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Infinitely many solutions of a
symmetric semilinear elliptic
equation on an unbounded domain

Sara Maad

Abstract. We study a semilinear elliptic equation of the form
—Autu=f(z,u). uweHLHQ).

where f is continuous, odd in u and satisfies some (subcritical) growth conditions. The domain
QCRY is supposed to be an unbounded domain (N >3). We introduce a class of domains, called
strongly asymptotically contractive, and show that for such domains 2, the equation has infinitely
many solutions.

1. Introduction

The aim of this paper is to study subcritical semilinear elliptic equations in
unbounded domains. As an example, let N >3, pe(2.2*), where 2*=2N/(N-2),
and consider the equation

(11 —Autu=|uP2u. ue Hy(Q).
0

where € is a domain in RY. When  is bounded, the equation has infinitely many
solutions, and the corresponding functional

go(u)z%/ﬂ(uQHVulz)d;r—%/Q]u]pdm

has an unbounded sequence of critical values. There are several proofs of this result,
the first of which was made by Ambrosetti and Rabinowitz [1] (see also [10]).
Let ¢ be a real number. A (P-S). sequence is a sequence u;€Hg(€2) such that

o(uj)—c and ¢'(u;)—0.
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The functional ¢ is said to satisfv the (P-S). condition if every (P-S). sequence
has a convergent subsequence.

When this condition is satisfied for all ¢>0. there are known methods of ob-
taining an unbounded sequence of critical values of ;> (see e.g. [8]). In the case when
Q is bounded, the (P-S). condition follows from the compactness of the embedding
of H}(Q) into LP(9).

In this paper we prove that in many cases, ¢ satisfies the (P-S). condition even
when ) is unbounded. A typical example of a domain of this kind is the tube

Q={(z.y) eR" xR " : |y < g(z)}.
where 1<n<N -1 and g: R®—R is continuous. positive and such that the limit
g = lim g(x)
|z]ox

exists and g(z)>g,. for all zeR".

2. Preliminaries and formulation of the problem

Let N>3 and let QCR?Y be a domain. Consider the equation
(2.1) —Au(z)+u(r) = f(zr.u(x)). ueHy(Q).

where feC(Qx R, R) satisfies the following conditions:
(f1) there are constants 2<p<g<2* and C>0 such that for any z€Q and
scR,
[f(z. )| SC(Is[P +]s]"7 )

(f2) there are constants u>2, v>2 and D>0 such that for any reQ and
seR\{0}.

sflz.s) > uF(z.8)=u Sf(.r.a) do >0
0

and F
liminf (2.5)

s—0 ],S'I'/

>D:

(f3) for any seR,
fz.s)=—f(z.—s):
(fa) there exists a function f, €C(R.R) such that
lim sup |f(z.s)—fx(s)]=0.

R—=o¢ pe0\BR(0)
seR
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We use the standard norm

and the corresponding inner product
(u.v) g = / (ur+Vu-Vu)dr
0

on H(Q)=W,?(Q), where - denotes the usual scalar product in R. The func-
tional corresponding to (2.1) is

go(u):l/ﬂ(u(z)QHVu(a:)F)da:—/ F(x.u(x))dx

(2.2) @

_ %||u||§{1 _/Q Flz. u(x)) dx.

Then ¢ C(HL(Q),R), and the critical points of = are the weak solutions of (2.1).

Definition 1. We will say that the domain ) is strongly asymptotically con-
tractive if Q#RY and for any sequence a;€R" such that |a;|—oc. there exists a
subsequence «j, and a point 3€RY such that for any R>0 there exists an open set
MpreN+3, a closed set Z of measure 0 and an integer [g >0 such that

(Q+a,; )NBr(G)CAIgUZ  for any I > .

Note that every bounded domain is strongly asyvmptotically contractive. The
following examples show that there are a lot of other domains satisfving this condi-
tion. Our first two examples of domains were also studied by del Pino and Felmer
in [5], where the existence of least energy solutions of (2.1) was proved.

Ezample 1. Let 1<n<N -1 and let ¢: R"—R be continuous and positive.
Suppose that the limit

g = lim g(z)

jz|—ox

exists and that g(z)>g. for all z€R”. Let QCR" be the domain defined by
Q={(z.,y) eR"xR " |y| <g(2)}.

