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1. Introduction

One of the main problems in any application of interpolation space theory is
the identification of the interpolation space (¢, )y generated from a pair of
Banach spaces 9, 2; by a given interpolation method @. The importance of
interpolation space theory stems in part from the frequency with which (2, 9¢),
is identified with classical Banach spaces and the deeper understanding the theory
then brings to these spaces. Applications to Lorentz LF%-spaces and to Lipschitz
spaces are good examples (cf. [4], for example).

In this paper the interpolation spaces (LI, LF), , generated between weighted
Lr-spaces by the (real) J-, K-methods of Peetre will be characterized. Without
real loss of generality we shall assume w, = 1. The »diagonal» spaces (L%, L2 ), .,
it is known already, coincide with another weighted LP-space:

E(LP Lfn)e.p =L}, v= wé—ew?, 0<o<1

€0y ?

([7], [15]) and the associated interpolation theorem reduces to the Stein-Weiss
extension of the classical M. Riesz theorem to spaces with changes of measure.
Peetre began the characterization of the »off-diagonaly cases by identifying
(L%, LE), 1, 1 <p < oo, with one of a family of spaces introduced by Beurling
([3]) in conneection with problems of spectral synthesis. Herz later generalized
Beurling’s definition and considerably clarified Beurling’s paper though without
systematic recourse to interpolation space theory ([11]). In sections 4 and 5 we
complete the characterizations of (LP,LP) .. 1 <q < o, and identifications
with the Beurling spaces. With these characterizations as well as the theory of
(homogeneous) Besov spaces the various results of Herz can be obtained very
easily using simple interpolation space techniques (see [6]).

The Beurling spaces have been considered in many contexts other than spectral
synthesis (cf. [9], [10], [12], [13], [18]) with various characterizations being obtained
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or used. In section 3 we obtain one simple characterization (theorem (3.1)) from
which all characterizations follow as special cases. This theorem, in addition, com-
pletes other results of Peetre ([17] theorem (2.1)). Since the only property of Lr-
spaces needed is the fact that L? is an L*®-module via pointwise multiplication,
the results in § 3 are presented from the point of view of Banach Function spaces
X; however, this section can be read equally well substituting L? for X.
Some applications of these results to harmonic analysis appear in [1] and [2].

2. Elements of interpolation space theory

Wherever possible the current notation and terminology of abstract inter-
polation space theory will be used (cf. [4], [7], [14]). Let 9, 9C; be Banach spaces
both continuously embedded in some Hausdorff topological vector space so that
then (9, 90) forms a compatible couple in the sense of [7] chap. 1. Function norms
(K@, () and J@, (), 0<t<< oo, are defined on the sum of 9, 4 A, and
intersection ;N A, by

K(t, f) = K(t, f; K, ) - inf (\foll o, + 8fillz) 5

o+ f1

J(t, g) = J(t, g5 Ky, ) = max (g, tlgll..,)

where f€ X+ X, and g € N A, respectively. These function norms are
both continuous and monotonic increasing in ¢ ([4] p. 167). The interpolation
space (X, ), . is the subspace of 90, + X, of all f for which

( I~ K th)l/q fooTh == 1
Hf“e,q;K - ; ( (t7f)) t 6 _ 0, 1> q = o0, ( )
is finite (obvious modifications when g = co); under the norm [|(.)|l, o (° 9@1)9 K

is a Banach space, non-trivial whenever 0, ¢ are restricted as in (1). The 1nterp01at10n
space (X, i), .., consists of all f in O 4+ 9, for which there is a strongly
measurable function w: (0, o0) — 0, N A, satisfying

- s ) F @
/K(l, ut)) 7 < o, (i) f= fu(t)'t-, (2)
. dp\Me 0<h<l 1<q< oo,
(iif) (f 6J(tut))”——) < o0, OiOT q;éll‘_*oo (3)

If we set
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[ee)

(fllo.q;5 = inf ( f =0T (¢, u(f)))? %f) {q,

0

the infimum being taken over all w satisfying (2) and (3), then (90, ), ..
becomes a non-trivial Banach space. It is known that

(960’ 9el)e,q;J = (%0? 9@l)e,q;Ka O < 0 < 1: 1 S 9 _<_ 0 )

at least up to equivalence of norms.

