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Quasiconformal Lipschitz maps, Sullivan's 
convex hull theorem and Brennan's conjecture 

Chr i s tophe r  J. Bishop(1)  

Abs t r ac t .  We show that proving the conjectured sharp constant in a theorem of Dennis 
Sullivan concerning convex sets in hyperbolic 3-space would imply the Brennan conjecture. We 
also prove that any conformal map f: D-+f~ can be factored as a K-quasiconformal self-map of 
the disk (with K independent of ft) and a map g: D--+ft with derivative bounded away from zero. 
In particular, there is always a Lipschitz homeomorphism from any simply connected f~ (with its 
internal path metric) to the unit disk. 

1. I n t r o d u c t i o n  

The  pu rpose  of th is  p a p e r  is to po in t  out  a connec t ion  be tween  th ree  d imen-  

s ional  hype rbo l i c  g e o m e t r y  and  the  expand ing  p rope r t i e s  of p l ana r  conformal  maps .  

In  pa r t i cu la r ,  we show t h a t  a resul t  of Dennis  Sul l ivan a b o u t  convex hulls in hyper -  

bolic 3-space implies  t h a t  the re  is a K < o c  such t h a t  any  conformal  m a p  f :  D--+f t  

can be fac tored  as f=goh where  h is a K - q u a s i c o n f o r m a l  se l f -map of the  disk and  

Ig'l is b o u n d e d  away from zero. One consequence is t h a t  if (even a weak vers ion of) 

Sul l ivan 's  t h e o r e m  could be proved wi th  i ts  con jec tu red  sha rp  cons tan t  K = 2 ,  t hen  

the  Brennan  conjec ture  would follow. We begin  by  recal l ing Sul l ivan 's  resul t  and  

then  exp la in  i ts  connec t ion  to conformal  mappings .  

Let  ft % R 2 be  a s imply  connec ted  d o m a i n  and let  C(Oft)c H a be the  hyperbo l i c  

convex hull  of Oft ( this  is the  hyperbo l i c  convex hull  of the  set of all hyperbo l i c  

geodesics  wi th  endpo in t s  in Oft). Let  S be  the  b o u n d a r y  componen t  of C(Oft) which 

sepa ra t e s  ft f rom C(Oft). Equivalent ly ,  let  9 c H  a be the  union  of all hemispheres  

whose bases  are  con ta ined  in ft. T h e n  S = 0 ~ N H  3. Let  As denote  the  in t r ins ic  p a t h  

met r ic  on S (using hyperbo l i c  a rc length)  and  let  ~ deno te  the  usual  hyperbo l i c  

met r i c  on the  uni t  disk D,  the  uppe r  ha l f  space H 3 or ft. T h e  following are known 

results .  
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T h e o r e m  1.1. There is an isometry ~ from the metric space (S, ~s) to (D, ~)). 

T h e o r e m  1.2. There is a Ko<oc  so that for any simply connected domain 

f ~ R  2, there is a Ko-biLipschitz map (7 f i r m  (f~, ~) to (S, ~s) which extends con- 

tinuously to the identity on 0~2. Consequently, there is a universal K < oc so that c~ 

is K-quasiconformal. Moreover, the map cr is conformally natural in the sense that 

if f~ is invariant under a group of M6bius transformations then cr commutes with 
the group action. 

The first result appears in Thurston 's  notes [44] (with more detailed proofs in 

the papers of Epstein Marden [18] and Rourke [40]). The second was apparently 
known to Thurston and appeared in Sullivan's paper  [42] in the case when f~ is 
simply connected and invariant under a convex cocompact quasi-F~chsian group. 

Epstein and Marden [18] proved the more general s tatement  quoted above. Sul- 
livan's convex hull theorem is part  of Thurs ton 's  hyperbolization theorem and is 
used in the case of manifolds that  fiber over the circle. 

When we refer to the best constant in Sullivan's theorem, there are several 
things we might mean. Let $(f~) denote the set of quasiconfbrmal maps or: fL-+S 
which extend to the identity on c0fk By "best constant" we might mean the infimum 
of all K,  such that  S(f~) always contains a 

(1) K-biLipschitz map; 

(2) K-quasiconformal map; or 
(3) K-quasiconformal map which is also biLipschitz (with some constant). 

For our applications to conformal maps, it is the third alternative that  is most 
relevant, and when we say in this paper  that  "Sullivan's theorem holds with con- 
stant K "  this is what we mean. However, it turns out that  the infimums ibr (2) 
and (3) are the same. The following is proven in [6]. 

T h e o r e m  1.3. Given K < o o  and c > 0  there is a C < o c  so that the following 

holds. I f  f :  f~--+ D is K-quasieonformal, then there is a ( K +c)-quasiconformal map 
g: f~--+ D which is C-biLipschitz between the hyperbolic metrics and such that f og -1  

extends continuously to the identity on OD. 

Because there are various metrics being considered, we will have to be careful 
when using the te rm biLipschitz. For example, on ft we will consider the hyperbolic 
metric ~), the usual Euclidean metric, the spherical metric and the internal pa th  
metric (shortest Euclidean length of a pa th  in ft connecting two given points). 

