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Sobolev spaces in several variables in L'-type
norms are not isomorphic to Banach lattices

Aleksander Pelczytiski(') and Michal Wojciechowski(')

Abstract. A Sobolev space in several variables in an L1-type norm is not complemented in
its second dual. Hence it is not isomorphic as a Banach space to any complemented subspace of
a Banach lattice.

1. Introduction and results

K. Borsuk essentially observed that Sobolev spaces in one variable are isomor-
phic as Banach spaces to the corresponding classical Banach spaces LP=LP(0, 1)
and C=C(0,1) (cf. [B], [PS] and [PW2]). The situation is more involved for
Sobolev spaces in several variables. For the definition of Sobolev spaces see Sec-
tion 2. If 1<p<oo then, under mild conditions imposed on the domain QCR",
the Sobolev space L{j () is still isomorphic to LP(0,1) for k=1,2,...; n=2,3, ..
(cf. [PS] and [PW1]). However this is not true in the limit cases p=1, p=oc and
C*)(Q). Assume that

() QLCR"” is a non-empty open set, k=1,2,...; n=2,3,....

Then the spaces C*)(Q) and L‘(’,‘é)(Q) have the following properties: (a) they are
not isomorphic to quotients of L..-spaces, in particular they are not isomorphic
to C and L, respectively; (b) they fail to have lust (cf. [DJP], p. 345 for the
definition), in particular they are not isomorphic to any complemented subspaces
of Banach lattices (cf. [Gr], [H], [K2], [KwP] and [PW2]). S. V. Kislyakov [K1] (cf.
also [PW2}) has discovered that if 2, k and = satisfy () then there exist bounded
non-two-summing operators from the Sobolev spaces L(lk)(Q) and BV () into a
Hilbert space. Hence these Sobolev spaces as Banach spaces are not isomorphic to
L1-spaces, in particular not to the Lebesgue spaces L(u).

(1) Both authors were supported in part by the Polish KBN grant 2P03A 036 14.
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In the present paper we establish another invariant which distinguish the spaces
L%k)(Q) from the Lebesgue spaces L!(u). Our main result is the following theorem.

Theorem 1.1. If Q, k and n satisfy (x) then the space L%k)(Q) is uncomple-
mented in its second dual.

We identify here and in the sequel a Banach space X with its canonical image
in its second dual X**.

Note that L{,,(€), being isomorphic to a subspace of L'(u) for appropriate 1
(cf., e.g. [PW2]), contains no subspace isomorphic to ¢g. Thus combining several
facts on Banach lattices (|[LT], vol. II, Proposition 1.c.6; Proposition 1.a.11 and
Theorem 1.b.16) with Theorem 1.1 we get the following corollary.

Corollary 1.2. If Q, k and n satisfy (*) then L%k)(Q) is not isomorphic to
any complemented subspace of any Banach lattice.

The space BV (;,y(€) is a dual Banach space (cf. Section 6). Thus BV )(Q2) is
complemented in its second dual (cf. [D}). On the other hand, the canonical image
of a Banach space X is complemented in X** if and only if X is isomorphic to a
complemented subspace of a dual Banach space (cf. [L], p. 540). Thus Theorem 1.1
yields the following corollary.

Corollary 1.3. If Q, k and n satisfy (*) then L%k)(Q) is uncomplemented

The Lebesgue decomposition provides the natural projection from the space
M () of all scalar-valued Borel measures on  with finite variation onto L!(Q)—
the Lebesgue space on  with respect to the n-dimensional Lebesgue measure. Thus
Corollary 1.3 roughly speaking says that there is no counterpart of the Lebesgue
decomposition theorem for Sobolev measures.

Our proof of Theorem 1.1—presented in Section 4—uses the technique devel-
oped in [KaP] for translation invariant subspaces of L!(G) on a compact abelian
group G spanned by the complement of a Sidon set. The method goes back to
Lindenstrauss [L]. On the “abstract side”, our proof uses the Lindenstrauss lifting
principle (see Section 3, and [KaP]). The main analytic tool is Peetre’s theorem
(cf. [P]) on the non-existence of the right inverse for the Gagliardo trace (cf. [G]).
In Section 5 we present an alternative proof of Peetre’s theorem. Section 6 contains
some facts about the space of Sobolev measures BV 4)(Q2). Using the fact that the
latter space is a dual space, we outline a variant of the proof of Theorem 1.1 which
does not use the Lindenstrauss lifting principle.
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2. Preliminaries and notation

By 0 f and D*f we denote the ath partial derivative and the ath distribu-
tional partial derivative of a scalar-valued function f in n variables corresponding
to the multiindex a€Z%:=][7_, {{0}UN}, where N:={1,2,...}. For open QCR™
we denote by D(€2) the space of infinitely differentiable scalar-valued functions ¢ on
Q with compact support,

supp ¢ ={r € Q: ¢(z) #0} C.

