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1. Introduction

With a symmetric space of non-compact type there are associated certain spaces
called boundaries and to each boundary there corresponds a Poisson integral. A
natural question is then to ask for convergence theorems of Fatou’s type. Helgason
and Koranyi [8] have proved »radialy convergence for Poisson integrals of L®-
functions, and for symmetric spaces of rank one Knapp [9] has proved »radialy
convergence for Poisson integrals of measures. These results have been extended
in [10], [11], [12] and [13] to convergence with respect to generalized »non-tangential»
domains (admissible convergence). The purpose of this paper is to prove Fatou’s
theorem for LP-functions, p, <<p << o, where p, depends on the symmetric
space and the boundary (Theorem 6.2). This result is still unsatisfactory since
Po>1 and p, tends to infinity with the rank. For the maximal boundary of
SL(l; R)/SO(I; R) we obtain p, =1 — 2 (Theorem 7.1).

We now sketeh the proof of our general result in the simplest case when the
boundary is the maximal one. We represent the symmetric space as G/K, where
G is a semisimple Lie group and K c ¢ a maximal compact subgroup. Let G =
KAN be the Twasawa decomposition, let § be the Cartan involution, write N =
ON and let M be the centralizer of A in K. The Poisson integral is defined
as an integral over K/M but our first step consists of transferring it to an integral
over N. This leads us to consider the integral

F@gpaK) = f fRganaty @), f€LPN), (1.1)

where y is a certain Jacobian. Set M*f(71) = sup,c 4 |F(7aK)|. Fatou’s theorem
will follow from the estimate

¥l < Cp llfllp for p > po. (1.2)
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To prove this inequality we need an estimate of . In § 5 we shall prove that

p@) < C |7~ and f pEEF IR < o (e>0). (1.3)
N

Here |- | is a certain snorm» on N; the ball of radius R will be denoted by B(R).
In the maximal boundary case (1.3) follows from some results of Harish-Chandra
[6]. We shall also need a result due to Knapp and Williamson [10] and Koranyi
[18] which states that a certain maximal function Mf on N satisfies |Mfl, <
Collflls , > 1. To prove (1.2) we now split the integral (1.1) into a sum of integrals
over the sets A: where 2~/ < y(@) < 27+ then use Hoélder’s inequality and
(1.3). This gives

|F(7aK)| < Const. % ((2_j+1)¢1'—1/2—5)1/q (meas B(2j/2))1/P (M(fP)(n) )1/P .

‘When p > p, the sum is convergent and we obtain

M*f(ﬁ) S— OP (M(fP)(ﬁ,) )”P s P > Do

from which (1.2) follows. The details are given in § 6.

In § 7 we consider SL(I; R)/SO(l; R). Using the explicit formula for » we
shall obtain a better result than Theorem 6.2 by covering the sets A4; with finite
unions of rectangles.

I am indebted to A. W. Knapp and E. M. Stein for the value of p, in Theorem
7.1. My original value was worse, but during the final preparation of this manuscript
they communicated to me that they had obtained Theorem 6.2 for maximal bound-
aries and Theorem 7.1 some two years ago. Their results were never published,
however. This inspired me to rewrite my original proof of Theorem 7.1 by inserting
Lemma 3.3 thus being able to get their value of p, . This also simplified notationally
the proof of Theorem 6.1.

I would also like to express my thanks to L. Carleson and S. Helgason for helpful
conversations in connection with this paper.

2. Notation

Let G be a connected semisimple Lie group with, finite center, K a maximal
compact subgroup and X = G/K the corresponding symmetric space. Let g and
f be the Lie algebras of G and K, let ¢ =¥+ p be the Cartan decomposition and
let a be a maximal abelian subspace of p. We denote by ) a Cartan subalgebra
of g containing a and consider the complexifications ¢° and I° of g and ¥.
The set of non-zero roots of ¢° with respect to §° will be denoted by 4 and the
corresponding root spaces by gi (A € 4). The roots are real-valued on a @ §¥,
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where i)t =H N YL, so we fix a lexicographic ordering of A by choosing a basis
in a and in h*. Denote by A+ the set of positive roots and by X the set of
simple roots. Let r: (§°)* — a* (* denotes »the dual ofs) be the restriction map
x—>al, and set R = r(A)\{0}, § = r(Z)\{0}. The elements of B are called
the restricted roots of g with respect to a. The ordering of A induces an ordering
of R under which 8 is the system of simple restricted roots.

