Infinitely many solutions of a symmetric semilinear elliptic equation on an unbounded domain

Sara Maad

Abstract. We study a semilinear elliptic equation of the form

$$-\Delta u + u = f(x, u), \quad u \in H_0^1(\Omega),$$

where f is continuous, odd in u and satisfies some (subcritical) growth conditions. The domain $\Omega \subset \mathbf{R}^N$ is supposed to be an unbounded domain $(N \ge 3)$. We introduce a class of domains, called strongly asymptotically contractive, and show that for such domains Ω , the equation has infinitely many solutions.

1. Introduction

The aim of this paper is to study subcritical semilinear elliptic equations in unbounded domains. As an example, let $N \ge 3$, $p \in (2, 2^*)$, where $2^* = 2N/(N-2)$, and consider the equation

(1.1)
$$-\Delta u + u = |u|^{p-2}u, \quad u \in H_0^1(\Omega).$$

where Ω is a domain in \mathbf{R}^N . When Ω is bounded, the equation has infinitely many solutions, and the corresponding functional

$$\varphi(u) = \frac{1}{2} \int_{\Omega} (u^2 + |\nabla u|^2) dx - \frac{1}{p} \int_{\Omega} |u|^p dx$$

has an unbounded sequence of critical values. There are several proofs of this result, the first of which was made by Ambrosetti and Rabinowitz [1] (see also [10]).

Let c be a real number. A $(P-S)_c$ sequence is a sequence $u_j \in H_0^1(\Omega)$ such that

$$\varphi(u_i) \to c$$
 and $\varphi'(u_i) \to 0$.

The functional φ is said to satisfy the $(P-S)_c$ condition if every $(P-S)_c$ sequence has a convergent subsequence.

When this condition is satisfied for all c>0, there are known methods of obtaining an unbounded sequence of critical values of φ (see e.g. [8]). In the case when Ω is bounded, the $(P-S)_c$ condition follows from the compactness of the embedding of $H_0^1(\Omega)$ into $L^p(\Omega)$.

In this paper we prove that in many cases, φ satisfies the $(P-S)_c$ condition even when Ω is unbounded. A typical example of a domain of this kind is the tube

$$\Omega = \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^{N-n} : |y| < g(x)\}.$$

where $1 \le n \le N-1$ and $g: \mathbb{R}^n \to \mathbb{R}$ is continuous, positive and such that the limit

$$g_{\infty} = \lim_{|x| \to \infty} g(x)$$

exists and $g(x)>g_{\infty}$ for all $x\in\mathbf{R}^n$.

2. Preliminaries and formulation of the problem

Let N > 3 and let $\Omega \subset \mathbb{R}^N$ be a domain. Consider the equation

(2.1)
$$-\Delta u(x) + u(x) = f(x, u(x)), \quad u \in H_0^1(\Omega).$$

where $f \in C(\overline{\Omega} \times \mathbf{R}, \mathbf{R})$ satisfies the following conditions:

 (f_1) there are constants 2 and <math>C > 0 such that for any $x \in \Omega$ and $s \in \mathbb{R}$,

$$|f(x,s)| \le C(|s|^{p-1} + |s|^{q-1});$$

(f₂) there are constants $\mu>2$, $\nu>2$ and D>0 such that for any $x\in\Omega$ and $s\in\mathbf{R}\setminus\{0\}$,

$$sf(x,s) \ge \mu F(x,s) \equiv \mu \int_0^s f(x,\sigma) d\sigma > 0$$

and

$$\liminf_{s \to 0} \frac{F(x,s)}{|s|^{\nu}} \ge D;$$

 (f_3) for any $s \in \mathbf{R}$,

$$f(x.s) = -f(x.-s):$$

 (f_4) there exists a function $f_{\infty} \in C(\mathbf{R}, \mathbf{R})$ such that

$$\lim_{R \to \infty} \sup_{\substack{x \in \Omega \backslash B_R(0) \\ s \in \mathbf{R}}} |f(x,s) - f_{\infty}(s)| = 0.$$