Then the domain Q is strongly asymptotically contractive. To see this, let a;=
(75,6;)ER™* xRN =" be such that |a;]—2c. as j—oc. If a; has a subsequence oy,
on which ¢;, is unbounded, then for any R>0 and any [ sufficiently large.

(Q4a;,)NBr(0)=0.
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Hence we can restrict ourselves to sequences «; with bounded ¢;-components. Such
a sequence §; has a convergent subsequence d;, —8. Let 3=(0.) and let

Mp={(z,y) ER"xRV"": |y—6| < g +3(9(z) —goc) } N Br(0).

Let R>0 and let e >0 be such that

) 1
er< min_ 2(g(e)—gu).
zEBR(0)

Then MrCQ+ 3 and there exists an integer [z >0 such that for [>[g.

(Q4a;,)NBr(0) C {(z,y) e R" xR " : [y—8| < g»c +£r}NBR(0) C Mp.

Ezample 2. Let ge C(RN~1.R) be positive, and suppose that the limit

g = lim g(z)

[z}
exists and that g(z)>gs for all ze R¥~1. Let QCR" be the domain defined by
Q={(z.y) e RV 'xR:0<y<g(a)}
Then € is strongly asymptotically contractive. The proof is similar to the proof of

Example 1, and therefore is omitted.

FEzample 3. As a third example, note that a finite union of intersecting domains
as in Example 1 is strongly asymptotically contractive.

Note that RY is not strongly asymptotically contractive, and neither is the
straight cylinder
Q={(z.y) ER"xR" " |yl <a}.

where 1<n<N -1 and a>0.

Theorem 1. Let Q be a strongly asymptotically contractive. and let fe€
C(QxR,R) satisfy (f1). (f2), (fs) and (fy). Then equation (2.1) has infinitely
many solutions and the corresponding functional ¢ has infinitely many critical val-
ues.

The rest of this paper concerns the proof of this theorem.
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3. The (P-S). condition

In this section, we prove that ¢ satisfies the (P-8). condition for every ¢>0 if
Q2 is a strongly asymptotically contractive domain.

Lemma 1. Let ¢ be given by (2.2), where feC(QxR.R) satisfies condi-
tion (f2). Let u; be a (P-S).-sequence. i.e. a sequence such that
() olu;) e
(i) ' (u15) 0.
Then ¢>0. Moreover, ||u;|lpt is bounded and

c
1 1°

2 p

limsup ||u; |3, <
Jjooc

Proof. By (2.2),

(@' (). 5) = = [ s )y (2
Let >0 be given. Then by (2.2), (f2). (i) and (ii). for j large enough.,

1
ctetel|lusll > @(uj)—;<99,('uj)-uj>

= (%_%>||uj||fql+i/Q(f(a:,uj(a:))u]‘(a:)—#F(%uj(z)))d$
> (5 ) sl

Hence ||u;|| g1 is bounded and ¢>0. Moreover.

n%us2<%i%>+4 2

Since £ >0 was arbitrary, the result follows.

a

The following version of the concentration-compactness principle (see [3], [4])
is from Schindler and Tintarev [7]. (See also [6] and [9].)
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Lemma 2. Let u; be a bounded sequence in H'(R™). Then there exist w'?),
w®, . eHY(RN) and ag-n)ER‘\-. j.neZ.. such that on a renumbered subsequence,

(- —og") = u™,
B -
u]-—z w™ (. +a§-")) —0 in LP(RY). where p€ (2,2%),
n=1
() __ (m) :
(3.1) e if m#n.

oC
[(n) |2 < i 12
3 1w < Ji
x
Z w™|?, = lim |Ju;)|2,. where p€(2.27).
o1 NEmge X

Lemma 3. Let QCRYN be a strongly asymptotically contractive domain, and
let o be the functional defined in (2.2). where feC(QxR.R) satisfies (f1). (f2).
(f3) and (f4). Then @ satisfies the (P-S), condition for any c>0.