For each Ec S we set

af) = {H€a;x(H) =0 Vx€E} and
at(B) = {Heal);x(H)>0 VaeS\E}.

We consider the adjoint representation of a(#) on g and denote by R(E) the
set of all non-zero weights, by g,(E) (x € R(E)) the corresponding weight spaces
and by go(f) the weight space for 0. Then g is the direct sum of the weight spaces
9,(E), « € RE)U {0}, and x € R(E) if and only if there exists a § € R such that
o = Blygy 7~ 0. Denote by EH(E) and R~(E) the set of all positive respectively
negative weights. Set

WEH) = g, (B) , WE) = 0,(B) ;

a€RT(E) w€R~(E)

these are nilpotent subalgebras of ¢.

go(E) is a reductive subalgebra of g; we denote its semisimple part by g*. Set
F=g®nt, p"=¢"Nyp, o®*=¢"Na and mE)=gyE)NE. Then g* =" | p~
is a Cartan decomposition, ¢ is a maximal abelian subspace of $* and f* is con
tained in m(¥) (the centralizer of a(X) in f).

Denote by 24 the sum of the roots in A+, by 24y the sum of all 1 €4+
such that Algz € RH(E), and put ¢ = A4, and og = Ag|, -

The analytic subgroups of G corresponding to a, a(B), WE), (), ¥ and
a* will be denoted by A, A(E), N(E), N(E), K® and Af. Finally, let M(E) be
the centralizer of a(H) in K, ie., M(E)={k€K;Adk(H)=H VHEa(E)}
M(E) centralizes A(E), normalizes N(E) and contains K.

If E= @ we have a(E) = a, R(E) = R, K¥ = A® = {¢}, 0y = 0, and in this
case we shall write g, n, T, N, N, M instead of g (), W(E), n(&), N(E), N(E),
M(E).

By the Iwasawa decomposition theorem there exists a uniquely defined
continuous function G —>K X a X N, ¢— («(g9), H(g), »(g)), such that
g = x(g) (exp H(g)) »(9) for all g €G.

The spaces K/M(E) (E c 8) are the boundaries of X in the sense of Fursten-
berg [4] und Satake [14]. Denote the cosets k M(E) by k and the identity coset

—

{K} of X =G/K by o. G actson K/M(E) by g(lé) = u(gk). The Poisson integral
Prf of a function f€ LYK/M(E)) is defined by ~
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Pef(g- o) = f o) sty

K|M(E)

where duy denotes the normalized K-invariant measure on K/M(E).

3. Semirestricted admissible convergence

We shall consider the behaviour of the Poisson integral Pgpf(x) when z tends
to a boundary point. Following Korényi [13] we define the following notion of
convergence.

Let Cc X be compact with non-empty interior and invariant under M(E),
let T € a(E) and put

ALf) = {ka 230 € AE), loga >T, z €0},

where loga > 7T means loga — T €at(E). Sﬂg(l;) is called a fruncated semi-

restricted admissible domain at k € K | M(E). .
A function F on X is said to converge to the number r at k € K/M(E)
admissibly and semirestrictedly if for all compact M (E)-invariant sets C ¢ X with

non-empty interior and all > 0 there exists a T € a(E) such that z € ALk
implies |F(z) — r| <e. We say that F converges to a function f on K|M(E)
admissibly and semirestrictedly a.e. if F converges to f(k.) in the sense just des-
oribed at almost all % € K [ M(E).

In the case of the maximal boundary, ie., B = (J, semirestricted admissible
convergence coincides with unrestricted admissible convergence as defined in [11].

By the Bruhat lemma the map 7: N(E)-~ K/M(E) defined by z(7) = ;(7%)
is an injective analytic map of N(H) onto an open dense subset of K/M(E) whose
complement has measure zero (see [13]). This allows us to transfer the Poisson
integral to an integral over N(E), i.e., there is a function y; on N(E) such that

Pof(g- o) = / Fg(e®))) pe(i) d .

