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Infinitely many solutions of a 
symmetric semilinear elliptic 

equation on an unbounded domain 

Sara Maad 

Abstract .  We study a semilinear elliptic equation of the form 

--Au+u=f(x,u), u E H01(f~), 

where f is continuous, odd in u and satisfies some (subcritical) growth conditions. The domain 
f~CR N is supposed to be an unbounded domain (N>3). We introduce a class of domains, called 
strongly asymptotically contractive, and show that for such domains fL the equation has infinitely 
many solutions. 

1. I n t r o d u c t i o n  

The aim of this paper  is to s tudy  subcri t ical  semil inear  elliptic equat ions  in 

u n b o u n d e d  domains.  As an example,  let N>_3, pE(2 .2*) ,  where 2*=2N/(N-2), 
and  consider the equat ion  

(1.1) -Au+u=lulP-2u, u E H~(Q).  

where ft is a domain  in R N. \Vhen f~ is bounded ,  the equat ion  has infinitely m a n y  

solutions, and  the corresponding funct ional  

l / (u2 +[V'u[2)dx-~ j(~ lulP dx 

has an u n b o u n d e d  sequence of critical values. There  are several proofs of this result, 

the first of which was made  by a m b r o s e t t i  and  Rabinowitz  [1] (see also [10]). 

Let c be a real number .  A (P S)~ sequence is a sequence u s EH~ (f~) such tha t  

~'(~,) ~ ( u j )  --~c and  ~ 0 .  
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The functional ~ is said to satisfy the (P-S)~ condition if every (P-S)c sequence 

has a convergent subsequence. 
When this condition is satisfied for all c>0.  there are known methods of ob- 

taining an unbounded sequence of critical values of g (see e.g. [8]). In the case when 
f~ is bounded, the (P-S)~ condition follows from the compactness of the embedding 
of Hi(f1) into LP(f~). 

In this paper  we prove that  in man?- cases, g satisfies the (P S)~ condition even 
when f~ is unbounded. A typical example of a domain of this kind is the tube 

9 . :  { ( . .  y) e l~" • R-Y-" : lyl < ~(x)} .  

where l < n < N - 1  and 9: R~--+R is continuous, positive and such that  the limit 

9x = lim g(x) 

exists and 9 ( x ) > 9 ~  for all x E R ' .  

2. P r e l i m i n a r i e s  a n d  f o r m u l a t i o n  o f  t h e  p r o b l e m  

Let N_>3 and let f~cR:" be a domain. Consider the equation 

(2.1) - ~ ( ~ . )  + ~ ( x ) =  f ( , .  ~,(,)).  ~, ~/4o~(~).  

where fcC(~ x R, R)  satisfies the following conditions: 
(fl) there are constants 2 < p < q < 2  ~ and C > 0  such that  for any r  and 

s E R ,  

If(.~', ~)1 -< C(Isl"-~ + Isl"- l ) ;  
(f2) there are constants / />2,  u > 2  and D > 0  such that  for an 3" xE.Q and 

~ R \ { O } ,  

sf(x. s) _> pF(x. 5) =-- p f (x .  a) d~ > 0 

and 

lira inf F ( . .  s) > D: 
,-~o I.~l~ - 

(f3) for any s E R ,  

f(x.~) = - f ( x . - s ) :  

(f4) there exists a function f ~  EC(R,  R)  such that 

lim sup I f (* ,~ ) - f~ (~) l  =0. 
R--+o~ x E ~ \ B R ( O  ) 

sER 
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We use the s tandard norm 

UUHH~ = ( f~.(lu]2 + ,Vtll2) dx) t/'2 

and the corresponding inner product  

(~, v ) . i  = [ ( ~ , +  v , , .Vv)  d~ 
J ~2 

on H~(~2)=W~'2(f~), where - denotes the usual scalar product in R x.  The fllnc- 
tional corresponding to (2.1) is 

~(u) = -~l ~(u(x)2+[Vu(x)]2)dx- f~_ F(x.u(x))dx 
(2.2) 

= ~llull~-.~ r(x,~(z))dx. 

Then p E C 1 (H~ (f~), R),  and the critical points of ~ are the weak solutions of (2.1). 

Definition 1. ~Ze will say that  the domain f~ is strongly asymptotically con- 
tractive if f~:/;R N and for any sequence a~ER x such that  lajl--~, there exists a 
subsequence c~jt and a point 3 E R  x such that  for any R > 0  there exists an open set 

MRNfI+/~,  a closed set Z of measure 0 and an integer IR>0 such that  

(f~+aj~)C~BR(0) C MRUZ for any 1 > IR. 

