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The aim of this paper is to prove the above statement, which is clearly equivalent
to the following:

THEOREM. For every sequence of measurable functions f. with

fff,§K n=1,2...)

there is a subsequence ¢. and a square integrable function g such that the sequence
hn = gn — g s an unconditional convergence sequence.

Recall that a sequence k., is called a convergence sequence, if the series 2 c.hin
is convergent almost everywhere, whenever the sequence ¢, of real numbers satisfies
2'¢; < w. The sequence h, is called an unconditional convergence sequence, if
every rearrangement of %, is a convergence sequence. (E.g. the sequence r, (on
[0, 1]) of Rademacher functions is known to be an unconditional convergence

sequence; while the sequence 4/ 5/; - cos (nx) {on [0, 7]) is a convergence sequence
(Carleson), but — being a complete orthonormal sequence — it is not an
unconditional covergence sequence.)

1 Throughout the paper all functions are measurable functions on some measure space
{X , &, u}. It is clear that it is sufficient to prove our Theorem in case of finite measure, thus
we can take u(X) = 1.

As a rule, we do not indicate
the arguments of functions: writing ¢, f ete. instead of ¢(x), f(z) ete., and u(f > A) instead
of wu({z; flz) > A}),
and the measure: writing /[ @, / ¢, ete. instead of / x P(@)p(de), f x P1(@)pe(@)pi(dz) ete.;
we also say »almost everywhere» instead of »u-almost éverywhere».

oy I:;‘ o will stand for weak convergence in L7,
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§ 0. The preliminaries

We summarize shortly the previous results in this direction.
a) Convergence sequence
The following theorem is a classical result of Menchov (see e.g. [1] p. 156 or [2]):

THEOREM A. Hvery orthonormal sequence conlains a convergence sequence.
Révész proved that orthogonality is not necessary, i.e.

TuroreEM B. [3]. For every Lybounded sequence f. there is a subsequence ¢n
and a square integrable g such that the sequence h, = g. — g s a convergence sequence.

This theorem was independently proved also by Gaposhkin ([4] p. 12), and a
very simple proof was given by Chatterji ([5] p. 243).

b) Unconditional convergence sequence

The following theorem is due to 0.A. Ziza:

TaeoreM C. [6]. If the orthonormal sequence f. is pointwise bounded, t.e.

[fal@)| = flx)

where f(x) is finite a.e., then it contains an unconditional convergence sequence.

Here, obviously, the strong restriction is not that of the orthogonality, but the
boundedness.

The problem of extending this result to arbitrary orthonormal sequences is
proposed e.g. in Uljanov’s survey on solved and unsolved problems in the theory of
trigonometric and orthonormal series [7] p. 54.

For the proof first we established some maximal inequalities for strongly multi-
plicative sequences, but I. Berkes remarked that the maximal inequalities of
Billingsley would do the same.

§ 1. Billingsley’s theorem on 4-multiplicative sequences

In his book [8], Billingsley proves some very useful maximal inequalities; here
we state one of them in the special case we are going to use.

THEOREM D. [8] p. 87—89. If for all integers 1 < a < b << A = B the sequence
Yo satisfies the inequalities
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b . b
[Swr=r3a (1)

b B b B
[ wrS wr = B e T Q

(K, and K, are absolute constamts, c. are real numbers), then for all 1 < a <b
and A >0
b b
. (Z cp)? Z i
#( max |z wl =4 = 106K2 Fe + 4K, :12 . (3)

a<Lt<b k=a

As an immediate consequence of Theorem D, one has the following corollary
of independent interest?):

CoroLLARY 1. If the sequence ¢, satisfies the following four conditions for all
different indices k, 1, m,n:

f <K (4)
f P< K (5)
f PP Pm = | (6)
f PP PmPn = 0, (7)

then it s an unconditional convergence sequence.
Indeed, (5), (6) and (7) imply (2) for the sequence w. = c.pn with K; = K2
Using (4) we get

b b b
(Z%)zzfz’/’i—i—Qf Z Wk¢1§K20i+2 /f( z 'Ple)zg
k=a a<k<l<h k—a e<k<l<h

k=a
b b b
SK>a+2K3ci=3K>c;
k=a k=a k=a

e. (1) holds with K, = 3K. Thus, y, satisfies (3), that is known to be sufficient
in order that the series X'c,p, converge almost everywhere, if only Z'c? < oo

(see e.g. [11] pp. 1—4).

%) Corollary 1 is similar to the Theorem in [9] (see also Theorem C in [10]); but it does not
require the existence of the fourth moments.
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Now ¢, is clearly an unconditional convergence sequence, since conditions

(4), (5), (6) and (7) are invariant under rearrangements of @n.
Corollary 1 can be slightly sharpened as follows:

COROLLARY 2. If the sequence ¢. satisfies the following two conditions:
(4) fzpiéK, fqaicp?éKz 1<k<l)

< 0,

(B) : Z‘ f PrP1PmPn

where the summation runs over all indices k, 1, m,n such that at least three of them
are different, then it is an uncondifional convergence sequence.

Conditions (A) and (B) are invariant under rearrangements of ¢, thus it is
sufficient to check that they imply that the sequence y, = c.¢, satisfies conditions
(1) and (2).

Using the inequality

W= )/3d @sesoy

one easily gets that (2) holds with K, = K* + 40, where

]
=3 / PP PrPr | >
and using the inequality

b b /
/(z ck‘}”k)2 = 2 ck /“Pl% + 2 V/( 2 Ckcl‘Pk‘Pl)z
k=a k=a ak<lZh

we get that (1) holds with K, = K + 2V K* + 6C.
The proof of our Theorem will be based on Corollary 2.