Here and in the sequel A stands for the closure of a subset A of R™ and bd A:=A\ A
stands for the boundary of an open set A. Recall that given a scalar-valued function
f defined on an open set QCR™ (respectively a Borel measure g on 2) a function
g on Q (respectively a measure v on ) is called the ath distributional derivative
of f (respectively of p), in symbols g:=D* f (respectively v=D*p) provided

/faa'q&dx:(—l)lal/gqsda: (respectively /8°¢du:(—1)|°‘|/¢>dy)
Q Q 9] Q

for $€D(?). For the multiindex a=(a;)?.; the quantity |0‘|1=Z;:1 a; is called
the order of the derivative D*. (We also denote by |z| the absolute value of a scalar
x; it will be clear from the context each time which of these we have in mind). For
a=0:=(0, ..., 0) we admit for convenience D° f=f and D°y=p. The symbol [ ... dx
denotes the integral against A,,—the n-dimensional Lebesgue measure on R™. By
LP(€2) we denote the Lebesgue space LP on QCR™ with respect to A,. By M(2)
we denote the space of all scalar-valued Borel measures on  with bounded total
variation, with the total variation (of the measure) of Q as the norm. The field of
scalars is either the real numbers—R—, or the complex numbers—C. Our definition
of spaces of continuous functions is “unorthodox”. For open QCR", by C()
we denote the space of uniformly continuous scalar-valued functions on €2 which
vanishes at infinity. (The latter condition is meaningful only for unbounded §1.)
Each f€C(f) uniquely extends to §; we shall identify f with its extension to €.
We equip C(£2) with the usual sup norm, ||f{lc(q)=sup,cq |f(Z)]-

Let 1<p<oo, k=0,1,..., and n=1,2,.... The Sobolev space Lfk)(ﬂ) is the
Banach space of scalar-valued functions f on open QCR™ such that D*f exists
and belongs to LP(Q) for |a|<k, equipped with the norm

ANl

(&}

1/
Q) = { (Z|a|§k ”Daf”’[ip(g)) P for 1 <p< oo,
max|q| < [[D* fllLo () for p=oo.
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By BV ()(Q) we denote the space of measures p€M(Q2) such that D* exists and
belongs to M(Q) for |a]<k, equipped with the norm

lellBy @) = Z 1D pll a102)-
le| <k

Note that L(lk)(Q) can be identified with a subspace of BV y({2) consisting of u
with all distributional derivatives of order <k absolutely continuous with respect
to A,. If ,uEBV(k)(Q) then D%y is absolutely continuous with respect to A, for
|a|<k. For k=1 this follows by convolving p with a C* approximate identity, and
applying the Sobolev embedding theorem (cf. [M], Theorem 1.4.3); the case k>1
follows by induction.

By C*)(Q) we denote the space of all scalar-valued functions f on £ with
derivatives 0% fe C(Q) for |a|<k, equipped with the norm

= a* .
I fllco ) max 10° fllc(e

By Cék)(Q) we denote the subspace of C*)(Q) being the closure of D(f) in
the norm || - |cw) (). Clearly C*)(Q2) can be regarded as a subspace of L) (€2); we
have Lgg)(2)>C® ()5 (9).

Warning: According to our definition of C(§2) we have C(k)(Rn):C((,k)(R").

By D(Q) we denote the space of functions being the restrictions to 2 of func-
tions from D(R™). Recall (cf. [A], Chapter 3, Theorem 3.18) the following lemma.

Density lemma 2.1. The space D(f2) is dense in the space L’é’k)(Q) in the
norm || - “L'(’k)(ﬂ) for 1<p<oo, and in the space C*)(Q) in the norm || - llew @)
provided §) has the segment property, i.e. every z€bd Q has an open neighborhood

U, in R™ and there erists a non-zero vector y, such that for every z€QNU, one
has z+ty; €N for O<i<1.

3. Preparation for the proof of Theorem 1.1
3.1. Lindenstrauss lifting principle
Recall (cf., e.g. [KaP] for the proof) the following principle.

Lindenstrauss lifting principle. Let Q: X =Y be a bounded linear surjec-
tion (X, Y Banach spaces). Assume that ker Q) is complemented in its second dual.
Then for every L-space L, every operator T: L—Y admits a lifting, i.e. there is an
operator T:L—X such that T:QT.
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Recall that an operator S:Y —X is a right inverse of an operator Q: X »Y
provided @S=Idy, where Idy denotes the identity on Y. Clearly an operator which
has a right inverse is a surjection. Specifying in the Lindenstrauss lifting principle
L=Y=L" and T=Id;: we get the following corollary.

Corollary 3.1. If Q: X — L' admits no right inverse then ker Q is uncomple-
mented in (ker Q)**.

3.2. A priori inequalities related to traces

We need some properties of traces of functions in L(lk)(Q) in the particular case
where 2 is a halfspace. Representing R*=R"~! xR for zeR" we write z=(y, Z»)
with yeR""! and z,€R. We identify R®~! with the hyperplane {(y,z,)eR™:
z,=0}. We put

R :={(y,z,)€R":2,<0} and R} :={(y,z,)eR":2,>0}.

Each ¢cD(R?) uniquely extends onto R?, hence it can be regarded as infinitely
differentiable function on R™. In particular the restriction 8*@|g~-1 is well defined
for each multiindex a€Z”. For brevity we put ¢(®*):=5(%09¢ and 95):=
A BursBn=1:9) for B=(8; 7~1€Z} " and for s€Z,. To define a surjective trace onto
L*(R™"!) we need two a priori inequalities. The first is well known (cf. e.g., [Ko],
proof of Proposition 3.2).