When we say a map is biLipschitz, we will have to specify the metric unless it is 
obvious from the context. Fortunately, all of these metrics give the same class of 

quasiconformal maps (with the same constants) so that  we do not have to be so 
careful when discussing quasiconformal maps. 
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Epstein and Marden's  proof of Theorem 1.2 in [18] comes in two steps. First 
they show that  the nearest point retraction from f~ onto S~ (the c-distance surface 
fron~ S) is biLipschitz with constant depending on c. The nearest point retraction 
from S~ to S is not even one-to-one, but by foliating S~ and averaging the retraction 
map over intervals in the foliation, they construct a biLipschitz map from S~ to S. 
Tile composition of these two maps is then the desired map cr from ft to S. Their 
proof gives biLipschitz constant K0~88.2  and quasiconformal constant K ~ 8 2 . 6  
and they conjecture K 0 = K = 2  is correct. In [5] it is proven that  one can take 
K = 7 . 8 2  and Ko=13.3,  but the construction there is not group invariant; thus, 
strictly speaking, those results are not an improvement of the Epstein Marden 
estimates. However, it follows that  there is also a conformally natural  map (with 

a possibly larger, but uniformly bounded constant). This is because if ~: D - + f t  is 
conformal, and G is a group of Mgbius transformations acting on f~, then ~or 
is quasiconformal from the disk to itself and hence has quasisymmetric boundary 
values h: T--+T (with bounds depending only on the quasiconformal constant of f ) .  
Moreover, this boundary map h conjugates the Fuchsian group G l = ~ - l o G o q )  to 
the Fuchsian group G2=coGoc -1. Hence by the Douady Earle extension theorem 
[17], there is a conformally natural  extension h of h to the disk with quasiconformal 
constant depending only on h (and hence only on the quasiconfbrmal constant of ~). 
Thus 55-1ohoc-1: t 2 ~ S  is the desired conformally natural,  quasicontbrmal map. It  

is not clear whether the best constant for Sullivan's theorem is the same if we also 
require the map to be conformally natural.  

The map ~o~: t2-+S-+D is biLipschitz between the hyperbolic metrics. In 
general, this does not imply it is biLipschitz in the usual Euclidean sense, but we 
will show that  the map can be taken to be locally Lipschitz between the Euclidean 
metrics. 

T h e o r e m  1.4. Suppose Sullivan's theorem holds with quasiconformal constant 

K ,  i.e., there is a K-quasiconformal map f i r m  ~ to S which extends to the identity 

on Of~ and is C-biLipschitz for some C<oc .  Then there is an M = M ( K , C ) < o o  

so that for any simply connected domain f~ which contains the unit disk, there is 
a K-quasieonformal map g: fb-+D (same K as above) such that Ig'I<_M and 9o~ -1 
extends to the identity on OfL 

In this paper, we define 

I g ( v ) - g ( x ) l  
Ig'(z)l  = l im sup 

For quasiconformal mappings, this is comparable to taking the lira inf. Recall that  
a domain ft is called quasiconvex if there is a C < o c  so that  any two points x, ye t2  
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can be joined by a pa th  in f~ of length at most C I x - Y  I (i.e., the internal pa th  metric 
is comparable to the Euclidean metric). The tbllowing is an immediate corollary of 
the previous result. 

C o r o l l a r y  1.5. I f  f~ is any simply connected domain then there is a Lipschitz 
homeomorphism from f~ with its internal path metric to the unit disk with its usual 
Euclidean metric. I f  f~ is quasieonvex, then there is a Lipschitz homeomorphism 
from f~ to the disk (with respect to the Euclidean metric on both domains). 

This is a new result, so far as I know, although I would not be surprised if it 
was previously known. The proof will show the stronger s tatement  that  there is a 
locally Lipschitz map with respect to the spherical metric on fk If ft is a quasidisk, 
then it is quasiconvex. Moreover, in this case there is also a biLipschitz reflection 
across c9~2, so it is easy to prove the following. 

C o r o l l a r y  1.6. I f  F is a bounded quasicircle then there is a quasiconformal, 
Euclidean Lipschitz map of the plane which maps F to the unit circle. 

The following is another easy consequence. 

C o r o l l a r y  1.7. (The factorization theorem.) Suppose Sullivan's theorem holds 
with quasiconformal constant K (as in Theorem 1.4) and that f:  D--+12 is conformal. 
Then f =goh, where h: D--+D is a K-quasiconformal self-map of the disk and g: D-+ 
f~ is expanding in the sense that Ig'(z)l>CIf'(O)l for all z E D .  

The proof will actually show that  g has the property that  

minlg'( )l>C max 
z G Q  - -  z E T ( Q )  

for any Carleson square Q and its top half, T(Q).  Thus Ig'l almost behaves as if it 
were increasing near the boundary. 

Corollary 1.7 says that  there is a universal K < e o  so that  an arbi t rary conformal 
map f :  D--+f~ can only contract as much as a K-quasiconformal self-map of the disk 
can contract, and conjecturally we can take K = 2 .  This observation can be applied 
to relate questions about  conformal maps to questions about  quasiconformal self- 
maps on the disk (in the hope that  these are easier to handle). Some examples 
include 

(1) 
(2) 
(3) 
(4) 

groups). 

I I f ' l l  L~ (D,dx dy) )-- C[I h'[[ Lp (D,d:~ dy} (Brennan 's  conjecture) ,  
dim(f(E))_>dim(h(E)) (dimension distortion), 

dO<Of3 Ih'(re ~ dO if t<O (integral means), 
~n~176 dist(f(z~),  0{2) _> C Z~'~ 1 dist(h(z~), OD) (deformations of Fuchsian 
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We will discuss each of these briefly below. More details are given in Section 5. 

