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1. Introduction

In classical potential theory it is well known that a mass distribution o is
uniquely determined by its potential U° and that its energy |lo|| can vanish only
when ¢ = 0. In this paper we shall consider different ways of making these facts
more precise. If ¢ is a signed mass distribution we shall estimate the mass o(B)
on certain test sets B by means of the potential U® and the energy |oj|. The
distribution ¢ will have its support in a compact set K in R", such as a compact
surface or a ball, and our estimates will involve the values of U’ on this set only.

For positive measures p in K it ig trivial that

pK) < Cyfjul]
and that in R*, n >3,

w(K) < Cysup U~
K

Here we can let C; =V cap K and C, = (diam K)"~2. If ¢ is an arbitrary signed
measure ¢(B) cannot be estimated in any similar way, not even if we admit only
very regular test sets B ¢ K, as is easily seen from examples. Therefore we shall
impose a condition dot << M dm on the positive (say) part ot of ¢. Here M < o
and m is a volume or area measure on K. It will also be assumed that the total
mass of ¢ is 0, which seems to be the interesting case in many applications.

Kleiner [5, 6] has found estimates of ¢ in terms of |lofl. In [5] he assumes that
o lies on a simple plane curve I' of class C' and satisfies o(I") = 0 and |o| <,
where » is a positive measure on I' with finite energy. Dafining

[0} = sup |a(B)|,
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where the sup is taken over all subarcs B of I, Kleiner estimates [¢] in terms
of |lo] and a modulus of continuity of ». In case » is e.g. the arc length measure
of I' he finds that

1
[0] < Clollog 7w O = O(T),
if |lg]] is small enough. Kleiner [6] also generalizes this to » > 3 dimensions. In
this case the support of ¢ is contained in a compact surface F and [o] is the
sup of the mass on certain subsets of F which are »contractive and nearly one-to-
one» images of a fixed ball in R*™' (for this concept see Kleiner’s paper). The
quantity [o] is then estimated as in the two-dimensional case, and when » is
the area measure on F the result is

[0] < Clol*?, C = O(F).

His proof can be modified to hold also in the case when one has only a one-sided
bound on ¢ :ot+ <.

The Corollary of our Theorem 2 is a result of this type for classical and Riesz
potentials and with the distributions lying in a ball in R™

As to estimates of ¢ using the potential of ¢, Ganelius [3] has proved the
following result:

TrEOREM. Let u be a positive mass distribution of total mass 1 on the unit circle
E and let dv = d9/2n be the equilibrium distribution of total mass 1. Then for any
arc Bc E

lu(B) — »(B)| < Clinf U"|**,
E
where C is a numerical constant.

Since U" =0 on K,
jinf U"| = sup U"™* .
E E

Notice that we have the sup of the potential difference and not its L® norm.
This makes the theorem yield a nontrivial result even when y contains point masses.
For example, if p consists of IV point masses 1/N one obtains an earlier result
due to Erdos and Turan [2] about the distribution of zeros of polynomials.

As is mentioned in Ganelius’s paper the theorem holds for more general curves,
and in an unpublished manuscript Y. Bennulf has proved it for analytic curves.
We shall generalize the theorem to less regular plane curves and to surfacesin n > 3
dimensions (Theorem 1). In Theorem 3 we give a similar estimate for Riesz potentials.

The idea of the proof of these two theorems is taken from a paper by Beurling
and Malliavin [1] in which they study the closure in L2(— r,7) of sets {e’=*}.
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In an auxiliary result (Theorem I’) the authors consider the logarithmic potential,
suitably defined, of a positive measure u on the real axis, and compare u with
the measure », dv = kde. They estimate |u(w) — v(w)| for intervals w by means
of the values on the real axis of the potential of u — ».

The author would like to thank Prof. T. Ganelius for suggesting the topic of
this paper and for his valuable help and advice during its preparation.

2. Preliminaries

If u is a measure, or mass distribution, with compact support in R*, n > 2,
its classical potential is defined as follows in the sense of distributions (cf. Schwartz
[8, in particular p. 214]):

U =1 ! if 2
= 100 — % 1 I n =

1
:mm*‘u if n>2.