NE)

If the Haar measure diz on N(E) is normalized so that f ¢ 2ee®) g7 = 1 then
N(E)
pp(ft) = ¢~ eslE) (3.1)

{see [11]).
For any ¢, h € G we denote by ¢* the element hght. If 7, € N(E), m € M(E)
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and o € 4 we have x(gmax(i)) = x(fgi™m). It follows that (Rgma)r(i) =
t(Rye™). Hence

Pof (igma - 0) = f o TG yu(R) dit . (3.2)
NE)

The map 7 amounts to transforming the Poisson integral from the disc to the
upper halfplane in the classical case. The main reason for going over to the group
N(E) is that the action of the group A on the points (%) is so simple and this
makes all computations manageable. We now define the substitute for the non-
tangential domains of the halfplane and then state a lemma which connects semi-
restricted admissible convergence with these new domains.

For any # € N(E), T € a(E) and for any compact sets U c N(E), V < 4%,
let I p(@) = {Aaima’-0; a€AE), loga >T, # €U, meKE a€V}
Ty (@) = U {5 (7) ; T € alB)),

Lemma 3.1. (Korényi [138]). Let 7 € N(E). A function F on X converges to
the number r at =(A) semirestrictedly and admissibly if and only if for all &> 0
and all compact U c N(E), V c AF with non-empty interiors there exists T € a(E)
such that x € I'f; (7)) implies |F(x) — r| < &.

We shall also need the following result from [13].

Lemma 3.2. Let 1 <p <co. If for all f suchthat fo v € L*(N(E)) the Poisson
wntegral of f converges admissibly and semirestrictedly a.e. to f, then the same is true
for all f€LP(K[M(E)).

In the classical case there is no difference between radial convergence and non-
tangential convergence of Poisson integrals. We shall now give an analogous result
for the general case.

For compact sets U € N(E), V c A we define the operators M% ;, by

M, vf(R) = sup |Pgf(x)l, f € LNK|M(E)), & € N(B).

=€y, p(n)

Put M* = M}, ., where e is the identity of G.

LemMa 3.3. For all compact sets U c N(E), V c A" there is a constant C such that

Svf @) <O (M*|fl (7))

for all fEINK|/M(E)) and 7 € N(E).

Proof. Let #, @i, € N(E), a € A(E), 7, €U, o’€ V and m € KE. Set i, =
o' m~ At mAa’ . Since the map n-—>n* has Jacobian ¢~ *E(%¢¢) we obtain
from (3.2) after a change of variables:
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Ppf(rganyma’ - 0) = Pgf(Righimaa’ - 0) =

= f £ o T{gi™) p(iny) €B0E) i
N(E)

Set g =a''m~'a7'm. Then 7, = gia’ and it follows that

H(@,) = H(g=(#) ) + H(®) -+ log a’ .
By (3.1)
"/)E(ﬁz) e—ZQE(Ioga’) — WE(ﬁ) e—2gE(H(gn('ﬁ))) .
When #,,a’,m and # run through U, ¥V, K¥ and N(E), respectively, gx(7)

stays in a compact set. It follows that there is a constant C, depending on U
and V, only, such that

Yi (Bp) ererle®) < (¢ Yg(R) .

Hence

\Pyf (Raiipma’ - 0)] < C f o T (™) pe(@)dii = C (Pylf] (fgma- o) ) .
N(E)

This proves the lemma.

4. A maximal theorem for N(E)

We choose a basis X,, X,,...,X, in n(#) such that

(i) for each 1 <j <r there exists an «; € Rt such that X; € .

(i) [X:, X;] € DIz R Xy for all 4,5
Let n; be the linear space spanned by X;, X,, ..., X;. Then n, = {0}, n;, 1, ...,
1, = n(#) forms an increasing sequence of nilpotent ideals in T(&) with [W(E), 1]
c n;_;. We conclude (see [2, p. 513]) that the map

@ (B, Ty y oo, ) = (XD £,X,) - ... ¢ (eXp 2,X,) (exp 2, X;)

is an analytic homeomorphism of R" onto N(E).
Let H, €at (E) be the element such that «(H,) =1 for all x« € S\NE. We
introduce a norm on N(E) by putting for 7 = @(z;, ..., 2)

1] = max |ay|"H)
1<j<r

For every R > 0 we define the sets B(R) = {ii € N(E); |#| << R}. This norm
has the following properties.
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Levmma 4.1. (i) [@™® "% = e |A| for all t € R, 7 € N(E).
(ii) There is a constant C such that
il < C (] + V) for all 7y, 7, € N(E) .
(iii) There is a constant C such that
[a" < C|7| for all m € M(E), 7 € N(E).
(iv) meas B(R) = R*®™) meas B(1) for all R > 0.

