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Maximal plurisubharmonic 
functions and the polynomial hull 
of a completely circled fibration 

Miran Cerne(1) 

A b s t r a c t .  Let  X C _ O B  ~ • C n be a compac t  set  over the  uni t  sphere  O B  m such  t h a t  for each 

z C O B  m t h e  fiber X z = { w C C ' ~ ; ( z , w ) E X }  is the  closure of a comple te ly  circled pseudoconvex  

domain  in C ~. The  po lynomia l  hull _~ of X is descr ibed in t e rms  of t he  Per ron  B r e m e r m a n n  

funct ion  for t he  homogeneous  defining func t ion  of  X.  Moreover,  for each poin t  ( z0 ,w0) f f In t  .X 

there  exists  a s m o o t h  up  to the  b o u n d a r y  ana ly t ic  disc F : /k- - -yBm x C n wi th  the  b o u n d a r y  in X 

such  t h a t  F ( 0 ) = ( z 0 ,  w0). 

1. I n t r o d u c t i o n  

Let m and n be positive integers. Let B ~ = { z E C m ; i z I < l  } be the open unit  
ball in C ~ and let cgB ~ denote its boundary.  Let 0: 0 B ~  • C'~-+[ 0, ec) be a nonneg- 

ative continuous function such tha t  for each z C 0 B  ~ the function O(z,. ): C ~ - +  [0, oc) 

is a homogeneous plur isubharmonic  funct ion on C ~ with the only zero at the point  
w = 0 .  We say tha t  a funct ion u: C~--+[0, oo) is homogeneous if ~(;~w)=l),lu(w) for 
all w ~ C  ~ and AEC.  

Let X = { (z, w) E 0 B  "~ x C~ ;L)(z, w) _< ] }. Then  X is a compact  subset of 0 B  m x 

C ~ such tha t  for each z cOB ~ the fiber X ,  = {w E C~; (z ,  w ) c X }  is the closure of  a 

completely circled pseudoeonvex domain  f ~  { w ~ C " ; p ( z ,  w) < 1} in C~L 

The  main  result of the paper  is the following theorem. 

T h e o r e m  1.1. The polynomial hull X of X is 
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where G0: B "~ x C~-+[0, oc) is the Perron-Bremerrnann .function for Q, that is, g~e 
is the largest plurisubharmonic function on B ' ~ x C  n whose boundary values are 
below ~. Moreover, for each point (zo, wo)EIn t ) (  there exists a smooth up to the 
boundary analytic disc F: A-+B'~  x C n with the boundary in X such that F ( 0 ) =  

wo). 

Recall that the polynomial hull K of a compact set KC_C rz is defined as 

2 =  {z E C n ; [p(z)I _< max IPl for every polynomial p in rt variables} 

and that  by the maximum principle the image F (A)  of every H ~ holomorphic 
mapping F: A--+ C n with the boundary in K,  that  is, F* (e i~ E K for almost every 0, 

belongs to the polynomial hull K of K.  
The question of the description of the polynomial hull of a compact fibration X 

over the unit circle 0A with analytic discs whose boundaries lie in X was considered 
in a series of papers [2], [9], [16], [17], [18], and quite recently by Whittlesey in [21], 
[22] and [23] (see also [6] and [7]). In the case n = l  the most general result was 
obtained by Slodkowski [17], where it was only assumed that  each fiber is a simply 
connected continuum. In the case of higher dimensional fibers, results were obtained 
for convex fibers ([2], [16], [18]) and for the fibers which are smooth and strictly 
hypoconvex (lineally convex) ([22], [23]). 

For higher dimensional base (m>  1) and n = l  it is a classical result, [10, p. 99], 
that  the polynomial hull of the set X, whose fibers are discs centered at the origin, 
is given by the Perron-Bremermann function for 0- Related results on the presence 
of analytic discs and even analytic balls in the hull of the set with the disc fibers 
are proved in [8] and [20]. also, it was shown by an example in [8], that  one can 
not, in general, expect to get a foliation of the whole J~ with analytic discs even in 
such simple cases. Finally we remark that  it was shown by H. Alexander [1] that in 
the case r n > l  the polynomial hull of the graph of every continuous function ~ on 
0B "~ is nontrivial and it covers the whole B ' L  

AcknowLedgement. The author is grateful to Z. Balogh and C. Leuenberger for 
very stimulating discussions. 

2. Max imal  p lur i subharmonic  funct ions  

First we introduce some notation. Let D be an open subset of some complex 
space C k. By 7987-l(D) we will denote the set of all phr isubharmonic functions on 
D which are locally bmmded from above near each point of D. Also, for a function 
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u: D--->[-oc, oo) which is locally bounded from above near each point of H we will 
denote by u*: D--->[-oc, oo) its upper semieontinuous regularization. 

Let p: 0B ~ x C'~---> [0, oc) be a nonnegative continuous function and let b/(0) be 
the set of all plurisubharmonic functions on B ~ x  C '~ whose boundary values are 
below ~: 

(2.1) U(0 )={u ;uET)ST- / (B~xC*~) ,  u*(z,w)-<O(z,w) on 0 B ~ x C n } .  

Since 0 is a nonnegative function, the family U(~) contains the function u(z, w)=O 
and is thus nonempty. The Perron-Bremermann function ~o: B'~ x C n--+ [0, ec) for 
the function ~), [12, p. 89], is defined as 

(2.2) ~e(z,  w) := sup{u(z, w) ; u �9 b/(L)) }. 

