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1 .  I n t r o d u c t i o n  

One of the main problems in any application of interpolat ion space theory is 
the identification of the interpolation space (~o,  ~1)~ generated from a pair of 
Banach spaces c2(~0, ~ 1  by a given interpolation method ~. The importance of 
interpolat ion space theory stems in par t  from the frequency with which (~o, fiF1)r 
is identified with classical Banach spaces and the deeper understanding the theory 
then  brings to these spaces. Applications to Lorentz Leq-spaces and to Lipschitz 
spaces are good examples (cf. [4], for example). 

In this paper the interpolation spaces (~0,/~o~,)o, ~ generated between weighted 
LP-spaces by the (real) J-, K-methods of Peetre will be characterized. Withou~ 
real loss of generality we shall assume ~o o ~ 1. The ~)diagonab) spaces (L~0,/~o~1)o,v, 
it is known already, coincide with another weighted LV-space: 

( L  v v 1-o  o 0 < 0  < 1 . . . .  , Lo>,)o,~ = L~ ,  ~' = ~o  ~o~, 

([7], [15]) and  the associated interpolation theorem reduces to the Stein-Weiss 
extension of the classical IV[. Riesz theorem to spaces with changes of measure. 
Peetre began the characterization of the ~)off-diagonab) cases by identifying 

v 1 < p < oo, with one of a family of spaces introduced by Beurling (L~o, L~)o, ~, 
([3]) in connection with problems of spectral synthesis. I-Ierz later generalized 
Beurling's definition and considerably clarified Beurling's paper though without  
systematic recourse to interpolation space theory ([11]). In  sections 4 and 5 we 
complete the characterizations of (LV~o, LV)o,q, 1 _~ q _~ oo, and identifications 
with the Beurling spaces. With these characterizations as well as the theory of 
(homogeneous) Besov spaces the various results of ~erz  can be obtained very 
easily using simple interpolation space techniques (see [6]). 

The Beurling spaces have been considered in many  contexts other than  specbral 
synthesis (cf. [9], [10], [12], [13], [18]) with various characterizations being obtained 
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or used. In  section 3 we obtain one simple characterization (theorem (3.1)) from 
which all characterizations follow as special eases. This theorem, in addition, com- 
pletes other results of Peetre ([17] theorem (2.1)). Since the only property of LP- 
spaces needed is the fact that  Le is an Leo-module via pointwise multiplication, 
the results in w 3 are presented from the point of view of Banach Function spaces 
~ ;  however, this section can be read equally well substituting Le for ~)d. 

Some applications of these results to harmonic analysis appear in [1] and [2]. 

2. Elements of interpolation space theory 

Wherever possible the current notation and terminology of abstract inter- 
polation space theory will be used (cf. [4], [7], [14]). Let  ~)r ?)dl be Banach spaces 
both continuously embedded in some t tausdorff  topological vector space so that  
then (9(7o, ~)~1) forms a comloatible couple in the sense of [7] chap. 1. Function norms 
(K(t, (.)) and J(t ,  (.)), 0 < t < oo, are defined on the sum of ~)r + ?/F1 and 
intersection ~ 0 g l  c9r 1 by  

K(t ,  f )  -~ K(t ,  f;  ~So, ?~1) = inf (ilf011x, + t]lf~li~r,), 
S = f ~ + f l  

J( t ,  g) = J( t ,  g; ~So, ~ = m ~ x  (IIgli,:r0, ttlgll~.,) 

where f e ~So + o_r~ and g e ~ o Cl ~m~ respectively. These function norms are 
both continuous and monotonic increasing in t ([4] p. 167). The interpolation 
space (~m0, mr is the subsp~oe of ~ o  + ~r~ of all f for which 

co 

lif[to, q~K : ( t -~  q 0 = O, 1, q ~- oo,  (1) 
0 

is finite (obvious modifications when q ~ oo); under the norm I](.)][o.q;K(c)~o, 9~)o,~; K 
is a Banach space, non-trivial whenever 0, q are restricted as in (1). The interpolation 
space (~o,  ~ )o ,~ ; j  consists of all f in 9(7 o + ~3(~ for which there is a strongly 
measurable function u: (0, oo) --> ~ o  17 ~(~1 satisfying 

co co 

f f (i) K(1, u(t)) ~ < ~ ,  (ii) f -= u(t) 7 '  (2) 
0 0 

(iii) ( t -~ u(t)))~ ~ ~ '  0 • 0, 1, q = 1. (3) 
0 

If we set 
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co 

Ilfllo,q;j : inf f (t-+J(t, u(t)))q t /  ' 
0 

the infimum being taken over all u satisfying (2) and (3), then (~o, ~(~l)o,~;J 
becomes a non-trivial Banach space. I t  is known that  