Proof. Let ¢>0, and let u;€ HH{Q) be a (P-S), sequence for p. We start by
observing that by Lemma 1. the sequence u; is bounded. Hence we can apply
Lemma 2, and rewrite u; as a swm

(3.2) u,jzu'(0)+z u'(")(A+a§"))+rj.

n=1

where r;—0 in LP(RY), a;")ERN, |a§-"')|—>t>c and w e HY(RV) are as given in
Lemma 2.
Since € is a strongly asymptotically contractive domain, for any n>1 there

5»7) and a number 3 eR" such that for any R>0, there

exists an open set MG €Q+ 3™, a closed set Z(™ of zero measure and an integer
lr >0 such that for any {>lp

exists a subsequence «

(Q+a!)NBr0) c My UZM.

By taking a subsequence. we can assume that this relation holds for every j> jg.
Hence

supp w™ NBR(0) C U suppu]-(~—a;-"))ﬂBR(0)
(3.3) j=in

c MUz e Q+3)yuz.
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and thus
suppu™ c Q43

modulo a set of measure zero. Let @w(™) =1w(" (. —3(")) and let &;n):agn)—i—[)’(").
Note that by (3.3), there exists an open set U CQ such that @™ =0 in U. This fact
will be used when applying the maximum principle below.

Let veC§°(€) be arbitrary. Then

/Q(V@(")(x)~Vv(a:)+ﬁ7(")(x)v(:c)) dx

= lim /(Vuj(:r—a(”))-Vl'(:v)+uj(J:—CT;"'))U(J“))d:z:
!

j—x J

= lim f(l‘—ag.")‘ uj(.‘—ay')))v(ar) dx
o Q+5§nJ

= lim fla—a\". @ (@))e(2) de
Jj—oc Q+&§.")

= [ £@ @eta) da.

which means that for n>1, @ is a weak solution of the equation
AT g = p (@),

By regularity theory, @™ is continuous in €. We divide the domain Q into three
parts:

Q. ={ze: "™ (z)>0}.
Q. ={zxeQ:a""(z) <0}.
Qo={zeQ:aM(z)=0}.

By the previous paragraph, 2y has a nonempty interior. Note that by (f2),

AT 475 >0 in Q..
—AG™M +§F M <0 inQ_.

We claim that w(™ =0 in Q, i.e. Qy=. Suppose to the contrary that Q,UQ_
is nonempty. Then either Q. or Q_ has a component whose boundary is inter-
secting the boundary of Q. Suppose first that 2, has a component §+ such that
o0, NoQ;#0. By applying the strong maximum principle (see [2]. Theorem 8.19,
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p. 198) on (€2, U€)°. @™ =0 in this domain. and so Q, =@. The same argument
shows that Q_ cannot have a component adjacent to . This shows that @(") =0
in Q.

Let p and ¢ be as in condition (f1). We have proved that u; —uw® in LP(RM)N
LYRN), and since u; € HH(Q)CLP(Q)NLI(Q), u;—w!® in LP(Q)NLIY(Q). By the
continuity of the superposition operator

LP(Q)NLIY(Q) S urs f(x.u) € LV P~ D)+ LY -1 (Q)
(see e.g. Theorem A .4., p. 134, in [10]),
fle uy) = fle.w®) in LMY/ E-D(Q)+ LY47H(Q).
We write f=f,+ fa, where fi € LP/P=1(Q) and fo€ L9/(4~D(Q). Observe that
g =@ |3 = (@ (1) = (w ), u; =)

+ / (s (2) = £ (2w (2))) (15 (2) — @ (2)) da
Q

Obviously,
(&' (u) =" (@) uy—uw'®) — 0.

and by the Holder inequality,

/Q (f (15 (2))  F (w0 (2))) (15 (1) — ) (2))
< [ /Q (g (2)) — fu . w® () (2) ) (2)) d

+\ [ (Gt o v @)y 0) - ) do
Q

<o) = F () g g —w 2o
+Hf2( ’ -Uj)_fQ( ‘- U«"(O))||qu<q—1) ||Uj—u‘(0)||Lq

—0.