Proof. Let @ = ¢x,...,2). For a €4 we have
* = (aexp &, X o). . . .- (alexp £, X,)a ) (alexp 2, X )a™)
= gAda @X,), ..., Ada @X,))
= p(a,e 008D | | gelloga)),

This gives (i), and (ii) is an easy consequence of (i) (see [11, Lemma 2.3]). The map
(m, #) — ", M(E) X N(E) — N(E), maps compact sets onto compact sets. Hence
there is a C such that || <1 implies |#™| < C for all m € M(E). If 7 € N(E)
is arbitrary we choose ¢ such that ¢ = |%]. Then [ | =1 and e”'|a"| =
(™) Ho| — (7 o)™ < O, ie., |™| < C |i|. This proves (iii). Since B(e') =
B(1)y==*  (iy) follows from the fact that for a € 4 the map % —#* of N(E)
onto N(E) has Jacobian e~Zer(os?,

Let 2 be the family of all sets w = ¢(l; X I,... X I,) where I;c R are
open symmetric intervals around 0. We note that B(R)" € 2 for each @ € A and
each R > 0. For f€ L, (N(E)) we define the maximal function Mf by

1 _
Mf(@) = sup = / @) di, @ eN(E).

wep Meas

w

The following maximal theorem is a special case of Theorem 3.1 in [13] (cf.
also [10]).

THEOREM 4.2. For each p > 1 there exists a constant C, such that

1Mflly < Cyliflie for all f € LP(N(E)).

The proof in [13] gives the estimate C, = O ((p — 1)™") as p— 1.
We shall also need the maximal operator M’ defined by

1 _
M f ) = sup oo / f@ ) di, @ € N(B)

R>0
B(R)

It is well known that M’ is of weak type (L,1) (see e.g. [3]).
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5. The behaviour of <« at infinity

In this section we shall prove some results on the behaviour of wz at infinity.
In the case EF = 0 they are essentially due to Harish-Chandra [6], and the ex-
tensions to the general case are straight-forward. We first recall some facts about
representations (see e.g. [15, Ch. VII] for details).

Let o be an irreducible representation of g° on a finite-dimensional vector
space V. Since the symmetric space X is uniquely determined by g we may assume
that G is imbedded in the complex simply connected Lie group that corresponds
to the Lie algebra g°. The representation ¢|, then lifts to a homomorphism o:
G — SL(V) given by o(exp X) = ¢’®, X €g. It is possible to introduce an inner
product on V so that &(k) becomes unitary for each k € K and o(a) becomes
self-adjoint for each a € A. Vectors belonging to different weight spaces of o(a)
are then orthogonal. If @ denotes the highest weight of ¢ and & is a unit vector
belonging to the corresponding weight space then, using the Iwasawa decom-
position, we obtain

lo(g)€] = e”™@ for all g€@Q,

because o(X)& = 0 for all X €n, o(H) = w(H)E for all H €qa and |o(k)E] = |£]
for all k€ K. Let for each « € A the vector H, € [g;, g°,] be determined by
o(H,) = 2. There exists an irreducible finite-dimensional representation of highest
weight o if and only if w(H,) is a non-negative integer for each « € 2.

For the purpose of this section we introduce the following notation.
AHHE) = {4 €A% Aym) € RH(E)}, AYNE) = {1 €4%; My = 0},
Z(E)=2ZNATHE), Z0E)= XN AT(E).

Obviously, A+(E) = A+\A+H(E) and X°(E) = I\ Z(E).

Levma 5.1. There exist irreducible finite-dimensional representations of highest
weight A and 2 Ay for each E c 8.