( ~ 0 ,  ~1)o ,++  = (~)~0, ~)o ,~;K,  0 < 0 < 1, 1 < q < oo , 

at least up to equivalence of norms. 
These spaces (~(~0, ~)o.~;K, (~(?0, ~)(~l)o,q;j can b e  constructed in exactly the 

same way to yield the same spaces (with equivalent norms) by replacing the multi- 
plicative group /~. : (0, oo) with the multiplicative discrete group {r~: n E Z}, 
r being fixed, r > 1, the Haar  measure dt/t on (0, ~ )  being replaced by Haar 
measure on {r~: n E Z}. We shall refer to this method as the discrete method of 
construction (see [6] or [14] for full details). The Lp-spaces on /~. defined with 
respect to Haar  measure will be denoted by L~. 

The previous methods of construction are all >>real>> methods in contrast to the 
>>complex>> method introduced by Calder6u et al. (cf., for instance, [5]). In  this method, 
to each compatible couple (-~0, ~1)  is associated a Banach space [~o, 9(~1]o, 
0 < 0 < 1. Since we are concerned exclusively with characterizations of inter- 
polation spaces obtained by the J-, K-methods further details are omitted. Let us 
recall only that  if (X, #) is a totally a-finite measure space and Lp ( =  Lv(X,/Z)) 
the usual Lebesgue spaces, then 

P~ (L p~ L )o.q;K ~ LP~, [L v~ Lpl]o : L p  

where 1/p 9 : (1 -- 0)/290 q- 0/291 and Lr~(~ LPq(X, #)) is the usual Lorentz space 
associated with (X,/z) (see [4] w 3.3.1, [5]). 

3. Interpolation between weighted function spaces 

For a totally a-finite measure space (X,/z), 9~/(X, #) denotes the space of 
/z-measurable complex-valued functions on X. A ]3anach space 9g of (equivalence 
classes of) functions in ~/~ is called a Banach function s29ace provided 

(a) if" gECl/]i(X,/z) and tg] ~ If] /z-a.e. for some fEP(~ then g belongs to 
a n d  llgll:~ -< Jl/ll~, 

(b) if {f,} is a sequence of non-negative functions in ~(~ and fn ~f/z-a.e. then 
sup  llfoll.~ = Ilfll~. 

n 

Obviously the Lebesgue LP-spaces: 

[Iflrp = If(x)lpd/z , 1 __<29 ~ ~ ,  llf[ico = ess. sup .  If(x)l (4) 
X 
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are Banach Function spaces as are the Lorentz LPq(X,/x) spaces, condition (b) 
being the classical Fatou property. Notice that  (a) ensures ~ is an L ~ ( X ,  g)- 
module via pointwise multiplication and 

Ilfg[l~ < Iifll~ Ilgll~, f ~ ~ ,  g e L | . 

When co is a function in c~f/(X,/~) with co > 0/x-a.e., ~(~ denotes the weighted 
function space of all (equivalence classes of) functions f in c~(X,/1,) for which 
fco E 9(~; we set 

For weighted Z~(X, co) spaces we shall write 

[l/llp, o = [[/collp, 1 < p ~ ~ ,  

with II(.)ll~ defined by  (4). The pair ( ~ ,  9 C )  forms a compatible couple: indeed, 
up to equivalence of norms, 

where 

m(x)  ~-- rain (1, co(x)), M ( x )  -= max (1, co(x)) 

(cf. [15]). In this and the succeeding section we shall characterize the interpolation 
spaces 

( ~ ,  ~.)o,q~K, (L p, L[)o,q;K, 

For the complex method the interpolation space 

0 < 0 < 1 ,  

l < q _ < ~ .  