Let H v : B ~  • oc) denote the function which for each fixed w 0 � 9  ~ is 
defined as the harmonic extension of the function ~)(. ,w0):0B'~-+[0, oo) to B "~. 

The function H e can be explicitly given as the Poisson integral 

(2.3) Ho(z,w)= 1-~-/( 1-1zl2 " w)dSr 

where CO2m is the measure of the unit  sphere in C ~. Obviously Ho is a continuous 
function on B "~ • C% 

Since the restriction of a plurisubharmonic function to any complex subspace is 

also subharmonic, the values of the harmonic extension H~( . ,  w0) have to be above 
the values u(z, wo) for every plurisubharmonic function u�9 and every fixed 
w0�9 Hence ~o_<H e on B ~ x  C n and then, by the continuity of the function 
He, we also have ~ _ < H  o on B~'~ x C '~. The supremum of an arbitrary family of 
plurisubharmonic functions is not necessarily a plurisubharmonic function, but if 
it is locally bounded from above, then its upper semicontinuous regularization is 
plurisubharmonic, [12, p. 69]. Therefore ~;�9 We conclude that  g~0=~P; and 
hence ~ ffb/(~). 

P r o p o s i t i o n  2.1. Let L): c 9B~ x C'~-+[0, oc) be a nonnegative continuous func- 
tion such that for each zcOB ~ the Junction ~(z,.):C~-+[O, oc) is a homogeneous 
plurisubharmonic f~nction on C ~ with the only zero at the point w=0.  

Then the Perron Bremermann function g% for the function ~ is a nonnegative 
continuous function on B m x  C n such that 

(1) g~e(z, w) =O(z, w) for every (z, w) � 9  "~ x C'~; 
(2) ~ is homogeneous in the w variable: ~(z , )~w)=l)q~o(z ,w ) for all 

(z,w, A) �9  • C~ x C ;  
(3) ~o is a mazimal plurisubharmonie function on B ' ~ x C  n for which 

q~o(z,w)=O if and only if w=O. 
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Proof. Clearly the function 9 o is a maximal plurisubharmonic function on 
B ~ x C ~. Namely, if DCB "m" •  r' is a relatively compact  open set and u: D--+ 
[ -oo,  oo) an upper  semicontinuous function which is plurisubharmonic on D and 

such that  u<_q% on 0D, then the function 

U(~, ~)  : :  % ( ~ ,  ~) ,  (~, ~)  ~ D, 

is in U(&)). Thus U_<ge on B r'~ x C  ~ and so also u_<9o on D. 
The homogeneity of the function 9e  follows immediately from the homogeneity 

of the function 0. Also, since 0 is continuous and nonzero on OB ~ • (C'~\{0}) it 
follows that  for small enough m > 0 ,  plurisubharmonic functions of' the form (z, w) 

rnlwl are in b/(L)) and hence q~o(z, w ) = 0  if and only if w---0. 
Now we will prove that  ~e  is continuous on OB ~'~ • C ~. Let (z0, w0) E 0 B  "~ x C n 

and let s be a positive constant. Let ,~EC(0B ~)  be a real continuous function on 

c0B ~ such that  
( 1 ) ~(Z0) ~ l e ;  
(2) for every pair (z, w) Ec0B "~ x c0B ~ we have k(z) _<log L)(z, w) - l o g  ~)(z0, w). 

Such a function exists since the function ~(z, w)= log  0(z, w ) - l o g  &)(z0, w) is uni- 
formly continuous on 0B ~ x OB ~ and or(z0, w) =0.  

Given AEC(OB~) ,  it is known, [12, p. 89], that  there exists A E C ( B  ~)  such 
that  AIoB,~ =fl  and AIB,,~ is a maximal plurisubharmonic function on B ~.  

We consider the continuous function 

= e 0( 0, 

on B ~ •  C ~. The assumptions on 0 imply that  log ~)(z, w) is a plurisubharmonic 
function on C "  for each z~OB "~, [12, p. 84]. Therefore the flmction l o g u ( z , w ) =  

A(z)+log  ~)(z0, w) is plurisubharmonic on B ~ •  C ~ and so ~CP87-t(B'~ x C'~). 
The conditions on the function A and the homogeneity of the function 0 in the 

w variables imply that  u(z, w)_<O(z, w) on OB"~ x C ~. Hence by the definition of 
the function 9 4 we have u(z, w)<_g'o(z, w) on B ' ~ x  C ~. Therefore 

e-~o(zo, wo) <_ w(zo, wo) <_ lira inf q~o(z, w) 
(~,.,o)--,(~o,~o) 

<_ lira sup gJo(z, w) -- qJ*~(zo, wo) _< O(zo, wo) 
(~,~)-~(~o,~o) 

and hence, letting e ~ 0 ,  we get that  

l i r a  : = o( 0, 
(~,',,,)-~(~o,~'o) 

Thus the function q% is continuous and equals L) at the points (z, w ) E O B "  x C ~. 
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The continuity of ~o on B '~ • C ~ follows from an argument similar to the ar- 
gument in the proof of Proposition 4 in [13] (see also [19]). Instead of the uniform 

continuity on the boundary, which we do not necessarily have, one uses the continu- 
ity of ~e  on cqB '~ • C ~ and its homogeneity in w variables to get that  for every c > 0  
there is a 5E (0, �89 such that  as soon as I(z, w ) - ( z o ,  w0)l<3(~ for a pair of points 
(zo, wo) EcgB "~ • C n and (z, w) c B  "~ • C ' ,  then 

(1-~)%(~, ~)-~  _< %(~o, wo) _< (1+~)%(~, ~)+~ 

and hence 
1 - c  2c 
1 + ~  ~ e ( z ' ' w ' )  l + ~ < - ~ e ( z ' w )  

for any (z, w), (z', w') C B ~ • C '~ with dist (z, OB ~)  < 2~ and I(z', w') - (z, w) l < ~. [] 

3. Polynomial  hull and analytic discs 

We are now prepared to formulate and prove our main results. 