Note that  every bounded domain is strongly asymptotical ly contractive. The 
following examples show that  there are a lot of other domains satish'ing this condi- 

tion. Our first two examples of domains were also studied by del Pino and Felmer 
in [5], where the existence of least energy solutions of (2.1) was proved. 

Example 1. Let l < n < N - 1  and let g : R " - - + R  be continuous and positive. 
Suppose that  the limit 

g~  = lira g(x) 

exists and that  g(x)>g~ for all xER '~. Let ~ c R  x be the domain defined by 

~ = {(x, ~) e R'~ • RX-"  : lyl < g(x)}. 

Then the domain ft is strongly asymptotically contractive. To see this, let c t j= 
(~j, d j ) c R "  •  N-~ be such that  l a j l - -~c ,  as j-+=x:. If aj has a subsequenee ajz 
on which ~y~ is unbounded, then for any R > 0  and any l sufficiently large, 

( ~ + a j , ) n B ~ ( 0 )  = O. 
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Hence we can restrict ourselves to sequences a j  with bounded ~j-components. Such 
a sequence 6j has a convergent subsequence 6jz-+6. Let 3 = ( 0 ,  6) and let 

M~ = { (x, y) ~ R n • W ~-~  ; I v -  61 < g~  + �89 (g(x) - g ~ )  } NBR (0)  

Let R > 0  and let OR>0 be such that  

1 
o R <  min ~(g(x) -g~) .  

Then kInCf~+~ and there exists an integer IR>0 such that  for l>ln, 

(~+~jz)nBR(0)  c {(x, y) e R~•  R "~-" : IV-51 < g~  +cR}nBR(0 )  C Me.  

Example 2. Let gEC(R N-l ,  R) be positive~ and suppose that  the limit 

g ~  = lira g(x) 

exists and that  g(x)>g~ for all x E R  "~-1. Let f ~ c R  N be the domain defined by 

~ = {(x, y) E R  x ' - I  x R : O < y < g ( x ) } .  

Then f~ is strongly asymptotically contractive. The proof is similar to the proof of 

Example  1, and therefore is omitted. 

Example 3. As a third example, note that  a finite union of intersecting domains 
as in Example 1 is strongly asymptotical ly contractive. 

Note that  R N is not strongly asymptotical ly contractive~ and neither is the 

straight cylinder 

~ = {(x, y ) E R ~ ' x R ~ - - " :  lY[ < a } ,  

where 1 < n < N -  1 and a > 0. 

T h e o r e m  1. Let ~ be a strongly asymptotically contractive, and let f E 
C ( ~ •  satisfy (fl), (f2), (f3) and (f4). Then equation (2.1) has infinitely 
many solutions and the corresponding functional ~ has infinitely many critical val- 
~tes .  

The rest of this paper  concerns the proof of this theorem. 
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3. The (P -S )e  condi t ion  

In this section, we prove that ~ satisfies the (P-S)c condition for every c>O if 
f~ is a strongly asymptotically contractive domain. 

Lemma 1. Let ~ be given by (2.2), where f E C ( ~ x R ,  R) satisfies condi- 
tion (f2). Let uj be a (P-S)c-sequence, i.e. a sequence such that 

(i) qo(uj)-~c; 
(ii) ~'(uj)-~O. 

Then c>O. Moreover, HujlIH~ is bounded and 

C 
limsnpllujllul,, ,,2 <_ 1 1" 

j--~vc 

2 /.z 

Proof. By (2.2), 

(~'(uj), uj) = Iluj 112H~ - - ~  f(x, u/(x))uj(x)dx. 

Let e>0 be given. Then by (2.2), (f2), (i) and (ii), for j large enough, 

+1 

Hence IlujllH1 is bounded and c_>0. Moreover. 

@ 
2(  1 - 1  ) 4 1 -  21 PI" 

Since e>0 was arbitrary, the result follows. [] 

The following version of the concentration-compactness principle (see [al, [4]) 
is from Sehindler and Tintarev [7]. (See also [6] and [9].) 
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L e m m a  2. Let uj be a bounded sequence in HI(RX) .  Then there exist w (1), 

w (2), . . .EHI (R  N) and ^(~)ER ~'. j .  ~TEZ.. such that o~ a re, umbered subsequence. (2gj 

(3.1) 

uj 

-c~j ) 

~ w ( n ) (  - (~), - . •  ) - - + 0  

r t ~ l  

la,~Tz) ~ (m) �9 -cej l-+~c. 