By taking the infimum over the functions f; € LP/(P~D(Q) and fo€L9/(4=1(Q) such
that f=f1+ f2, we obtain u;—w'® in H}(Q). O

4. Infinitely many solutions

We obtain an infinite sequence of critical values from the following theorem
(see e.g. Theorem 6.5 of [8]).
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Theorem 2. Suppose that V' is an infinite-dimensional Banach space and sup-
pose peCH(V, R) satisfies (P-S).. for every c¢>0. p(u)=¢(—u) for all u. and assume
the following conditions:

(i) there exist a>0 and >0 such that if ||u||=0 and ueV, then p(u)>a;

(ii) for any finite-dimensional subspace W CV there exists R=R(W) such that
@(u)<0 for ueW, |lu||>R.

Then ¢ possesses an unbounded sequence of critical values.

Proof of Theorem 1. We apply Theorem 2 with V=Hj(£2). It is clear that
©eCY(HF(Q),R) is even. By Lemma 3, the (P-S), condition is satisfied for every
c¢>0. We only need to check conditions (i) and (ii).

Integrating (f1), there is a constant C; >0 such that for all z€Q and seR,

|F(z. s)| < Cr(Is]” +]s]%)-

By the Sobolev embedding theorem, we have the estimate
1 1
()2 g lulf =1 [ ()P + u@)}") dix > 3l ~Collully =Colluly.
Q
Let ||u||=g, where g is free for the moment. Then
@(u) > 20— Ca0P —Ca0".

and we would like to choose p such that ¢(u) is as large as possible when |ju||=g.
For such p, we have

0—CopeP ™t~ Cago?™ " =0.

Since the left-hand side is positive for small values of ¢>0 and negative for large g,
by the intermediate value theorem. this equation has a solution. We choose g to be
this solution. Then

1
CaoP = =0~ Co 3 o,
p p

and so for |ul|=p,

s (3D ires (1) (3-2)

Thus condition (i) is fulfilled with a=(3—1/p)o*.

By (f2), there is a constant C3 >0 such that for every r€Q and s€R. |F{z. s}|>
Cs|si#r, where gy =min{y, v}. Indeed. let =0 be given. By integration of the first
identity of (f2), we have for |s|>z and z€Q,

F(x,s)> f(—xy'::—)b{“.

m
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By letting ¢ —0 and using the second identity of (f2). the claim follows. Let W be
a finite-dimensional subspace of H}(Q). Since all norms are equivalent of W. and
since

p(u) < 3llullfn = Csllullfl, -
condition (ii} follows. 0

Acknowledgements. 1 would like to thank Professor Kyril Tintarev for all sug-
gestions and advice. I would also like to thank the referee for making me aware of
a difficulty in an earlier version of the manuscript.

References

1. AMBROSETTI, A. and RaBiNowITz, P. H., Dual variational methods in critical point
theory and applications, J. Funct. Anal. 14 (1973). 349-381.

2. GILBARG, D. and TRUDINGER. N. S.. Elliptic Partial Differential Equations of Second
Order, 2nd ed., Springer-Verlag. Berlin, 1998.

3. Lions, P.-L., The concentration-compactness principle in the calculus of variations.
The locally compact case. 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1
(1984). 109-145.

4. Lions, P.-L., The concentration-compactness principle in the calculus of variations.
The locally compact case. I1I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1
(1984). 223-283.

5. DEL PINO, M. A. and FELMER, P. H., Least energy solutions for elliptic equations in
unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 195-208.

6. SCHINDLER, I. and TINTAREV. K., Semilinear elliptic problems on unbounded do-
mains, in Calculus of Variations and Differential Equations (Haifa. 1998)
(Ioffe, A., Reich, S. and Shafrir, I.. eds.). pp. 210~217. Chapman & Hall/CRC.
Boca Raton, Fla.. 2000.

7. SCHINDLER, I. and TINTAREV, K.. An abstract version of the concentration compact-
ness principle. to appear in Rev. Mat. Univ. Complui. Madrid.

8. STRUWE, M.. Variational Methods. 2nd ed.. Springer-Verlag. Berlin. 1996.

9. TINTAREV, K., Solutions to elliptic systems of Hamiltonian type in R, Electron. J.
Differential Equations 29 (1999). 1-11.

10. WILLEM, M., Minimaz Theorems. Birkhauser. Boston, Mass., 1996.

Received July 17, 2001 Sara Maad
in revised form May 19, 2002 Department of Mathematics
Uppsala University
P. O. Box 480
SE-751 06 Uppsala
Sweden
email: sara@math.uu.se