We use the standard norm

$$||u||_{H^1} = \left(\int_{\Omega} (|u|^2 + |\nabla u|^2) \, dx\right)^{1/2}$$

and the corresponding inner product

$$(u,v)_{H^1} = \int_{\Omega} (uv + \nabla u \cdot \nabla v) dx$$

on $H_0^1(\Omega) = W_0^{1,2}(\Omega)$, where \cdot denotes the usual scalar product in \mathbf{R}^N . The functional corresponding to (2.1) is

(2.2)
$$\varphi(u) = \frac{1}{2} \int_{\Omega} (u(x)^2 + |\nabla u(x)|^2) dx - \int_{\Omega} F(x, u(x)) dx$$
$$= \frac{1}{2} ||u||_{H^1}^2 - \int_{\Omega} F(x, u(x)) dx.$$

Then $\varphi \in C^1(H_0^1(\Omega), \mathbf{R})$, and the critical points of φ are the weak solutions of (2.1).

Definition 1. We will say that the domain Ω is strongly asymptotically contractive if $\Omega \neq \mathbf{R}^N$ and for any sequence $\alpha_j \in \mathbf{R}^N$ such that $|\alpha_j| \to \infty$, there exists a subsequence α_{j_l} and a point $\beta \in \mathbf{R}^N$ such that for any R > 0 there exists an open set $M_R \in \Omega + \beta$, a closed set Z of measure 0 and an integer $l_R > 0$ such that

$$(\Omega + \alpha_{j_l}) \cap B_R(0) \subset M_R \cup Z$$
 for any $l \ge l_R$.

Note that every bounded domain is strongly asymptotically contractive. The following examples show that there are a lot of other domains satisfying this condition. Our first two examples of domains were also studied by del Pino and Felmer in [5], where the existence of least energy solutions of (2.1) was proved.

Example 1. Let $1 \le n \le N-1$ and let $g: \mathbf{R}^n \to \mathbf{R}$ be continuous and positive. Suppose that the limit

$$g_{\infty} = \lim_{|x| \to \infty} g(x)$$

exists and that $g(x)>g_{\infty}$ for all $x\in \mathbb{R}^n$. Let $\Omega\subset \mathbb{R}^N$ be the domain defined by

$$\Omega = \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^{N-n} : |y| < g(x)\}.$$

Then the domain Ω is strongly asymptotically contractive. To see this, let $\alpha_j = (\gamma_j, \delta_j) \in \mathbf{R}^n \times \mathbf{R}^{N-n}$ be such that $|\alpha_j| \to \infty$, as $j \to \infty$. If α_j has a subsequence α_{j_l} on which δ_{j_l} is unbounded, then for any R > 0 and any l sufficiently large,

$$(\Omega + \alpha_{j_l}) \cap B_R(0) = \emptyset.$$

Hence we can restrict ourselves to sequences α_j with bounded δ_j -components. Such a sequence δ_j has a convergent subsequence $\delta_{j_l} \to \delta$. Let $\beta = (0, \delta)$ and let

$$M_R = \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^{N-n} ; |y - \delta| < g_\infty + \frac{1}{2}(g(x) - g_\infty)\} \cap B_R(0).$$

Let R>0 and let $\varepsilon_R>0$ be such that

$$\varepsilon_R < \min_{x \in \overline{B_R(0)}} \frac{1}{2} (g(x) - g_{\infty}).$$

Then $M_R \subset \Omega + \beta$ and there exists an integer $l_R > 0$ such that for $l \geq l_R$,

$$(\Omega + \alpha_{j_l}) \cap B_R(0) \subset \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^{N-n} : |y - \delta| < g_{\infty} + \varepsilon_R\} \cap B_R(0) \subset M_R.$$

Example 2. Let $g \in C(\mathbf{R}^{N-1}, \mathbf{R})$ be positive, and suppose that the limit

$$g_{\infty} = \lim_{|x| \to \infty} g(x)$$

exists and that $g(x)>g_{\infty}$ for all $x\in \mathbf{R}^{N-1}$. Let $\Omega\subset \mathbf{R}^N$ be the domain defined by

$$\Omega = \{(x, y) \in \mathbf{R}^{N-1} \times \mathbf{R} : 0 < y < g(x)\}.$$

Then Ω is strongly asymptotically contractive. The proof is similar to the proof of Example 1, and therefore is omitted.