Lemma 3.2. Let k=1,2,...; n=2,3,.... Let p D(R"). Then

(3.1) Il¢* D lgn1 [l L2 ra-1y S NBlle, mn)-

Proof. We have ¢(OF=1)(y, O):fi)oo %) (y, s) ds. Thus

1OF D] 1 genry = / dy

R»-1

g
/ ¢@F)(y, 5) ds

<[] 1609w 5)ldyds < 8y, ey O

The second lemma insures the surjectivity of the trace.
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Lemma 3.3. Let k=1,2,...; n=2,3,.... Then there exists C=C(k) such that
for every ge D(R™™!) there exists 9 D(R™) such that

(32) ¢ Dpnr =g;
(3.3) if k>1 then ¢9(.,0)=0 fors=0,...,k—2;
(3.4) I8, ®=) < CligllLr mn-1y-

Proof. If g=0 we put ¢=0. If g#0 then 0<c=max{||8°g|| 11 (mn-1):|6|<k}.
Pick h€D(R) such that A%*~1(0)=1 and if k>1 then h{*)(0)=0 for s=0,...,
k—2. For sufficiently small ¢>0, which will be chosen later, we put

1. (%n n—
oy, ) :=tF 1h(—);—)g(y), yeR", z,<0.
Then for s=0,1,..., and for S€Z? ! one has
8 —1—- 3 "En n—
(3.5) 9 (y,20) =+ 120 ()h P (1), yeR™, 2, <0.

In particular for s=k—1, 3=0:=(0,...,0), £,=0 we get (3.2). Similarly (3.5)
yields (3.3). Specifying in (3.5), s=k and 8=0 we get

[io /Rn_l l¢(0,k)(y,xn)[dxndy:/_(;(h(k)(a%") fi%/R"—l lg(v)] dy

0
- / K8 ()| dnlgll L1 genmy-
—oo

If 0<s<k and |B|<k—s then, for 0<t<1, (3.5) implies

0 0 Tn\| dz,
R e e I I G [ I
—oo JRP—1 —-00 Rn-1

0
.—_tk_s/ Ih(s)(zn)’d:l,'nllaﬁgllLI(R"_l)

—o0

0
<t / 1 (2)| dza | 0% g L1 (1)

Thus setting
0 -1
= (s) LR
o= (N gmax, [ 9@l dza) lolime,

where N is the number of elements of the set of multiindices, {{3, s):|8|+s<k}, we
get (3.4) with C=[°__ |h®)(z,)|dz,+1. O

By the density lemma 2.1, D(R"™) is a dense linear manifold in L%k) (R™) and
D(R™1) is dense in L}(R"7!).

Thus Lemmas 3.2 and 3.3 imply the following result (cf. Gagliardo [G}).
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Corollary 3.4. Let k=1,2,..., and n=2,3,.... Then there is a surjection
Tr(k):L’(‘k)(Rﬁ)—)Ll(R"_l) which is the unique continuous extension of the map
P> O* D |gacs.

3.3. Peetre’s theorem on non-existence of right inverses of some traces

The next result discovered by Jaak Peetre [P] provides the crucial ingredient
of the proof of Theorem 1.1.

Peetre’s theorem 3.5. There is no right inverse of Tr}: L, (R2)—
L' R 1) forn=2,3,....

In Section 5 we present a proof of Peetre’s theorem and some of its counterparts

for the n-dimensional torus. Here we state only a simple consequence of it which
we need for the proof of Theorem 1.1.

Corollary 3.6. Let k=1,2,...; n=2,3,.... Let X be a subspace of L%k)(Rf)

such that Tr® maps X onto L'(R™!). Then Tr®|x admits no right inverse.

Proof. 1f S: LY(R™"1)— X were a right inverse of Tr(k)lx then Iy Jx S would
be a right inverse of Tr'". Here Jx: X —>L%k)(R’_‘) denotes the inclusion map and

Iry: Ly (R™)— LY (R™) s defined by Iy (f)=DO0*¥1f for feL} (R7?). O

4. Proof of Theorem 1.1
We begin with the special case Q=R".
Proposition 4.1. The space L%k)(R”) is uncomplemented in its second dual.
Proof. 1t suffices to exhibit a complemented subspace of L%k)(R") which is
uncomplemented in its second dual. Let eL(lk) (R™) (respectively OL%,C)(R")) denote

the subspaces of L%k)(R") consisting of the functions which are even (respectively
odd) with respect to the variable z,,. The subspace is complemented in L%k) (R™) via

the projection f—°f (respectively f+°f), where ¢f(y, zn):%[f(_% T2+ fy, —25)]
(respectively £ (y, 2a) = 5[£(3, Tn)— £ (¥, ~2x]) for a.e. (3,x) R xR
Next we define a subspace X of L{;,(RZ) by

L%k) (R™) for k=1,2,
Xe=14 A{pcDR"):¢02)(.,0)=0 for 0<s< (k-1)} fork=3,5,...,
cd{pe DR™): ¢ @%~1(.,0)=0 for 1 <s< 3k} for k=4,6, ... .

Here cl stands for the closure in the norm || - || L}, (R2):
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It follows from Lemmas 3.2 and 3.3 that Tr'®| x, : X, — L*(R"*~1) is a surjection
which, by Corollary 3.6, has no right inverse. Hence, by Corollary 3.1, ker(Tr(k) Ix:)
is uncomplemented in its second dual. To complete the proof we shall show that
(here ~ stands for “is isomorphic to”)

°Liy(R™) for k odd,

¢eLl (R") for k even.