By |'] we mean the ordinary Euclidean norm in R". There is an inverse formula
o= —c,d %= U",

where ¢, = (27)7%, ¢ = ((n — 2)wa)* if %> 2, and the Laplacian should be
interpreted as a distribution. Here w, is the area of the unit sphere in R™.
For 0 <o <2 we define M. Riesz’s «-potential of u by

1
U4 =

o }x‘n—a * lu' b

and we also write U4 for the classical potential U“, If 0 <<a << 2 the inverse
formula is
1
u="T U~ Ta:Cn’anW, (2.1)

where ¢, , is a constant and the distribution Pf1/[z]"** is defined by

x) — (0
Pf W - = lim % dx (2.2)
N0 S
for any test function ¢ € $. Analogously we put T, = — ¢,4.

In classical or Riesz potential theory the equilibrium distribution of a compact
set K c R" having positive capacity is the distribution of K whose potential
is 1 on K except for a set of capacity zero.
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For & > 0 define the function w in R* by w(®) = 1 — (2e2)Hx? for x| <e,
= (2e%)Y|x| — 2¢)? for e < |z| <2, and =0 for [z] > 2¢ By elementary
means the following lemma follows.

Lemma 1. The function w defined above has a Lipschitz continuous gradient and
satisfies
w(z + by = w(x) + (b, grad wiz)) + B
with lgrad w(x)| < 1/e and |R] <|h]}[e?.

From Widman’s paper [9] we shall need the following theorems (2.4 and 2.5
in [9]) and part of their proofs.

THEOREM A. Let u be a harmonic function in a Liapunov-Dini region £, con-
tinuous in 2, and with the property that to every x, € 08 there is a linear polynomsial
L, (x) such that

lu(@) — L (@) < &le — xol)|le — x), »€0Q2,

where the Ding function &,(t) satisfies the additional condition that & (t)[t" is monolonic
for some y, 0 <y <<1. Then oufdx; are continuous in Q. In particular, if £
is a Liapunov region and &(t) = ki®, then the functions ou/dox; are «-Holder con-
tinuous in 0.

TarorEM B. Let G(x,y) be the Green function of a Liapunov-Dini region £.
Then for fixed y € 2 there is a constant ¢ > 0 such that

0
0ty

Gz, y) >c, £€0Q.

For the exact meanings of the words Liapunov-Dini region in R* and Dini
function see [9]. In our applications the boundary of 2 will be of class O"* and
we shall have ¢(t) = const. t.

3. Regularity of test sets on surfaces

In R, n >3, we consider the boundary S of a bounded domain £; such
that the complement 2, of Q) is also a domain with boundary S§. We assume
S to be a surface of class C"*. It is known (Gunther [4, p. 17]) that Green’s formulas
hold for such §, and so do Widman’s Theorems A and B.

We need a generalization of the subares B used in Ganelius’s theorem as test
sets to compare the measures g and ». It is clear that some restriction on B 1s
necessary, and the following is what is needed in our proof.
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Definition. B c S is said to have K-regular boundary (K > 0) if for any
d>0

f s < Kd (3.1)
Bi
where

Bf ={x €8 :o(zx, B¥) <d}.

Here B* is the boundary of B in the relative topology in S, while p means
distance in R". The measure dS is the (n — 1)-dimensional area of §.

If » =3 and B* is a rectifiable closed curve in R?® of length [, then B
has (Cy + C,)-regular boundary, where C; and C, are constants depending only
on §. This is easily proved by dividing the curve into subarcs of length < 2d
as Kleiner does in [6]. Then spheres of radii 2d centered at the endpoints of the
subarcs are considered.

As an example shows, the corresponding statement is not true in higher dimen-
sions. For let # = 4 and suppose S contains a 3-dimensional cube of side I.
On one of its faces F we place p? points in a square lattice, the distance between
any two of these points being > I/p. With the normals to F at these points as
axes we choose cylinders reaching from F to the opposite face and with so small
radii that their total 2-dimensional area is <2, say. Now let B consist of the
cube except the points inside the cylinders. Then B} contains the whole cube for
d = 2l/p and for large p the volume of B} is not bounded by Kd for any fixed
K, although the boundary of B has bounded 2-dimensional area as p — oo.

