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Maximal plurisubharmonic
functions and the polynomial hull
of a completely circled fibration

Miran Cerne(!)

Abstract. Let X COB™ x C™ be a compact set over the unit sphere 8B™ such that for each
z€0B™ the fiber X,={weC™;(z,w)eX} is the closure of a completely circled pseudoconvex
domain in C™. The polynomial hull X of X is described in terms of the Perron-Bremermann
function for the homogeneous defining function of X. Moreover, for each point (zp,wp)€Int X
there exists a smooth up to the boundary analytic disc F: A—B™ xC" with the boundary in X
such that F(0)=(z0,wo).

1. Introduction

Let m and n be positive integers. Let B™={2€C™;|z|]<1} be the open unit
ball in C™ and let B™ denote its boundary. Let g: 9B™ x C™ — [0, o) be a nonneg-
ative continuous function such that for each z€9B™ the function g(z, - ): C*—[0, 00)
is a homogeneous plurisubharmonic function on C" with the only zero at the point
w=0. We say that a function u: C"—[0, 00) is homogeneous if u(Aw)=|A|u(w) for
all weC™ and AeC.

Let X={(z,w)€0B™ xC";p(z,w)<1}. Then X is a compact subset of 9B™ x
C™ such that for each z€dB™ the fiber X, ={weC";(z,w)c X} is the closure of a
completely circled pseudoconvex domain Q,={weC";p(z,w)<1} in C™.

The main result of the paper is the following theorem.

Theorem 1.1. The polynomial hull X of X is

X={(z,w) eB™xC"; ¥ ,(2,w) <1},
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where W,: B™x C"—[0,00) is the Perron-Bremermann function for o, that is, ¥,
is the largest plurisubharmonic function on B™xC™ whose boundary values are
below p. Moreover, for each point (ZQ,'LUO)E:[nt)? there ewists o smooth up to the
boundary analylic disc F: A—B™ x C" with the boundary in X such that F(0)=

(20, w0).

Recall that the polynomial hull K ofa compact set K CC™ is defined as
K= {z eC”;p(z)| < max |p| for every polynomial p in n variables}

and that by the maximum principle the image F'(A) of every H* holomorphic
mapping F: A— C™ with the boundary in K, that is, F*(e*®)€ K for almost every 0,
belongs to the polynomial hull K of K.

The question of the description of the polynomial hull of a compact fibration X
over the unit circle 9A with analytic discs whose boundaries lie in X was considered
in a series of papers [2], [9], [16], [17], [18], and quite recently by Whittlesey in [21],
[22] and [23] (see also [6] and {7]). In the case n=1 the most general result was
obtained by Slodkowski [17], where it was only assumed that each fiber is a simply
connected continuum. In the case of higher dimensional fibers, results were obtained
for convex fibers ([2], [16], {18]) and for the fibers which are smooth and strictly
hypoconvex (lineally convex) ([22], [23]).

For higher dimensional base (m>1) and n=1 it is a classical result, [10, p. 99],
that the polynomial hull of the set X, whose fibers are discs centered at the origin,
is given by the Perron—Bremermann function for p. Related results on the presence
of analytic discs and even analytic balls in the hull of the set with the disc fibers
are proved in [8] and [20]. Also, it was shown by an example in [8], that one can
not, in general, expect to get a foliation of the whole X with analytic discs even in
such simple cases. Finally we remark that it was shown by H. Alexander [1] that in
the case m>1 the polynomial hull of the graph of every continuous function ¢ on
OB™ is nontrivial and it covers the whole B™.

Acknowledgement. The author is grateful to Z. Balogh and C. Leuenberger for
very stimulating discussions.

2. Maximal plurisubharmonic functions

First we introduce some notation. Let D be an open subset of some complex
space Ck. By PSH(D) we will denote the set of all plurisubharmonic functions on
D which are locally bounded from above near each point of D. Also, for a function
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u: D—[—00,00) which is locally bounded from above near each point of D we will
denote by u*: D—[—0o0, 00) its upper semicontinuous regularization.

Let 0: 0B™ x C"—[0, 00) be a nonnegative continuous function and let () be
the set of all plurisubharmonic functions on B™ x C"™ whose boundary values are
below p:

21)  Ue) = {u;ue PSH(B™xC"), u*(z,w) < o(z,w) on dB™ xC"}.

Since ¢ is a nonnegative function, the family ¢/(p) contains the function u(z, w)=0
and is thus nonempty. The Perron—Bremermann function ¥,: B™ x C™—[0, 0o) for
the function g, [12, p. 89], is defined as

(2.2) ¥, (z,w) :=sup{u(z,w);ucl(o)}.