2--+ ~c 
r ~ l  

~l lw (n) I1~,, = lira I luj l l~ ,  
2-~. 2,c 

in LP(RX), wherepE (2,2"), 

where p E (2.2*). 

L e m m a  3. Let ~ c R  N be a strongly asymptotically contractive domain, and 

let ~ be the functional defined in (2.2), where f EC(~  •  satisfies (fl) ,  (f~), 
(f3) and (f4). Then p satisfies the (P-S)c condition for any c>0. 

Proof. Let c>0, and let ~ j c H ~ ( ~ )  be a (P-S)~: sequence for ~. We start by 
observing that  by Lemma 1. the sequence uj is bounded. Hence we can apply 
Lemma 2, and rewrite uj as a sum 

cx: 

(3.2) uj = + Z  
n = l  

where rj--+O in LP(RX), aS'0ERX, laS")i--+x and w(" )EHI(R  x)  are as given in 
Lemma 2. 

Since t~ is a strongly asymptotically contractive domain, for any n_>l there 
exists a subsequence c~(. n) and a number .3 ( ' ) E R  'v such that for any R>0.  there 

exists an open set M (~) ~ + , 3  ('~), a closed set Z (~') of zero measure and an integer 
IR>O such that for any l>>IR 

c u z(") .  

By taking a subsequence, we can assume that this relation holds for every j>_jR. 

Hence 

(3.3) 
suppw(n) ABR(0)C LJ suppu j ( ' - aS" ) )NBR(O ) 

:)=JR 

c M(R ") UZ (') ~ (9-+ 3(~))UZ r 
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and thus 

suppw (~) C [~+,3 (~) 

modulo a set of measure zero. Let g : ( n ) = w ( " ) ( - - 3  u')) and let ~(~)=a5~)+3 (~) ctj 

Note that  by (a a), there exists an open set UCQ such that tT:(')=-0 in U. This fact 
will be used when applying the maximum principle below. 

Let, r E C k ( f  "t) be arbitrary. Then 

s  (~) (x). + ~ ( ~ ) d x  Vv(x) (~)~,(~)) 

= lira [ ( V u j ( x - a ~  ' ')).vt '(.r)+uj(x-aj'))v(x)) dx 
j - +  ec ja ~ 

/~. ~(") , -(,) = lim f ( . r - a j  , ))v(x) dx J ~ :  +a~ ~ uj (x -a j  

= lira f f ( x -a~  '~). ~(")(x))v(x)  dx 
j - ~ c  jf~+~,~) 

= f~ f~(~:(n)(x))v(x) dx. 

which means that for n > l ,  ~ ( ' )  is a weak solution of the equation 

-A(5(") + t~(-)= f ~  (s 

By regularity theory, ~('~) is continuous in 9.. We divide the domain ft into three 
parts: 

a+ = {x e a ;~(~')(x)>0}, 

~o = {x ~ f~ ; g(")(x) =0}.  

By the previous paragraph, f~0 has a nonempty interior. Note that by (f2), 

-Ag: (~ ' )+~  (') > 0  in 9._. 

- A ~ ( " ) + t ~ ( " )  < 0  in .Q . 

We claim that ~ (n)=0  in fL i.e. f~0=f~. Suppose to the contrary that ~Q+Uf~_ 
is nonempty. Then either f L  or f~ has a component whose boundary is inter- 
secting the boundary of t2~). Suppose first that f~+ has a component 0+ such that 
00+N0f~0r By applying the strong maximmn principle (see [2], Theorem 8.19. 
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p. 198) on (~+Uf~0) ~ t~(~)-0 in this domain, and so ~+=0.  The same argument 
shows that f~_ cannot have a component adjacent to Q0. This shows that  t~ ( ' ) - 0  
in Q. 

Let p and q be as in condition (fl).  \~e have proved that uj--+w (~ in LP(RN)N 
Lq(RN) ,  and since ujEHI(f~)CLP(f~)KILq(Q), uj--+w (0) in LP(Q)ALq(f~). By the 
continuity of the superposition operator 

LP(12)ALq(f~) ~ u ~-+ f(x, u) C L p/(p-1) (-Q)-~ Lq/(q-1)(Q) 

(see e.g. Theorem A.4., p. 134. in [10]), 

f(x,  ui) -+ f(x, w (~ in LP/(P-1)(Q)+Lq/(q-1)(f~). 