T h e o r e m  3.1. Let Q: OB "~ • C~-+[0, oo) be as in Proposition 2.1 and let X =  
i 

{ ( z , w ) E O B  ~ •  w)_<l}. Then the polynomial hull X of X is 

2 = {(z, w) ~ ' ~  • c "  ; %(~, ~) _< 1}, 

where q% is the Perron Bremermann function for ~ on B m • C n. 

Moreover, the polynomial hull ) (  contains a lot of analytic discs with boundaries 
in X. 

T h e o r e m  3.2. For each point (z0, w0)EInt X there exists a smooth up to the 

boundary analytic disc F: A-+B'~•  C ~ with the boundary in X such that F ( 0 ) =  

(~0, w0). 

We will prove both theorems using Poletsky's characterization of the largest 
plurisubharmonic function below a given upper semicontinuous function r on an 
open subset D E C " .  It  was proved in [14] that  the function 

(3.1) u r  1 ~0 2~ s 2V r176 de, 

where the infinmm is taken over all mappings f :  A - + D  with f(0)  z which are de- 
fined and holomorphic in some open neighbourhood Vt of the closed unit disc A, 
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is a plurisubharmonic function on D and it equals the supremum of the plurisub- 
harmonic functions v on D which are pointwise below 6. Moreover, it follows from 
results in [15, Lemma 8.3 and Theorem 8.1] that  for a smoothly bounded strongly 
pseudoconvex domain D C_ C n and a continuous function ~o on OD the function 

1 ~o 27r 
(3.2) u~(z) = ia)f 27~ ~(f*(ei~ dO, 

where the infimum is taken over all holomorphic mappings f :  A - + D  with f ( 0 ) = z  
and whose boundary values satisfy f*(e~~ for almost every 0, is a continuous 
function on D, a maximal  plurisubharmonic function on D and is such tha t  u~ ]OD = 
~. For a bounded holomorphic mapping F on A the notation F* is used to denote 

its almost everywhere defined boundary values. 

Remark 3.3. As already mentioned (3.2) follows from Lemma 8.3 and Theo- 
rem 8.1 in [15]. However, these two results are placed in a chain of other results 
in [15] as a part  of a general theory of holomorphic currents developed by Poletsky 
and there is no explicit s tatement  and proof of formula (3.2). To make our paper  
more self-contained a proof of (3.2) for the ball, which uses Poletsky's  previous more 
direct result (3.1) from [14], is presented in the appendix. 

L e m m a  3.4. Let ~ be as in Proposition 2.1. Then the function 

r ,w) := inf 1 .f02~ (f,9) 2~ p(f*(ei~176 dO, 

where the infimum is taken over all H ~ holomo~phic mappings of the unit disc 
(f ,g) :  A--+B "~ •  ~ with f ( 0 ) = z  and g(0 )=w and whose boundary values satisfy 
f*(ei~ almost everywhere on OA, is a nonnegative upper semicontinuous 
function on B ' ~ x  C n such that 

(1) SJe(z,w)<C~e(z,w ) for every ( z , w ) e B ~ •  
(2) the function q~e is locally bounded from above near each point of B ~ x C n 

and ~P*o=~ on 0Bin x C n ;  

(3) the function ~e is homogeneous in the w variable. 

Proof. The upper  semicontinuity of the function q5 follows directly from its 
definition with the help of the holomorphic automorphisms of the ball B ~ and the 

fact tha t  the function p is continuous. 
Recall that  H e is the continuous function on B ' ~ x  C ~ which has the property 

that  for each fixed w o c C  ~ the function He(z, wo) solves the Dirichlet problem 

A u = 0 o n B  "~ and UlOB-~=~(Z, W0). 
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We have already observed that  ~o_<Hs. On the other hand it is obvious from 
the submean value property that  9s-<apo" We also compare the functions apo 
and H o. By the result of Poletsky apo(Z, Wo) is pointwise below the maximal 
plurisubharmonic function u~ o (z) on B "~ with O(z, w0) as the boundary data. Thus 

aP~(z, wo) <_t~o (z)<_ Ho(z , wo) and therefore 

�9 ~ <<_ aP~ < H~ 

on B "~ • C '~ (and hence also on B'~ x C~0. This proves that  ape can be continuously 
extended to the points 0B '~•  C ~ and that  qh~=Q on 0 B "  x C ~. The homogeneity 
of (I<o is clear. [] 

Proof of Theorem 3.1. Let Y:={( z ,w)EB '~xC~;~o(z ,w)<l  }. We have to 

prove that  Y = X .  We also define the set Z :={(z ,  w ) c B  "~ x C~;~o(z,  w)_<l}. The 
relation between the functions ~e and ape imply ZC_Y. 