Let H,: B™ x C™—[0,00) denote the function which for each fixed woeC™ is
defined as the harmonic extension of the function g(-,we): 9B™—[0,00) to B™.
The function H, can be explicitly given as the Poisson integral

(2.3) H,(z w):i/ :ﬁg(ﬁ w) dS,

e Wam Ji¢|=1 |¢—2[>m 7 ©
where wa, is the measure of the unit sphere in C™. Obviously H, is a continuous
function on B™ x C™.

Since the restriction of a plurisubharmonic function to any complex subspace is
also subharmonic, the values of the harmonic extension H,(-,wy) have to be above
the values u(z,wg) for every plurisubharmonic function u€l(p) and every fixed
wp€C”. Hence ¥,<H, on B™xC" and then, by the continuity of the function
H,, we also have ¥3<H, on B™xC". The supremum of an arbitrary family of
plurisubharmonic functions is not necessarily a plurisubharmonic function, but if
it is locally bounded from above, then its upper semicontinuous regularization is
plurisubharmonic, [12, p. 69]. Therefore U el(o). We conclude that ¥,=V7 and
hence ¥,€U(p).

Proposition 2.1. Let p: 0B™ x C"—[0, c0) be a nonnegative continuous func-
tion such that for each 2€0B™ the function p(z,-):C"—[0,00) is a homogeneous
plurisubharmonic function on C™ with the only zero at the point w=0.

Then the Perron—Bremermann function ¥, for the function o is a nonnegative
continuous function on B™x C™ such that

(1) ¥,(z,w)y=p(z,w) for every (z,w)cdB™ x C";

(2) ¥, is homogeneous in the w wvariable: U, (z, \w)=|A|¥,(z,w) for all
{(z,w,\)eB™xC"xC;

(3) ¥, is o mazimal plurisubharmonic function on B™xC™ for which
U, (z,w)=0 if and only if w=0.
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Proof. Clearly the function ¥, is a maximal plurisubharmonic function on
B™x C". Namely, if DCB™xC" is a relatively compact open set and w: D—
[—00,00) an upper semicontinuous function which is plurisubharmonic on D and
such that u<W¥, on 9D, then the function

_ max{¥,(z,w),u(z,w)}, (z,w)eD,
Ve = e, () £ D,

is in U(p). Thus U<V, on B xC"™ and so also u<¥, on D.

The homogeneity of the function ¥, follows immediately from the homogeneity
of the function p. Also, since g is continuous and nonzero on dB™ x (C™\{0}) it
follows that for small enough m >0, plurisubharmonic functions of the form (z, w)—>
m|w| are in U(p) and hence ¥,(z, w)=0 if and only if w=0.

Now we will prove that ¥, is continuous on 9B™ x C™. Let (29, w)€IB™ x C"
and let € be a positive constant. Let AeC(0B™) be a real continuous function on
OB™ such that

(1) A(z0)> —¢;

(2) for every pair (z,w)€IB™ x IB™ we have A(z)<log o(z, w)—log (20, w).
Such a function exists since the function o(z, w)=log o(z, w)—log o(zo,w) is uni-
formly continuous on dB™ x9B" and o(zg, w)=0.

Given \eC(8B™), it is known, [12, p. 89], that there exists A€C(B™) such
that Alsg==2AX and Algm is a maximal plurisubharmonic function on B™.

We consider the continuous function

u(z,w) = eA(Z)g(zo, w)

on B™x C". The assumptions on ¢ imply that log ¢(z,w) is a plurisubharmonic
function on C™ for each z€0B™, [12, p. 84]. Therefore the function logu(z,w)=
A(z)+1log o(z20,w) is plurisubharmonic on B™ x C™ and so u€ PSH(B™ x C™).

The conditions on the function A and the homogeneity of the function o in the
w variables imply that u(z, w)<e(z,w) on 8B™ xC". Hence by the definition of
the function ¥, we have u(z,w)<¥,(z,w) on B™xC". Therefore

e %0(z0, wo) <ulzg,wp) < liminf W,(z,w)
(z,w)—(z0,wo)
< limsup  W(z,w) = ¥} (20,wo) < 0(20,wo)
(z,w)—(z0,wqo)

and hence, letting ¢\,0, we get that

lim oz, w) =Wy (20, wo) = 020, wo)-
(z,w)—(z0,wo)

Thus the function ¥, is continuous and equals g at the points (2, w)€dB™ xC™.
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The continuity of ¥, on B™ x C" follows from an argument similar to the ar-
gument in the proof of Proposition 4 in [13] (see also [19]). Instead of the uniform
continuity on the boundary, which we do not necessarily have, one uses the continu-
ity of ¥, on 9B™ x C™ and its homogeneity in w variables to get that for every e>0
there is a §€(0,1) such that as soon as |(z,w)—(20,wo)| <36 for a pair of points