4, Estimation of measures on surfaces

In this section C and ¢ will denote various constants, all of which are < o
and > 0, respectively, and depend only on the surface § which was introduced
in Section 3.

The following Theorem 1 holds also in the plane for a simple closed curve of

class 0% and can be proved similarly, but for the sake of brevity we assume that
n > 3.

THEOREM 1. Let p and v be positive mass distributions on S with f dy = f dy.
Suppose that u is absolutely continuous with respect to the area measure on S and
that for some M

du

g <M (4.1)
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on S. Then if Bc S has K-regular boundary
((B) — »(B)| < C(MEK)"”* [sup (U" — U")]". (4.2)
S

Again notice that we have supg U*™* and not supg |U*7"|. Later we shall see
that the equilibrium distribution satisfies the condition imposed on .

Proof. There is a g == ¢(S) > 0 such that if x, €S and 2X,, is a ball with
center z, and radius 2¢ then SN2, can be described by a function &, =
F(&, ..., &_1) in a local coordinate system xy, &, ..., & whose §&,-axis is the
normal to S at x,. This p can be taken so small that any two normals to this
part of the surface form an angle < /10, say.

Put ¢ =p —» and U = U’. The value of ¢, 0 << & << p, will be determined
later, and this value is also used in the definition of the function w in Section 2,
Let x5 bethe characteristic function of B, defined on §. We start by approximat-
ing yp with more regular functions f,.

For this purpose the characteristic functions of BU BY and B\ Bj will
be called, respectively, x3. and y_. Now for z € § define the functions

I.(2) = f 1yl — y)dS,
A@) = [ @— y)as,,
/

I, (z)
Fule) =

Then it is easily seen that f, approximate y, in the following sense:
O<f-=m=fr =<1

on S, and
{e €8:fy # 15} B;, .

We shall use the letter y below in statements valid for both x, and -, and
similarly for I and f. Since & << p, the local regularity of S implies

0 <I(z) < A@) < f ds, < Cen? (4.3)
Iy—yflSS 2¢
and
Ax) > % f as, > ce" ', (4.4)

€S
[yle <s
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for w(z) > 1/2 if |z| <e The regularity of w (see Lemma 1) now implies
corresponding properties of I, A4, and f, namely

Iz + k) = I(x) + (b, gradg I(z)) + R, (4.5)
where z and x4+ h €S8, and

gradg I(x) = f x(y) grad w(z — y)dS, . (4.6)
S

Here we have the estimates
lgradg I(z)] < Ce"* and |R| < Ch%s" 3. (4.7)

The vector gradg I(x) as defined by (4.6) need not be the gradient of I considered
as a function on the imbedded manifold § and might have a non-zero component
orthogonal to § at . The function A4 satisfies the same condition (4.5—17) as
I does.

As to f, we use these Taylor expansions of I and A4 together with (4.3—4)
in fle + k)= I{x 4 h)fAd{x + k),  and x -+ h€S8. After some simple cal-
culations this gives, at least for [h]/e <e¢,

f@ 4 b) = f() + (h, grads f(z)) + R, (4.8)
where
arad, f] — ’|A gradg I AzI gradg Al _ %
and
R <2
=0—.

The restriction [h|/e << ¢ can be removed after a suitable change in the value of
the constant C in the estimate of R.

Following Beurling and Malliavin [1], we now use f, as boundary values for
Dirichlet’s problem in £, and £,. This gives us two functions which will also be
called f, or f and which are continuous in R® and harmonicin 2, U @2, U {o0}.
Thus

fle)y = O(1/|z|"™®) as z— .

By Theorem A the regularity (4.8) of f implies that grad f is continuous in £,
and O, But if 9f/on, and 9f/on, are the normal derivatives of f on S into
2, and £,, respectively, we cannot expect of/on, = — of/on,.

With our condition on f more precise information éan be obtained from
Widman’s proof of Theorem A (see [9, p. 23—25]). Letting % in Theorem A4 be
f we can take L, () = f(zy) + (x — zy, gradgf(x,)) and put &(t) = Ct/e?, t > 0.
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The coefficients of L, are not greater than Cle, and |f(z)| < 1. Fix =z, € 8.
If we, following Widman’s proof, subtract L, from % = f, then we do not change
grad v more than Cfe, and within a distance of ¢ from x, the values of u are
not changed more than C.