First we will show that  Z CX_ C Y. The inclusion )(C_Y follows from the defi- 
nition of the set Y with the plurisubharmonic function 9Q and the fact, [12, p. 199, 

Corollary 5.3.5], that  the polynomial hull J( of a compact set X in C n equals the 

plurisubharmonic hull XPS~(D) for any open neighbourhood D of 2~. 
Let now (zo,wo) be a point from Z and let s>0 .  If w0=0, then it is obvious 

that (z0, w0)EX. From now on we assume that  w0#0 and so apo(zo, w0)#0. 
By the definition of the function aP e there exists an H ~ analytic disc (f ,  9): A--+ 

B ' ~ x  C n ((f,  9)(0)=(z0, w0)) such that  for its boundary values we have f*(e i~ E 
0B "~ for almost every 0 and such that  

1 ~0 2~r 
(3.3) aPo(Zo,Wo)<_~ o(f*(e~~176 

We let ~(~) = o(f* (4), 9* (~)), ~ C 0A, and we observe the functional 

1 fo 27r P' > ~ lp(ei~ 

over the space of holomorphic polynomials pCP in one variable with p(0)=  1. Recall 
a theorem of Szeg6, [11, p. 144], which says that  

1 ) [ ~  log ~(e ~~ dO (3.4) pcpinf ~ Jo Ip(ei~ i~ dO = exp ~ 

Also, because p(0) = 1 and the homogeneity of the function ~) in w variable, we have 

* z0  2 z0  * z 0  ]P(ei~176 =L)(f ( e ) , p  ( e ) g  ( e ) )  
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and (f, pZg)(O)=(Zo,Wo) tbr every pEP .  Hence by (3.3) we get 
(3.5) 

) O<~~176176 27~ l~176 <-27~ ~(ei~176176 

Condition (3.5) implies that the function log ~ is in L I(0A) and hence there exists, 
[11, p. 103], a holomorphic function h on A which has nontangential limits almost 
everywhere on 0A and is such that R e h * = l o g ~  almost everywhere on 0A and 
Im h(0)=0.  We define F(~)=~e(zo ,  wo)e -h((). Then 

IF* (~)l = ~ o(Zo, Wo)e- tog ~(~) _ ~a(zo, wo) 
~(~) 

almost everywhere on 0A. Also 

1 log ~(e i~ dO F(0) = %(~o, wo) exp - ~ .  

and hence, using the inequalities (3.5), we get 

s 

1 % ( ~ o , ~ o )  -< f(0) <_ 1. 

Since [r*(~)lg)(~ ) =g(f*(~) ,  F*(~)9*(~))=q%(zo, w0)_< 1 and If*(~)l=l  for atmost 
every ~EOA, the analytic disc 

~, ~ (f(~),F(~)9(~)) 

has the property that its boundary lies in X, that is, (f*, F*g*) (~)cX for almost 
every {~0A.  Also, the distance 

s 

I(zo, w o ) -  (f(o),  F(0)9(0))I = lwo-  F(0)r I < Iwo I ~o(zo, ~Vo) 

is arbitrarily small if only c is chosen small enough. Since the polynomial hull of 
X is a closed subset of C '~•  C n and since an analytic disc with boundary in X 
belongs to X, we proved (Zo, Wo)cX. Hence ZC_)2. 

A 
Finally we have to prove that YC_X. Let (z0, Wo)CY. Since q~olOB,~ xc,~ =Q, it 

is obvious that for any point (zo, wo)E Y such that I zol= 1 we have (z0, w o ) c X  C_ 3~. 
We assume from now on that Izol <1. Also, if q2o(Zo , w0)=0, we know that wo=0 
and we obviously have (zo, 0)CX. So from now on we also assume that wo#0  and 
hence ~ ( Z o ,  wo) #0.  
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Let us define the function 

1 f2~r 
�9 ~ = inf (~e(f*(ei~176 , 

(s,g) ~ J0 

where the infimmn is taken over all mappings (f,g):A-+Br~"• ~ with f(O)-=z 
and g(O) =w which are defined and holomorphic in some open neighbonrhood of the 
closed unit disc ~.  By the result of Poletsky we have that  q~o is plurisubharmonic on 
B ~ x C ~ and it equals the supremum of the plurisubharmonic functions on B ~ • C n 
which are pointwise below �9 o. Therefore ~ _ < ~ ~  <(i)o. These inequalities together 
with Lemma 3.4 imply that  the plurisubharmonie function ~o belongs to the space 
bt(~) and hence we must have q~ =~o .  

Let s>0 .  Then there exists a mapping (f ,g) :  ~ - + B ' * •  C~ holomorphic on 
some open neighbourhood of A such that  (f ,  9)(0)= (z0, Wo) and 

1 ds 
(3.6) ~e(zo,wo)<_~ ~e(f*(ei~176 

Again using the theorem of Szeg5 and the homogeneity of the function (I)~ we get 
that  

(3.7) 0 <  ~ ( z ~ 1 7 6  \2~r fo2~I~176176 <qJe(z~176 

A similar construction gives us a holomorphic function G on A such that  

IG*(~)l%(f*(e~~ g* (e~~ = % ( f *  (~), G* (~)g* (~)) = %(z0,  wo) _< 1 

and the distance 
c 

I(~o, w0) -  (/(0),  a(0)g(0))l = Iwo -a(0)g(0)I  _< Iw01%(~o ' 
Wo) 

is arbitrarily small if only s is chosen small enough. Hence we have found an analytic 
disc ~ + ( f ( ~ ) ,  G(~)g(~)) with the property that  its boundary lies in ZC_X and it 
passes arbitrarily close to the point (zo,wo). Hence (zo,wo)CX. [] 

Before we prove Theorem 3.2 we state the following lemma whose proof is 
postponed and given in the appendix. 