Example 3. As a third example, note that a finite union of intersecting domains as in Example 1 is strongly asymptotically contractive.

Note that \mathbf{R}^N is not strongly asymptotically contractive, and neither is the straight cylinder

$$\Omega = \{(x,y) \in \mathbf{R}^n \times \mathbf{R}^{N-n} : |y| < \alpha\},\$$

where $1 \le n \le N-1$ and $\alpha > 0$.

Theorem 1. Let Ω be a strongly asymptotically contractive, and let $f \in C(\overline{\Omega} \times \mathbf{R}, \mathbf{R})$ satisfy (f_1) , (f_2) , (f_3) and (f_4) . Then equation (2.1) has infinitely many solutions and the corresponding functional φ has infinitely many critical values.

The rest of this paper concerns the proof of this theorem.

3. The $(P-S)_c$ condition

In this section, we prove that φ satisfies the $(P-S)_c$ condition for every c>0 if Ω is a strongly asymptotically contractive domain.

Lemma 1. Let φ be given by (2.2), where $f \in C(\overline{\Omega} \times \mathbf{R}, \mathbf{R})$ satisfies condition (f_2) . Let u_j be a $(P-S)_c$ -sequence, i.e. a sequence such that

- (i) $\varphi(u_j) \rightarrow c$;
- (ii) $\varphi'(u_i) \rightarrow 0$.

Then $c \ge 0$. Moreover, $||u_j||_{H^1}$ is bounded and

$$\limsup_{j \to \infty} \|u_j\|_{H^1}^2 \le \frac{c}{\frac{1}{2} - \frac{1}{\mu}}.$$

Proof. By (2.2),

$$\langle \varphi'(u_j), u_j \rangle = \|u_j\|_{H^1}^2 - \int_{\Omega} f(x, u_j(x)) u_j(x) \, dx.$$

Let $\varepsilon > 0$ be given. Then by (2.2), (f_2) , (i) and (ii), for j large enough,

$$\begin{split} c + \varepsilon + \varepsilon \|u_j\|_{H^1} &\geq \varphi(u_j) - \frac{1}{\mu} \langle \varphi'(u_j), u_j \rangle \\ &= \left(\frac{1}{2} - \frac{1}{\mu}\right) \|u_j\|_{H^1}^2 + \frac{1}{\mu} \int_{\Omega} (f(x, u_j(x)) u_j(x) - \mu F(x, u_j(x))) \, dx \\ &\geq \left(\frac{1}{2} - \frac{1}{\mu}\right) \|u_j\|_{H^1}^2. \end{split}$$

Hence $||u_j||_{H^1}$ is bounded and $c \ge 0$. Moreover.

$$||u_j|| \le \frac{\varepsilon}{2\left(\frac{1}{2} - \frac{1}{\mu}\right)} + \sqrt{\frac{\varepsilon^2}{4\left(\frac{1}{2} - \frac{1}{\mu}\right)^2 + \frac{c + \varepsilon}{\frac{1}{2} - \frac{1}{\mu}}}}.$$

Since $\varepsilon > 0$ was arbitrary, the result follows. \square

The following version of the concentration-compactness principle (see [3], [4]) is from Schindler and Tintarev [7]. (See also [6] and [9].)