(4.1) ker(Tr®)|x, ) ~ {
(k)

We verify (4.1). First consider the case k odd. Pick feker(Tr'®|x,). Then there
exists a sequence (¢);enC XxND(R™) such that lim;_, ||f‘¢l||L(1k)(R'_‘):0- The
existence of such a sequence for k=1 is a consequence of the density lemma 2.1,

and for k=3,5,..., it follows from the definition of X;. Thus remembering that
fEker(Tr(k)lxk), we have

Jim e >* (-0 0l rn-1y = lim | TE®(f—y)llzr mn-1) =0.
=00
By Lemma 3.3, there exists a sequence (1););en € D(R™) such that, for 1=1,2, ...,

lnllzy,, ry < CUTE® (@) Lrmn-1ys - Te® (@) =Te® (@),
if k>1 then d)l(o’s)(',:cn)zﬂ for s=0,...,k—-2.

In particular

Y1 € Xi and ¢ — ) Eker(Tr®|x,) for 1=1,2, ..., lgr& ”"/)l“L(‘k)(R’:) =0.
Put fi=¢;—1; and define f;: R"—»C by
Py fl(ya xn) for Tn < 0,
(42) ) =
—fl(y’ _xn) for Ty > 0.

Since f; belong to D(R™) and have pure right derivatives with respect to z,, of even
order <k—1 identically equal 0 on the hyperplane x, =0, we easily verify that fi
is odd with respect to z,, belongs to C*¥)(R™) and has compact support. Thus
fie°L}, (R™). Clearly, by (4.2),

Ifi=felley, ey <2l fi— frlly, ey for LU EN.

Since lim;_, o || fi —f”le)(Rn):() we infer that the sequence (f})ien is a Cauchy se-
quence in L (r)(R™). Thus there is fEOL%k)(R") so that lim; o0 ||fl—f||sz)(Rn):0.
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Clearly || fllzy, (R")<||f||L @) <2l fllzy, (rn)- It is easy to verify that the map
f—f is linear. Hence it is an isomorphism from ker(Tr®|x, ) into OL%k)(R").
To complete the proof in the case k is odd, we show that the map f— f is onto
L) (R™).

Let (91)ien CC((,k)(R")ﬂ"L(lk) (R™) be an approximate identity for L!(R™) con-
sisting of functions symmetric with respect to the coordinate z,,. Then, for each g€
°L{yy (R™), the convolution g*@,eCék)(R")ﬂ"L%k)(R"). Thus (g*®;)®29)(-,0)=0
for s=0,...,1(k—1). Moreover lim;_, Hg—g*sznL:k)(Rn):O. Pick € D(R™) such
that #(y, a;n) depends only on y for |z,|<1 and 7(0,0)=1. Let n,(z)=n(z/n)
for zeR"; neN. Put g;=(g*®,)n,,. If the sequence (n;)ienCN sufficiently
rapidly tends to infinity then lim;_, o ||g— gl L(lk)(Rn)zo (cf. [S], Chapter V, §2,

proof of Proposition 1 for details). Obviously g;€eD(R"™), and g(0 23)( 0)=0 be-
cause in the neighborhood of R™~! the function 7, depends on the variable y
only. Let ¢;:=gilr». Then ¢, D(R?)NX} and lim;_, ||f_¢l||L(1k)(R'1)=0 for
some feker(Tr®|x, ). Clearly f=g. .

The case k even is proved similarly. Instead of (4.2) we define f; by

fily,zn)  for z, <0,

fily, 2n) = { fily,—zx,) forz,>0. O

Proof of Theorem 1.1. Every non-empty open 2CR" contains an open cube
U with edges parallel to the coordinate axes. There is a linear extension operator
from Ly, (U) to Ly (R™). (This is a very special case of Stein’s extension theo-
rem (cf. [S], Chapter VI); this case can be proved in an elementary manner (cf.,
e.g. [PW2], proof of Theorem 57.) Thus it follows from [PW1], Theorem 1, that
L%k)(U ) is isomorphic to L%k) (R™). On the other hand, the existence of a linear
extension operator in question implies the existence of a linear extension operator,
say &£: L(k)(U)—>L k)(Q) (because UCQCR™). Thus L(k)(U) is isomorphic to a
complemented subspace of L} (k)(§2); the subspace is £ (L(k)( }); the projection is
given by f—E&(f|y) for fEL(k)(Q). Thus, L(k)(Q) is uncomplemented in its sec-
ond dual because, by Proposition 4.1, it has a complemented subspace with this
property (cf. [L], p. 540). (I

5. Proof of Peetre’s theorem and its relatives

To make the paper self-contained we present a proof of Peetre’s theorem. Our
argument uses some ideas of the elegant proof of Brudnyi and Shvartsman (cf.
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[BS], Theorem 5.5). However we derive the theorem from its counterpart for the
two-dimensional torus.