These spaces (Hy, Ny, im0 (K, Xyo,s can be constructed in exactly the
same way to yield the same spaces (with equivalent norms) by replacing the multi-
plicative group R, = (0, c0) with the multiplicative discrete group {r™:n € Z},
7 being fixed, r > 1, the Haar measure dift on (0, ) being replaced by Haar
measure on {r*:n € Z}. We shall refer to this method as the discrete method of
construction (see [6] or [14] for full details). The LP-spaces on R, defined with
respect to Haar measure will be denoted by LZ.

The previous methods of construction are all »real» methods in contrast to the
scomplex» method introduced by Calderén ef al. (cf., for instance, [5]). In this method,
to each compatible couple (¢, () is associated a Banach space [, 9],
0 <0 <1. Since we are concerned exclusively with characterizations of inter-
polation spaces obtained by the J-, K-methods further details are omitted. Let us
recall only that if (X, u) is a totally o-finite measure space and LP (= LP(X, u))
the usual Lebesgue spaces, then

(LPO’ Lpl)e,q;K = LP‘I’ [LPUJ Lpl]o = LP

where 1/p = (1 — 0)/py + 0/p, and LFY(= L*(X, u)) is the usual Lorentz space
associated with (X, u) (see [4] § 3.3.1, [5]).

3. Interpolation between weighted function spaces

For a totally o-finite measure space (X, u), (X, p) denotes the space of
u-measurable complex-valued functions on X. A Banach space 2 of (equivalence
classes of) functions in M is called a Banach function space provided

(a) if g €M(X,u) and |g| < |f] p-a.e. for some f€ X then g belongs to
and lgll, < [fll
(b) if {f.} is a sequence of non-negative functions in ¢ and f, { f u-a.e. then

sup [|fall = IIfllz-

Obviously the Lebesgue LP-spaces:

1/p
I1fllp = ( f If(w)lf’d/») » 1 =p < o, [|fll, = ess. sup. |f(z)] (4)
X
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are Banach Function spaces as are the Lorentz LFI(X, u) spaces, condition (b)
being the classical Fatou property. Notice that (a) ensures X is an L*(X, u)-
module via pointwise multiplication and

Ifgle < ilfllzliglo, fEX, g€L™.

When o is a function in WX, u) with o > 0 y-a.e., X denotes the weighted
function space of all (equivalence classes of) functions f in “M(X, u) for which
fo €X; we set

Iz, = Ifoolly fEX,.

For weighted L?(X, ®w) spaces we shall write

s = fellp, 1 <p < 0,

with [|(.)l|, defined by (4). The pair (9, () forms a compatible couple: indeed,
up to equivalence of norms,

X+ X =KX, XN =X,
where
m(x) = min (1, w(x)), M(x) = max (1, w(x))

(cf. [15]). In this and the succeeding section we shall characterize the interpolation
spaces

0<6<1,

(965 9em)e,q;K’ (LP>L£))9,9;K’ 1 S q S w.

For the complex method the interpolation space [LP, L], is known:
(LF, L], = Ly, v(x) = o),

(see [5] pp. 123—4 for even more general results). As frequently happens, however,
the real methods yield directly a richer family of spaces.

Throughout, ¢ will denote a non-negative, piecewise continuous function in
L*(0, o) such that fo(f) belongs to L®(0, co); thus, with o, defined for each
fixed ¢t by

a(d) = tAo(th), t, A €(0, ©),
our assumptions on ¢ ensure that
max ([lofl,,, sup llodl,) < oo . (5)
t
Furthermore, the composition o;0w belongs to L*(X,u) and f: (0 0w) to

whenever f€ 9. All of our characterizations follow (more or less easily) from the
following' result.
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THEOREM (3.1). There exist constants depending only on o, 0 and q such that

bt dt \a
const. [|fllo,g; s <| | CTUF (oiow)ll)? — | < const. [|fll,
t

Jor all f in (9, A ) on 0<0<1, 1 <g=< o0
Proof. When f = f,+ f; is a decomposition of f in 9 - A,
I+ (o1 e @)l <o~ (010 )l + Iy * (Gr 0 @)l < (S‘HP lodlofollz + #llolleo)ifioll
and so, in view of (5),