3 _
(z0,wp)€OB™ x C™ and (z,w)cB™ x C", then

(1-8)¥,(z,w) —e < Wy(20, wo) < (1+6)Wy(2, w)+e

and hence
l—¢ 2e
1+¢

for any (z,w), (2/,w")€B™ x C" with dist(z,0B™)<2§ and |(z’,w')— (2, w)|<d. [J

<, (z,w)

3. Polynomial hull and analytic discs
We are now prepared to formulate and prove our main results.

Theorem 3.1. Let g: 0B™ x C"—[0,00) be as in Proposition 2.1 and let X =
{{z,w)€IB™ x C™;0(z,w)<1}. Then the polynomial hull X of X is

X ={(z,w) eB"xC"; ¥, (z,w) <1},

where W, is the Perron—Bremermann function for o on B™ xC".

Moreover, the polynomial hull X contains a lot of analytic discs with boundaries
in X.

Theorem 3.2. For each point (20, wo)€Int X there exists a smooth up to the
boundary analytic disc F: A—B™ xC" with the boundary in X such that F(0)=
(2:07 wO) .

We will prove both theorems using Poletsky’s characterization of the largest
plurisubharmonic function below a given upper semicontinuous function ¢ on an
open subset DCC™. It was proved in [14] that the function

1 27

(3.1) ug(e) =inf 5 | O(f*(e')) db,

where the infimum is taken over all mappings f: A— D with f(0)=2z which are de-
fined and holomorphic in some open neighbourhood V; of the closed unit disc A,
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is a plurisubharmonic function on D and it equals the supremum of the plurisub-
harmonic functions v on D which are pointwise below ¢. Moreover, it follows from
results in [15, Lemma 8.3 and Theorem 8.1] that for a smoothly bounded strongly
pseudoconvex domain DCC™ and a continuous function ¢ on 9D the function

27
(3:2) up(z)=inf = [ o(f*(c"))db,

f 27 Jy
where the infimum is taken over all holomorphic mappings f: A—D with f(0)=z
and whose boundary values satisfy f*(¢’®)€dD for almost every 8, is a continuous
function on D, a maximal plurisubharmonic function on D and is such that u,|op =
. For a bounded holomorphic mapping F' on A the notation F™* is used to denote
its almost everywhere defined boundary values.

Remark 3.3. As already mentioned (3.2) follows from Lemma 8.3 and Theo-
rem 8.1 in [15]. However, these two results are placed in a chain of other results
in [15] as a part of a general theory of holomorphic currents developed by Poletsky
and there is no explicit statement and proof of formula (3.2). To make our paper
more self-contained a proof of (3.2) for the ball, which uses Poletsky’s previous more
direct result (3.1) from [14], is presented in the appendix.

Lemma 3.4. Let ¢ be as in Proposition 2.1. Then the function

1 27

Byz.0) = inf o= [ (7€), () a,
where the infimum is taken over all H* holomorphic mappings of the unit disc
(f,9): A=B™xC" with f(0)=2z and g(0)=w and whose boundary values satisfy
F*(e)cOB™ almost everywhere on A, is a nonnegative upper semicontinuous
function on B™xC" such that

(1) ,(z,w)<P,(z,w) for every (z,w)eB™ xC™;

(2) the function ®, is locally bounded from above near each point of B™x C"
and ®;=p on IB™ xC™;

(3) the function ®, is homogeneous in the w variable,

Proof. The upper semicontinuity of the function ®, follows directly from its
definition with the help of the holomorphic automorphisms of the ball B” and the
fact that the function p is continuous.

Recall that H, is the continuous function on B™ x C" which has the property
that for each fixed wyp€C™ the function H,(z,wo) solves the Dirichlet problem

Au=0o0on B™ and ulsgm =0(2,wp).
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We have already observed that W,<H,. On the other hand it is obvious from
the submean value property that ¥,<®,. We also compare the functions ®,
and H, By the result of Poletsky ®,(z,wp) is pointwise below the maximal
plurisubharmonic function ., () on B™ with g(z,wq) as the boundary data. Thus
D, (2, wo) Sty (2) <Hp(2,wo) and therefore

V,<®,<H,

on B™ x C™ (and hence also on B™ x C™). This proves that ®, can be continuously
extended to the points IB™ x C™ and that ®;=p on B™ x C". The homogeneity
of ®, is clear. [

Proof of Theorem 3.1. Let Y:={(z,w)eB™xC™;¥,(z,w)<1}. We have to
prove that Y =X. We also define the set Z:={(z,w)eB™xC";®,(z,w)<1}. The
relation between the functions ¥, and &, imply ZCY.