We should also note that  there are known "expansion properties" of conformal 
maps which do not seem to be directly related to Corollary 1.Y. For example, 

Makarov's  theorem [29] says that  if E c T has dimension one then dim(f(E))_~ 1 for 
every conformal map f on the disk. However, since a quasiconformal self-map of 
the disk can lower the dimension of some l-dimensional sets, it does not seem tha t  
Makarov's  theorem could be deduced from Corollary 1.7 (but see the remarks in 
Section 5 about nfinimal sets). Another example is the Hayman-Wu theorem [23]: 

for any line L, the inverse image f 1(L) has uniformly bounded length for any 

conformal f. If f=9oh as above then V=9-1(L) will have finite length because 

19~(z)l>_CIff(O)l for all zED, but it is not clear why h-1(~) should. Perhaps a 

more detailed study of the maps h which actually occur in Corollary 1.7, would give 

a new proof of the Hayman Wu theorem. 

To explain the connection between the factorization theorem and the Brennan 

conjecture we first recall what the latter is. Suppose fl is a simply connected plane 

domain and F = f - l :  ~--+D is a conformal map. It  is obvious that  f~? IF'I 2 dx dy= 
area(D)=Tc so that  F'CL2(Ft, dx@), but it is not clear what other L p spaces F '  
must belong to. Gehring and Hayman (unpublished) showed that  F'EL  p for pE 
(~, 2] and showed tha t  the lower bound is sharp. Metzger [34] improved this to 
p ~ ( 4 , 3 ) .  In 1978 James Brennan [13] improved this by showing one can take 
PC(4,p0)  for some P0 > 3 and conjectured that  P0 =4  is possible (this is sharp since 
the Koebe function mapping D - + C \ [ � 8 8  gives an F'~L4). If  one prefers to 

consider maps f :  D - + f t  then it is easy to check by change of variables that  f E L  p 
it is equivalent to 

D If'12-p dy oo. dz 

The best est imate (so far as I know) is currently due to Bertilsson [3], [4] who showed 
P0-> 3.422. This is a slight improvement of the earlier result of Pommerenke [39], 

[37], that P0_>3.399. 

In addition to its intrinsic interest, the Brennan conjecture has interesting 

consequences (e.g. see Section 5) and is currently under intense investigation. Some 

recent papers on the Brennan conjecture include the work of Carleson and Makarov 

[16], Hurri-Syrj/inen and Staples [24], Barafiski, Volberg and Zdunik [2]. Moreover, 

the Brennan conjecture is now just a special case of the more general "universal 

spectrum conjecture", see e.g., [26], [33]. 

Recall Astala's recent (and remarkable) proof of the area distortion conjecture 

for quasiconibrmal maps [1]. One consequence of Astala's result is that if h is 

a K-quasiconformal map of the disk to itself, then lhll is in weak L p where p-- 
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2K/(K-1). A function F is said to be in weak Lp if 
C 

area({z : IF(z)l >/k}) _</~. 

In particular h t is in every L p space with p<2K/(K-1). Let f :  D-~ f t  be conformal 

and let f=goh be the factorization given by Corollary 1.7. If the theorem holds 

with constant K then h - I : D - + D  is also K-quasiconfbrmal and so by Astala's 
theorem, (h 1)t is in LP(D) for every 2<_p<2K/(K-1). Thus for p > 2  and w =  

u+iv=h(x+iy), 

fn I'f'(z)/2-P dxdy<_ .In Ih'(z)12 Plg(h(z))12 p dxdy 

_< IC/'(0)l 2-~,/,~ Ih'(z)l 2-v dx dy 

< ICff(O)12-P/D l(h-1)'(w)l') gudv, 

which is finite if p<2K/(K-1). Thus, if Sullivan's theorem holds for every K > 2 ,  

then the Brennan conjecture is true. 
In order to improve Bertilsson's result we would have to prove Sullivan's theo- 

rem with 
3.422 

K - - -  ~ 2.4065, 
3 .422-2  

which is much better than currently known estimates. On the other hand, if suffices 
to prove something much weaker than Sullivan's theorem. First, we do not need the 

map to be group invariant (assuming the domain has a group acting on it). Secondly, 

we do not need a map which agrees with the convex hull map ~ on the boundary: 
any Lipschitz, quasiconformal map to the disk will do. Finally, the map need not 

be K-quasiconformal on all of f~, but only in a neighborhood of the boundary. This 

is because f '  is bounded on compact subsets of f~, so when we apply Astala's result 

in the argument above we can write h=hloh2 where the complex dilatation of h2 

is supported in {z : l - e_<  Izl <1} and hi is confbrmal in a neighborhood of the unit 

circle. Thus we really only need a map g: f~--+D with 

Koft(g) = inf sup Ks(z) _< 2, 
e>0 dist (z,0tl) <z  

to deduce that Brennan's conjecture holds %r a bounded domain f~. This version 

at least has the advantage that it is obvious for polygons and smooth domains. 

Brennan's conjecture is known in various special cases (e.g., close to convex), but 

it is not obvious whether Sullivan's theorem holds for K = 2  in these same cases. 