If - (61 0 ®)]l, < max (S?P llodleos llolloo) K (2, ) (6)

for all ¢ € (0, o). The right hand inequality follows.
Now let 9 be a non-negative continuous function with compact support in
(0, 0). Then the function w« = u(f):

u(t) = f(@) - ofw(@)) - pllw(x)), ¢ €(0, ©), z€X
is a measurable 9N 9 -valued function such that

[u@lle < lpllollf - (0 0 @)l

while

Hu)oll, = If - (oo w) . (Yo w)il, < (S?P lwdlo)lf - (00 0 @)l
Thus u: (0, 00) XN and

J @, u(t)) < max ([lyll.., sup lpdllf + (01 © )il -

But with a suitable normalization,

f/t)_

The left hand inequality of the theorem now follows.

If the discrete construction is used in the proof of theorem (8.1) the following
»discrete» characterization of (9, X,), ., is obtained.

THEOREM (3.2). For each fixed r > 1 there exist constants depending only on
0, ¢ and o such that
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const. [l g = (3 (11 - (o 0 @) )Y < comst. [l

Jor all f in (9, L), .k, where 0 <0 <1 and 1 < g < 0.

The first application of theorems (3.1) and (3.2) gives what in practice is the

most useful characterization of (9, ), k. For fixed r> 1 denote by v the
function

1

- <
W) =17 1<t <r (7)

0,

elsewhere .

When X, =={x € X:w(x) <1ft} and j is the characteristic function of X,
then 70w =y, — x and

A(pk) = Thow = yh—1 — ¥,k .

THEOREM (3.3). For each r > 1 there exist constants depending only on 6 and ¢,
0< <1, 1<q=< o, such that

const. [y = (3, Al < const |l

for all f in (20, )

o, q; K*

Proof. The particular choice (7) of v satisfies (5) and theorem (3.2) then applies.

Now define 7,1 by

1
L, 0<t<1, , L
T(t) = (@) =4 ¢ =
0,

0, elsewhere, elsewhere .

Obviously = and 7’ satisfy (5) while
T, 00 = twy, Ttl°w= L — 25

and

tlfoul, < K@f), If- (1 — wll, < KEH

(8)
(cf. (6)). Theorem (3.1) thus gives:

THEOREM (3.4). When y. is the characteristic function of the set X, = {x € X:
w(x) << 1/t then
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> de\Ya ~ de\1e
(f (" foo 2l )* ‘t‘) ’ (f EUf - (1 — 2l 7)
0 0

define equivalent norms on (X, ), 1, 0 <O <L, 1<g < 0

The Lipschitz character of (9, ), .x can be described by setting

1
W) = e () =5 (= 1), (9)

so that 7,7’ satisfy (8) and

170}

—_ ’ —_
T,om =twe™, T,om =" — 1,

THEOREM (3.5). For 0 <8 <1 and 1 <q < oo,

? /g - K
(’/\(tl_oufwe._twu([)q d_:) , (‘/‘(t—enf. (e—‘m — I)Hw)q i;) 1

define equivalent norms on (A, X)), ..

Proof. Apply theorem (3.1) with 7, 7" defined by (9).

It is of interest to formulate the characterizations contained in theorems (3.4)
and (3.5) for the special case X = LP(X), 1 <p < co. When o = (1/t) min (1, f)
in theorem (3.1) and 1 <p << oo, ’

O

a &t
J e e G = [ J e min 0, totoyran & =
0 [ 4

«©0

Xf @) Porlz)” ( f £7° min (1, )° %f) du.