[ Le,/~o,]o is known: 

P [jLp, Lo,]o = L~, v(x) : co(x) ~ , 

(see [5] pp. 123--4 for even more general results). As frequently happens, however, 
the real methods yield directly a richer family of spaces. 

Throughout, a will denote a non-negative, piecewise continuous function in 
L~(0, ~ )  such that  ta(t) belongs to L~(0, ~);  thus, with o, defined for each 
fixed t by  

at().) = t2a(t)O, t, 2 C (0, ~ )  , 

our assumptions on a ensure that  

max (llo[]~, sup ]la,[[~) < ~ .  (5) 
$ 

Furthermore, the composition at o co belongs to L~(X, #) and f .  (a, o co) to 9C 
whenever f C ~ .  All of our characterizations follow (more or less easily) from the 
following result. 
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THEOREM (3.1). There exist constants depending only on (~, 0 and q such that 

0 

for all f in (~JC, 9C )o,q;K, 0 < 0 < 1, 

dt ) ~/~ 
o w)ll~:)q - [  < const.  Ilfllo,.,K 

Proof. When  f = f0 + f l  is a decomposi t ion of  f in ~ + ~)C, 

It f "  (~, ~ co)lla~ _< lifo" (o, o ~o)lla~ -t- ]IA" (~, o ~o)ll~ c _< (sup II~,ll~)IIfolla~ + t(ll~lloo)llficoll,r, 
# 

and so, in v iew of  (5), 

Ill" (~ o co)II~ c ~ max  (sup I[~,[Io~, II(~lE)K(t,f) (6) 
$ 

for all t E (0, oo). The right hand inequal i ty  follows. 
Now let V be a non-negat ive  cont inuous  funct ion with compact  suppor t  in 

(0, oo). Then the funct ion u = u(t): 

u(t) = f (x )  . a,(co(x)) �9 ~(to~(x)), t r (0, ~ ) ,  x e X 

is a measurable  9(~ ~l 9(~o~-valued funct ion such tha t  

Ilu(t)ll~ ~ II~ll~llf ~ (~, o co)][~ 

while 

Thus u: 

tHu(t)~~ = ]l f "  (a, o w) . (~, o w)ll~ _< (sup [T~,ll~)llf" (a, o s r . 
t 

(0, oo) ---> ~_~ N ~)~ and 

J(t,  u(t)) ~__ max ([l~T[r sup Ilk, i t ) I l l "  ((~, ~ o))II~ �9 
$ 

B u t  with a sui table normalization,  

co 

f I =  u(t) 7 "  
0 

The left hand  inequal i ty  of  the  theorem now follows. 

I f  the discrete construct ion is used in the  proof  of  theorem (3.1) the  following 
~)diserete~) character izat ion of  (~(~, 9(~)o.q;K is obtained.  

TH~.O~EM (3.2). For each f ixed r > 1 there exist constants depending only on 
O, q and (~ such that 
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const. Ilfllo,,;J ~ ( ~  (r-k~ (a,~o co)lice)q) 1/q < const. IIfL,u;K 
- - c o  

for all f in (~)~, 9(~o~)o,q;K, where 0 < 0 < 1 and 1 < q < r 

The first application of theorems (3.1) and (3.2) gives what in practice is the 
most useful characterization of (cS, 9(~)o,q; ~. For fixed r > 1 denote by �9 the 
function 

l 
1 

T(t) = - / ,  1 < t  < r  

O, elsewhere. 

(7) 

When X , - - { x  E X : o ) ( x ) <  1/t} and Z, is the characteristic function of X,, 
then Ttoo4= ~t/r-- Zt and 

A(z~k) = z,~ o o = Z,~-~ - -  Z, k.  

T~EOBEM (3.3). For each r > 1 there exist constants depending only on 0 and q, 
0 < 0 < 1, 1 < q < oo, such that 

for all f in 

eonst. Ilfllo,~;j ~ ( ~  ( r = ' ~ t l f d ( z , k ) l l J )  ~/q ~ const. Ilftlo,,,K 

( ~ ,  ~)e,o)o,~;K. 

Proof. The particular choice (7) of ~ satisfies (5) and theorem (3.2) then applies. 

