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T h e  a i m  o f  t h i s  p a p e r  is t o  p r o v e  t h e  a b o v e  s t a t e m e n t ,  w h i c h  is c l e a r l y  e q u i v a l e n t  

to  t h e  fo l lowing:  

THEOREM. For every sequence of measurable functions fn with 

f f2 ~= K (n 1, 2 . .  @) 

there is a subsequence g~ and a square integrable function g such that the sequence 
h~ : g , - - g  is an unconditional convergence sequence. 

R e c a l l  t h a t  a s e q u e n c e  hn is c a l l ed  a c o n v e r g e n c e  s equence ,  i f  t h e  se r ies  X cnhn 
is c o n v e r g e n t  a l m o s t  e v e r y w h e r e ,  w h e n e v e r  t h e  s e q u e n c e  cn o f  r ea l  n u m b e r s  s a t i s f i e s  

27 c2n < m.  T h e  s e q u e n c e  hn is c a l l e d  a n  u n c o n d i t i o n a l  c o n v e r g e n c e  s e q u e n c e ,  i f  

e v e r y  r e a r r a n g e m e n t  o f  hn is a c o n v e r g e n c e  s equence .  (E.g.  t h e  s e q u e n c e  r ,  (on 

[0, 1]) o f  R a d e m a c h e r  f u n c t i o n s  is k n o w n  to  b e  a n  u n c o n d i t i o n a l  c o n v e r g e n c e  

sequence ;  wh i l e  t h e  s e q u e n c e  %/2 /~  �9 cos (nx) (on [0, n]) is a c o n v e r g e n c e  s e q u e n c e  

(Car leson) ,  b u t  - -  b e i n g  a c o m p l e t e  o r t h o n o r m a l  s e q u e n c e  - -  i t  is n o t  a n  

u n c o n d i t i o n a l  c o v e r g e n c e  sequence . )  

1 Throughout the paper all functions are measurable functions on some measure space 
{X, cb ~,/~}. I t  is clear tha t  it  is sufficient to prove our Theorem in case of f inite measure, thus 
we can take  /~(X) = 1. 

As a rule, we do not  indicate 
the arguments of functions: writing ~ , f  etc. instead of cf(x),f(x) etc., and /~(f > ~) instead 
of #({x;f(x) > 2}), 
and the measure: writ ing jr ~, jr ~01~02 etc. instead of Jx  q~(x)tt(gx)' f x  q;l(x)q~2(x)#(dx) etc.; 

we also say }>almost everywhere}> instead of })/~-almost cverywhere}>. 
c~n L~p ~" will s tand for weak convergence in Lp. 
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w O. The preliminaries 

We summarize shortly the previous results in this direction. 
a) Convergence sequence 
The following theorem is a classical result of Menchov (see e.g. [1] p. 156 or [2]): 

THEOREM A, Every orthonormal sequence contains a convergence sequence. 

Rdvdsz proved that  orthogonality is not necessary, i.e. 

T]~EO:~E]g B. [3]. For every L2-bounded sequence f ,  there is a subsequence gn 
and a square integrable g such that the sequence It, = g, - -  g is a convergence sequence. 

This theorem was independently proved also by  Gaposhkin ([4] p. 12), and a 
very simple proof was given by  Chatterji ([5] p. 243). 

b) Unconditional convergence sequence 
The following theorem is due to 0.A. Ziza: 

THEOREM C. [6]. I f  the orthonormal sequence f ,  is pointwise bounded, i.e. 

Ifn(x)l -<_ f(x) 

where f (x)  is f ini te  a.e., then it contains an unconditional convergence sequence. 

Here, obviously, the strong restriction is not that  of the orthogonality, but  the 
boundedness. 

The problem of extending this result to arbitrary orthonormal sequences is 
proposed e.g. in Uljanov's survey on solved and unsolved problems in the theory of 
trigonometric and orthonormal series [7] p. 54. 

For the proof first we established some maximal inequalities for strongly multi- 
plicative sequences, but  I. Berkes remarked that  the maximal inequalities of 
Billingsley would do the same. 

w 1. Billingsley's theorem on 4-multiplieative sequences 

In his book [8], Billingsley proves some very useful maximal inequalities; here 
we state one of them in the special case we are going to use. 