Considering a ball X of radius ¢,/2 and center x,, Widman finds that for
any ¥y € @ (= £, or £,) on the normal of S at 2z, and with |y — «,| small
enough

01/2

jgrad u(y)| < C f 40 g 4+ oot sup Ju(@)) .
0

4 le—2o] < 01

If we use our expression for () and put ¢, = ¢, we get

C
lgrad u(y)] < - .

Therefore

of

ani

C
S__
€

on 8§, i=1,2, and f=f,. (4.9)

Levma 2.

1
Tope2 * (o *f)=f,

where the two sides are to be considered as distributions in ',

Proof. The left side exists since — c.4 *f has compact support c 8. By
Landkof [7, Lemma 1.11] the equation holds if f(z) = O(1/|z|*#), x-— oo, and
B>0, 2+ <n. Since f(x) = O(1/|z[*"?) this proves the lemma in case n > 4.
For n =3 or 4 we expand f close to the point at iafinity:

o a (x, b) O( 1
flo) = [xln_z + z + |

) e

B

Here @ € R and b € R*. Evidently the lemma holds with a/|z|""* instead of f.
By Landkof’s lemma the only remaining difficulty is the term (z, b)/|z|® when
n = 3. Consider for example x,/|x[3. This distribution equals — 9/dx, * 1/]z|, so

1 ( < 2 1)) 1 < 0 ) a 1
T T e ) T\ T w0 T T

This completes the proof of the lemma.
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Following Schwartz [8] we write T - ¢ for the scalar product of the distribution
T and function ¢, put Trg = ¢(0) and ¢(z) = ¢(— z), and define T by
T- ¢ =T -¢. The following calculation will be made precise below.

G.f:Tra*}:Tr<a*|;;—:2)*(— A *.)}/):Tr Us(—ednf) =

= U+ (— cadf). (4.10)

Svince f is continuous o¢-f exists and equals f ¢fdo, and the distribution
o *f is a continuous function whose trace is o -f. Lemma 2 gives the second
equality and the third one is trivial. Let us determine the distribution A = f.

As grad f is continuous in £, and £, the Green formula can be used, just
as in Schwartz [8, p. 44], to show that — ¢,4 = f is a measure 7 on S of density

ca(9f/0ny -+ 9f/On,) with respect to dS.

We know that the distribution U x7 = o * f is a continuous function ¥,
and must verify that it coincides with the function ¥, defined by

x) = f Uz + y)dz(y) .

= f Uy — a)do(y) .

But U® is seen to be continuous in R®, so the function ¥, is continuous. By
Fubini’s theorem the distribution defined by ¥, is U %17, so that ¥, and W,
must be equal everywhere, and

By the reciprocity theorem

TeUs? =T ¥, — f Uly)de(y) -

Thus our caleulation (4.10) is completely verified, and we have

ffda:cnf (—f—}—a—i{ﬁds.
o

Lremma 3. The equilibrium distribution i on S 1is absolutely continuous with
respect to dS and satisfies

Therefore by (4.9)

c
§:Sf|0yds. (4.11)

d/1<0
cgds__ .
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Proof. The potential U* equals 1in Q, andisin £, the solution of Dirichlet’s
problem with the boundary value 1 on 8. Therefore Theorem A directly implies
that 9U*/on, exists and is continuous and bounded on S. Except for a constant
factor, however, this derivative equals the density of A. Thus we have the second
inequality of the lemma.

Let G(x,y) be Green’s function for £, Then

1

G, y) = P

— uy(x)
where w, is the solution of Dirichlet’s problem in £, with boundary values
uy(x) = 1/lz — y|"~%, z € 8. Therefore |y|"’G(z,y) =1 — u(z) as y— oo, where
u(x) is the solution of Dirichlet’s problem in £, with %(x) =1 on 8, so that
u = U

Now Theorem B says that for a fixed y € 2, there is a ¢ such that

G
— >
on, G, y) > ¢
for all « € S, where 0/dn, is taken with respect to z. By Harnack’s inequality
and the maximum principle there is a ¢ for which

[n—Z

9
I ~>
Iy o Gl 9) = 0

for all x € S and all large |y|. If we examine Widman’s proof of Theorem A we
see that

0 ad
n—2 o o
I G Gl y) = 5 (L @) as g o0
Thus
oU*
—— < —¢ on S,
ony

which proves the remaining first inequality of the lemma.
Now the inequality (4.11) and Lemma 3 imply

dea g(—’;—f;mdz.