Let I":={z=(z;)7_, eR™:|z;|<] for j=1,...,n} and I}:=R}NI". We iden-
tify I"~! with the set {z=(z;)7_;€R™:z,=0}. Clearly L’(’k)(I") can be identi-
fied with {f|;~:f€L{,,(R")}. Similar identifications hold for Lf,,(R%). The n-
dimensional torus T" is identified with the cube I™ with the boundary points iden-
tified coordinatewise modulo 1. We let T% ={t=(t;)7_, € T":%t,>0} and we iden-
tify T®~! with the set {t=(t;)7-,€T™:t,=0}. For k=0,1,..., the Sobolev space
Li’ 4 (T™) can be regarded as the subspace of Lfk)(I ™) generated by the characters
{exp2mi(-,m):meZ"}. For k=0 we have LP(T")=LP(I"™). The space L’(’k)(T’i) is
defined to be the subspace of Lf 4 (/1) consisting of the restriction to I of func-
tions from Lf,,(T"). For k=1,2,..., we define the trace tr(k). Liy(IM—L'(I™1)

by tr(k)g:(Tr(k) Dlin-1, where feL(lk)(R'_‘) satisfies f|;» =¢; we further define
ﬁ(k):L%k)(Tl‘)—)Ll(Tn_l) as the restriction of tr® to L%k)(TT_‘). To prove the
surjectivity of the trace ﬁ(k) we need to change the proof of Lemma 3.3 slightly.
We have to assume additionally that we pick h¢ D(R") to be symmetric with re-
spect to 0; we fix a one-periodic function g (in the variable z,) such that g|;€D(I)
and p(0)=1. After constructing $cD(R") as in the proof of Lemma 3.3 we replace
it by o¢. Thus if we started from a one-periodic ge D(R™!) then we can regard
0¢ as a function in sz)(T") which satisfies IIQ¢|'L(lk)(Tn) SCHd)HL(nk)(R,,), where the
positive constant C' depends only on the sup norms of ¢ and its partial derivative
of order <k. Thus we have the following result.

~(k
Proposition 5.1. The traces tr®): Ly, (I*)—L'(I""') and T, L3, (T2)—
LY (T 1) are surjections (k=1,2,...; n=2,3,...).

Now we show that Peetre’s theorem reduces to the case of the two-dimensional
torus.

Lemma 5.2. (i) If for some n=2,3,..., there erists a right inverse of
tr(l):L%l)(If)%Ll(I"_l) then there exists a right inverse of Tr(l):Lél)(R'_‘)—>
LY(R™1).

(ii) If for some n=2,3,..., there erists a Tight inverse of Tr(l):Lgl)(R'f)—>
LY(R™"1) then there exists a right inverse of . LYT™)—=LY(T" ).

—~(1
(iii) If for some n=3,4,..., there erists a right inverse of Tr( ):L%I)(T'_’)—>

LY(T™!) then there exists a right inverse of Tr(l): Lzl)(Tz)—)Ll(T).
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Proof. (i) For me1Z"~1 we put In~'=I""14+mCR""}; the shift operators
om: L' R )= LHR™ 1) and 7(m ) L{,,(R?)—L;,(R?) induced by translation
by m, and (m,0), respectively, are defined by o, (f)(y)=f(y—m) for A\,_i-ae.
yeR™ !, and 7, 0)(9)(z)=g(y—m, z,) for \,-a.e. z=(y,z,)ER". Let Y: R —
[0,1] and ¢: R—[0, 1] be infinitely differentiable functions such that

suppy C I"L: Z om(¥)=1 (the sum is locally finite);

melzn-1

¢>|[—1/3,o] =1 ¢I(_oo,_2/3] =0.

Let Myg: L(ll)(lf)—>L%1)(R'j) be the operator of multiplication defined by

¢(y)¢($n)g(yv z,) for An-ae. (y, -'L'n) eln,

M 7"1"" =
w(9) (Y, Tn) { 0, otherwise.

We assign to a bounded linear operator §#: L' (I"~!)—L(;)(I") the bounded linear

operator S: Ll(R"“l)—>L%1)(R',‘) defined by

SH= > (o-mMusS*ton)(fln-)-

meizn-1

It is not hard to verify that if S# is a right inverse of tr(!) then S is a right inverse
of Tr(W,

(ii) Let S: LY(R™~1)—> L) (R™) be a right inverse of TrM). Let peD(R_) be
a fixed function in the variable z,, such that

(5.1) ¢(zn)=0for z, < -1 and ¢(z,)=1 for —§ <z, <O0.

Then there is a constant € >0 depending only on the sup norms of ¢ and its partial
derivatives of order <k such that Hd)FHLg”(RE)§C‘HF||L(11)(R,_1) for FeL{; (R2).
Let £>0 and 1>0. Let (hi)ren be a Schauder basis for LY (I"~})=LY(T"?).
We regard functions in L'(I™~1) as functions on R*~! extended by 0 on R*~!\ /"1,
Remembering that D(R™) is dense in L%l)(R’_‘), for k=1,2,..., we choose Fr€

D(R") so that ”Fk_Shk”L(lk)(R:‘) <2 %p/C. Put Uy =¢Fy and gp=Vy| Then,
remembering that supp hy, CI"~! and applying Lemma 3.2, we get

Jn—-1°

1P =gkl 1 rn1y < Il = TXD Tl g1 g1y = || TED (@S — i) | L1 (mm1)

(5.2) °
<||@Shk—Tkllrs mny <n27"
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Pick € D(R™"!) such that y(y)=1 for yeI*~! and suppywC2I"~1. Let A=
{meZ" 1. 1" +mNnI"~1#0}. Clearly A is a finite set, more precisely it has 37!
elements. Let us observe that the properties of ¥ imply that for every FEL%1 ) (R™)
the function ®(F):=3" zn-1 T(m,0)(¥F) is one-periodic in each of the variables
Z1y ..., Zp_1. It follows from the previous observation and (5.1) that ®(¥)=®(HFy)
extends to a function in L%l)(R") which is one-periodic with respect to each of the
variables z1, ..., Z,; equivalently @(\Ilk)EL%I)(T’_‘). Since (Y(m,0)(H¥x))|n-1 =0 for
m¢ A, we have