T~EO~EM D. [8] p. 87--89. I f  for all integers 
~n satisfies the inequalities 

1 ~_ a ~ b ~ A ~= B the sequence 
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f k~__~ K1 ~b 2 

f 
~ B b B 

= c~)( y~ c~), (2) ( v~)2( ~ ~,)~ < K~( ~ 
k=a I=A k=a I=A 

(K  1 and K s are absolute constants, ck are real numbers), then for all 1 <~ a <~ b 
,and 2 > 0 

b b 
2 

k=a k~a 
#( max  I ~v~l >~ ~.) ~< 106K2 ~t4 ~- 4K1 ~2 (3) 

a ~ t < b  k=a 

As an immediate  consequence of Theorem D, one has the following corollary 
,of independent  interestS): 

COROLLARY 1. I f  the sequence ~vn satisfies the following four conditions for all 
different indices k, l, m, n: 

f q~ ~ g (4) 

f 22 K 2 ~k~, =< (5) 

~v1~(v,~v ~ = 0 (6) 

f ~kq~lq~mq~n ~- O, (7) 

then it is an unconditional convergence sequence. 

Indeed,  (5), (6) and (7) imply  (2) for the  sequence Fn ~ Cnq:n with Ks = K 2. 
Using (4) we get 

f 1/fl~ k=a a<=k< l~b  k=a _ k < l ~ b  

b b b 
2 s 2 3 K  ~ c~, 

k=a k=a k=a 

i.e. (1) holds wi th  K 1 = 3K. Thus, ~v k satisfies (3), t ha t  is known to be sufficient 
in order t h a t  the series X cn~v~ converge almost  everywhere,  i f  only ~c2n < 
(see e.g. [ l l ]  pp. 1--4). 

3) Corollary 1 is similar to the Theorem in [9] (see also Theorem C in [10]); but it does not 
require the existence of the fourth moments. 
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Now Fn is clearly an unconditional convergence sequence, since conditions 
(4), (5), (6) and (7) are invariant under rearrangements of qn. 

Corollary 1 can be slightly sharpened as follows: 

COROLLARY 2. I f  the sequence q~n satisfies the following two conditions: 

where the summation runs over all indices k, l, m, n such that at least three of them 
are different, then it is an unconditional convergence sequence. 

Conditions (A) and (B) are invariant under rearrangements of ~. thus it is 
sufficient to check tha t  they imply tha t  the sequence ~ = c,q~,, satisfies conditions 
(1) and (2). 

Using the inequality 

~k~_a 2 ( a < k < b )  Ick l  < c k  - - 

one easily gets tha t  (2) holds with K 2 = K 2 -~ 4C,  where 

C = ~vl~,~ , 

and using the inequality 

b b / 

<= y.  c~ ~ + 2 ~c,~, )  ~ 

we get tha t  (1) holds with K1 = K § 2 ~ r  -~ 6C. 
The proof of our Theorem will be based on C3rollary 2. 

w 2. Proof of the Theorem 

Two sequences H,, and q}n are said to be equivalent (this will be indicated by 
Hn ~ ~b.), if for an arbitrary sequence cn of real numbers the two sets 

{x; ~ cnH.(x) is convergent} 
n ~ l  

and 
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{x; ~ c~q~(x) is convergent} 

differ in only a set of  zero measure,  and this holds also for an a rb i t r a ry  r ea r rangement  
Hp(k), q~p(k) (19(1), 19(2) . . . .  is a pe rmu ta t i on  of  the  numbers  1, 2, . . .). I t  is clear 
t ha t  if  Hn ~ Cn and n~ < n2 < . . . are posit ive integers, t hen  the  subsequences 

Now the  basic step before applying Corollary 2, can be fo rmula ted  as follows: 

PROPOSITION. For every sequence H~ with H~ ~ 0 one can construct a sequence 

q)~, which is equivalent to a subsequence B~ of H , ,  and has the following pro - 

19erties : 

(i) r  
(ii) 

with 0<_ ~ < 1 a.e. 

(iii) ]q)~l <= K~ a.e., 

where K~ is some sequence of 19ositive numbers. 

The Proposi t ion  will be p roved  in w 3. After  having this proposit ion,  we can 
complete  the p roof  of the theorem as follows: Since f~ is L2-bounded, it  contains 
a subsequenee f~' such t ha t  f~' L-~ g wi th  some square integrable g. Taking H n = 
fs - -  g we have  H~ L-~ 0. Applying the  Proposi t ion,  we get  a subsequenee /4n of 
H~, and a sequence ~n wi th  q~n ~ / T n  and  q~ satisfies (i), ( i i ) a n d  (iii). 