If Sullivan's theorem actually holds with K 2 we get something a little stronger 
than Brennan's conjecture. 
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T h e o r e m  1.8. If  there is a 2-quasiconformal, C-biLipschitz map from f~ to 
S, then for every conformal map f: f~-+D, we have that f '  in in weak Ln(f~). 

Our second application of Corollary 1.7 concerns dimension distortion. Given 
a set E c 0D we would like to est imate 

inf d i m ( f  (E)),  
f 

where the infimum is over all conformal maps from the disk. For simplicity assume 
that  f is a univalent map onto a quasiconvex domain f~. In this case, we can write 
f=goh, where g satisfies Ig(x)-g(y)l > C ] z - y  I for all points in the disk. Thus for 

any set F,  d im(9(F))  > d i m (F ) .  Thus d im(f (E))_>dim(h(E))  for any set E.  Astala 
has proven the sharp estimate of K-quasiconfbrmal maps, 

dim(h(Z)) _> 
2 dim(E)  

2 K +  (1 - K )  dim(E)" 

Taking K = 2 would give 

d im( f  (E)) _> dim(h(E))  _> 
dim(E)  

2 -  �89 dim(E)  ' 

which is a conjecture of Carleson and Makarov. To remove the restriction that  f~ is 
quasiconvex requires showing the following result. 

L e m m a  1.9. If g:D--+~ is quasiconformal and 19'(z)l is bounded below, then 
dim(9(E))>_dim(E) for any E C T ,  i.e., g cannot reduce dimensions. 

This can be done by modifying Makarov's  crosscut method in Theorem 1.4, 

[30]. 
The third application is to integral means. For a confbrmal map f ,  we define 

the integral mean 

I( t ,  f )  = lina sup log J ~  I f ' ( re  ~~ I ~ dO 
~ ' ~ 1  - l o g ( l - r )  ' 

and set 

B(t) = sup I(t, f) ,  

where the supremum is taken over all univalent maps f .  For l_<K<oc ,  define the 
integral means for quasiconformal self-maps of the disk by 

27r 
logfo ( (1- l f (re i~ dO 

I ( t ,  f )  = lim sup 
,r.-~ 1 - l o g ( 1 - r )  
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and set 

B(K, t) = sup Z(t, f), 

where the supremum is over all K-quasieonformal maps of the unit disk to itself. 

We have used the distance to the boundary instead of h ~ since we can choose h in 

Corollary 1.7 so that lh~(z)l~l - Jh(z)l. Corollary 1.7 implies 

B(t) < B(K,t), t < 0, 

for some universal K<oo and eonjeeturally K=2. It is easy to prove that/3(2, t)= 

-t-1 if t<-2 (see Theorem 5.5), which would give another conjecture of Carleson 

and Makarov [16]. 

Our final application comes from the theory of Kleinian groups. Recall that for 

a non-elementary Fuehsian or Kleinian group G acting on an invariant domain f~, 

the critical exponent of the Poincar6 series is given by (see e.g., [ii]), 

~(G)=inf{s: ~ dist(g(zo),Of~)S < c~}, 

where z0 is any point of f~. A Fuehsian group is called divergence type if this series 
diverges fbr s =  1. 

Suppose G is a Fnehsian group and f :  D--+ft is a conformal map such that  
G~=foGof -1 is a Kleinian group acting on ft. Then we call G ~ a deformation 
of G by (I). The group G ~ acts by isometries on hyperbolic upper half-space and 
hence on S by isometries of the pa th  metric. This action gives a Fuchsian group H 
which is K-quasiconformally equivalent to the original group G (with a uniformly 
bounded K) .  By a theorem of Pfluger [35], G is divergence type if and only if H 
is divergence type, and ]gt I bounded below implies G t also diverges for exponent 1 

(in fact, its Poincar6 series is te rm-by- term bounded below by a multiple of H ' s  
Poincar6 series. 

C o r o l l a r y  1.10. If G ~ is a deformation of a divergence $ype Fuchsian 9roup 
G then the Poincard series of G r also diverges for s= 1. 

In a similar vein, Ferns and Rodriguez [20] showed that  the property 
6(G) = 1 is also invariant under quasiconformal conjugation on the disk, so the same 
proof shows that  if 6(G) = 1 then 5(G') > 1 for any deformation of G (however this is 
already known and can be proved using the fact that  5 = d i m ( A c ) = l  (Theorem 1.1 
of [9]) and the theorem of Makarov that  this dimension cannot be decreased by a 

conformal map (Theorem 0.4 of [30])). 
In a 1979 paper  Rufus Bowen [12] proved that  the limit set of a quasiconformal 

deformation of a eocompact Fuchsian group is either a circle or has dimension 
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strictly larger than 1. Dennis Sullivan [43] soon extended this property to cofinite 

groups, and in 1990 Karl Astala and Michel Zinsmeister showed that it was false for 

convergence type groups; every such group has a quasi-Fuchsian deformation whose 

limit set is a non-circular rectifiable curve. In [8] a version of Corollary 1.10 is used 

to show that  Bowen's property holds if and only if G is divergence type. A similar 

application is given in [7], to show that Ruelle's property fails for every infinite area 

divergence group with a positive lower bound on its injectivity radius, i.e., there is 

an analytic deformation of the group for which the dimension of the limit set does 

not change analytically. 

Now we describe the structure of the rest of this paper. In Section 2 we prove 

Theorem 1.4 and in Section 3, Theorem 1.8. In Section 4 we give another  proof of 

Theorem 1.4 which does not use Sullivan's theorem (and does not give the "right" 

boundary values). In Section 5 we list a number of related results and questions. 