S
But by the reciprocity theorem

fUdz:fUﬁdo:o,

so that
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iffda

Here Ut = max (U, 0). With this inequality, which holds for f. and f_, we can

estimate o(B):
[ s = 1o+ [ n— oo (4.13)

BN By,

C C
<2 - / Utdd < by sup U . (4.12)
S

The second term is not greater than
f (kg — f-)dp < fd,u <M /dS < 4 MKe
BN By, B}, B

Here we used (4.1) and the fact that B has K-regular boundary. Thus we obtain
from (4.12—13) that

C
fdeag—e—supU+4MKs.
S

Using f; instead of f-. in a similar way, we get an estimate in the other direction,
so that in fact

c
lo(B)| < ~ sup U+ 4MKe.
s

(sup U)%
. S
*=\mK /-
we obtain the claimed inequality (4.2).

This choice of ¢ is possible only if

(sup U)%
S
KR <¢ (4.14)

If we can take

In the opposite case we observe that, except in the trivial cases when B is 8
or @, B* is non-empty, and if we let d = diam (8) in the definition of K-regular
boundary, we can conclude
x> area (8)
= diam (S) —
Hence,
sup U

S

MK

(MK (zup U > MK( ) > Mco, (4.15)
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since we assumed the contrary of (4.14). But
|0(B)| < »(B) = p(B) < CM . (4.16)

Since p > ¢, (4.15—16) imply (4.2) if we choose a suitable C.
This completes the proof of Theorem 1.

5. Measures in balls and other sets

Let K, be the ball {z:|x| <r} in R", n>2. We consider classical and
Riesz potentials of mass distributions in a fixed ball Ky and so let 0 <« <2,
For 0 <o« <2 the equilibrium distribution 4. of K, is absolutely continuous
with density = const. (2 — |2?)™*%, |z] <r. If « =2 the distribation 2 is
of course (w.r)dS on the sphere §:|z| =r. The condition imposed on test
sets will be slightly changed. If Bc R* we put B} = {x € R": o(x, B*) < d}
for d > 0, where B* ig the boundary of B in R".

Definition. B c R™ is said to have K-regular boundary in Ky, K > 0, if for
all d>0

f de < Kd . (5.1)

This concept is defined similarly for other bounded sets than Ky We see that
€ B = R"\B has K-regular boundary in Ky if and only if B has. To give an
example, there is a K depending only on R and 7 such that all circular cones
with vertices in the origin have K-regular boundaries in Kg.

In this section C will denote several different constants which depend only
on 7, «, and R anless otherwise explicitly stated.

TorOREM 2. Let 0 <o <2 and let u and » be positive mass distributions in

Kz with f dy = f dv. Assume that pu 1s absolutely continuous with respect lo
dz and that for some M < oo

Wy 2

in Ky Then for any B c R" having K-regular boundary in Ky

1

B0 K (B0 K| < ok | [ 1U«;¢‘"1dx>w- (5.3)

Kgr
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Proof. We use the idea of the proof of Theorem 1 and start by letting & > 0.
Normalizing the function w from Section 2, we get a new function w; such that

f wy(x)dx = 1. For any continuous function ¢ defined in R™ we put

1

wut"

¥(x, 7') =

n f(p(x—Q—y)doy, r>0.

[¥l=r

From Lemma 1 it then follows that

[y, r) — wy(x)| < Ce ™ %", (5.4)
Now put
By = (BUB})NKg.,,,
B = (B\B;Z) n KR+2s >
and

Je= XB, * Wy .
Then f, approximate y, in Ky in the following sense:
0=<f-=x<f+ <1 in Kg, (5.5)
supp f. < Kgp4.
and
{r €Kp:f, # 1a} < Kz O By, .
We find from (5.4) that f, have a similar regularity property and satisfy

[f@,r) —f@) <Ce™*, f=f,. (5.6)