L e m m a  3.5. Let 0 < a < l  be a real number and let 

inf 1 .~2~ (f,9) 2N q;o(f* (ei~ 9*(ei~ dO, 

where the infimum is taken over all smooth up to the boundary holomorphic map- 
pings (f,  9 ) : A - + B ~ •  '~ with / ( 0 ) = z ,  9(0)=w and such that a < l / * ( ~ ) l < l  for 
every ~cOA. Then gJ~=qe. 
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Proof of Theorem 3.2. Let (z0,w0)EInt J( and let g>0 be so that  qJe(zo,wo)+ 
c < l .  By the continuity of the function ~o on B ' ~ x  C ~ there exists ~>0 such that  
I ~ ( z ,  wD-~Q(~ ,~ ) l<c  for any pair of points (z,w)EBmxC n and ( ~ , ~ ) C 2  for 

which I(z, w) - ($, ~)l < 3& 

The case w0=0 is obvious. Let us now assmne that wor Let aE(Izol, 1) be 
so close to 1 that  1 / ( l + d ) < a  and that  for each rE(a, 1) there exists a holomorphic 
automorphism A of the unit ball B ~ which is ~ uniformly on B "  close to the 
identity map: I IA-Idl l<d and which takes (1/v)zo to Zo. 

Using Lemma 3.5 and an argument similar to the argument in the proof of 
Theorem 3.1 we can show that  there exists an H ~176 disc F=(f,g) on A such that  

(1) the mapping f is smooth up to the boundary 0A, f (0 )=z0  and a < l f * ( { ) l <  
1 for every {EOA; 

(2) Iwo-g(0)l<& 
(3) q~e(F*(~))=~I'a(Zo, wo)=t0 almost everywhere on cOA. 

By Theorem a.1 we know that  the set Yt0 ={(z,  w )EB m x C ' ~ ; ~ ( z ,  w)<_to} is poly- 

nomiMly convex. Since F has the boundary in Yto, we also have F(A)_CYto g J(. 

Let vE(a, minoA [fl) be a regular value of the function ~ E A ~ ] f ( ~ ) I  and let 
Uo be the connected component of the set {~A;lf(~) l<v } which contains the 
point 0. Then Uo is a smoothly bounded simply connected domain in C and so 
biholomorphic to A. Let A be a holomorphic automorphism of the unit ball B "~ 

such that  IIA-Idll <5 and A((1/V)Zo)=z0. 
We define 

F'=(A(lf),g+(wo-g(O))):Uo > B ' ~ x C  ~. 

Then obviously ? (0)  = (zo, w0) and IA((1/v)f ( r  1 for every r < cOUo. Also, since 

I F ( ~ ) - F ( ~ ) I < [ 1 A - I d l l +  ( l  _ l )  +lwo_g(0)l  < 36 

on Uo, we get 

and hence 

I,I%(~(~))-%(v(~))1 < 

%(~(~))  < % ( r ( ~ ) ) + ~  _< to+~ < 1 

for every {EUo. Therefore the analytic disc F: Uo--~B~x C ~ passes through the 
point (Zo, w0) and it has the boundary contained in X. [] 
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For a bounded strongly pseudoconvex domain D in C *~ the equality of the 
functions defined as ~o and (I)Q was proved by Poletsky [15] and here the above 

proof shows the following result. 

C o r o l l a r y  3.6. Under the assumptions of Proposition 2.1 the .[,unctions ~Q 
and (be are equal, that is, for every point (z, w) EB ~ x C '~ 

�9 e(z ,w) = inf 1 ./i 2" (f,g) ~ Q(f*(ei~176 

where the infimum is taken over all H ~176 holomorphic mappings (f, g): A-~B~r~ x C ~ 

w i t h / ( 0 ) = z ,  g(0 )=w and such that its boundary values (f*,g*) satisfy f*(ei~ 
OB "~" for almost every O. 

The motivation for the next proposition comes from a result in [23] where 
the same conclusion was proved using nonelementary methods and under stronger 
assumptions. Also, we would like to show that  the class of fibrations X over the 
unit circle considered in this paper  and the class of fibrations considered in [22] 

and [23] are quite different. 
Recall tha t  a set f t c C  ~ is called lineally convex or linearly convex or also 

hypoconvex if its complement is the union of complex hyperplanes. Further, an 
open set ft C C ~ is said to be weakly lineally convea if through every point of Oft 

there passes a complex hyperplane which does not intersect f~. 

P r o p o s i t i o n  3.7. Let f~ be a completely circled weakly lineally convex domain 
in C n. Then ft is convex. 

The homogeneous plurisubharmonic function on C 2, eE(0, 1), 

and the domain f~={(w~,w2)EC2;s  [12, p. 224], then shows that  
there are completely circled pseudoeonvex domains which are not convex and hence 

not lineally convex. 