T @) = a D @) =6 (T (0012 )

meA

= Z tr(l)(T(m,o)(d)‘I/k)Ijg): Z T(m’o)(d)\l’k)lln—l, k=1,2,... .

meEA meEA

Therefore, remembering that 0<y<1 and ¥i|;n-1=g, we get

~(1)
llge—Tr (W) L1y =/ A

Im-1

> im0y ($%)

0#£meA

S/ Z I 7(m.0) (¥ ¥k)| dAn—1
In——l

O£meA

:/ | TeD ()| dAns
R‘n—l\[n—l

g/ | Tr® W] dA, s
Rn—l\]n—l

=|\gx = Tx(V Uil (mm-1y-

Combining the latter inequality with (5.2) we get

~() _
gk —Tr (2(TL)) || p1(pn-1y <7275 for k=1,2,....

It follows from the Krein-Milman-Rutman standard perturbation argument (cf.
[LT], vol. I, Proposition 1.a.9) that if we choose >0 sufficiently small for given ¢,
C>0, and ||S|| then (gx)xen is a basis for L!(T"~!) and there is a unique bounded
linear operator S,: LYT™ )= L{,,(T?) such that Segr =" and |[Idpi(pn-1)—

~1) ~1) = .
Tr "oS.l|<e for k=1,2,.... Thus the operator Tr( )oSE:Ll(T"‘l)%Ll(T"‘l) is

- () ~ (1)
invertible for e<1. Hence Sa(Tr(l)oSE)_l is a right inverse for T‘r( .
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(iii) If S- LI(T"_I)—)L%U(T’_‘) is a right inverse for . L%l)(T'_’)——)Ll(T"“I)
for some n>>2 then PS.J is a right inverse for T L%l)(Tg)%Ll(T), where J and
P are defined by

Jf(t1s o tam1) = f(tn—1) for f € L'(T);

PF(tn_l,tn)zf / F(t1, e ta)dty ... dtns for FELYL(T™). O
T T

Next we need the following variant of the Gagliardo trace theorem. For s'€

T_ define Ry: LY, (T2)—>L}(T) by Ry F=Tr (F}|32) for FEL! (T2), where
F* denotes an arbitrary extension of F to a function in Lj,,(T?) and Fji(t,s)=
F*(t,s—s') for Ay-a.e. (s,t). It is easy to see that the function R, F is independent
of the particular choice of the extension (cf. [S], Chapter VI for the existence of an

extension).

Lemma 5.3. For every FeL(;,(T?) one has
(56.3) (RsF)(t)=F(t,s) for Xz-a.e. (t,s);

/ / (VF(s, )] dt ds
s’ JT

Proof. If FeD(T?) then (5.3) holds for every (t,s)€T2. For FGL(II)(T%)

there exists a sequence (F},)neN C’D(T?:) such that lim,_ “Fn—F“L(ll)(TZ_)ZO.

(54) [|ReF—RyF|lp1(my < , FeL(T?), s',s"eT..

In particular limy, o [[Fy,— Fl{p1(r2y=0. Thus, passing to a subsequence if nec-
essary, we may assume that lim, o, F,(¢,s)=F(t,s) for As-a.e. (t,s). Thus, by
the Fubini theorem, there is a set A with A;(T_\A)=0 such that, if s€A then
limy, ;o0 Fr(t,s)=F(t,s) for A\j-a.e. t. It follows from the definition of the trace
that for every s€T_ there is a subsequence, say (ni)ren of the indices such that
limg o0 Fr, (¢, 8)=RsF(t) for Mi-a.e. t. Thus if s€ A then F(t,s)=RsF(t) for A\1-
a.e. t. Applying the Fubini theorem again we get (5.3).
It suffices to verify (5.4) for F' €D(T2). For such an F we have the identity

(Re F)(t)— (R F)(t)=F(t,s')—-F(t,s") = j 6—%F(t, s)ds.

Integrating the latter identity against dt, putting properly absolute values, and
remembering that the gradient satisfies the inequality

Op

”VF”LI(TX[SH,SID > 55

k]

L1(Tx|[s",s'))

we get (5.4). O
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We also need the following embedding lemma (cf. [BIN], Theorem 10.1; Theo-
rem 10.2 in the English translation of the first edition).

Lemma 5.4. One has

(5.5) / estssr;‘xp\F(t,sﬂdsg\|F||L?l)(Tz_), FELI)(T2)
T_ t€

Proof. Since the norm f'r_ esssup,cr |F(t, 5)| ds is complete in the appropriate
function space on T2 and D(T?2) is dense in L{,y(T?), it is enough to verify (5.5)

for FED(T2). For fixed s€T_ let super |F(t, s)| be attained at the point t=t(s).
Thus for arbitrary £€T we have

t(s)
sup |F(t,5)| <|F(t(s), 8)~ F(€, )| +|F(€, 8)| = / %F(t,s)dt\HF(&s)l-
teT £

Integrating against ds and d€ we get

t(s}
/ sup |F (¢ s)|ds</ / /
s€T_ teT seT_ JeeT

—Fts)

dtd€d3+||F||L1(T2 )

S/ / / aF(t,s) d€ dt ds+||F| L1 (72
s€T_ JteT J¢eT
=UaF pe, Il 1Pl o) O

Now we are ready for the next proposition which combined with Lemma 5.2
completes the proof of Peetre’s theorem.