First we will show that Z Q}? CY. The inclusion X CY follows from the defi-
nition of the set Y with the plurisubharmonic function ¥, and the fact, [12, p. 199,
Corollary 5.3.5], that the polynomial hull X ofa compact set X in C™ equals the
plurisubharmonic hull XPSH( p) for any open neighbourhood D of X.

Let now (zg,wp) be a point from Z and let £>0. If we=0, then it is obvious
that (zo,wo)e)?. From now on we assume that wo#0 and so ®,(zg, wg)#0.

By the definition of the function ®, there exists an H* analytic disc (f, g): A—
B™xC" ((f,9)(0)=(z0,wp)) such that for its boundary values we have f*(e*)e
dB™ for almost every 8 and such that

(3.3) B, (20, w0) <

27
37 | el (). (e)) o < By, e

We let p(&)=p(f*(£),9*(£)), £€OA, and we observe the functional

p*—>% /O ﬁlp(eég)lzw(e”)éw

over the space of holomorphic polynomials p€P in one variable with p(0)=1. Recall
a theorem of Szegd, [11, p. 144], which says that

1 27 ] ) 2m .
(3.4) inf — Ip(e?)2p(e?) d = exp (% / log ¢(e*) d6) .
0 T Jo

peEP 27

Also, because p(0)=1 and the homogeneity of the function p in w variable, we have

Ip(e”)Po(e) = o(£* ("), p* (") g" ()
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and (f,p%g)(0)=(z0,wo) for every peP. Hence by (3.3) we get
(3.5)
1

2m 27
O<®Q(z0,w0)§exp(i/ loggo(ew)dQ) < ——/ () di < & (29, wo)+.
27 Jo 27 Jy
Condition (3.5) implies that the function log ¢ is in L'(8A) and hence there exists,
[11, p. 103], a holomorphic function & on A which has nontangential limits almost
everywhere on dA and is such that Reh*=logy almost everywhere on dA and
I h(0)=0. We define F(£)=®,(zp,wp)e” ™% Then

[F(8)] Z‘I’g(zo,wo)e*logw(s) - @_ggjz)é_)w(ﬁ

almost everywhere on 0A. Also

1 2m )
PO =2y ) exp( 5 [ gl a0)
40

and hence, using the inequalities (3.5), we get

&
l————— < FPO) <.
Dy(20, wo) ~ 0=

Since [F*(&)|@(€)=0(f* (&), F*(§)g*(£))=P,(z0, wo) <1 and |f*(&)[=1 for almost
every £€JA, the analytic disc

§— (f(6), F(§)g(8)

has the property that its boundary lies in X, that is, (f*, F*¢*)(£)e X for almost
every £€0A. Also, the distance

[{z0, wo) = (f(0), F(0)g(0))] = [wo — F{0)g(0)| < |wolm
is arbitrarily small if only € is chosen small enough. Since the polynomial hull of
X is a closed subset of C™ xC™ and since an analytic disc with boundary in X
belongs to X, we proved (20, wo)e)?. Hence ZCX.

Finally we have to prove that Yg)?. Let (2, wo)€Y . Since ¥,|gpmxcn =0, it
is obvious that for any point (zg,1w)€Y such that |zp|=1 we have (zq, wO)EXg)?.
We assume from now on that |zp|<1. Also, if ¥,(29,wo)=0, we know that wo=0
and we obviously have (z,0)€.X. So from now on we also assume that w0 and
hence ¥ ,(zg, wy) #0.
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Let us define the function
27
V(zw) = inf = [ R(r7(e), g7 db

where the infimum is taken over all mappings (f,¢): A—B™ xC™ with f(0)=z
and g(0)=w which are defined and holomorphic in some open neighbourhood of the
closed unit disc A. By the result of Poletsky we have that ¥ is plurisubharmonic on
B™ x C™ and it equals the supremum of the plurisubharmonic functions on B™ xC™
which are pointwise below ®,. Therefore ¥,<¥°<®,. These inequalities together
with Lemma 3.4 imply that the plurisubharmonic function ¥° belongs to the space
U(p) and hence we must have ¥,=U".

Let £>0. Then there exists a mapping (f,g): A—B™x C" holomorphic on
some open neighbourhood of A such that (f, g)(0)=(2q,wo) and

27
3O Flown) S5 [ B0 (E) 0 W (0, 00)

Again using the theorem of Szeg6 and the homogeneity of the function ¢, we get
that

1 27 ‘ . )
(3.7) 0< W20, w0) §exp<§7;/ log @Q(f*(eie),g*(elg))ﬁ)w) < U, (20, wo) £
0

A similar construction gives us a holomorphic function G on A such that

|G (€)1@,(£7(e), 9" () = @y (£7(€), G (£)9" (€)) = W (20, w0) < 1

and the distance

(20, wo) = (£(0), G(0)9(0))] = w0 ~ G (0)g(0) | < Jwol G-

is arbitrarily small if only ¢ is chosen small enough. Hence we have found an analytic
disc £—(f(€),G(£)g(£)) with the property that its boundary lies in ZCX and it
passes arbitrarily close to the point (zg,wg). Hence (25,wg)eX. O

Before we prove Theorem 3.2 we state the following lemma whose proof is
postponed and given in the appendix.