Now define "r, "d by 

1, O < t < l ,  { 1 
T( t )=  ~ ' ( t )=  ~-, t ~ l ,  

O, elsewhere, O, elsewhere. 

Obviously ~ and ~' satisfy (5)while  
? 

" r 1 7 6 1 6 2 1 7 6  ~ t e ~ z t  , "c, o o 9  ~ 1 - -  Z t  , 

and 

tI]fo~z,[Ioc ~ K ( t , f ) ,  llf" (1 -- z,)ll~ ~ K(t,f) 

(el. (6)). Theorem (3.1) thus gives: 

(8) 

T~EOBEM (3.4). When Z, is the characteristic funct i  on of the set Xt  = {x C X: 
o)(x) ~ l/t} then 
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03 03 

t }  ' 
0 0 

def ine equivalent norms  on ( ~ ,  ~ 0 < 0 < 1, 1 < q < co. 

The Lipschitz character  of ( ~ ,  ~o,)o,q;K can be described by  sett ing 

1 
~(t) = e-', r = T (e-' - 1), (9) 

so t ha t  7, z' sat isfy (8) and 

t e _ t ~  o T t o ~ : t e o e  - t~  ~:t oo~: - -  1 .  

THEOREM (3.5). For  0 < 0 <  1 and  1 < q < oo, 

03 cO 

(f(,o,,z 
0 0 

def ine equivalent  norms  on (5)C, ~(~)o,~;K. 

1)II,~)q ~ ) "  

Proof .  Apply theorem (3.1) wi th  7, z' def ined by  (9). 

I t  is of interest  to formulate  the  characterizat ions contained in theorems (3.4) 
and (3.5) for the special case r = LP(X) ,  1 < 29 < oo. When a = (l/t) rain (1, t) 
in theorem (3.1) and  1 < T  < 0% 

03 co 

f f f  (t-~ �9 ((~, o co)llpF 7 = t-~~ l P rain (1, tw(x))Pd# t - -  
0 0 X 

03 

f lf(x)t'o(x)~ t-'~ t)'{ t) - -  d # .  

X 0 

In  ease p = co the analogpus result  holds: 

sup t -~ �9 (~, o co)!Io 3 = I[fio*l103 . sup (t -~  rain (I, t ) ) .  
t $ 

Consequently,  for all p,  l ~ 20 ~ o% 

03 

(f ( t -~  (g, o ~o)l[pF = [[fo~~ �9 IIt-~ min (1, t)llLp, 
0 

which establishes (cf. [7] p. 25, 31; [15]): 
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THEOREM (3.6). l~or 0 < 0  < 1 and 1 ~ p ~ co 

(L'(X), LUX))o,~,~ = {f: ( f lf(x)l'o(x)~ v" 
x 

and 

For non-diagonal values of q, 

const, llfllo.p,.r ~ Ilf~~ ~ const. Ilfllo,,;~. 
i.e., q ve ~o, theorems (3.3) and (3.4) yield: 

THEOrEm[ (3.7). The expressions 

(i, If(x)]Pd/-*J ) )  , r > l ,  

< ~o(x)_< t k 

(// "):; (ii) t'-~ f , 

to,(x) _< 1 

(i(Iz :)" 1 :tls>\q 
(iii) t -~ If(x)l"d,. ] ) 

to~(x)>l 

(LP(X), L~(X))o,~: K for all 0 < 0 < 1, define equivalent norms on 
and 1 <_p ~ oo. 

l < q <  oo, 

Remark. Partial  results along the lines of theorem (3.7) were obtained by Peetre 
in [17] (of. p. 63). 

4. Beurling spaces 

We come now to our main characterization of the interpolation spaces (/F(X), 
JLP~(X))o.~:K, identifying these spaces with important Banaeh spaces introduced 
by Beurling ([3]). 

With 7 ---- ( l ip  - -  1/q) and 0 < 0 < 1 denote by tg(0, 7) the class of functions 
~0 in L 1, ~0>0 ,  such that  

(a) ]I~NL~ = 1, (b) t~ ~ is monotonic increasing. 