Proposition 5.5. There is no right inverse for Tr L 1)(T2 )= LY(T).

Proof. Let {Up}rer and {Vi}nrer be the representations of the circle group
T in the spaces of bounded linear operators on L!(T) and L%I)(TQ_), respectively,
defined for heT by

Un(HY(#)= f(t+h) for M\j-ae. teTy
Vi(F)(t,s)=F(t+h,s) for Ay-a.e. (t,5)€T2.

Obviously the family {R;}ser_ (defined before Lemma 5.3) consists of operators
which intertwine with the representations, i.e.

RV, =UrR,, s€T_; heT.
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(1)
Assume on the contrary that there is a right inverse for Ry=Tr ', say S: L}(T)—
L%l)(T%). Then there exists another right inverse, say S, which intertwines with

the representations {Ux}rer and {Vi }ner, i-e. SU, =V, S for he T. We put
S:= / ViSU,;  dh.
T

The representations are continuous in the norms of the corresponding Banach spaces
of operators. Thus the integrand is a continuous function on T. The integral exists
in the Riemann sense. Hence S is a right inverse for Ro being a norm limit of convex
combinations of right inverses V;,SU, 1

Clearly R.S is, for every s€T_, an invariant operator on L!(T), i.e. it com-
mutes with every U, for t€T. Thus (cf. e.g. [SW], Chapter VII, §3, Theorem 3.4)
there is a complex valued Borel measure u, on T with finite total variation ||pus|]
such that

RsSf=f*us; |RsS||=llpsll, s€T-.

Here * stands for convolution. Let (¢n)nen be an approximate unity for L'(T)
consisting of bounded functions with ||¢y,||,1(ry=1 for n=1,2,.... For every s€T_
put

a(s):= lim [l¢n*ptslloo = lim_[1R,5pullo,

where (for f measurable} || f]|oo=esssup,c [ f(t)[; the latter for some f may be +oc0.
Clearly a( - ) is a positive measurable function which may take the value +oc. Since
(#n)neN is an approximate unity for L!(T), we have

( ) { “ws”ooa if ts =Y, dA; for some P, € L (T)7
als) =
00, otherwise.

Therefor, taking into account the Fatou theorem, (5.3) and (5.5), we get

/ a(s) dsSliminf/ ||¢n*,us||oods=liminf/ | Rs(Sn)lloo ds
s€T_ n—>00 s€T_ n—oo s€T_

= lim inf esssup [Son(t, s)| ds <IS¢allLr (r2) < IS
n—00 sET. €T 1)

Thus ps =1, dA\; with ¢s€L!(T) for \j-a.e. s€T_.
Let (s1)genCT_ be an increasing sequence tending to 0, such that ps, is
absolutely continuous with respect to A, for k=1,2,.... By (5.4}, for fe LY(T),

D sk f ~Vsa* Fllaery < NSFllzy, ex2) < USH Iz cr)-

k=1
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Putting the approximate unity (¢, )ren in place of f and passing with n to infinity,
we get

3 oy =g my < IS

k=1

Hence there exists ¢ €L'(T) such that limg_,o |5, —%}lL1(7y=0. On the other
hand RySf=f and, by (5.4), for every feL(T),

Jm [, ) = fllrory = lim IRs, Sf—RoSfllLr(r)=0.
—00 k—o00
Thus ¢ f=f for every f€L'(T), a contradiction because the algebra L*(T) with

convolution as multiplication has no unit. O

Proposition 5.5 combined with Lemma 5.2 in fact gives the following corollary.

—~(1
Corollary 5.6. The traces Tr'V, tr(V) and Tr( ) admit no right inverses.

6. Some remarks on BV 4)(f2)
6.1. Proof of Corollary 1.3

As indicated in Section 1 to derive Corollary 1.3 from Theorem 1.1 it is enough
to prove the following result.

Proposition 6.1. For every open non-empty QCR™ the space BV (x)(Q2) is a
dual Banach space, k,n=1,2, ....

Proof. For a positive integer N let I%, denote the space of scalar-valued se-
quences z=(x;)I; equipped with the norm

(oo |z;|P)'/? for 1<p< oo,
lzlp =

1I§nja§XN ;]| for p=o0.
Since the spaces I} and I3 are in duality, it follows from the Riesz representation
theorem that the vector-valued space M (2; 1)) can be identified with the dual of the
space Cp(£2;1%?). The latter is the closure in the sup-norm of I§?-valued continuous
functions with compact support in 2. Now let N=N(k,n) be the number of all
multiindices corresponding to all partial derivatives in n variables of order <k. Then
the map J: BV 4, (Q) = M(€;1},), defined by

(6.1) J(1) = (D*t)o<jai<k  for p€ BV (1)(2),
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is an isometrically isomorphic embedding of BV () into M(;ly). Clearly
J(BV()(€2)) is a subspace of M(;l}) which is closed in the weak® topology
(=Co(%;1%) topology of M(;1})). The verification of this fact is routine and
follows from the definition of distributional partial derivatives of measures. Thus
J(BV (1) (£2)) can be identified with the dual of the quotient Co(%;1%)/BV 1) () L,
where

BV ()L = {(fa)og|a|gk €Co(Q,137): Z /fa d(D*p) =0 for pe BV(k)(Q)}-
0<lal<k

This completes the proof of Proposition 6.1. [J

6.2. An alternative proof of Proposition 4.1

We outline how one can use Proposition 6.1 to obtain Proposition 4.1 and
therefore Theorem 1.1 without making use of the Lindenstrauss lifting principle.