§ 2. Proof of the Theorem

Two sequences H, and @, are said to be equivalent (this will be indicated by
H, ~ ®,), if for an arbitrary sequence ¢, of real numbers the two sets

{x; D, caHu(x) is convergent}
n=1

and
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{2; > ca®a(x) is convergent}

n=1

differ in only a set of zero measure, and this holds also for an arbitrary rearrangement

H,u, @y (p(1), p(2), . .. is a permutation of the numbers 1, 2, ...). It is clear
that if H, ~ @, and m; < m2 < ... are positive integers, then the subsequences
H, ~®,.

3 %

Now the basic step before applying Corollary 2, can be formulated as follows:

ProposITION. For every sequence H, with H, £~ 0 one can construct a sequence
., which is equivalent to a subsequence H, of H,, and has the following pro-
perties:

(i) @uz
(iy @} ¢ @°

with 0 = ® <1 a.e.
(ili) @, < K. a.e.,

where K, s some sequence of positive numbers.

The Proposition will be proved in § 3. After having this proposition, we can
complete the proof of the theorem as follows: Since f, is L,-bounded, it contains
a subsequence f, such that f, 1> g with some square integrable g. Taking H, =
fo—g we have H, 7> 0. Applying the Proposition, we get a subsequence H, of
H,., and a sequence @, with @, ~ H, and &, satisfies (i), (ii) and (iii).

Now we construct a subsequence ¢, of @, satisfying (A) and (B). Define the
sequence 7y of positive integers by induction as follows:

Since 0 =< & < 1,

f@i-»/@2<l and f@i@zﬁ‘/\@4< 1,

one can choose m; so large that for all » =n,

/@i<1 and f¢i®2<l.

Assume that 71 <me2 <C...<<m have already been defined i such a way
that we have

f¢ﬁj¢ii<1 1<Sj<i=k

|/®2¢ D,
nl n] nl

1
<5 1<l<j<i=k
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1
qu"l" E 1§l<j<@§k
2 1 . .
qﬁcb(.b <5 1Si<j<i=k
1
/‘q>q§d52<§ 1<j<i=k
1
f@nmqﬁ,,l@njcbni < 5 1Zm<l<ji<i =k,

and try to define the number =, , > n, insuch a way that the above six conditions
hold if %k is replaced by k£ 4 1, ie. also for ¢+ =% 4 1.

Since @,,,..., ®, are bounded (by (iii)), for n — oo
f®ij¢i—>f®ij@2<1, j=1,...,k
thus

f¢2¢ik+1<1, j=1,...k

if n,,, is chosen sufficiently large. Since @, > 0, the second, third, fifth and
sixth conditions will be satisfied for ¢ =k 4+ 1, if =, is chosen large enough.

Now for 1 =l<j=kh
+!f @ Ph — D)

!f@n,dsnjqbi g|f¢q)q)2
< +]/®nln )’

and since the second term in the right-hand side of this inequality tends to zero
as m— oo, the fourth condition also holds, if =, ; is chosen sufficiently large.
Choosing ¢, = @, , we obtained a sequence ¢, satisfying (A) and (B) with

nk3
K =1, thus ¢, is an unconditional convergence sequence, and (since H, ~ @,)
so is H,, that will be the sequence %, in our Theorem. Qu.e.d.

nks

§ 3. Proof of the Proposition

We will use a lemma of Gaposhkin [4], p. 14 (which is also contained implicitely
in [12], however it is not explicitely stated there):

LemMa. If «, s an Ly-bounded sequence:
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[imi=x.

then it contains a subsequence f. such that B. can be written as

o= B+ B0,

where BUBD =0, n=1,2,..., BO is weakly convergent B > B, and
el

z (2) #0) <

We will also use the following simple remark: if v, LV and v is a bounded
function, then

Yyn I, YV (p 1is arbitary, 1 =< p << o).

Further, if |y,| = |y, p(ya # 7.) =0, then y, P y.

Now applying the Lemma (H? is L;-bounded), one can choose a subsequence
H, of H, such that

B = g9 + 42,
where

PR =0, B0 p,

and

HBD #0) <

17[\/]8

Define the sequence y, as follows
7, if g0 ~o0
e {0 if B — o,
Since y2 = Y, we have
*) viz
Since [yn| < |Ha|, plys # H,)—0 and H, © 0, we have
(**) vz, 0.
Since

Zl,u(yn 75 ﬁn) < 0,

thus y. ~ H, (actually on almost all z, v, = H, for n > n. = n.(z)).
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Define
Pn = r
"V 14

Since 0 =1/V/14+8=<1 and 0=<1/(1 +p) =1, (*) and (*¥) imply ¢. T 0
and ¢} - B/1 + p. Now put

n if n §2n
@nz{w 7]

0 otherwise.

Since u(Pn # @u) = f lgal/2®, thus

z q) "_lé (Pn 7
n=1
and hence
¢n ~ Qn,
@, 0
and
4
P2 = —
n L, 1 + /3

Since |[@,] < 2, @, satisfies all conditions of the Proposition.

Let us mention that the above transformation (dividing by v l‘—_i—TS) makes
it possible to choose a subsequence of @, with f @ikcbil < K (that was done in
the proof of the Theorem). But (though f @* < 1) it cannot ensure the existence
of higher moments, e.g. f @ﬁk — o0 as k- co can still happen. Thus, the above

used Billingsley’s theorem cannot be replaced by any theorem using higher moments
than second.
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