Lemma 3.5. Let O0<a<1 be a real number and let
1 27 _ )
PU(z,w)= inf — T, (), g* () db,
(o) = nf 5 | (1(). ()
where the infimum s taken over all smooth up to the boundary holomorphic map-
pings (f,9): A—=B™xC™ with f(0)=z, g(0)=w and such that a<|f*(§)|<1 for
every E€OA. Then U =V,.



36 Miran Cerne

Proof of Theorem 3.2. Let (zo,wo)elnt)? and let £>0 be so that W,(zo, wo)+
£<1. By the continuity of the function ¥, on B™ x C™ there exists >0 such that
|¥,(2,w)—W,(Z,w)|<e for any pair of points (z,w)EB™xC™ and (2,@)6)? for
which |(z,w)—(Z,w)|<34.

The case wo=0 is obvious. Let us now assume that wo#0. Let a€(]zg],1) be
so close to 1 that 1/(1+6)<a and that for each v€(a, 1) there exists a holomorphic
automorphism A of the unit ball B™ which is § uniformly on B™ close to the
identity map: ||A—1Id}|<d and which takes (1/v)z to zo.

Using Lemma 3.5 and an argument similar to the argument in the proof of
Theorem 3.1 we can show that there exists an H> disc F=(f, ¢) on A such that

(1) the mapping f is smooth up to the boundary A, f(0)=2zy and a<|f*(£)|<
1 for every £€0A,;

(2) |wo—g(0)|<d;

(3) W (F*(£))=V,(20, wo)=tp almost everywhere on OA.

By Theorem 3.1 we know that the set Y, ={(z,w)€B"™ x C";¥,(z,w)<to} is poly-
nomially convex. Since F has the boundary in Y;,, we also have F(A)CY;, cX.

Let ve€(a, minga |f]) be a regular value of the function £€EA|f(£)] and let
Up be the connected component of the set {£€A;|f(£)|<v} which contains the
point 0. Then Up is a smoothly bounded simply connected domain in C and so
biholomorphic to A. Let A be a holomorphic automorphism of the unit ball B™
such that ||A~Td||<é and A((1/v)z¢)=20.

We define

v

F= <A(1f>7g+(wo—g(0))):Uo —»B™xC".
Then obviously F(0)=(zo,wp) and |A((1/v)f(€))|=1 for every £€dU,. Also, since
PO < JA-1a+ (3 -1) +on-g(0)] <39
on Uy, we get

W, (F(€))—T,(F())| <e

and hence

U, (F(E) <Wy(F(&))+e<tot+e<1

for every £€Uy. Therefore the analytic disc F: Uyg—B™ x C™ passes through the
point (2o, wg) and it has the boundary contained in X. [
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For a bounded strongly pseudoconvex domain D in C™ the equality of the
functions defined as ¥, and ®, was proved by Poletsky [15] and here the above
proof shows the following result.

Corollary 3.6. Under the assumptions of Proposition 2.1 the functions ¥,
and ®, are equal, that is, for every point (z,w)eB™ xC"
Wmw)=inf = [ ol (). 4" () do
e (f.9) 2w 0 ’ ’
where the infimum is taken over all H* holomorphic mappings (f,g): A—»B™xC"
with f(0)=z, g(0)=w and such that its boundary values (f*,g*) satisfy f*(¢")e
OB™ for almost every 6.

The motivation for the next proposition comes from a result in [23] where
the same conclusion was proved using nonelementary methods and under stronger
assumptions. Also, we would like to show that the class of fibrations X over the
unit circle considered in this paper and the class of fibrations considered in [22]
and [23] are quite different.

Recall that a set QCC™ is called lineally conver or linearly convexr or also
hypoconvex if its complement is the union of complex hyperplanes. Further, an
open set QCC™ is said to be weakly lineally convez if through every point of 9Q
there passes a complex hyperplane which does not intersect €.

Proposition 3.7. Let  be a completely circled weakly lineally convex domain
in C". Then  is convez.

The homogeneous plurisubharmonic function on C2, £€(0, 1),

e (wr, w2) :max{;wﬂ’ |, I_H%llzl}

and the domain Q. ={(wy,ws)€C?;p. (w1, ws)<1}, [12, p. 224], then shows that
there are completely circled pseudoconvex domains which are not convex and hence
not lineally convex.