Denote by sx:X—X** the canonical map. For k=0,1,..., let us define
L(k):L(lk)(R")—>BV(k)(R”) by vy (f)=fAn for fEL%k)(R"). Put t=¢). Note
that (D f)=D*((f)) and [|c(D*f)l|m(wry=I|D*fllL1(r») whenever D*f exists
and belongs to L'(R"). Thus L(k):L%l)(R”)—)BV(;C)(R”) is an isometrically iso-
morphic embedding, £=0,1,....

Proposition 6.2. Let k=0,1,.... There ezxists an isometrically isomorphic
embedding 3(k):BV(k)(Rn)—)L%k)(R")** such that B(k)(BV(k)(R")) is a comple-
mented subspace of L%k) (R™)** and a(k)oL(k):—'}fL(lk)(R_n).

Proof. For simplicity we identify BV )(R™) with J(BV )(R")), where J is
defined by (6.1), and we identify L%k)(R") with its image via (). Thus L%k) (R™)
can be regarded as the subspace of L1(R"™;1},) defined by

{(fa)o<ial<k € LY(R™ 1Y) : fo=D*f for 0<|a| <k and for f € L%k)(R")},

where N=N(k, n) is defined in the proof of Proposition 6.1. The dual of L}(R";1})
can be identified with L>(R";I%°). Thus, by the Hahn-Banach extension princi-
ple every z*€L};,(R™)* has a norm-preserving extension to some (8K '])0§|Q|Sk€
L>®(R™;1%). Now let (G.)e>o be a C*®-approximate identity of L'(R™), for in-
stance G.(z)=c¢""G(z/e) for z€R™, where G(z)=(2r)""/2 exp(—1|z(3).

Let us denote the operator of convolution with G, by ®., ie. ®.(v){z)=
Jrn Ge(z—y)v (dy) for An-a.e. z. Then @E(BV(k)(R"))CL(lk)(R"‘) for k=0,1,...,
and '

(6.2) lim O .(v)(z)f(z)dz = /R" f(z)dv for f€e D(R") and v€ M(R").

li
e—0 R
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Given v€BV ;,)(R™) we define 3xy(v) b

By ()(2") = LIM Z / (D)L dr for 2* € (L k)(R”))*,

0<|a|<k

where LIM, _,, denotes a generalized (Banach) limit (cf. [DS], Chapter I1.3, (23)).
Hence

180y () (2] < (165 | oo (e 15 SUp 1@ (D)l L (re i)

= vllBv @@ llz* ey, &)+

Thus |8z (v )||L1k R~y <VllBv (i, (rn)- It follows from (6.2) and the density of
D(R™;1%) in L®(R™;I) in the weak* topology induced by L'(R™;l}) that the
latter inequality becomes equality. Hence dx): BV (x)(R™ )—)L(k)(R")** is an iso-
metric embedding.
If v=1()(f) for some fe L}, (R™) then D*w=(D*f)\, for 0<|a|<k, and for
every ¢€L>°(R") one has lim, g [, ®c(D*f)Apdr= [, (D f)¢pdz. Thus, for
every z GL(k)(R")*,

()G =t 3 [ (D2 da ().

0<|a|<k

Therefore 6(k)ob(k)—KL1 o (R7):

The desired projection from L%k)(R")" onto (k) (BV(x)(R")) is the opera-
tor B(x)oU™ where U*: L(; (R™)** —BV ) (R") is the adjoint operator to the iso-
metric embedding U: Co(R™;1%)/ BV (x)(R™) L = L{,,(R™)* defined as follows. Let
9=(9a)o<|a|<k be a representative of a coset [g]. Then U ([g])eL( k)(R")* is defined
by

Ullghw)= Y / gad(D*v), vEBVy(R"). O

o<|aj<k

Now we are ready for the alternative proof of Proposition 4.1.

Outline of an alternative proof of Proposition 4.1. For simplicity we consider
the case k=1. By Proposition 6.2 it is enough to exhibit a subspace, say X of
BV(1)(R™), such that XDL%l)(R") but L%l)(R") is uncomplemented in X. We put

f-=flr~; fo:=flry and X:={f:R">C:fi € LR}
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To see that X CBV(3)(R™) fix f€X. Note that if the multiindex o corresponds
to the partial derivative 8/9z; for j=1,...,n—1, then (D*f)|rz =(D*fs) and
(D f)|lmn-1=0, while for a=(0,...,0,1) corresponding to the partial derivative
0/0x, we add the one-dimensional measure concentrated on R"~!, D*f|gn-1=
(Te® £, —Te® £ )A,_1; we define Tr) f.=TrY f* where f*(z)=f(~zx) for z¢
R™. With the help of Lemmas 3.2 and 3.3 we infer that f EL%I)(R”) if and only if
W £ - £ =q.

Assume on the contrary that there is a projection, say P, from X onto Lb) (R™).
Then for each he L!(R""1) there would exist a unique f[h]€(Id —P)(X) such that
T (flh])s =TV (f[h])-=h. Now for he L'(R~") put S(h)=(f[n]"*~ f(h])lr:.
Then S: L'(R™")—L{,,(R") would be the right inverse of TrY| a contradiction
to Peetre’s theorem. [
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