I would like to thank A1 Marden and Michel Zinsmeister for reading an earlier 

version of this paper and for their comments. I am also very grateful to the referee 

for numerous helpful corrections and suggestions. 

Added in pro@ A version of the factorization theorem for maps f : D - + f t  onto 

a quasidisk follows from Lemma 3.21 of "Doubling conformal densities" by Mario 
Bonk, Juha Heinonen and Steffen Rohde, to appear in J. Reine Angew. Math. The 

factors satisfy estimates depending only on the quasidisk constant of fL 

2. P r o o f  o f  T h e o r e m  1.4 

In tiffs section we will show that  the quasiconformal map to~: gt--+S-+D in Sul- 

livan's theorem may be taken to be locally Lipschitz with respect to the Euclidean 
metrics. Since we assume that this map is biLipschitz between the respective hy- 

perbolic metrics, and it is well known that the hyperbolic metrics are comparable 

to ds/dis t (z ,  f~), it suffices to show that there is an M < o c  so that 

1-[~(~(z))[ _< M dist(z, 0f~) 

for every z E ft. 

It is convenient to work in the ball model of hyperbolic space. The mapping 

of gt with the Euclidean metric to gt with the spherical metric is Lipschitz, so there 

is no loss of generality in assuming that f~ has the spherical metric. Let zEf~ and 

let w ES be its image under the nearest point retraction. Let P be the hyperbolic 

plane tangent to S at w so that the geodesic connecting w to z is perpendicular to 

P at w. Let Dcgt  be the disk bounded by P. It is easy to see that 

dist(z, 0Q) _> dist (z, cgD) _~ 1 - Iwl  
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(both distances are in the Euclidean sense). On the other hand, the usual estimates 
for the hyperbolic metric in a half-space give 

1-I~1 -~ exp(-Q(~0, w)) _> exp(--cgs(w0, w)) ~ 1--I~(w)l. 

Thus 1 - I~(R(z) ) l<d i s t (z ,  Oa). 
We also need to know tha t  R is a rough isometry from the hyperbolic metric 

on ft to the pa th  metric on S, i.e., 

AO(Z, w ) < _  ~x(R(z), R(w)) <_ Ao(z, w)+B,  - B  

for some 0<A,  B < o c  (this is also called a quasi-isometry by some authors).  This 
is proven as part  of the proof of Lemma 8 in [7]. 

Next, note tha t  T=coRocr- lob -1 is a rough isometry of the hyperbolic disk 

to itself which extends to the boundary as the identity. Thus any point and its 
T-image lie within a uniformly bounded hyperbolic distance of each other (this is 

left as an exercise for the reader and is also Theorem 7.15 of [45]). Hence 

1-I~(~(z)) l  < 1 -  I~(/~(z))l, 

as desired. This completes the proof of Theorem 1.4. 

3. P r o o f  of  T h e o r e m  1.8 

Next we give the proof of Theorem 1.8. If Sullivan's theorem holds f o r / ( = 2 ,  
then the conformal map F = f - l :  f~--+D can be writ ten as F=HoG where H ~ h  -1 
is a 2-quasiconfbrmal self-map of the disk and G = 9 - 1  : f t-+ D satisfies II G'll oo < M. 
By Astala 's  theorem from [1], H t is in weak L 4 on the disk. From this we want to 
deduce tha t  F t is in weak L 4 on f~. Let 

F), = {z EFt: If'(z)l > )~}, 

Ea,n : {~ e Ex : 2 - ~ M  _< IC'(~)l <_ 2 -~+1~} .  

Since If '(z)l--~lH'(a(z))l  Ia'(z)l, 

G(Ex,n) C {z E D :  IH'(z)l > X2~}, 

and hence has area < t  42 4~ since H' is in weak L a. Thus area(E~,~)~<,k-42 -2~. 

Summing over n=0 ,  1, 2, ..., gives area(E~) < 1 - 4 .  Now summing over l ,  2t ,  4A, ..., 

gives 
1 1 1 

area(rA) 2 V Z 24n -- /~4' 
n_>0 

which is the desired result. Thus Sullivan's theorem with quasiconformal constant 
K = 2  implies the weak L 4 version of Brennan's  conjecture. 
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4. A direct proof  of  Corol lary 1.7 

In this section we will prove the following result. 

T h e o r e m  4.1.  There is a K < o c  so that for any simply connected f~ in the 
plane, there is a K-quasiconformal map h: ft--+D with bounded gradient, i.e., h is 
Lipschitz f i rm  the internal Euclidean path metric on f~ to the Euclidean metric 
on D. 

This result is weaker than  Corol lary 1.7 since this result does not require the 
map  h to agree with ~ on the bounda ry  of f~. However, K = 2  in this weaker re- 

sult would still imply Brennan ' s  conjecture,  so it seems worthwhile to present this 

different approach.  We will actual ly prove the following version. 

T h e o r e m  4.2.  There is a K < o c  so that the following holds. I f  f : D - + f ~  

is univalent, then there is a K-quasiconformal map h: D--+D which is biLipsehitz 
(from the hyperbolic metric to the hyperbolic metric) and there is a C < oc such that 

(1) 
(2) 

1-Ih( )l VlY(z) l(1-I 1), 
IE(z)l CIf'(z)l 

.for every z c D .  