Pro@ The conclusion is obvious for n = l .  Let n = 2  and let w0E0ft.  Without  

loss of generality we may assume that  w0=(1,0) .  Let a, bEC be such that  A =  
{(aA+l ,  bA);AEC} is a complex line through w0 which does not intersect ft. Let 

H = { ( a A + i y + l ,  bA) ;AE C, y E R }  

be the real hyperplane through w0 sprained by A and the tangent line to the circle 

A at the point 1. 
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Let us assume that  there is a point (aAo+iyo+l, bA0)EHNft for some AoEC 
and yoER. Let #=l / ( l+iyo) .  Then ]#1<1 and, since f~ is a completely circled 
domain, we have #(aXo +iyo + 1, hA0) E f~. Therefore 

Ao •  Ao "~ 
a l + i y ~  " l+iyoJ Ef~AA' 

which is a contradiction. Hence HAFt=0 and the proposition is proved for n=2 .  
For n_>3 the proposition follows by induction on n. [] 

4. T h e  s m o o t h  c a s e  

It follows immediately from the maximum principle for subharmonic functions 
that  if a holomorphic disc F: A - + ) (  touches the boundary of X over B "~, that  is 
�9 ~(F(0) )=I ,  then the disc F (A)  actually lies completely in the boundary of 3[. In 
this section we will show that  under appropriate smoothness assumptions on the 
function ~Pe the boundary of X over B "~ is foliated by H ~ holomorphic discs. 

We recall that,  [12, p. 99] (see also [3], [4], [5]), if a maximal plurisubharmonic 
function 'a on D C C  ~ is of class C 3 and the kernel of its Levi form is one dimensional 
at each point of D, then there exists a foliation of D by Riemann surfaces {S~}~sA 
such that  the restriction of u to any S(~ is harmonic. The foliation is given by 
integrating the distribution of the kernels of the Levi fbrm of the function u. 

P r o p o s i t i o n  4.1. Let q~ be a maximal plurisubharmonic function on B ' ~ x  
(C'~\{0}) of class C 3 such that 

(1) q~ is homogeneous in the w variable: ~(z, Aw)=lAl~(z,w ) for all (z,w)C 
B "~ x (C~'\{0}) and AEC\{0};  

(2) the Levi form of gJ has a one-dimensional kernel at each point (z,w)E 
B'~ • ( C ~ \ { 0 } ) .  

Then the foliation of B ~ •  (Cn\{0})  by Riemann surfaces {S~}~eA induced by q~ 
is such that �9 is constant on each leaf S~. 

Proof. For every ( z , w ) e B ' ~ x ( C n \ { 0 } )  and A e C \ { 0 }  we have 

We differentiate this identity with respect to A and get 



Maximal plurisubharmonic functions and the polynomial hull 39 

Set l=l to get 

floe 1 ~r 

for (~, ~) ~B ~' • (On\{0}). 

Differentiation with respect to 2p, p = l ,  ..., m, and ~ . ,  r = l ,  ..., n, gives us 

f i  029  1 0 9  f i  029  1 0 9  
-- (~,~)~:---(~,~) and (~,~)~j=- (~,~). 

j=1 0wj02p 2 02p 2 j 1 OwjO~- OWr 

Let V(z, w ) = ( Z ( z ,  w), W(z,  w)) be a vector field on B ~ x (C~'\{0}) which for 
each point (z, w) EB ~ • (C ~ \{0}) spans the one-dimensional kernel of the Levi form 
of the function 9 .  This is also a vector field which is at each point tangent to the 

leaves of the foliation {So~},~cA. By the above identities we get 

! z/~, ~) ~ ,  (~, ~ ) + ~  m (~, ~) ~v:~r (~, ~ ) 
2 \ p = l  r = l  

= E ' ~ P ( Z '  O~jOZp (Z' W)"WJ - I -E  ]/~"(Z' W ) r ' : l  _ Otu jOe r (Z, W)Wj . 

Changing the order of summation and using the fact that the vector field V(z, w) = 
(Z(z, w), 1d/(z, w)) spans the kernel of the Levi form of 9 at the point (z, w) we get 

~ z/~,w) --(~'~)+Zw"(~'~)o~jo~p ~ ( ~ ' ~ )  =o. 
j= l  p= r 1 

Hence we have proved tha t  at every point (z, w)EB '~  x C *~ we have 

p : l  ' r : l  0lUr 

and therefore the restriction of 9 to any leaf S~ is constant. [] 

Remark 4.2. If the function 9 has bounded level sets (this is the case for the 
function 9~ from Proposition 2.1) each Riemann surface S~ is an image of a bounded 

holomorphic mapping F~=(f(~,g~) on A (a covering map).  Since {S,,}~cA form a 
foliation of Bin•  (C++\{0}), we must have If*(ei~ ahnost everywhere on 0A. 

Remark 4.3. There are examples of maximal plurisubharmonic functions 9 on 
B m (m_>2) for which for certain points z E B  "~ there is no germ V of an analytic 

variety containing z and such that  9 I v  is harmonic (Sibony's example [3, p. 73] 
and examples given by Poletsky). Therefore one can not in general expect to get a 
foliation of the whole J( with analytic discs, [8]. 
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5. Appendix 

P r o p o s i t i o n  5.1. Let ~ be a continuous function on OB "~ and let u 0 E C ( B ' 0  
be the maximal plurisubharmonic function on B m such that u010B-~----~. Then for 
every z C B  "~, 

1 fo 2~ uo( ) : dO, 

where the infimum is taken over the family of all smooth up to the boundary map- 
pings f: A--+B "~ which are hoIomorphic on A and such that f ( 0 ) = z  and t f* (~) l= l  
for every ~EOA. 