Now we cons t ruc t  a subsequence ~vn of q5 satisfying (A) and (B). Def ine  the  
sequence nk of  posi t ive integers by  induct ion as follows: 

Since 0 ~ q ~ <  1, 

andf qSq5 ~ < 1 ,  

one cart choose nl so large t h a t  for all n ~ nl 

f q~2 n 1 and  J q ~ n r  2 1. < < 

Assume tha t  nl < n2 < . . . < nk have a l ready been def ined m such a way  
t h a t  we h~ve 

f 2 2 l < j < i = < / c  

f ~2n~q~n.~ n. < 2~ l < _ _ l < j < i < - - k  
J t - -  - -  
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f I q~n ~b2.~bn,j < 2~ 1 ~ 1 < j < i ~ k 

f 1 q~ q~,.q)zj < 2 ~ 1 < l < j < i <= k 

f ~n~nt~  . < 2~ l < j  < i _ 

f t~)nm~)nl~)nj~-)ni < ~ 1 <= m < l < j < i <= k, 

and t ry  to define the number  nk+~ > nk in such a way t h a t  the above six condit ions 
hold if  k is replaced by  k ~ -  1, i.e. also for i = k - ~  ]. 

Since On1 . . . . .  Cnk are bounded (by (iii)), for n - +  oc 

thus  

nj n nj < 1 ,  j =  l , . . . , k  

f q)2 q)2 nj nk+x < 1, j = 1 , . . . , k  

if  nk+~ is chosen sufficiently large. Since q~n ~ 0, the second, third,  f i f th  a n d  
sixth conditions will be satisfied for i = k + 1, if nk+~ is chosen large enough.  

Now for l < = l < j < k  

1 
f q52 , ~- 2 j  -~- ~nl~)nj( n -  ~2) 

and since the second te rm in the  r ight -hand side of this inequal i ty  tends to zero 
as n--~ oo, the four th  condition also holds, if  nk+l is chosen sufficiently large. 

Choosing % = ~bnk, we obtained a sequence % satisfying (A) and  (B) w i th  

K = 1, thus  % is an uncondit ional  convergence sequence, and (since /Tn ~ ~bn) 
so is /Ink, t h a t  will be the  sequence hk in our Theorem. Qu.e.d. 

w 3. Proof of the Proposition 

We will use a lemma of Gaposhkin [4], p. 14 (which is also contained impliei tely 
in [12], however it  is no t  explicitely s ta ted  there): 

LEMMA. I f  an is an Ll-bounded sequence: 
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then it contains a subsequence ft. such that ft. can be writ ten as 

where riO)fiT) ~- O, n = l, 2 , . . . ,  fl!~,) is weakly  convergent riO) ~ fl, and  

~(~) # o) < oo. 
n = l  

We will also use the following simple remark: if y ,  ~ 7 and ~v is a bounded  
function,  then 

R. 

~ y . ~ y  (p is arbi tary ,  1 < p <  oo). 

Fur ther ,  if 17"1 < ]Y.], #(Y: # ?.) --> 0, then ~'~ ~ 7. 

Now applying the L e m m a  (H2. is Ll-bounded) ,  one can choose a subsequence 
of  H .  such tha t  

where 

and 

g l)~2)= o, g ) ) <  ~, 

g(fl~) # o) < ~. 
n ~ l  

Define the sequence y .  as follows 

Since y~. = riO), we have 

(*) ~ < ~. 

/7. if riO)~0 
Y"~- 0 if r iO)=O.  

Since [y.[ ~ ]/7.I, /t(y. # / t . )  -+  0 and /~. ~ 0, we have 

(**) ~. ~ o. 

Since 

g(~. # / 7 . )  < oo, 

thus  y .  ~--/1. (actual ly on a lmost  all x,  y= = / 7 .  for n > nc = no(x)). 
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Define 

v " -  + [3 
Since O ~  1/~/1 + f i ~  1 and  
and 9 ] ~ { 3 / 1 + f i .  Now pu t  

Since #(q)~ r ~.) ~ f 1+.1/2+, thus  

and hence 

and 

Since }r =~ 2", 

O ~ < l / ( l + f i ) ~ l ,  

~. if I~.] =<2" 

0 otherwise. 

(*) and (**) imply  r  

~b~ -~ 

q)~ satisfies all condit ions of  the Proposi t ion.  

Le t  us ment ion  t ha t  the above t rans format ion  (dividing b y  ~ /1  -4- fl) makes  

it possible to  choose a subsequence of ~bn wi th  f < K ( that  was done in 

the  proof  of the Theorem).  Bu t  ( though f < 1) it cannot  ensure the  exis tence 

of  higher  moments ,  e.g. f ~ ~s k - ~  ~ e~n still happen.  Thus,  the  above  

used Billingsley's theorem cannot  be replaced b y  any  theorem using higher  momen t s  
t han  second. 
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