculation gives

R..(07Y):=R,(07 ', A\ +1/5>+i0)
1 1 . 1\
:(;DA(Q%L%WB*V(Q ))\—;—@0> )

where D4 (0)=U(o Va-(D—A)U(o)=pa- (D~ tA(o™1)), V(e )=U(0~*)VU (o)
is the multiplication operator by V(o 'z), and A(g~')=U(o ') AU(p) is the mul-
tiplication operator by A(o™lz).

For s>1, we have, in L(L%% L%~%),

1 1
Rz(Q_la)\+2+i0>RA,X(QI,/\+2+i0>
x s
(20) 1 B
x <1+V(QI)RA,% (Q_la )‘+_2+7’0>) »
i
where )
-1 o 1 . 1 1 1 3 .
Rape| 07 M —5+i0 ) = ~Dalo)+ 58-A-—5—i0) .
M b4 ” P

According to properties of the Dirac matrices, we obtain

1 . 1 .
Ra . (,Q_l, )\—i——%E—HO) = (zDA(g)+ﬁ+1+%2)\)TQQKA,Q(PMJO),
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where
. _ n—1
Ka,,(1+i0) = (3(e7'Da())?~1-i0) .

Let us put A(0)=(0"2D%(0)— 5 D?), then
K o(1+i0) = (D% —1-i0)"" (1+.A(g) (3 D?~1—-i0) ') .

Moreover for A and V satisfying (Hs) with §>1, there exists s>3 such that the
maps
e—V(e™), er—Ale™), e Alo)

are C® in L(L%5, L>%), L(L*~*,(L>*)®) and L(HY~*, L??), resp. Hence from
the previous equations, we deduce the existence of a neighbourhood Vg of =0, and
s> %, such that the map

1
(}{) 9, )‘) Rz<9"17>‘+f2+7’0>
pa

is C* from Vo x 0, +oo[ to L(L?%, L%7%).

Now, to obtain (19) we prove that the limit of R,.(o %, A\+1/3>+i0), as »
tends to 0, belongs to v®L(L**, L?~*%), and its first derivative, with respect to s,
at »=0, belongs to TQL(L>*, L>~*)@n®L(L**, L% %) for s> 1.

We let

To(0) = 3(1+8) K4 ,(1+10),

Ti(0) = 207D a(0) K a,0(1+40),
Tr(0) =207 MK 4 ,(1+i0).
We have

R0 A4 10) = (To(@) 4T3 @)+ T2l
< (14+V(e™)(Tole)+xT1(0) +3*T2(0)) -
Then, the limit as 3 tends to 0 of R,.(o~ !, A+1/52+10) is
(21) To(0)(1+V (e )To(e)) 7,
and its first derivative, with respect to s, at »=0, is

T (o) (1+V (0™ To(0) !

(22) CT(0)(14 V(e YTo(e) " Ve YT (@)(1+V (e Th(0) .
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Let us study the matrix representation of these terms. As a=1n®oc+n®c and owing
to

m=u, IM=v, 772:7?2207
we deduce that Da(g) is of the type n®@da(0)+7®da(g) and also that D% ()=
v®d4 (0)+u®d4(0). Then Ka ,(1+i0)cv@L(L%*, L>~*)oux L(L>*, L?>~%) and
as $+(14+8)=v®1s, To(o)ev®L(L>*, L>~%). Lastly, by assumption, V{(o™!) be-
longs to v@L(L% 3, L2 )@ou® L(L*~%, L%*), thus, the limit as s tends to 0, given
by (21), belongs to v@L(L>*, L»~%).
The matrix representation of D4({p), K4 ,(1+40)}, and the equations

(23) nv=n, fau=17, nu=nv=0,

give that T1(0), T1 (o) (1+V (07" To(0)) T en@L(L>*, L**)@n@L(L>®, L*>~%). In
the same way, using the transposition of the relations (23), we obtain that (22) are
in n@L(LY*, LY oneL(L?s, L>~%). O

Before expressing the main theorem of this section, let us give some relations,
resulting from the properties of v, y, n and 7.

Lemma 5.3. Let P, P*, V and R be matrices on C2QC?, of the types

1 _
P=v@ptxi®q, V=voV, +u@V +—(n0A+104),
P* =vRp+x#nRq, R=V®r+%(n®r1+ﬁ®ﬂ)+%2R2,

v, p, n and 7 being the matrices defined at the beginning of this section.
Then, PVP* and PV RV'P* are polynomials with respect to . In particular
the singularity of V vanishes.

Theorem 5.4. Let II,, and Hy ,. be the Dirac operators defined by (16) and
(17) such that the potentials A and V satisfy (Hs) with 6>1. Let T,,:=1d —S,,(A),
with S,.(\) being the scattering matriz associated with (H,—1/32, Ho ,.—1/5%).

If 6>1+42/p, p>1, then T,()) is a Schatten class operator, i.e. T, (A) is in
o,(C*®L2(S5?,C?)). In particular, if §>3, T,.(\) is a trace class operator; if §>2,
T..(X) is a Hilbert—Schmidt class operator.

Moreover, there exists a neighbourhood Vy of =0 such that the map

(36, A}y — T (N)

is C° from Vox]0, +oo| to 0,(C?*®@L%(52%, C?)).
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Proof. Our starting point is the formula

-2
T (3) =2im %530 () F P (o)

1 . — * * *

x (Vx(QI)Vx(Ql)Rx (gl, A+;+10) V(o 1))7’+,z(9)f Y0(1)%

where p is the smoothness function (with respect to (A, ), A>0) o= (/\+%)\2%2)1/2.