Lemma 2. Let u_j be a bounded sequence in $H^1(\mathbf{R}^N)$. Then there exist $w^{(1)}$, $w^{(2)}, ... \in H^1(\mathbf{R}^N)$ and $\alpha_j^{(n)} \in \mathbf{R}^N$. $j, n \in \mathbf{Z}_+$. such that on a renumbered subsequence,

$$u_{j}(\cdot - \alpha_{j}^{(n)}) \rightharpoonup w^{(n)},$$

$$u_{j} - \sum_{n=1}^{\infty} w^{(n)}(\cdot + \alpha_{j}^{(n)}) \to 0 \qquad in \ L^{p}(\mathbf{R}^{N}), \ where \ p \in (2, 2^{*}),$$

$$(3.1) \qquad |\alpha_{j}^{(n)} - \alpha_{j}^{(m)}| \to \infty, \qquad if \ m \neq n.$$

$$\sum_{n=1}^{\infty} ||w^{(n)}||_{H^{1}}^{2} \leq \lim_{j \to \infty} ||u_{j}||_{H^{1}}^{2},$$

$$\sum_{n=1}^{\infty} ||w^{(n)}||_{L^{p}}^{p} = \lim_{j \to \infty} ||u_{j}||_{L^{p}}^{p}, \quad where \ p \in (2, 2^{*}).$$

Lemma 3. Let $\Omega \subset \mathbf{R}^N$ be a strongly asymptotically contractive domain, and let φ be the functional defined in (2.2), where $f \in C(\overline{\Omega} \times \mathbf{R}, \mathbf{R})$ satisfies (f_1) , (f_2) , (f_3) and (f_4) . Then φ satisfies the $(P-S)_c$ condition for any c>0.

Proof. Let c>0, and let $u_j \in H_0^1(\Omega)$ be a $(P-S)_c$ sequence for φ . We start by observing that by Lemma 1, the sequence u_j is bounded. Hence we can apply Lemma 2, and rewrite u_j as a sum

(3.2)
$$u_j = w^{(0)} + \sum_{n=1}^{\infty} w^{(n)} (\cdot + \alpha_j^{(n)}) + r_j.$$

where $r_j \to 0$ in $L^p(\mathbf{R}^N)$, $\alpha_j^{(n)} \in \mathbf{R}^N$, $|\alpha_j^{(n)}| \to \infty$ and $w^{(n)} \in H^1(\mathbf{R}^N)$ are as given in Lemma 2.

Since Ω is a strongly asymptotically contractive domain, for any $n \ge 1$ there exists a subsequence $\alpha_{j_l}^{(n)}$ and a number $\beta^{(n)} \in \mathbb{R}^N$ such that for any R > 0, there exists an open set $M_R^{(n)} \in \Omega + \beta^{(n)}$, a closed set $Z^{(n)}$ of zero measure and an integer $l_R > 0$ such that for any $l \ge l_R$

$$(\Omega + \alpha_{j_l}^{(n)}) \cap B_R(0) \subset M_R^{(n)} \cup Z^{(n)}.$$

By taking a subsequence, we can assume that this relation holds for every $j \ge j_R$. Hence

(3.3)
$$\sup w^{(n)} \cap B_R(0) \subset \bigcup_{j=j_R}^{\infty} \sup u_j(\cdot - \alpha_j^{(n)}) \cap B_R(0) \subset \overline{M_R^{(n)}} \cup Z^{(n)} \in (\Omega + \beta^{(n)}) \cup Z^{(n)}.$$

and thus

supp
$$w^{(n)} \subset \Omega + \beta^{(n)}$$

modulo a set of measure zero. Let $\widetilde{w}^{(n)} = w^{(n)}(\cdot - \beta^{(n)})$ and let $\widetilde{\alpha}_j^{(n)} = \alpha_j^{(n)} + \beta^{(n)}$. Note that by (3.3), there exists an open set $U \subset \Omega$ such that $\widetilde{w}^{(n)} \equiv 0$ in U. This fact will be used when applying the maximum principle below.