Such functions ~ certainly exist; for instance, suitable normalizations of 

9(O = t-~ min (1, tlh), 7 r 0, q~(t) = t -~ min (1, t), y - = 0  

satisfy (a), (b). For fixed (o we then define B~o,q(X, co) by 
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B g . J X ,  ~) = t J  {L:(X):  w = ~~ o ~),}. r -< 0 ,  
r 

B~,~(X,~)= f l  {Z~(X) :w=~~ r >--0" 
Cea(o,v) 

In  [3] additional convolution properties are imposed on ~ to ensure that  certain 
of the B~o,q(X, co) spaces are Banach algebras. Discussion of this particular facet 
will be omitted from this paper. 

THEOI~EM (4.1). Let ~ = l ip  - -  1/q where 1 ~_ 19 < oo and 1 ~_ q ~ o~, Then 
for each O, 0 < 0 < 1, there exist constants such that for all f in  ( I~(X) ,  L~(X))o.~; K 

eonst .  [Ifllo.q~j ~ inf  llfo~~ o o~)~ll~ ~ const.  Ilfllo;q;K 
~eo(o,r) 

when ~ ~ 0, and 

when ~ ~ O. 

(10) 

const .  ]lfllo,~j ~ sup IIf~~ o co)'llp ~ const.  I[fL, q.,K (11) 
~eo(o,r) 

I n  19articular, 

(L~(X), ~(X))o.~;~ = Bg, q(X, co). 

Proof. (i) We establish first the left hand inequality in (10). Since 7 ~ 0, 
automatically q ~ p < oo. 

Choose any non-negative continuous function ~ with compact support in [1, oo), 
7J ~ 0, and define a on (0, oo) by  a ( t ) =  (1/t)~p(t). In  view of theorem (3.1) 
the left hand inequality in (10) follows provided 

( t - ~  (~r, o o~)[Ip)q _< const, inf  ]If" c~176 ~ ~)~IIP �9 (12) 
0 9 

But, since t~ r is monotonic increasing, 

t-~ o co)(x) = t-~ < co(x)~ 

because ~o(t~o(x)) is non-zero only when to~(x) > 1 and then ~(to~(x)) 3> O. Thus  

t - ~  �9 (~, o co)liP _< T(1/t)-rl[fw~ o ~)'r(t~)ll~ 

and so 

f(f )(1), f dt \q/P ~q dt 
(t-~ (a, o co)lle)q - /  < lflpeo~ o co)rry)(to~)Pdl z cp y (13) 

0 0 X 

Using crucially the fact that q < 19, we deduce from 1-151der's inequality applied 
to (13) that the left hand side of (12) is dominated by 
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co  

(f(f ) ~)l/p I,fi~o~~ o ~oYvv,(t@vdl~ (II,;IIL~,) -~ = Ilfa,~ ' o a,)~llpllv, l l~ (14) 
0 x 

invert ing the  order of in tegrat ion in (14). This establishes (12). 
(ii) I n  proving the  righ~ hand  inequal i ty  in (10) we m a y  assume q < p ( <  ~) ,  

i.e., y < 0, since the case q = p,  i.e., y = 0, has been taken  care of  a l ready  in 
theorem (3.6). For  f ixed f in (L  p,/~,o)o,~;~c define ,p on (0, ~ )  by  

l#(t)r = t-o 2-OqK(2, f ) , - e  . 
1/t 

K ( 2 , f )  <_ m a x  (1, 2 t ) K ( 1 / t , f ) ,  Since 

1/t 

I-Ience, 

+ oo= Ito.(: 
For  this funct ion ~, 

x 11o4~) 

(p+ Oq--q) -1~. 

f If ]~ f ~ = 2-O~K(2, f )~ -~ If[p(1 -- z~)d# ~ -  ~ 2-+qK(2,f) ~ -~- = (Hf[Eo,~;K) ~ 
x o 

(of. (8)). Now set ~v = ~v/II~oIIL~. Then 9 belongs to Q(0, y) and  

][fco~ o ~oYIb _< (IIflIo,+K)VP(IIWIIL,) -~ <-- eonst. [ifllo,+K 

completing the  proof of (10). 
(iii) We tu rn  nex t  to the  left hand  inequal i ty  in (11). F i rs t  we assume 2o < q < co. 