Proof. Denote by s, (x €2) the Weyl symmetry given by s A =1 — A(H,)«.
s, leaves AT\{«} invariant whereas s« = —«. Hence s,4 = A — «, which
implies —A(H,) = s, A(H,) = A(H,) — o(H,), ie., AH,) =1

Suppose « € X°(E). Then s,Alyg) = Az for each 1€ 4. Consequently,
s, leaves the set A+*(H) invariant. Hence s Ay == Ag, ie., Ag{H,) =

Suppose « € Z(E). If 2 € A*(E) then A= Dcsoqm ns f with non-negative
integers mg, and since @(H,) is a non-positive integer if «, § € 2, & # §, we obtain
s,A = A+ mux where m, is a non-negative integer. Hence s,(A4 — Ag)= (4 —
Ag) + 3 (Zl€A+°(E)ml) «, which yields 2 Ag(H,) = 2 A(H,) + Z m, =2+ Z m; .
Thus 2 Ag(H,) is a positive integer in this case.
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Lremwma 5.2. Let o be the highest weight of an irreducible finite-dimensional repre-
sentation o. Then:
(i) w(H@) >0 for all 7 € N(E).
(i) If wdH,) > 0 forall « € Z(E), then there is a constant 6 > 0 such that

@@ > § 17| for all 7 € N(K).

Proof. Let & be a unit vector belonging to the weight w. Let 4 << 4, < ... < 4,
be the elements in  A+H(E); then W) = >, (a° ;0 g). Fixabasis X;,..., X
in n(E) by choosing X; € 9—/1]- N g; then each 7 € N(E) can be written # =
(exp 2. Xy) ... (exp 2, X,) and

(@) = (TT e7%))e =
J=1 (5.1)
= f: ! 1 J Jr o( X} DAY
e jr:Ojl!n..j'x-...-x,a( e o(XLYrE,
where the sum is actually finite.
Let P, 0 <k <7, denote the orthogonal projection of ¥ onto the weight
space corresponding to the weight o — A, where we put 4, = 0. From (5.1) we get

Py(o(R)E) = & and

- 1 1 ) : .
Py(o(R)E) = Z.F .. F e radre(X) Lo XV E <k <Zy),
R
where the sum is taken over all r-tuples (j;, ..., ) such that er»:l Jahn = A; from
the ordering of the roots it follows that j,.;, =...=4,=0 and jr=0 or 1.

Obviously,
") = |5(7)E] = |Pu(o(@)E)] -
For k= 0 we obtain ¢*@® > £ = 1, and this proves (i).

The norm |- | on N(E) defined in § 4 depends on the choice of basis elements
in n(#) but different choices give rise to equivalent norms. (This follows easily
from Lemma 4.1 (i) .) Therefore, we may assume that the basis is the one chosen
above and then Lemma 5.2 (ii) amounts to proving

HHIOHE) > 5] 1 <j<r. (5.2)

We first note that o(X;)& # 0 for each j. Indeed, the assumption about w(H,)
implies that w(H;) > 0 for all 1€ A++(H) so if we choose ;€ g;'fj such that
[Y;, X;1= H,j then

o(¥))o(X)E = o, )& + o(X))o(¥)E = w(H,)E £ 0.
We now prove (5.2) by induction. Assume (5.2) proved for j << k. Then
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1

~ 1 ; Je—1 j j
[Pi(o(7)é)] = |ano(Xi)é] — Z]? RARENS 1!”111'“-'%’11 o(Xy)r .. o( Xy )1 E
> Const. [zx] — Const. > ||+ ...« g, [/k-1

2 Const. lwkx — Const. Z e(jlll(Ho)"_ oot 1 A 1(H) o(H(R)) ,

where all sums are taken over the (k — 1)-tuples (j;,...,J,_1) such that
k1 jndn == A Hence

|Pi(c(7)&)| > Const. |az] — Const, ¢MH)HE)
and it follows that
24| < Const. (¢”@® L HIER) < Const, rHE)HE)

and this completes the proof of (5.2).

Lemma 5.3. (i) 0 <yp(@) <1 for oll 7 € N(E).
(ii)) There is a constant C such that

ye(@) < C AL for all 7 € N(E)
and p(@) < C |2 for all REN .

Proof. Lemma 5.3 is nothing but Lemma 5.2 with o = A4 and o = 24g; it
follows from the proof of Lemma 5.1 that the hypothesis of Lemma 5.2 (ii) is then
fulfilled.

Remark 1. Lemma 5.2 (i) occurs in [6] as Lemmas 2, 35 and 43. For £ = O
Lemma 5.3 (ii) can also be deduced from Lemma 40 and an inequality on p. 290 in [6].