0

In case p = co the analogous result holds:
sup ¢7f - (o1 0 @)l = [[fe%ll,  sup (¢7° min (1, 1)) .
t ¢

Consequently, for all p, 1 <9 < oo,

” d\YP
( f EUS - (00 0 0)llp)? —t> = [lfllp - [IE™° min (1, #)[l.2

0

which establishes (cf. [7] p. 25, 31; [15]):
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THEOREM (3.6). For 0 <O <1 and 1 <p <
lp
(LX), LE(X))o g = {fi(flf(x)l”w(%)"”dﬂ) < 00} ,
X

and

const. ”f”e,p;] S ”fws”P S const. ”f”e,q;K .

For non-diagonal values of ¢, ie., g3 p, theorems (3.3) and (3.4) yield:

TarOREM (3.7). The expressions

/e

) (_i;(r‘{ I 1f(x)1pdu}llp)q>l L r>1,

-1 << w(x)grk

© /g
Up\e dt
(i) < f (tl-ﬂ[ f If(w)"w(x)lpdﬂ} ) 7) ,

0 tor(x)<1
" p\e dt e
(i) < [ (t“e[ [ lf(x)l”dﬂ} ) —,;)
0 tr(x)>1

define equivalent norms on (LP(X), LE(X)),ax for all 0<<8<1, 1 <9< o,
ond 1 <p < 0.

Remark. Partial results along the lines of theorem (3.7) were obtained by Peetre
in [17] (cf. p. 63).

4. Beurling spaces

We come now to our main characterization of the interpolation spaces (LP(X),
LE(X)),.qx> identifying these spaces with important Banach spaces introduced
by Beurling ([3]).

With y = (1/p — 1/q) and 0 < 0 < 1 denote by (6, y) the class of functions
@ in L, ¢ >0, such that
(@) flgll =1, (b) #°p(t)* is monotonic increasing.
Such functions ¢ certainly exist; for instance, suitable normalizations of
@) = t~°7 min (1, #"7), ¥ # 0, @) =1t"min(1,¢), y=0
satisfy (a), (b). For fixed o we then define Bf (X,w) by
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B (X,0)= U {LiX)w=o(peaw)}, y<0,

PEQ0>y)

B (X,0)= N {LEX)w=0opow)}, y=0.

PEQ(o7)

In [3] additional convolution properties are imposed on ¢ to ensure that certain
of the B} (X,w) spaces are Banach algebras. Discussion of this particular facet
will be omitted from this paper.

THEOREM (4.1). Let v = 1/p — /g where 1 <p < 0 and 1 <q < oo. Then
for each 0, 0 <0 << 1, there exist constants such that for all f in (LP(X), LP(X))yux

const. [[ffl,q 5 < lnf Ilfw (@ o)l < const. [[f]l,qx (10)
¢€Q(o,y)

when y <0, and
const. [[flls, g7 < sup |f0’(p o w)ll, < const. [|fll,,qx (11)

9€0(e:y)

when y > 0. In particular,
(LP(X)’ Lg;(X))e,q;K = B(I;,q(X’ 60) .

Proof. (i) We establish first the left hand inequality in (10). Since y <0,
automatically ¢ < p < oo.

Choose any non-negative continuous funetion y with compaect supportin [1, o),
v =0, and define ¢ on (0, w0) by o(t) = (1/t)p(t). In view of theorem (3.1)
the left hand inequality in (10) follows provided

dE\Ya
( (E°f + (00 ° w)llp)? 7) < const. inf ||f - &°(p ° @), . (12)
3 ®

But, since #°¢” is monotonic increasing,
£7°(0s 0 0)(2) = 1yt (7)) < (@) p(1/t) ™ p(w () p(tw())
because y(fw(x)) is non-zero only when fw(x) > 1 and then u(tw(xz)) > 0. Thus
70N - (or 0 w)lle < @(1/8) 7" (@ o @) p(tw)s

and so

p alp 1\ g
f U ool f ( f Ifl"w""(wow)”’w(tw)”du> «p(;) <. (13)

Using crucially the fact that ¢ < p, we deduce from Holder’s inequality applied
to (13) that the left hand side of (12) is dominated by
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g dt\'p
( / ( f |flF® (@ o w) Py (tw)? d,u)—;) (lglll)™ = Ilfe’(@ e o) lplpllz,  (14)
0 X

inverting the order of integration in (14). This establishes (12).