Let $v \in C_0^{\infty}(\Omega)$ be arbitrary. Then

$$\begin{split} \int_{\Omega} (\nabla \widetilde{w}^{(n)}(x) \cdot \nabla v(x) + \widetilde{w}^{(n)}(x) v(x)) \, dx \\ &= \lim_{j \to \infty} \int_{\Omega} (\nabla u_j(x - \widetilde{\alpha}_j^{(n)}) \cdot \nabla v(x) + u_j(x - \widetilde{\alpha}_j^{(n)}) v(x)) \, dx \\ &= \lim_{j \to \infty} \int_{\Omega + \widetilde{\alpha}_j^{(n)}} f(x - \widetilde{\alpha}_j^{(n)}, u_j(x - \widetilde{\alpha}_j^{(n)})) v(x) \, dx \\ &= \lim_{j \to \infty} \int_{\Omega + \widetilde{\alpha}_j^{(n)}} f(x - \widetilde{\alpha}_j^{(n)}, \widetilde{w}^{(n)}(x)) v(x) \, dx \\ &= \int_{\Omega} f_{\infty}(\widetilde{w}^{(n)}(x)) v(x) \, dx. \end{split}$$

which means that for $n \ge 1$, $\widetilde{w}^{(n)}$ is a weak solution of the equation

$$-\Delta \widetilde{w}^{(n)} + \widetilde{w}^{(n)} = f_{\infty}(\widetilde{w}^{(n)}).$$

By regularity theory, $\widetilde{w}^{(n)}$ is continuous in Ω . We divide the domain Ω into three parts:

$$\Omega_{+} = \{ x \in \Omega : \widetilde{w}^{(n)}(x) > 0 \}.$$

$$\Omega_{-} = \{ x \in \Omega : \widetilde{w}^{(n)}(x) < 0 \},$$

$$\Omega_{0} = \{ x \in \Omega : \widetilde{w}^{(n)}(x) = 0 \}.$$

By the previous paragraph, Ω_0 has a nonempty interior. Note that by (f_2) ,

$$-\Delta \widetilde{w}^{(n)} + \widetilde{w}^{(n)} > 0 \quad \text{in } \Omega_+.$$
$$-\Delta \widetilde{w}^{(n)} + \widetilde{w}^{(n)} < 0 \quad \text{in } \Omega_-.$$

We claim that $\widetilde{w}^{(n)} \equiv 0$ in Ω , i.e. $\Omega_0 = \Omega$. Suppose to the contrary that $\Omega_+ \cup \Omega_-$ is nonempty. Then either Ω_+ or Ω_- has a component whose boundary is intersecting the boundary of Ω_0° . Suppose first that Ω_+ has a component $\widetilde{\Omega}_+$ such that $\partial \widetilde{\Omega}_+ \cap \partial \Omega_0^{\circ} \neq \emptyset$. By applying the strong maximum principle (see [2], Theorem 8.19,

p. 198) on $(\widetilde{\Omega}_+ \cup \Omega_0)^{\circ}$, $\widetilde{w}^{(n)} \equiv 0$ in this domain, and so $\widetilde{\Omega}_+ = \emptyset$. The same argument shows that Ω_- cannot have a component adjacent to Ω_0° . This shows that $\widetilde{w}^{(n)} \equiv 0$ in Ω .

Let p and q be as in condition (f_1) . We have proved that $u_j \to w^{(0)}$ in $L^p(\mathbf{R}^N) \cap L^q(\mathbf{R}^N)$, and since $u_j \in H_0^1(\Omega) \subset L^p(\Omega) \cap L^q(\Omega)$, $u_j \to w^{(0)}$ in $L^p(\Omega) \cap L^q(\Omega)$. By the continuity of the superposition operator

$$L^p(\Omega) \cap L^q(\Omega) \ni u \mapsto f(x, u) \in L^{p/(p-1)}(\Omega) + L^{q/(q-1)}(\Omega)$$

(see e.g. Theorem A.4., p. 134, in [10]),

$$f(x, u_j) \to f(x, w^{(0)})$$
 in $L^{p/(p-1)}(\Omega) + L^{q/(q-1)}(\Omega)$.