Remark 2. For symmetric spaces of rank one Helgason [7] has obtained an
explicit formula for y from which it follows that (@) < C [a]~ "), However,
in general the estimate for ¢ of Lemma 5.3 is best possible as can be seen by con-
sidering SL(3;R)/SO(3;R).

Lremma 5.4. For each E c S there is a constant yg << 1 such that

f (@)Y 46 < 0 if > s

N(E)

When E:g, VE:%"

Proof. Obviously, there is an open halfspace @ in a which is bounded by a
hyperplane passing through 0 €a and such that {x € R* «f,z € RT(E)} =
{x €R*; H, € Q} (= R} say). Therefore, by a theorem of Gindikin and Karpe-
levié [5], if » is a real-valued linear functional on a then
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I() = [ ¢~ OHIEE g7 — o
NE)
if and only if »(H,) > 0 for all x € R§. Now consider », = 2ypg —p¢ . For y = 1,

I(w) = f ve(fi) div = 1. Hence »(H,) > 0 for all « € Rj. By continuity there
exists a yp <<1 such that »(H,)> 0 for all « € Rf and y > yz. Hence I(»)
< o for y> yg. When E = @ we can take yg = } since o(H,) > 1 for all
« € RT.

When E = @ another proof of the above lemma can be found in [6, Lemma, 45].

6. The boundary behaviour of Poisson integrals

Let H, € a*(E) be the element such that «(H,) = 1 for all « € S\ E and set
Pe =\ 2 og(H,) — 75

where yg is the constant of Lemma 5.4.

TaEorREM 6.1. Let U N(E) and V c A" be compact. For each p > py there
exists a constant C, (depending on U and V) such that

“Mﬂl},Vf”P < Gy llfolp
for oll fELVK|/M(E)).

Proof. In view of Lemma 3.3 it suffices to prove the estimate of Theorem 6.1
with M* instead of M% .. Assume fo v € LP(N(E)), otherwise there is nothing
to prove. Set 4; ={n € N(E); 27 < ypg(@) <294}, j=1,2,.... Choose p’
such that py < p < p andlet 1/¢' +1/p’ =1. Let #,€N(E), a € A(E), m € K¥;
by (3.2)

Pof aam - 0)) < [ 1f o = i)ty di =5 [ <

N(E) Aj
sé [ f o T Ggm) P dﬁ]w’ [ f (pe(@))" dﬂ]”“-
Aj ‘Aj

By Lemma 5.4 there is, for each y > yg, a constant C, such that

f (pp(@)* din < (2771 f (pe(@)) dit = C, (2777,

4; N(E)
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By a change of variables we obtain

f [f o T (gn™)|P dit = e*eEUE") f If o 7 (RgR)|P dii . (6.1)

A4ma

J

By Lemma 5.3, 4; c B(C2"°E) where 6, =1 if £ =0 and 8" =1 otherwise.
Using Lemma 4.1 (iii) we then see that there is a constant C); such that AT c
B(C, 27%8), = B; say, for all m € K*. Thus the right hand side of (6.1) is majorized
by
g2eElog s f Ifor (ﬁoﬁ)ip’ di <
B}

< ¢™E08) meas (BY) M(f o v (7i,) =

= meas (B)) M(fo ) (fiy) < C, 29°EEH) JI(fo )P (73y) .
We conclude that

M3f (7)) <26, Cy (2, 277) (M(f o o) () ),

j=1

where 7 =1 — /¢’ — 2 dgog(H,)/p’. Sinece p’ > pr we can choose y > yp so
that the sum is convergent. Hence

M (7)) < Cs (M(f o ) (@) )7
Applying Theorem 4.2 we obtain

1M*fllp < Cll (M(f o o)'yFllp = C5 (IM(f o o)l
<G (l(fem) “p/p')llp = Cy[lfo7lp
This finishes the proof.

1p’
P/P') =

THEOREM 6.2. If p > py and fE€LP(K/M(E)) then the Poisson integral of f
converges admissibly and semirestrictedly to f a.e.

Proof. By virtue of Lemma 3.2 it is enough to consider the case where fo v €
L?(N(E)) and since the theorem holds for continuous functions, this case follows
from Theorem 6.1 and Lemma 3.1 by classical methods (cf. [9]).