I t  is then  enough to show t h a t  
c o  

(/ (t-~ �9 (1 -- Z,)[t~) ~ < const, sup (l[fio~ o ~o)'llp) ~ . (15) 
o + e t~(o, ~,) 

Now the left  hand  side of (15) is 
co  

s2p(f g(,)t-~ tfL~(l-z,)~,)~-') 
0 X 
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the supremum being taken  over all g ~ 0 

(remember P7 -+- 1~(q/p) -- 1. 

where 

such t h a t  

co 

f g(t)~/p ~ d t _  1 
t 

0 

But ,  wi th  a change in the order of integrat ion,  

co 

dt 
f g(t)t-~ ( f lf[~O - x,)dff ) y = 
0 X 

f lflP~o~ o co)'Pdff 
X 

Clearly t~ ~ is monotonic increasing. Also, by  (16), 

co co co co 

_ t)l:p'dq'~<(f g(t)i/,,,~"'(f a-o~, 
0 1 0 1 

regarding f ~  g(2/t)2-~ as a convolution on _R.. Thus wi th  ~ = t0/]lt01IL 1 , 

co / (/ (: ) g(t)t -~ Ifl~(1 - -  X,)a~ff 7 _< (][wlILg)~ I f i"oo~ ~ o a, )~Pdff  
X 

< const. [ sup ( l l f~~ o ~ , ) % ) q  
e ~(o, r) 

for all g sat isfying (16). This establishes (15). 
In  case q = co we mus t  replace (15) by  

s u p  ( t - ~  �9 (1 - -  X,)l[.) --~ c o n s t ,  s u p  t l f io~ o ~o)~llp �9 ( 1 7 }  

The proof  of  (17) is ent i re ly  analogous to t h a t  of  (8) if  we remember  t h a t  297 = 1 
when q = oo. 

(iv) F ina l ly  we establish the r ight  hand  side of  (11). Choose a n y  non-negat ive  
continuous funct ion o, ~ ~ 0, wi th  support  in (0, 1]. Then, because t~ ~ is 
monotonic increasing, 

co 

~oP~ o co) p' < const.  (~, o (o)Pt-P~ -~, 

0 

the  constant  being independent  of  ~. In  this ease, wi th  a change in the order of  
integration,  

y~(t)r = t -~ 

( ] 6 )  

co a0 

1/t 1 
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co 

f f (f ) Ifieo~p~ o ~)'~dtt < const, t - p ~  tfF((~, o co)Pdtt ~ 7 
X 0 X 

co 

(/ < eonst .  (II~II~)P' ( t -~  �9 (a, o r 

0 

by tISlder's inequality using crucially the fact that  q ~ p. This establishes the 
right hand side of (11) completing the proof of theorem (4.1). 

On Lv(X), 1 ~ la < oo, the semi-group {M(t): 0 • t < oo} of multiplication 
operators: 

M(t): f(x) ---> e-'~ f e LP(X), 

is a semi-group of contraction operators of class (q~0) whose infinitesimal generator 
Ao~ is the multiplication operator A~o: f--> -- wf (cf. [4] p. 3 for definitions). The 
domain of definition D(A~o ) of A~ becomes a Banaeh space under the graph norm 

![fllD(A)o , = IlfJlp + [l~fllp, f c L P ( X ) .  

Thus, if co(x) ~ ~ > 0 on X as frequently is the ease in applications, L~(X) is 
norm equivalent to D(Ao). The general theory of the commutat ivi ty of inter- 
polation funetors as developed by Grisvard ([8] pp. 169, 171) enables us to identify 
the respective complex and real interpolation spaces 

[B~:q~ ~o), BPol.q,(X, ~o)]~, (B~:q(X, r B~2~(X, o~))~.q;~: 

with 

1 ~Po,  P l <  oo, 0 ~ 0 0 , 0 1 , 0 , ~  1, 1 ~qo, ql, q ~  oo. (18) 

THEOR]~ (4.2). Under the restrictions (18), 

B v" ~X P' = B~ q ( X ,  o~) o.,So, , o~), Bo..~,(X, ~ ) L  

and 

where in both cases 

1~ = B g  J X ,  o~) ,tB v'~,~,cX , ~o), B~,~(X, o~))~,~; K , 

0 = (1 - ~)0 o + # ~ .  