Now, since f, ie.,, fi or f, has compact support, it easily follows from Lemma
1.11 in Landkof [7] that

f fdo = f UL, * e, (5.7)
where as before we have put
C=p—7.
We must therefore estimate 7', f. Suppose 0 <« < 2. Our formulas (2.1—2)

for T, imply

<

Ty * fl2)] = [0 f (flw, ) — f@)r—~dr

& e} (58)
<C f e %y + C f Py = Ce™®,
0 &
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where we have used the inequalities (5.6) and 0 < f < 1. Except for a neighbour-
hood of the origin, 7', is an integrable function Clx| ™ %, and f vanishes outside
K4 so for |z| > R+ 4¢ we see that

Ty #f@)] < O(lx] — B — 46)7"%. (5.9)
We can improve this estimate near Kp. ,. If || — R -—4e =1> 0, we have

fle —y)
ly |+

where we only integrate over # — K, ,.. Now |[f| <1, so the integral is not
greater than

Toc*f(x): dy’

dy
ly "™
taken over {y: |y| > ¢}, which equals C¢~* Thus we find that

Ty * fle)] < C(lx] — R — 4¢)”%, (5.10)

if [x]> R 4 4e.
We need. a generalization to Riesz potentials of the Poisson formula. In Landkof
[7, p. 156—157] we find that

U (2) = f U ) Paly, )y, o] > B, (5.11)
|y]<R

where

oy — 0 P BPr 1
2 x) = , : n °
R (B — [y o —y|

Here C depends only on n and «. If r> R, we conclude from (5.11) that

Uy dos
f|U0|d0<0 /W dy (1‘ —R2)a/2 fT&;— .

lxf=r lx|=r

But by the ordinary Poisson formula

f do, Cr - Cr
w—yl* =y T — R

[|=r

and therefore

Uz X 1
/ U)o < C f (Rzl (ly)ll)“/z e — B’ (5.12)

|| =r
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To estimate f fdo we split the right side of (5.7) into three parts and use (5.8)
for |z] < R + 5¢, (5.10) for R 4 5e < |z| < 2R, and (5.9) for 2R < |x|. (If
5e > R we only need two parts.) This gives us

f fdo

< Ce / |Ue)lde + C f [Ud@) (e} — B — de)™%dw +

|x] <R3 R+5:<C)x]<2R

+ C f |Ul(x) iz — R — 4e) " de .

|[>2R

If we write the first term of the right side as

[+
|| <R R<|x|<<R+5s

we get a sum I, -+ I, + I3 4+ I,. Now write I,,;, with polar coordinates and
use (5.12) to estimate these integrals:

Lo = 0 [ Uiz,
L<0 [0z
Remember that diz = C(R? — |z|2)~*?dx is the equilibrium distribution in Kj.

Thus we have
|
l f fdo

This is true also in the classical case « = 2, since (5.6) implies that Af, taken
in the sense of distributions, is a function satisfying

|4fl < Ce2.

< (e f \U?|dw + Co2 f U2 |dy . (5.13)
Kpr

Now f==0 outside Ky, ,, so

f fio

By use of the exterior Poisson formula we obtain (5.13) also in this case.

< Ce f[U;]dx.

KR+tae

Levma 4.

33 24
f \U%dag < 0M2<1+a>< f ]U;[dx>2(1+°" .

Kp
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Proof. Again suppose « < 2. Using the generalized Poisson kernel, we put for
any o> 0

P,p(x) = f PPy, x)dy i |z[ >0
lyl<e

=gx) if [z|<p,

where ¢ is any function for which the integral exists. By the reciprocity theorem

jW%m&=2fUMWM,

since fda =0 and so / Uidig = 0.
We now use properties of P, to be found in Landkof [7, p. 157—160]. Since
vy >0,

PU, < U, for g <R, (5.14)

and if w, is p restricted to K, ¢ <R, then
P, Ut = Ue . (6.15)
Put pu' = p — pu, and let ¢ < |x| << R. By changing the order of integration we

find that
0 < Uk(x) — P,UY () =

— f( — (P ——1—> (x)> du'ly) < M / ( )y
yI" Cly—. N ’

e<lyl<R

the last inequality because of (5.2) and the non-negativity of the integrand. But
for ¢ < |y| <R we have the inequality dy < C(R — 0)**d2x(3), so