Remark. For symmetric spaces of rank one we use Remark 2 following Lemma
5.3 instead of Lemma 5.3. This gives the estimate

M*f(m) < Const. -(M'(f o 7)(7))

Since M’ is of weak type (1,1), it follows that M* is of weak type (1,1) and we
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conclude that Fatou’s theorem holds for p» > 1 in this case. (This proof is due
to Koranyi [12].)

Even for spaces of arbitrary rank we can sometimes get sharper results than
Theorems 6.1 and 6.2 by looking at the explicit formula for yz. We shall illustrate
this with X = SL(;R)/SO(l;R) in the next section.

7. SL(1 ; R)/SO(1 ; B)

We sghall first consider the Poisson integral corresponding to the maximal
boundary of SL(;R)/SO(;R). N consists then of all lower triangular matrices
with, units in the diagonal

= (@1, =1 and z; =0 if ¢ <j.

This parametrization of N is in accordance with the decomposition of N in § 4.
Let &, &,...,& denote the column vectors of # andlet D;, 1 <j <1, be the
Gram determinant formed by the vectors &, &,, ..., &, ie.,

((517 51) e (51’ EJ)>
& &) - (5 &)

Then () = DDy ... - D_)T

(cf. [1]). From the interpretation of V/D; as the volume of the parallelepiped span-
ned by &,&,...,§& it follows easily that D; > |2 =1+4af,; + ...+ ;.
Hence

P(@) < (&l &l - oo 180D
and we conclude that y(7) > B2 implies the inequalities

logl < R, 1 <j<i<I,

T (7.1)
I TT %l <R, k=1,2,...,1—1.

j=1

Let £> 0 be given and fix a natural number s> [?/e. Let <A be the finite
collection of all tuples & = (x;), where the o;; are chosen from among the
numbers 1/s, 2/s,...,1 and such that z]l';’f“ﬁk,j: 1+(0—k—1)/s, k=12,...,
I—1. Let w( R)c N be the subset given by |v;] < RB%. Tt follows from
(7.1) that

{7 €N ;y@)> R*c U olx, R),
199

and, obviously, meas w(x, R) << R'~'**, Thus, if
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A; = {f € N; 277 < p(@) <277}, then

[ievampan<s [ iferamra <
45 (o291

< (card A) (27P) 71 M(f o 7)P (i) -

Using this we conclude as in § 6 that for every y > } there is a constant C,
such that

(20 0) (B o o)) )7

s

|Pf(ige - 0)] <O, (

j=1

f

(1/p + 1/g=1). If p >1— 2 we can choose ¢ and y so that the sum is con-
vergent, i.e., there is a constant C, such that M*f(ii,) < Cp (M(fo t)P(7,) )'".
By Theorem 4.2 it follows that M* is of strong type (p,p) for p > 1 — 2. Lem-
mas 3.1, 3.2 and 3.3 now give the following

THEOREM 7.1. For the maximal boundary of SL(;R)/SO(I;R) the Poisson integral
of an LP-function converges unrestrictedly and admissibly a.e. whenever p>1— 2.

Remark. For SL(3;R)/SO(3;R) the above proof gives the estimate | M*f]|,
<GClfortlly, with Cp=0((p— 1)) as p—1. This allows us to conclude
that Fatou’s theorem holds for functions belonging to the class L(logt L)® (cf.
{16, Ch. XIIJ).

We shall finally consider the ! — 1 boundaries of SL(/;R)/SO(;R) which
correspond to those sets E for which SN\ E consists of one element.

THEOREM 7.2. For these boundaries Fatow’s theorem holds for L-functions {(and
for measures) (semirestricted admissible convergence).

Proof. Take for instance the set E for which N(E) consists of the matrices 7
with column vectors & = (1,2, %9 ,.-.,%_1), & =1(0,1,0,...,0), & =(0,0,1,
.50),..,5=10(0,0,0,...,1). Then || =max, ;-1 [%], eg(H,) = (! —1)/2 and
pe@) = & = (1 42} + ... + 2 1) Hence ygz(@) < |A|”' and it follows
easily that

M#f(@) < Const. (M'(fo7) (@)) for all 7€ N(E).

Thus M* is of weak type (1, 1) and this proves the assertion for L!-functions.
(For measures cf. [9].)
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