Proof. Let U be a continuous function on B ~, plurisuperharmonic on B ~ and 
such that  U equals p on 0B m. Then u0 equals the supremum of the plurisubhar- 
monic functions on B "~ which are pointwise below U. Hence by [14] for every zEBm 
we have 

u o ( z ) = i n f  1 fo 2~ u(f*(e%) dO, 

where the infimum is taken over all mappings f :  A - + B  m with f ( 0 ) = z  which are 
defined and holomorphic in some open neighbourhood Vf of /~ .  Without loss of 
generality we may assume that the infimum is taken over the family 7 ) of polynomial 

mappings f for which f ( 0 ) = z  and f (A)_CB'L 
Let c >0  and let f E T '  be such that 

1 fO 2~ (5.1) Uo(z) <_ ~ U(f*(e~~ dO < u0(z)+s .  

Let F _ C f - ~ ( B ' 0  be the connected component of f - ~ ( B " 0  which contains A. The 
set P is a simply connected open set in C and we may also assume that  it has a 
smooth (even real analytic) boundary. 

The function UofEC(P)  is a superhm'monic function on P. Let w c C ( F )  be 
the harmonic function on F such that  wlop=(Uof)]or. Then w is the largest sub- 
harmonic function on P below Uof. Hence 

(5.2) w ( 0 ) = i n f  1 fo 2~ h 2~ (Uof)(h*(ei~ dO, 

where the infimum is taken over all mappings h: A-+F  with h(0)=0 which are 
defined and holomorphic in some open neighbourhood of A. 

Let h0 be a Riemann map from A to F, h0(0)=0. Since 0F is smooth, ho is 
smooth up to the boundary and it takes 0A into OF. Then 

1F 
w(0) = (woho)(0) = 27 (woho)*(e i~ dO = ~ ((Uof)oho)*(e i~ dO. 
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By the submean property and because w(0) is given as the infimum (5.2), we have 

uo(z) <_ w(O) = ~ U((foho)*(ei~ dO <_ ~ U(f*(ei~ dO < Uo(Z)+c. 

Hence the smooth up to the boundary holomorphic mapping foh0: A--+B ~ is such 
that  (foho)(O)=z, that  it takes cgA into 0B m, and that  it gives an e-approximation 
of u0(z). [] 

Proof of s 3.5. Obviously we have that  9 a is an upper semicontinuous 
function on B ~ •  n such that  ~o_<~Pa. Using the continuity of ~Q on B'~ x C n 
and constant discs, we also have ( ~ ) *  _< 0 on 0B "~ • C ~. Hence, to prove the lemma 
we have to show that  ~ is a plurisubharmonic function. The argument we use is a 
modification of the argument by Poletsky in [14] and we include it for the interested 
reader. 

Let ~cA~-~L(~)=(z0, Wo)+(c, d){ be a linear disc in B '~•  C '~. We would like 
to show that  

1 9s _< d0. 

Let e>0.  Then for each {EcgA there exists a smooth up to the boundary analytic 
disc F({ , .  ) =  ( f (~ , - ) ,  9 ( { ,  )) such that  F({,  0)=s  a<  If* ({, ei~)l < 1 on cgA and 
for which 

1 f0 2~r 2N gYe(F*(~'e'i~))da~<~(L(~))+c" 

Since ~a(L(~)) is an upper semicontinuous function on 0A, its integral can be 
arbitrarily well approximated by an integral of a continuous function vCC(OA) 
such that  9~(L(~))<v(~)  on 0A. Hence, using the continuity of the function ~ ,  
we may assume that  F ( ( ,  �9 ) is a piecewise continuous and uniformly bounded family 
of holomorphic discs. We will glue (find a homotopy between) the continuous pieces 
of F(~,- ) on a set of arbitrarily small measure on 0A to get a continuous family 
FI(~, r / )=(f l (~,  7/),g1(~, r/)) of up to the boundary smooth holomorphic discs for 
which F1 (~, 0) =L(~),  a < If~ (~, ei~)l < ] on 0A and 

1 fo2~(1 f2~ ) 1 fo2~ \ 2-~ .y ~ qde(F~(ei~176 dO<~ ea(L(ei~ 

The mappings 9(~," ) are glued together by taking the convex combinations 
of nearby mappings, that  is, for two nearby points ~0,~1EcgA we set 9(~t,')= 
(1 - t )g (~0 , . )+ tg (~ l , - ) ,  where ~t is some parametrization of the arc (~0,~I)C_cgA 
with the interval [0, 1]. Then we define 9(~t," )=g(~t," )-9(~t, O)+wo+d~t to get 
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O({t, O)=wo+d~t. We have to be more careful when gluing the mappings f ({ , - ) .  
First we find a homotopy {f({t ," )}t~[0,1] in B ~ between f(~0," ) and f ( ~ , .  ) such 

that  for each t~[0, 1], the analytic disc f({t ," ) has no zeros on 0A. We distinguish 
two cases: 

1. The case r a = l .  Each of the functions f ({ , .  ) has a nonnegative winding 
number around 0 which is constant on each continuous piece of f(~,-  ). Multiplying 
continuous pieces of f ({ , .  ) with functions of the form 