We write $f = f_1 + f_2$, where $f_1 \in L^{p/(p-1)}(\Omega)$ and $f_2 \in L^{q/(q-1)}(\Omega)$. Observe that

$$\begin{split} \|u_j - w^{(0)}\|_{H^1}^2 &= \langle \varphi'(u_j) - \varphi'(w^{(0)}), u_j - w^{(0)} \rangle \\ &+ \int_{\Omega} (f(x, u_j(x)) - f(x, w^{(0)}(x))) (u_j(x) - w^{(0)}(x)) \, dx. \end{split}$$

Obviously,

$$\langle \varphi'(u_j) - \varphi'(w^{(0)}), u_j - w^{(0)} \rangle \to 0,$$

and by the Hölder inequality,

$$\begin{split} \left| \int_{\Omega} (f(x, u_{j}(x)) - f(x, w^{(0)}(x)))(u_{j}(x) - w^{(0)}(x)) \, dx \right| \\ & \leq \left| \int_{\Omega} (f_{1}(x, u_{j}(x)) - f_{1}(x, w^{(0)}(x)))(u_{j}(x) - w^{(0)}(x)) \, dx \right| \\ & + \left| \int_{\Omega} (f_{2}(x, u_{j}(x)) - f_{2}(x, w^{(0)}(x)))(u_{j}(x) - w^{(0)}(x)) \, dx \right| \\ & \leq \|f_{1}(\cdot, u_{j}) - f_{1}(\cdot, w^{(0)})\|_{L^{p/(p-1)}} \|u_{j} - w^{(0)}\|_{L^{p}} \\ & + \|f_{2}(\cdot, u_{j}) - f_{2}(\cdot, w^{(0)})\|_{L^{q/(q-1)}} \|u_{j} - w^{(0)}\|_{L^{q}} \\ & \to 0. \end{split}$$

By taking the infimum over the functions $f_1 \in L^{p/(p-1)}(\Omega)$ and $f_2 \in L^{q/(q-1)}(\Omega)$ such that $f = f_1 + f_2$, we obtain $u_j \to w^{(0)}$ in $H_0^1(\Omega)$. \square

4. Infinitely many solutions

We obtain an infinite sequence of critical values from the following theorem (see e.g. Theorem 6.5 of [8]).

Theorem 2. Suppose that V is an infinite-dimensional Banach space and suppose $\varphi \in C^1(V, \mathbf{R})$ satisfies $(P-S)_c$ for every c>0. $\varphi(u)=\varphi(-u)$ for all u, and assume the following conditions:

- (i) there exist $\alpha > 0$ and $\varrho > 0$ such that if $||u|| = \varrho$ and $u \in V$, then $\varphi(u) \ge \alpha$;
- (ii) for any finite-dimensional subspace $W \subset V$ there exists R = R(W) such that $\varphi(u) \leq 0$ for $u \in W$, $||u|| \geq R$.

Then φ possesses an unbounded sequence of critical values.

Proof of Theorem 1. We apply Theorem 2 with $V=H_0^1(\Omega)$. It is clear that $\varphi \in C^1(H_0^1(\Omega), \mathbf{R})$ is even. By Lemma 3, the $(P-S)_c$ condition is satisfied for every c>0. We only need to check conditions (i) and (ii).