If  we can prove this, then  g=ho f - 1  will be a K-quas iconformal  locally Lipschitz 

map  f rom f~ to D,  as desired in Theorem 4.1. To prove Theorem 4.2, we will use 

the fact t ha t  u = l o g  Iffl is a harmonic  Bloeh function. By definition, this means 
that there is a 13 < oo so that 

IVu( )l(]-I 1 B 

for every z ED.  The  infimum of such B ' s  is called the Bloch norm of u. A very useful 

fact about  harmonic  Bloch functions is tha t  they  can be uniformly approximated  

by a dyadic Bloch mart ingale  {ui}  (see e.g., [32], [10], [21]). A dyadic mart ingale  

on the circle is a thnct ion on the collection of dyadic intervals so tha t  if I1 and 

/2 are children of I then  u i  is the  average of ui1 and ui2. Such a mart ingale  is 
called Bloch if there is a B < o o  such tha t  [uz-ujl<B whenever I is a child of d. 

The  approximat ion  proper ty  says tha t  given a harmonic  Bloch function u there is 

a Bloch mart ingale  {uz} and an A < o o  (depending only on the Bloch norm of u) 
such tha t  

]u(zz)-uI]  <<_ A 

for every dyadic interval I .  The  point  zi  is chosen so tha t  1 - l z l - l I  I and so tha t  
its radial project ion is the center of I .  



12 Christopher J. Bishop 

We will also use the fact that  every quasisymmetric homeomorphism of the 
circle to itself has a quasiconformal extension to the disk. A homeomorphism of the 
circle to itself is called k-quasisymmetric if for any two adjacent intervals I and J 
of the same length, 

1 <  ]h(I)] < k ,  
,hU737- 

and is called quasisymmetric if there is a k <o c  for which this is true. It is an 
easy and well-known fact, that  in order to show h is quasisymmetric it suffices to 
show there is such a k that  works for all dyadic intervals (or more generally for 
all b-adic intervals of lengths b - " ,  n=1 ,  2, ...). It is also well known that  every 
k quasisymmetric homeomorphism of the circle extends to a K-quasiconformal self- 
map of the disk (see e.g. [17]), and that  one may take K = m i n ( k  3/2, 2 k - 1 )  (e.g., 
see p. 33 of [2s], [27]). Moreover,  we m , y  take this extension to be smooth on D, 
biLipschitz from the hyperbolic metric on the disk to itself and satisfy 

Ih'(z)l-~ ]h(/)] 
Izl 

for every z within a bounded hyperbolic distance of zi. Using these facts, it now 
suffices to show the tbllowing theorem. 

T h e o r e m  4.3. Suppose u is a harmonic Bloeh function with corresponding 
Bloch martingale {'uz}. Then there is a quasisymmetric homeomorphism h: T - + T  
and a C1 < oc such that 

(3) Ih(Z)l _< OllZl exp(u ) 

for every dyadic interval 1. The quasisymmetric constant of h depends only on the 
Bloch constant B of u. 

Pro@ Before starting the proof, we recall that  to check that  h is quasisym- 
metric, it suffices to consider only adjacent dyadic intervals (this is well known but 
we include the argument for completeness). Suppose I and J are any two disjoint, 
adjacent intervals. Then I can be covered by two dyadic intervals/1 and /2 with 
length _<1II. Similarly for J ,  J1 and J2- Moreover, there is a dyadic J a C J  with 
length _> l l J  I. Using the quasisymmetric condition for dyadic intervals and the fact 
that  all these intervals are close to each other, we get 

]h(I)] ~ Ih(I1)l--h(I2)l ~ Ih(Orl)l@lh(or2)l ~ Ih(or3)l ~ Ih(J)l, 

and similarly for the other direction. 
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Thus it suffices to define the h images of dyadic intervals and check the qua- 
sisymmetric condition for them. We define h in two steps: a first approximation 
based on the size of u, followed by a modification. 

Suppose N is a positive integer (to be fixed later in the proof depending only 
on B). We define h by specifying the length of the image of each dyadic interval 
of length 2 -nN, ft=0, 1, 2, ..., inductively. We start with the trivial step, h ( T ) = T .  
Now suppose I is a dyadic interval and N is an integer to be chosen later. Consider 

2 N the N th  generation dyadic descendants of I,  {I~}k 1, define 

/kk  : ~ Ik  --UI~ 

and choose h so that 

~(Lx~) Ih(/)l ,  (4) Ih(/k)l - iN 
Ej=I ~)(Aj) 

where 9a(t)=e t if t<_0 and ~ ( t ) = t + l  if t_>0. Note that  p is continuous, increasing 
and convex. We claim that  

(5) 
2 N 

2 N _< ~ ~(zxj) < cBx2  N. 
j = l  

The left-hand inequality holds by convexity, and the fact that  {A~}={uI~ - u r }  has 
mean value zero. The right-hand inequality holds since the Bloch property implies 
that  each of the 2 N terms is bounded by CBN. 

The left-hand inequality of (5) implies that  

1 II~1 Ih(l~)l <~ ~ exp(uik -ul)lh(I)l = exp(uxk -uI)~yvlh(l)l. 
I 1 1  

Induction and telescoping series then give 

(6) 

which is the desired estimate (3) with C 1 = 1. 
If we only wished to compare dyadic intervals which have the same parents, 

then the definition of h given so far would be enough. But to compare intervals 
with different parents, we need to modify what we have done. 