1 rl+ro 
rl~ > 

ro 1+rot / '  

where r0E(0, 1) is a real number close to 1, we can arrange that  the new family, 
which we still denote by f ({ , - ) ,  has the same properties regarding approximation, 
boundary values and the position of the image of the point 0 as the original one, 
but all functions also have the same winding number k. Hence for each {ccqA the 
holomorphic function f ({ , .  ) can be written in the form 

f({,  rl) = B(~, r/)e ~(~'~) , 

where B(~, rj) is a finite Blaschke product with k factors and g)({, ~/) a smooth up 
to the boundary holomorphic function on A with the property log a < R e  ~(~, rl)< O. 
Now a homotopy {f({t ," )}to[0,1] between functions f({0, '  ) and f({1," ) is obvious: 
the zeros of B({0, �9 ) are moved to the zeros of B({1, �9 ) and the convex combination 
of ~({0," ) and qo(~l,. ) is used. 

2. The case m > l .  Let f ( {0 , ' )  and f({1, ' )  be two vector functions from the 
family f (~ , .  ), ~EOA. Since r e > l ,  we can find a homotopy {f(~t," )}t~[o,iI between 
f({0," ) and f({1," ) of smooth up to the boundary holomorphic discs in B ~ such 
that f ( { t , ' )  has no zeros on 0A for each {t. A small perturbation of the convex 
combination of f({0," ) and f({1," ) will be good enough. 

Having a homotopy { f (~t,") }t~ [0,1] of smooth up to the boundary holomorphic 
discs in B ~ with no zeros on 0A, we would like to modify it to satisfy the conditions 

f(~t,O)=zo+C~t and a < l ] * ( ~ , r / ) I < l  for each r/EOA and rE[0, 1]. We may assume 
that f ( { t , . ) = f ( ~ t , . )  for t~[0, a ]U[1-&l]  fbr some 0 < a <  1. Let r'0E(0,1) be so 

close to 1 and e>0  so small that  I I f (~ t , ) l l~<( l -cDro  and IIf(~, ' ) l l~<(l-c)r0 
for every tC [0, 1] and that  the family of functions 

1 ~+ro 
ro l+ror j  
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has the same essential properties (approximation, boundary values, the position of 
the image of 0) as f (~,- ) .  

Let ~(~t," ) be a smooth up to the boundary holomorphic function on A such 
that Re ~({t, 71) =log If(gt, rj) l on Oex and Im ~({t, 0) =0. Let x(t) be a smooth func- 
tion on R such that suppxC[0,  1], 0_<X(t)<_l and X( t )= l  for t �9 l - a ] .  

We define a continuous family of analytic discs 

where 

IIf(~")l l~(~)} a n d  c~(t)=r(t)e x(t)~(~'~ r(t) = m a x  r0, 1 - c  

First we observe that 

I~(t)~<~)~(~'~ I ~ ~(e)IIJ({~,. )11~ t) ~ ~o < ] 

for every t �9  1] and hence a(t)  is well chosen. This shows that f(~t," ), t �9  1], 
is a well defined continuous family of analytic discs such that f(~t, O) =f(~t,  0) for 
every t � 9  [0, 5] U [1-5, 1]. 

Also, for each t �9  1] and r / � 9  we have 

1 17(~, ~)1 : ~.~G 17(~, ~])11-X(t) ~- 1 - c  

and the equality holds for every t � 9  [5, 1-5] .  On the other hand for t � 9  [0, 5] U [1-5, 1] 
and r / � 9  we have 

1 ^ ii_x(t) I1 x(t) --If({t ,rl)  > - i f ( ~ , , )  _> I/({~,,)1 = If(ge, w)l > a  
~0 

and 
1 - c  a 1 x(t) 

II/(~t,. )lll~ ~(~) If(~, ~1)11-~(t) _> (1-c) (( l_c>o)l_v,)  > a 

and hence I/(~t, r/)l> a for every t e [0, 1] and r/�9 OA. 
We finish the gluing by using an appropriate continuous family {At}t~[0,1] of 

automorphisms of the ball B'~(0, l - e )  which are equal to the identity map on 
[0, 5]U[1-5, 1] and are such that At(f(~t,  0))=f(~t ,  0) on [& 1-5].  
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The rest is similar to [14], pp. 168-169, and we will only sketch it. First we 
approximate  Fl(~,r]) uni%rmly on 0 A x A  by functions F2(Gr]) which are holo- 
morphic and smooth up to the boundary in r/EA, rational in ~EA, with a pole 
at ~=0,  and such that  F.2(G0)=L(~).  Then the pole at ~=0  is erased using 
the change of variables F3(~,~)=F2(~,~N~]). Finally the holomorphic mapping 
~EA~(f4(~),g4(~))=F3(Gei~) is for an apwopr ia te ly  chosen a E R  such that  

(f4(O),g4(O))=L(O)=(zo,wo), a < l f g ( ~ ) l < l  on 0A and 

1 / 2 ~  * iO * iO 
g~(zo,wo)<_~-~ ~o(f~(e ),g4(e ))dO 

dO 

_ 1 [27r/'2~ lW (F.(eio eiw,,dOdcj< 1 ~02~r 
471"2 dO .20 Q\ 3 \ , 2} 

�9 ~(L(ei~ dO+e. [] 
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