Let us recall that vo(1)F (z)~*(D,)™ is a Schatten class 0,,/2(L*(R?), L?(5?))

operator for any meR and for s>1/p+1% (see Lemma 5.7 of [20]). Then we are
going to prove that there exists s>1/p+% and mq, mo in R such that the map

(24) G20 Pe0) (Ve )= Vile ™R (07 A 5410 ) Vile ) ) P2l

is C* from Vy x]0, +-o0[ to L{H™~%, H™2:%) where Vy is a neighbourhood of »=0.
Under the assumption (Hy), with §>1+2/p, according to the previous lemmas,
the main problem is to make the singularity of V,,(o71), at »=0,

Valo ) =V(o )~ Ae™)

vanish. But, according to Lemmas 5.1 and 5.2, we can apply Lemma 5.3 to V=
Vie(o™), P=P, .(0), P*=P; .(0) and R=R,.(0™", A\+1/5*+i0).

Thus, we obtain the smoothness of the map (24) from Vyx]0,+o00[ to
L(H™=% H™2%). This ends the proof of Theorem 5.4. [

Remark 5.5. This smoothness result is better than the result we could get from
(2) of Theorem 4.2 in [12]. In [12], the order of the regularity of the scattering am-
plitude (the integral kernel of 77, (\)) is connected to the decrease of the potentials.
Here, we need only a fixed decrease, of the order (z)~® (for an arbitrary fixed §>3),
to obtain C*-smoothness of T,.(\).

Proof of Theorem 2.5. Owing to the formula

T =g Drwsw)

and to Theorem 5.4, we obtain the smoothness of s,.(A) claimed in (b).
To prove the convergence to so(A), we will establish it in the weak sense, which
means that for all e C§°(]0, +o00]),
+oo +oo
lim s (A’ (A) d)\:/ Soo(A)@’ (A) dA.
0

»x—0 0

It will be a consequence of the following proposition, using the Krein formula (2).
At last, the case V=0 is discussed in Remark 3.9. [
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Proposition 5.6. Let H, and Hy . be the Dirac operators defined by (16)
and (17) such that the potentials A and V satisfy the hypothesis (Hs) with §>3.
For all ¢eC§°(]0, +00]), in the trace class, we have

tim (o = 55 ) =0 (Hoe =57 ) ) =ttt -t

where h, and hg are the Pauli operators defined by (3).

Proof. Our starting formula, owing to (7), is

@) (e ) = gerln Has) o Hpn o, Ho ),

where, for A>—1/252 and for »#0,

1+2:20)Y% 1
¢1(%,A)=w<(—%2)—>,
a(e, ) = (14252 N) 01 (50, 0)
and
26 H . AHZ T
(26) oo(%)-~2—;(% 1)
On C2®L%(R3,C?) we have
(27) Hoo () =vQh+ p@h™+5D sy +15°V2,
where
(D—A))?
h*;:ﬂmw))\v, and Dpy=a(D-AV+Va-(D-A).

First of all, let us remark that the convergence property is formally obvious (in
the space of bounded operators). Indeed, as s tends to 0, ¢1(5, \) and @o(sr, A)
tend to ¢(A) and He (52) tends to v@h+p®h~. Then, formally, for j=1,2, we have

@ (36, Hoo(3)) —v@@(h)+p@p(h™).

Thus, owing to (25) and (16), we have, as »—0,

® (H%— %) — [5(la+03)®12] . [v@p(h)+u@p(h™)].
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Moreover %(12 +03)=v, then we deduce that formally

@ <H,(— %) —v®p(h).

This formal approach can be justified using functional calculus. For j=1,2, we
have
1 o+ioco

(28) (56, Hoo () = o / Mii; (%, ))()

2 f ) ioo

K
27

/ 2 ¥ (Hoo(5) —2) "t dz ds,
Is

where I's is a path in C (which does not contain the semi-bounded spectrum of
Hoo(3)) and Mp;(3,-)](s) is the Mellin transform of ¢;,

Mp; {s)= / i (e, 1) dt.

After the change of variable 52t =(1+232t)"/* —1 we have
Mipi(oe ()= [ (et (e o)

Mips(oe ()= [ (04 322)

which tends to M[y](s) as s tends to 0.

As H,(5) is a polynomial with respect to s, then (Hy(3¢)—2)~" is smooth
with respect to » and tends to (Ho(0)—2)~!. Thus we have easily the convergence
of (H,,—1I/#*) to v®p(h,) in the space of bounded operators.

To obtain the convergence of @(H,, —1I/3?)—¢(Hy, ,.—I/5?%) in the trace norm,
we construct a parametrix for (Hoo(x)—2)7!, and the functional calculus by the
Mellin transform gives the expression

o+ioco
e ZOp Do [ Moo

100

s—1

p(t)dt,

s—1

e(t) di,

—1

X o 2 20p* (67 41.,) (Hoo () —2) T dz ds,

T .

with Op*“(b7. ) and Op“(8%,,.) in a trace class for N large enough. Because
Hoo(5) is a polynomial with respect to s, we deduce that 6%, , is also a polyno-
mial, and the control with respect to small s, is not difficult. Thus, we have proved
Proposition 5.6 (see Part 4 of [4] for more details). O

Remark 5.7. As remarked by the referee, it would be nice to prove multipa-
rameter asymptotics in the three parameters (h, A, ¢). This problem seems difficult.
However, we can get partial results when one of the parameters is fixed.
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