First, consider two adjacent dyadic intervals I and J in generation ( n + l ) N  
which have the same ancestor in generation aN. Then by (4) we see that  h(I) and 
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h(J )  have comparable lengths, since the denominator in (4) is the same for both  
intervals and the numerators are comparable by at most a factor of As = e x p ( B N ) .  

To handle intervals with different ancestors, we modify h as follows. Using 
induction, suppose we have shown tha t  all dyadic intervals of generation nN have 
/z-images which are comparable with a factor of A2 (the value of As will be chosen 
at the end of the proof depending only on the Bloch norm of u). Suppose I and 
J are adjacent dyadic intervals in generation ( n + l ) N  with different ancestors I* 
and J* in generation nN. Without  loss of generality, assume lh([)l<_ Ih(J) l. Since 
u is Bloch, there is an Aa (depending only on the Bloch constant of u) such that  
[W-ua[<A3. Thus the numerators in (4) corresponding to I and o r differ by a 

factor of at most Aa while the denominators differ by a factor of at most B N  
(using (5)). Thus [h(J)[/[h(I)[<A2AaBN. 

For each adjacent pair I ,  J with different ( nN) th  generation ancestors we 
modify h as follows to get a new homeomorphism h0. As above assume that  Ih(I)l < 
Ih(J)l. If  Ih(J)l/lh(I)l<A2 we do nothing, i.e., Iho(I)l=lh(I)l. Otherwise, we 
increase the size of Ih(I)l until Ih(a)l/lh(I)l=A> This makes Ih(I)l at most A3BN 
times longer than it was before. To make up for this we have to make other intervals 
shorter. We will take the 2N-a- -1  intervals {Ij} descended from I* in N steps 
which are closest to t .  Together with I these intervals make up half of I*; we 
denote this half of I* by K.  Decrease the image length of each I j  by a factor of 

A = ( t h ( K ) [ - I h 0 ( I ) l ) / ( [ h ( K ) l - [ h ( I ) l ) .  This factor is chosen so that  ho(K) has the 
same length as h(K) has. Note that  

Ih(I)l <_ -A~N [h(K)[ 

for some A4 <oo (depending only on the Bloch n o r m / 3  of u) so that  A is bounded 
from below by 

1 - A 4 N 2  - N  1 ~ >  > -  
- 1-A4N2-NA2A3BN - 2' 

if N is large enough, depending only on the other constants. Fix a value of N so 

that  this holds. 
Now suppose we have done the modifications for all such adjacent pairs I ,  J .  

To see that  h0 is quasisymmetric we have to see that  any two adjacent intervals in 
generation ( n + l ) N  have comparable images under h0. There are four cases. 

Case 1. Suppose I and Y have different ancestors in generation nN. Then by 
construction, the images differ by a factor of at most A2. 

Case 2. Next suppose I and o r have the same ancestor I* in generation nN 
and suppose I is adjacent to an endpoint of I*. Then before the modification, the 
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h-images of I and J were comparable with a factor of A1. After the modification the 
image of J was shrunk by at most a factor of 2 and the image of I was increased by 

a factor of at most AaBN. Thus after the modification the images are comparable 

with a factor of at most 2AaBN. 

Case 3. Suppose I and J have the same ancestor I* in generation nN and 

that they are both adjacent to the midpoint of I*. Then before the modification 

their images are comparable with a factor of A1 and after the modification they 

have both been decreased by a factor of at most 2. Thus they are now comparable 
with a factor of 2As. 

Case 4. Suppose I and J have the same ancestor I* in generation nN but 

neither I nor J is adjacent to the midpoint or either endpoint of I*. Thus both 

intervals are in the same half of I*. Before the modification their images were 

comparable with a factor of A1 and when modified both images were decreased by 

the same amount. Thus they are still comparable with factor A1. 

Thus if we choose A2>_max(2A3BN, 2Al,exp(Aa)), we see that A2 depends 

only on B (since this is true of A1, A3 and N) and any two adjacent intervals have 
h0-images whose lengths are comparable by a factor of at most A2, as desired. 

Finally, we have to check that the modification we made changing h to h0 did 

not alter the estimate (3) for n N t h  generation intervals. For intervals whose images 

were made smaller, it certainly still holds. Each interval I whose image was enlarged 

is adjacent to an interval J which was left alone and for which the estimate holds. 

In this case, Iho(I)l=lho(a)l/A2 and lue-ujl<_Aa, 

Ih0(I)l Ih0(J)l < IJlexp(uj) < III exp (A3)exp(u i )<  i i[exp(u/)  ' 
A2 - A2 - A2 - 

since A2_>exp(A3). Thus (3) holds with C 1 - 1  for every dyadic interval of gener- 

ation nN. Prom this it is easy so see that  it holds for every dyadic interval with 

some C1 depending only on N (and hence only on B). This completes the proof of 
the theorem. [] 

5. Questions and conjectures 

In this section we will discuss some related results and questions arising from 

Sullivan's theorem. There is some overlap with our comments from the introduction. 
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5.1. The  weak type  B r e n n a n  conjecture  

Based on Astala 's  theorem it seems reasonable to ask if the following slight 
strengthening of Brennan's  conjecture holds. 

Q u e s t i o n  5.1. Suppose f~ is a simply connected plane domain and f: ft---~D 
is conformal, one-to-one and onto. Is f l  in weak L4(f~,dxdy)? 