Proof. The conclusion is obvious for n=1. Let n=2 and let wyed2. Without
loss of generality we may assume that wy=(1,0). Let a,b€C be such that A=
{(aA+1,bA);A€C} is a complex line through wy which does not intersect £2. Let

H={(aA+iy+1,bA); A€ C, yeR}

be the real hyperplane through wy spanned by A and the tangent line to the circle
A at the point 1.
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Let us assume that there is a point (ado+iyo+1,bAe}€HNE for some AeC
and ypeR. Let p=1/{1+4yp). Then |u|<1 and, since © is a completely circled
domain, we have u{aig+iyp+1,bAg)€Q. Therefore

A
(a 0 115-20 ) cona,
1+1iyo 143y

which is a contradiction. Hence HNQ =0 and the proposition is proved for n=2.
For n>3 the proposition follows by induction on n. [

4. The smooth case

It follows immediately from the maximum principle for subharmomc functions
that if a holomorphic disc F: A— X touches the boundary of X over B™, that is
U,(F(0))=1, then the disc F'(A) actually lies completely in the boundary of X. In
this section we will show that under appropriate smoothness assumptions on the
function ¥, the boundary of X over B is foliated by H® holomorphic discs.

We recall that, [12, p. 99] (see also [3], [4], [5]), if a maximal plurisubharmonic
function w on DCC™ is of class C® and the kernel of its Levi form is one-dimensional
at each point of D, then there exists a foliation of D by Riemann surfaces {S,}aca
such that the restriction of u to any S, is harmonic. The foliation is given by
integrating the distribution of the kernels of the Levi form of the function u.

Proposition 4.1. Let ¥ be a mazimal plurisubharmonic function on B™ x
(C™\{0}) of class C* such that
(1) ¥ is homogeneous in the w variable: U(z, dw)=|A|¥(z,w) for all (z,w)€
x (C"\{0}) and AeC\{0};
(2) the Levi form of ¥ has a one-dimensional kernel at each point (z,w)€
< (Cm\{0}).
Then the foliation of B™ x(C"\{0}) by Riemann surfaces {Sq}aca induced by ¥
18 such that ¥ is constant on each leaf S,,.

Proof. For every (z,w)eB™ x(C"\{0}) and A€ C\{0} we have
Uz, Aw) =|A\|¥(z, w).

We differentiate this identity with respect to A and get
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Set A=1 to get

for (z,w)eB™ x (C™\{0}).
Differentiation with respect to Z,, p=1,...,m, and w,, r=1,... ,n, gives us

LR 10V i 1 0V
J; Ow; 0z, (2, w)w; = 207, a5, (7w) and Z aw]a— whw; = 2 9w, B, P W)

Let V(z,w)=(Z(z,w), W(z,w)) be a vector field on B™ x (C™\{0}) which for
each point (z,w)€eB™ x (C™\{0}) spans the one-dimensional kernel of the Levi form
of the function W. This is also a vector field which is at each point tangent to the
leaves of the foliation {S,}aca. By the above identities we get

% <}; Z,(z,w) g—;l;(z, w)-l—Z: W, (z,w) aa—;(z, w)>

53 g, s L )

Changing the order of summation and using the fact that the vector field V(z, w)=
(Z(z,w), W(z, w)) spans the kernel of the Levi form of ¥ at the point (2, w) we get

p=1

2

= 82 I*v

Hence we have proved that at every point (z, w)eBm x C™ we have

ZZ Z,w) zw+ZW zw)aaij (z,w) =0,

and therefore the restriction of ¥ to any leaf S, is constant. [

Remark 4.2. 1f the function ¥ has bounded level sets (this is the case for the
function ¥, from Proposition 2.1) each Riemann surface S, is an image of a bounded
holomorphic mapping F.,=(fa, ga) on A (a covering map). Since {S,}aca form a
foliation of B™ x (C™\ {0}), we must have |f*(e*)|=1 almost everywhere on JA.

Remark 4.3. There are examples of maximal plurisubharmonic functions ¥ on
B™ (m>2) for which for certain points z€B™ there is no germ V of an analytic
variety containing z and such that ¥ly, is harmonic (Sibony’s example [3, p. 73]
and examples given by Poletsky). Therefore one can not in general expect to get a
foliation of the whole X with analytic discs, [8].
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5. Appendix

Proposition 5.1. Let ¢ be a continuous function on OB™ and let ug€C(B™)
be the mazimal plurisubharmonic function on B™ such that uglagm=w. Then for

every zeB™,
27

w(z) =inf 3= [ (") ab

where the infimum is taken over the family of all smooth up to the boundary map-
pings f: A—B™ which are holomorphic on A and such that f(0)=z and |f*(€)|=1
for every E€OA.