Integrating (f_1) , there is a constant $C_1 > 0$ such that for all $x \in \Omega$ and $s \in \mathbb{R}$,

$$|F(x,s)| \le C_1(|s|^p + |s|^q).$$

By the Sobolev embedding theorem, we have the estimate

$$\varphi(u) \geq \frac{1}{2} \|u\|_{H^1}^2 - C_1 \int_{\Omega} (|u(x)|^p + |u(x)|^q) \, dx \geq \frac{1}{2} \|u\|_{H^1}^2 - C_2 \|u\|_{H^1}^p - C_2 \|u\|_{H^1}^q.$$

Let $||u|| = \varrho$, where ϱ is free for the moment. Then

$$\varphi(u) \ge \frac{1}{2}\varrho^2 - C_2\varrho^p - C_2\varrho^q,$$

and we would like to choose ϱ such that $\varphi(u)$ is as large as possible when $||u|| = \varrho$. For such ϱ , we have

$$\varrho - C_2 p \varrho^{p-1} - C_2 q \varrho^{q-1} = 0.$$

Since the left-hand side is positive for small values of $\varrho > 0$ and negative for large ϱ , by the intermediate value theorem, this equation has a solution. We choose ϱ to be this solution. Then

$$C_2 \varrho^p = \frac{1}{p} \varrho^2 - C_2 \frac{q}{p} \varrho^q.$$

and so for $||u|| = \varrho$,

$$\varphi(u) \geq \left(\frac{1}{2} - \frac{1}{p}\right)\varrho^2 + C_2\left(\frac{q}{p} - 1\right)\varrho^q \geq \left(\frac{1}{2} - \frac{1}{p}\right)\varrho^2.$$

Thus condition (i) is fulfilled with $\alpha = (\frac{1}{2} - 1/p) \varrho^2$.

By (f_2) , there is a constant $C_3>0$ such that for every $x\in\Omega$ and $s\in\mathbf{R}$, $|F(x,s)|\geq C_3|s|^{\mu_1}$, where $\mu_1=\min\{\mu,\nu\}$. Indeed, let $\varepsilon>0$ be given. By integration of the first identity of (f_2) , we have for $|s|>\varepsilon$ and $x\in\Omega$.

$$F(x,s) \ge \frac{F(x,\varepsilon)}{\varepsilon^{\mu}} |s|^{\mu}.$$

By letting $\varepsilon \to 0$ and using the second identity of (f_2) , the claim follows. Let W be a finite-dimensional subspace of $H_0^1(\Omega)$. Since all norms are equivalent of W, and since

$$\varphi(u) \leq \frac{1}{2} \|u\|_{H^1}^2 - C_3 \|u\|_{L^{\mu_1}}^{\mu_1}.$$

condition (ii) follows.

Acknowledgements. I would like to thank Professor Kyril Tintarev for all suggestions and advice. I would also like to thank the referee for making me aware of a difficulty in an earlier version of the manuscript.

References

- AMBROSETTI, A. and RABINOWITZ, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
- GILBARG, D. and TRUDINGER, N. S.. Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1998.
- LIONS, P.-L., The concentration-compactness principle in the calculus of variations.
 The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.
- Lions, P.-L., The concentration-compactness principle in the calculus of variations.
 The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223–283.
- DEL PINO, M. A. and FELMER, P. H., Least energy solutions for elliptic equations in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 195–208.
- SCHINDLER, I. and TINTAREV, K., Semilinear elliptic problems on unbounded domains, in Calculus of Variations and Differential Equations (Haifa, 1998)
 (Ioffe, A., Reich, S. and Shafrir, I., eds.), pp. 210–217, Chapman & Hall/CRC, Boca Raton, Fla., 2000.
- SCHINDLER, I. and TINTAREV, K., An abstract version of the concentration compactness principle, to appear in Rev. Mat. Univ. Complut. Madrid.
- 8. Struwe, M., Variational Methods. 2nd ed., Springer-Verlag, Berlin, 1996.
- 9. TINTAREV, K., Solutions to elliptic systems of Hamiltonian type in \mathbb{R}^N , Electron. J. Differential Equations 29 (1999), 1-11.
- 10. WILLEM, M., Minimax Theorems, Birkhäuser, Boston, Mass., 1996.

Received July 17, 2001 in revised form May 19, 2002 Sara Maad
Department of Mathematics
Uppsala University
P. O. Box 480
SE-751 06 Uppsala
Sweden
email: sara@math.uu.se