Remark (4.3). I f  09 is not  bounded away from 0 on X the (non-homogeneous) 
Lipschitz spaces used by Grisvard have to be replaced with Lipschitz spaces of 
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homogeneous character (cf. [16] p. 286). Though important in applications we shall 
omit any such considerations here; the theory of such spaces is developed syste- 
matically in [6], for instance, to which the reader is referred. 

5. Examples 

We shall consider briefly the case when X =/~n,  /~ is Lebesgue measure on 
R" and o~(x)~-- ( x ~ - ~ . . . - ~ - x ~ )  " /2~ lxt~; the case of X = Z  n, o~(m)= Iml ~ is 
entirely analogous. Generalizing a definition of Beurling ([3] w167 1, 2), Herz introduced 
a family of spaces PLY(R") as follows (cf. [11] pp. 298--300): denote by  ~5 the set 
of functions ~ i n  LI(0, ~) ,  ~ ~ 0 satisfying 

(i) f  (t)dt = ][~I] = 1, (ii) ~ is monotonic decreasing, 

and, with ~ = 1 / p -  l/q, set 

PLq(R ~) = U (L~(R~): ~ = (~ o eo)~}, y ~ 0 ,  

---- O = o >_ 0 .  

These spaces are Banach spaces under the respective norms 

i n f  IIf(  o r -< 0 ,  

The Beurling spaces of great interest in harmonic analysis are the spaces 
A P = P L  1, B P = P L  ~176 ([3] p. 10). Further  spaces Kvq(Rn), K~,q(R n) were defined 
b y  Herz to facilitate the discussion of the eLq spaces ([11] pp. 301, 302): 

K~,~(~ ~) = (f: f ~  e ~/~(~n)}, 

K;~(R ~) : { f : fw ~+~'/~ e~L~(R~)}, --  ~ < ~ < co. (19) 

The following relations between the above spaces and the interpolation spaces 
n p n (L~(R'), I~,(R ))o.q;K, (I'F(R~), L~#o(R ))o,q;~ remove much of the mystery sur- 

rounding the Beurling-Herz spaces besides allowing use of the powerful abstract 
interpolation space theory in their study. I t  is interesting to note that  Iterz con- 
nected L ~ and ~L ~ b y  complete interpolation (loc.cit., p. 299). 

T ~ E O R ~  (5.1). When co(x)= lxl n and 1 ~ p < ~ ,  l ~ q ~_ ~ ,  

VLq(R n) = (Le(Rn), L v rRn~ o,~ JJl/~-I[v,~;K q ~ P , 
p n PLq(R") = (LV(Rn), L1/~o( R ))l/p-1/q,q;K, q > P ,  

in particular, the Beurling spaces satisfy 
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AP(.R n) = (LP(.Rn), LP(J~'~))I_I/p,1;K, p ~ 1 ,  

p n Be(R ") = (LV(_R"), L~>(R )h/v,~;r, P # oo. 

Furthermore, when K~q(R ~) is defined by (19), 

K~~ ~) -- (LP(R"), L~(R"))o,~; K, 0 < 0 < 1. 

Proof. Straightforward application of theorem (4.1). 

Special cases of the characterizations in theorem (3.7) (ii), (iii) are worth noting: 

r 1 1/p 

f ,JIx, f ,JIx, 
o iC~<_t o i~l~>_t 

define equivalent norms on AP(Rn), 1 < p < 0% while 

su, (} f lf(x)Fdx) lw 
IxLn_<t 

(20) 

(21) 

defines an equivalent norm on Be(Rn), 1 < p < 0o. Beurling in fact took (21) 
as the defining property of B*'(R~). Properties (20) and (21) have been proved 
or used by several authors (cf. [9], [10], [12], [13], [18] for instance); the more 
general spaces considered by Sunouchi are nothing more than (LR(Z), 2 L ~ ( Z )  )I/~- ~I=,e;K, 
1 < fl < 2, and his characterizations are contained in theorem (3.7). The Banach 
algebra properties of ILv(Zn~, LPIZ ~ (for appropriate values of 0, q) are k k ! o)\ /Jo, q;K 

studied in [1] and [2] making important use there of the interpolation space 
properties. 
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