Ut (a) — PUE () < O — oy M [ ( daly

where we have the same integrand as before. We can extend the integration over
the whole of K without affecting the value of the integral. Now change the order
of integration again:

Ui(x) — PU(x) < CH(R — o)*(1 — (P,1)(x)) ,

since the potential of Jg is 1in Kp. The function P,1 coincides with the potential
of A,, and using the explicit expression for this dls‘orlbutlon one finds that its
potentlal belongs to Lip,,, even close to the boundary of K, Therefore we
conclude chat

U/(x) — P,Us (w) < CM(R — o)*(je| — 0" . (5.16)
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Our relations (5.14—16) together imply
Uiw) < P,U) + CM(R — of**(|a| — 0)**,
and hence,
(V@)™ < P,|Ug|(2) + CM(B — of**(lx| — o).

Let us now integrate this inequality over the sphere |z| =7, p <7 << R, and use
the calculation that led us to (5.12):

f (U)o < O(r — 0)* f U3ldA, + CM(R — o)**(r — o)** .

x| =r

Hence, if we multiply by (R?* — 12)"*? and integrate with respect to » from o to
R, we find that

U(T
fzﬁ(—_“()—)z)mdx<0f1(]“|dl +CM(R—o) *.

o<!®|<R J
If o = R/2, say, this implies

1+ 2

f (U3 tdig < © f Uglda, + CM(R — ¢)  *

with a new value of the first constant C. Let us integrate with respect to ¢ from
B —1t to R, where 0 <¢ << R/2, and use our known expression for the density
of 2:

(4

tf (Unyrdig < th'?f \Ulde + OM ¢ F
If

1
<f|U;]dx/M>1+—°‘ < Rj2,

Kgr

f= TU”dxMri_"‘
| [ 1wziaaran)

K

we can take

and obtain the inequality claimed in the lemma. Qtherwise the lemma is trivially
true, since f [U21d2g is bounded by

5 f (U rdig < 2 f Urdag < 2M f Urdix < CM

where m is Lebesgue measure in Kpg.



76 PETER SJOGREN

The case « == 2 can be handled similarly, and so the lemma is proved.
We now conclude the proof of Theorem 2 by first using Lemma 4 in (5.13):

1

The proof then runs like that of Theorem 1. This time there is no restriction on
the value of ¢ and to obtain (5.3) in the final step we choose

24+

< Qe f |U? o+ O M) e_?( f [Ug[dx)z(”“) :
Kg KR

1

f Uzlde \'
Kg
£ MK
This completes the proof of Theorem 2.
CororLaRrY. Under the same asswmpltions,
o 2

(B N Kg) — »(B N Kg)| < CMEP™ - — o™,

where ||o]], = ( f Usdo)'? is the emergy morm.

Proof. Using Theorem 2 with «/2 instead of &« and then Cauchy’s inequality
we get
o 2
(B O Ky) — #(B N Kp)| < O(MEK)*™ ( f IU;Z/zIdx>”" <

Kgr
1

< ourxy= ([ (U;,z>2dx>m.

Kgr

However, as can be found in e.g. Landkof [7, . 105—106],

f (U2, )de = C f Urdo .

The corollary is proved.

THEOREM 3. Let 0 <o <2 and let N be a compact set in R*. If u and v
are positive mass distributions with supports conlained in N and such that

fd,uzfdv and
dp < M dx

in N, then for any B c R* having K-reqular boundary in N

24 1
(BN Ny —»(B N N)| <CME}+(sup UL, ¢ = O(N, ).
N
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Remark. As simple examples show this is not true for o = 2. It would not be
true with R” instead of N, even after a suitable definition of K-regular boundary
in R™ (this could mean allowing only d <1, say).

Proof. Take R so great that N < Kg. Since dx < Odlg, it follows from the
inequality (5.13) that
‘; / fdo
\

if we assume that & < 1.

<o [ |Uzdin,

Now f Ulddg = 0, so, just as in the proof of Theorem 1, we conclude that

1

lo(B)] < 0<MK)T%°7 (sup U .
Kgr

But because of «-harmonicity (see Landkof [7])

sup UZ = sup U] .
N

Kgr

This completes the proof of Theorem 3.
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