(i1) In proving the right hand inequality in (10) we may assume g << p(<< ),
ie., y < 0, since the case ¢ = p, ie., » = 0, has been taken care of already in
theorem (3.6). For fixed f in (L?, L), ,x define y on (0, ) by

@«

1/p
py =t ( [, g 7) :

1/e

Since K(4,f) < max (1, A)K(1/t, f),

4 p vq
p(t) = t"9K< ) (f ATty —) = (tK(%f)} (p+ 0g — ).

Hence,

y(t) < const. {teK (i— , f)r .

For this function v,

dA
(ife”( » @Y |l)e = f mP( f A2, [y 7) dp =

X 1feo(x)

_fz eﬂK(lfqp[flflPl—xﬁd,uJ—<f/'t K (2 == ([lfllo,g: x)*

(cf. (8)). Now set ¢ = y/|jyll ;L. Then ¢ belongs to 020, y) and

l[fw pe w)yHP ”f”e [d K ‘I/P “'(P”L*)—y < const. ”f”e @K

completing the proof of (10).
(iil) We turn next to the left hand inequality in (11). First we assume p < ¢ <C oo.
It is then enough to show that
. dt\P'
( f (U (1 — g,y ) < const. sup ([fw’(g o @)[,)" . (15)
Y 2€2(e, 7)
Now the left hand side of (15) is

di
SHP( f g(t)t“e"( f lfiP(L — x»)dﬂ) 7)

& Yo
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the supremum being taken over all g > 0 such that

f g %y (16)

(remember py 4 1/(¢/p) = 1. But, with a change in the order of integration,

jo - (f it = ) d/“‘) f [P (y o w)Pdu
e e ([ =

Clearly t°%” is monotonic increasing. Also, by (16),

vty < f ( f (’1) o 2T f s 2 f e ) .

regarding f‘l“’ g(A[t)A"*dA[A as a convolution on R,. Thus with ¢ = y/[ly.1,

3 dt
f g(t)t—ep( [iea - xt)du> 7 = (i} )"’( [ iramg °w)"’du)
0 X X

< const. [ sup ([|[fw’(p o @)],)]
PE (0 7)

where

for all g satisfying (16). This establishes (15).
In case ¢ = oo we must replace (15) by

SuP O (U — xllp) < const. sup ||fe’(p o @)y (17)
P€L2(6:7)
The proof of (17) is entirely analogous to that of (8) if we remember that py =1
when ¢ = oo.
(iv) Finally we establish the right hand side of (11). Choose any non-negative
continuous function ¢, ¢ ==0, with support in (0, 1]. Then, because ¢’ is
monotonic increasing,

P di
wP%(@ o w)P* < const. f (0: o W)t ”"tp 7 T

the constant being independent of ¢. In this case, with a change in the order of
integration,
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[-2)

/ | [P (p o w)P'du < const. f ¢pe (f NCRY pd[u) ( )py Cit

~ le
< const, <u<an:kw( [ s oy @;)

0

by Holder’s inequality using crucially the fact that ¢ > p. This establishes the
right hand side of (11) completing the proof of theorem (4.1).

On Lr(X), 1 <p < oo, the semi-group {M(f): 0 <t << o} of multiplication
operators:

Mty f@) —> e *Pf @), fe€LNX),

is a semi-group of contraction operators of class (€,) whose infinitesimal generator
4, is the multiplication operator A4 _:f-— — «wf (cf. [4] p. 3 for definitions). The

w

domain of definition D(4,) of A, becomes a Banach space under the graph norm

oy, = Ifle + lleofllp, f € LP(X).