Proof. Let U be a continuous function on B™, plurisuperharmonic on B™ and
such that U equals ¢ on 0B™. Then 1y equals the supremum of the plurisubhar-
monic functions on B™ which are pointwise below U. Hence by [14] for every zeB™

we have )
w()=int o= [ U () ds
0

f 27

where the infimum is taken over all mappings f: A—B™ with f(0)=z which are
defined and holomorphic in some open neighbourhood Vy of A. Without loss of
generality we may assume that the infimurm is taken over the family P of polynomial
mappings f for which f(0)=2 and f(A)CB™.

Let £>0 and let f&€P be such that

2m
(5.1) up(z) < 1 /0 U(f*(e")) df < uo(2)+e.

T 27
Let I'C f~1(B™) be the connected component of f~!(B™) which contains A. The
set I' is a simply connected open set in C and we may also assume that it has a
smooth (even real analytic) boundary.
The function Uof€C(T) is a superharmonic function on T'. Let weC(T) be
the harmonic function on I' such that w|sr=(Uo f)|sr. Then w is the largest sub-
harmouic function on I below U f. Hence

27
(5.2) w(0) = inf % /O (U f)(R* () db,

where the infimum is taken over all mappings h: A—T with h(0)=0 which are
defined and holomorphic in some open neighbourhood of A.

Let hg be a Riemann map from A to I', hg(0)=0. Since 0T is smooth, hg is
smooth up to the boundary and it takes A into JI". Then

1 27

1 2" ) .
mm#mww=%4<www%w:%o<wmmww%w
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By the submean property and because w(0) is given as the infimum (5.2), we have

1 27T * ¢ 10 1 o * ¢ 160
wo(z) <w(0)== [ U((foho)*(e ))deg%/o U (1)) dB < up(2)+e.

- 27 0
Hence the smooth up to the boundary holomorphic mapping feohg: A—B™ is such
that (feho)(0)=2z, that it takes OA into IB™, and that it gives an e-approximation
of up(z). O

Proof of Lemma 3.5. Obviously we have that ¥® is an upper semicontinuous
function on B™x C" such that ¥,<W¥?. Using the continuity of ¥, on B™xC"
and constant discs, we also have (I*)*<g on 9B™ x C™. Hence, to prove the lemma
we have to show that U? is a plurisubharmonic function. The argument we use is a
modification of the argument by Poletsky in [14] and we include it for the interested
reader.

Let €A L(&)=(z0,wo)+(c,d)€ be a linear disc in B” x C™. We would like
to show that

1 2T )
B9 (20, wp) < —— / W (L (1)) df.
2'/T 0

Let £>0. Then for each £€0A there exists a smooth up to the boundary analytic
disc F(€,-)=(f(§,-),9(&,-)) such that F(g,0)=L(§), a<|f*(£,e*)|<1 on OA and

for which
1 271'

oo | U(FH(E,€)) dw < UHL(E)) +e.
27 Jo
Since U*(L(£)) is an upper semicontinuous function on JA, its integral can be
arbitrarily well approximated by an integral of a continuous function veC(8A)
such that *(L(€))<v(£) on OA. Hence, using the continuity of the function ¥,,
we may assume that F(, -} is a piecewise continuous and uniformly bounded family
of holomorphic discs. We will glue (find a homotopy between) the continuous pieces
of F(&,-) on a set of arbitrarily small measure on A to get a continuous family
Fi(&,m=(f1(&,n),91(&,n)) of up to the boundary smooth holomorphic discs for
which Fy(£,0)=L(£), a<|f{(€,e%)|<1 on OA and

1 2m 1 27 0 . 1 2 0
e o I * 1 w . a ? do B
2 ), <2ﬂ_‘/0 o(Fr(e”, e ))dw) d0<27r/0 T (L(e*")) df+e

The mappings g(&,-) are glued together by taking the convex combinations
of nearby mappings, that is, for two nearby points £,& €9A we set g(&, )=
(1-t)g(&o, - )+tg(&1,-), where & is some parametrization of the arc (£o,&1)COA
with the interval [0,1]. Then we define §(&;,-)=g(&, - )—9(&,0)+wo+d& to get
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§(&,0)=wp+d&. We have to be more careful when gluing the mappings f(&,- ).
First we find a homotopy {f(ftf)}te[o’l] in B™ between f(&,-) and f(&1,-) such
that for each t€[0,1], the analytic disc f(&,-) has no zeros on dA. We distinguish
two cases:

1. The case m=1. Each of the functions f(£,-) has a nonnegative winding
number around 0 which is constant on each continuous piece of f(¢,-). Multiplying
continuous pieces of f(£,) with functions of the form

L ntro
70 1‘?"/’07]7

where 7€(0,1) is a real number close to 1, we can arrange that the new family,
which we still denote by f(&,-), has the same properties regarding approximation,
boundary values and the position of the image of the point 0 as the original one,
but all functions also have the same winding number k. Hence for each £ €JA the
holomorphic function f(&,-) can be written in the form

f(&m)=B(E n)e&n,

where B(£,7) is a finite Blaschke product with k factors and ¢(£,n) a smooth up
to the boundary holomorphic function on A with the property log a<Re (£, n)<0.
Now a homotopy {f (&, )}iefo,1) between functions f(&o,-) and f(&1,-) is obvious:
the zeros of B(&,-) are moved to the zeros of B(¢1,-) and the convex combination

of (&, ) and (&1, ) is used.

2. The case m>1. Let f(&,-) and f(£1,-) be two vector functions from the
family f(£,-), £€HA. Since m>1, we can find a homotopy {f(&,- ) }eejo,1) between
f(&,-) and f(&1,-) of smooth up to the boundary holomorphic discs in B™ such
that f (&,-) has no zeros on OA for each &. A small perturbation of the convex
combination of f(&,,-) and f(&;,-) will be good enough.

Having a homotopy { f (&) }eefo,1) of smooth up to the boundary holomorphic
discs in B™ with no zeros on dA, we would like to modify it to satisty the conditions
f(€,0)=20+c& and a<|f*(£,n)|<1 for each nedA and t€[0,1]. We may assume
that f(&, )=F(&,-) for t€[0,8]U[1—-4,1] for some 0<5<i. Let rq€(0,1) be so
close to 1 and £>0 so small that || (&, Moo <(1—&)ro and || (&, - )leo < (1—&)ro
for every t€[0,1] and that the family of functions

i n+7o
ro 1+ron

f&mn)
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has the same essential properties (approximation, boundary values, the position of
the image of 0) as f(¢,-).

Let ©(&:,-) be a smooth up to the boundary holomorphic function on A such
that Re (&, n)=log | f(&,n)| on A and Im @(&,0)=0. Let x(t) be a smooth func-
tion on R such that supp xC[0,1], 0<x(#)<1 and x(t)=1 for t€[d, 1-4].

We define a continuous family of analytic discs

7 1 ontall) e f
f(ftﬂ?) ( ) (75)77 ™ f(ftﬂ]),
where
[ERIER

r(6)=maxe b ot () =r(e 0.

1-¢

First we observe that
|r(£)eX D0 < ()] (&, XKD <o <1

for every t€[0,1] and hence a(t) is well chosen. This shows that f(&,,-), t€[0,1],
is a well defined continuous family of analytic discs such that f(&,0)=f(&,0) for
every t€[0, §|U[L—4,1].

Also, for each t€[0,1] and n€JA we have

Ry
r(t)

and the equality holds for every t€[d, 1—4]. On the other hand for t€[0, d]U[1—0, 1]
and n€dA we have

|F (&) = —=|f (&, m)X® <1

%ma,nnl—w)z|f<st,n>|1*><< > 1€ n) =€) >a

and
l1-—e alf)((t)

YEENTE0) 1=x(®) S~ P
1£ (& )15 < A6 Z (=) q o

and hence |f(&;,7)|>a for every t€[0,1] and nedA.

We finish the gluing by using an appropriate continuous family {A;};cj0.1) of
automorphisms of the ball B™(0,1—¢) which are equal to the identity map on
[0,6]U[1—4, 1] and are such that A.(f(&;,0))=F(&,0) on [4,1—4].

>a
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The rest is similar to [14], pp. 168-169, and we will only sketch it. First we

approximate Fi(&,n) uniformly on A XA by functions F»(€,7n) which are holo-
morphic and smooth up to the boundary in ne€A, rational in £€A, with a pole
at £€=0, and such that F»(£,0)=L(¢). Then the pole at £=0 is erased using
the change of variables F3(&,n)=F5(£,€Vn). Finally the holomorphic mapping
EEA(£4(8),94(8))=F3(&,e'€) is for an appropriately chosen a€R such that
(f4(0), 94(0))=L(0)=(z0, wo), a<|fF(£)]<1 on A and

1 o *( 1 ENOK
{J“(zo,wo)ﬁé—/ U,(fale 9, g5(e"?)) do
™ Jo

10.

11.
12.

13.

1 2n p2m 0 1 2m "
— * K4 k293] a k1 B D
*47r2/0 /0 U, (F5(e¥, e ))dedw<—2ﬂfo G L{e")) df+e
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