We write f = f l  +f2, where fl ELP/(P-1)(f~) and f2 E Lq/(q-1)(Q) �9 Observe that 

lieu _~(o)I1~ -- (~ ' (~u)-  ~'(w(~ . j  - w  (~ 

+ [ (f(x, uj (x)) - f (x, w (~ (x)))(uj (x) - w  (~ (x)) dx. 
gf~ 

Obviously, 
( ; ' ( ~ j ) -  ; '(w(~ . j  - w  (~ -~ 0. 

and by the H61der inequality, 

f f ( f ( x ,  ( x ) ) - f ( x , w  (~ w (~ dx ~tj (x))) ( . j  (x) 

<_ ./])(fl (x, uj(x) )-- fi (x, w(~ ([12) ) )(?lj (x) ~ ~ ( O ) ( x ~ ) dx 

.~ (f2(x, uj(x) ) -  f2(x. w(~ (x) ) )(uj(x)-w(~ (x) ) dx + 

< I]fl(", u j ) - f x ( . ,  w(~ p ~)Iluj-w (~ IlL, 
+ IIf2(', u j ) - f 2 ( ' ,  w(~ <~, ~)Iluj _~,(o0 IIL~ 

--+0. 

By taking the infimum over the Nnctions fl E Lp/(p- 1)(Q) and f2 ELq/(q-1)(f~) such 
that  f= f l+f2 ,  we obtain u j ~ w  (~ in H~(f~). 

4. I n f i n i t e l y  m a n y  s o l u t i o n s  

We obtain all infinite sequence of critical values from the following theorem 
(see e.g. Theorem 6.5 of [8]). 
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T h e o r e m  2. Suppose that V is an infinite-dimensional Banach space and sup- 

pose ~ E C 1 (V, R) satisfies (P S)c for every c > O, .2(u) = ~r(- u) for all u. and assume 
the following conditions: 

(i) there exist ct>0 and Q>0 such that if Ilull=o and u EV ,  then p(u)_>a; 
(ii) for any finite-dimensional subspace IVCV there exists R = R ( W )  such that 

~(u)<_o fo~ uew,  I}~JJ>R. 
Then ~ possesses an unbounded sequence of critical values. 

Proof of Theorem 1. We apply Theorem 2 with V = H ~ ( ~ ) .  It is clear that 
~2ECI(HI(~) ,  R) is even. By Lemma 3, the (P-S)c condition is satisfied for every 
c>0.  We only need to check conditions (i) and (ii). 

Integrating (f l) ,  there is a constant C1 >0 such that for all z 'E~ and s c R ,  

If(*, s)l _< c~ (IsF+ Islq). 

By the Sobolev embedding theorem, we have the estimate 

~9(U) ~ ~ll~tll2Hx--C1 ~ (l~t(x)l p q-I~t(22)tq) d37 ~ ~11~1112H 1 --C2IIIIIIPHl --C211ulIqH1. 

Let ]lull =0, where Q is free for the moment. Then 

(I.9(U) ~ l~02-C2F-C2~oq , 

and we would like to choose t) such that  ~(u) is as large as possible when Null=O. 
For such t~, we have 

o-C2pQP- I -C2qo q-1 = 0 .  

Since the left-hand side is positive for small values of o>0  and negative for large o, 
by the intermediate value theorem, this equation has a solution. We choose ~o to be 
this solution. Then 

c2d '  = t-~o2-c2q.o~. 
P P 

and so for I1~11 =0, 

~(~) >- (~-~) 02+c2 (q-l)  0q -> (~-~)- o2. 

Thus condition (i) is fulfilled with a =  ( � 89  l /p)92.  
By (f2), there is a constant C3 >0 such that for every zCf~ and sER,  IF(x, s)l _> 

C31st *.1, where # l=min{# ,  ~,}. Indeed. let e>0  be given. By integration of the first 
identity of (f2), we have for Is[>z and xEfL 

F(. ,  s) > F(. ,  ~)tsl~ 
s 
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By le t t ing  c - ~ 0  and  using the  second iden t i ty  of (f2), the  c la im follows. Let  W be 

a f in i te -d imens ional  subspace  of H I (f~). Since all norms  are  equivalent  of W.  and 

since 
1 2 U P l  ;(u) <  lluttH,-C3 - -  L P l .  

condi t ion  (ii) follows. [] 
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