Thus, if w(x) > 6 >0 on X as frequently is the case in applications, LE(X) is
norm equivalent to D(4,). The general theory of the commutativity of inter-
polation functors as developed by Grisvard ([8] pp. 169, 171) enables us to identify

the respective complex and real interpolation spaces
[BF

X, 0), B (X, 0)],, (Bpy(X, 0), By (X, »))

6os q( el [ Pq K
with
ISPO,P1<°0, 0<90701,0,‘P<1: ]-S_Qqu’qgoo' (18)

THEOREM (4.2). Under the restrictions (18),
LBY, ), BY: (X, )], = B (X, w)

eoq(

and

(B (X, w), BE: (X, »)) Bl (X, o)

oG K T
where in both cases
1 1 —

1
— — + 2 .
p Po P oq o 9

Remark (4.3). If w is not bounded away from 0 on X the (non-homogeneous)
Lipschitz spaces used by Grisvard have to be replaced with Lipschitz spaces of
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homogeneous character (cf. [16] p. 286). Though important in applications we shall
omit any such considerations here; the theory of such spaces is developed syste-
matically in [6], for instance, to which the reader is referred.

5. Examples

We shall consider briefly the case when X = R", u is Lebesgue measure on
R and (@)= (x; + ...+ 22)"* = |z| the case of X = Z", w(m)= |m|* is
entirely analogous. Generalizing a definition of Beurling ([3] §§ 1, 2), Herz introduced
a family of spaces PLI(R") as follows (cf. [11] pp. 298—300): denote by @D the set
of functions ¢ in IL'(0, ), ¢ > 0 satisfying

() f cp(t)dt = llgl = 1, (i) ¢ is monotonic decreasing,
and, with y = 1/p — 1/q, set

PLARY) = U {LPX(R"): 0 = (pow)}, vy <0,

QED

PLMR") = N {LI(B"): 0 = (pow)}, 7 20.

pED

These spaces are Banach spaces under the respective norms

inflif(g o)y, y <0,

pE€EPD

sup |lf(g o), 7 =0.

gED

The Beurling spaces of great interest in harmonic analysis are the spaces
AP =PL', BP =FL® ([3] p. 10). Further spaces K,(R"), K(R") were defined
by Herz to facilitate the discussion of the L spaces ([11] pp. 301, 302):

K, (B") = {f: fo" €PLI(R")},
K3 (R") = {f: forte™ € PLARM}Y, — o0 < << ©. (19)

The following relations between the above spaces and the interpolation spaces
(LP(BR"), LE(B")g, x5  (LA(B"), L, (B"), nx Temove much of the mystery sur-
rounding the Beurling-Herz spaces besides allowing use of the powerful abstract
interpolation space theory in their study. It is interesting to note that Herz con-
nected L! and *L? by complete interpolation (loc.cit., p. 299).

THEOREM (5.1). When o(x)= |z[* and 1 <p < oo, 1 <g < o0,
PLYR") = (L*(R"), LZ(R"))I/q—llp,q;K’ 9<<p,
PLYR") = (LP(B™), LY (B")yp_rjq x> 4> D5

wn particular, the Beurling spaces satisfy
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AP(R") = (LP(B"), LE(R" ) _1ppx » P # 1,

BF(ER") = (LP(B"), L, (B"))yp, s ks P 7 O -
Furthermore, when K7 (R") is defined by (19),

Kpo(R") = (LP(R™), LE(R™))y s 0 <0 <1.

Proof. Straightforward application of theorem (4.1).

Special cases of the characterizations in theorem (3.7) (ii), (iii) are worth noting:

f(tp+1f f( lpyx["de)l'/ dt, f( f[f |de) dt (20)

JeP <t 0 =

define equivalent norms on AP(R™), 1 < p << o, while

sup( f (@) 1de) (21)

lx|P <t

defines an equivalent norm on BP(R"), 1 << p << co. Beurling in fact took (21)
as the defining property of BP(R"). Properties (20) and (21) have been proved
or used by several authors (ef. [9], [10], [12], [18], [18] for instance); the more
general spaces considered by Sunouchi are nothing more than (L*(Z), L2 (Z))15_12,p, x>
1 < p < 2, and his characterizations are contained in theorem (3.7). The Banach
algebra properties of (LP(Z"), LE(Z")), nx (for appropriate values of 6,¢q) are
studied in [1] and [2] making important use there of the interpolation space
properties.
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