This version is known to experts on the problem, but I have not seen it in the 

literature. 

5.2. Sharp cons tants  

To apply Sullivan's theorem to the Brennan conjecture, we only need a quasi- 
conformal map from f~ to D with bounded derivative. We do not need the additional 
condition given in the theorem that  the boundary  values agree with the map  ~ on 
the boundary. All we really want to know is how to compute 

K(p, ft) = in f{K : there is f E QC(K,  ft) with f '  C LP(ft)}, 

(where QC(K,  f~) denotes the K-quasiconformaI maps from f~ to D)  and 

K(p) = sup K(p, e ) ,  
f~ 

whereas Sullivan's theorem deals with 

Ks(p, ~) = in f{K : there is f 6 QC(K,  a )  with f '  E LP(gt), f lea = ~laa}, 

Ks (p) = sup (p, a) ,  
Q 

where ~: S - o D  is the isometry of the convex hull boundary to the unit disk. 

Q u e s t i o n  5.2. Compute K(p) and Ks(p) for each p<_oo. 

By Pommerenke 's  result, K ( p ) = l  for p<3.339,  and the Brennan conjecture 
claims that  K(p)= 1 for p<4 .  For individual domains gt it is possible for K(oc ,  f~)< 
Ks(oc, f~). For example, let ~ be the convex hull of the unit disk and the point 2. I t  
is easy to check that  the conformal map of f~ to D has bounded derivative and hence 
K(oo,  f t ) = l .  On the other hand, there is no conformal map  f from ft to S which is 
the identity on cOf~ because it is easy to check tha t  then ~of would be a conformal 
map of ~ to D which is MSbius on a circular arc of cOf~ which is impossible by the 
uniqueness of analytic mappings. By compactness of quasiconformal mappings this 

means tha t  Ks(OO, ~) > 1. 
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Q u e s t i o n  5.3. Is Ks(ee)> K ( ~ )  or are they equal? 

If they are equal then the convex hull mapping ~ somehow picks out the optimal 
way of mapping Oft to the circle. Is there an explanation of why this should happen? 

5.3. An  explicit  example  

It  is not clear what  the best constant is even for some simple finitely bent 
domains (note tha t  Brennan's  conjecture always holds for such examples since they 
are piecewise smooth).  An explicit example where I do not know the optimal  K 
is illustrated in Figure 1: it consists of the union of nine unit disks of radius �89 
centered at 0, •  •  •  •  

Figure 1. Wha t  is the best K for this domain? 

5.4. T h e  n u m b e r  o f  b ig  d i sks  

Another application of Brennan's  conjecture concerns harmonic measure. If ft 
is simply connected in the plane the harmonic measure on Oft is the push forward of 
Lebesgue measure on the circle under a conformal map onto ~ and depends on the 
choice of base point (the image of zero under the conformal map).  If x ~ 0 f t  then 
Beurling's projection theorem [36] implies that  the harmonic measure of D(x, 7") is 
at most Cr -1/2 (where C only depends on the choice of base point for harmonic 
measure). A theorem of Carleson and Makarov [16] says that there are constants 

C, 9/[<00 so that for any c>0, the number of disjoint disks with harmonic measure 

_>r e+I/2 is at most Mr -Ce. Moreover, Brennan's conjecture is true if and only if 

C=4 is sharp, i.e., if and only if ibr every C>4 there is an M which makes this true. 

If Sullivan's theorem is true for/{--2, then one can easily show that the Carleson- 

Makarov result holds for C:4 (see the first part of the proof of Theorem 5.5 below). 
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5 .5 .  T h e  d i m e n s i o n  o f  t h e  c o n v e x  hu l l  m e a s u r e  

The isometry ~ 1 from the unit disk to the convex hull surface S defines a 

measure PCH (the "convex hull measure") by pushing normalized Lebesgue meas- 

ure on the circle onto 0n.  This is analogous to the usual harmonic measure w 

defined by pushing Lebesgue measure forward by the Riemann mapping of D onto ft. 

Makarov's remarkable work shows that cJ has dimension 1 for any simply connected 

domain, i.e., cu(E)=0 for every set with d im(E)<  1 but c~(E)=l  for some set with 

dim(E):1. 
In general, we define the dimension of a measure to be 

dim(#) = inf{dim(E):  # (E  c) = 0}. 

Q u e s t i o n  5.4. What is the dimension of the convex hull measure? More pre- 

cisely, compute supf~ dim(PcH),  were the supremum is over all simply connected 
domains. Is it 4? 

It is not hard to see that this supremum is strictly between 1 and 2. First of 

all, since the convex hull measure can be written as the image of Lebesgue measure 

under a quasiconformal map on the disk that has a lower bound on its gradient, the 
measure of any disk is always bounded above by a uniform multiple of its radius, 

i.e., #oH (D (x, r)) _< Mr.  This implies that dim (#CH) --> 1. 
In [5], examples of domains where dim(#cH) > 1 are constructed using special 

deformations of certain divergence type Fuchsian groups. The construction there is 

not stated in this language, but it is shown that there are examples such that 

limsup ~3(t-l(rei~ &--l(0)) < 1 
- - < 1  

r~m QD(reiO,o) -- l + e  

holds for Lebesgue almost every 0. From this condition it is easy to check that 

# c H ( D ( x ,  r)) <_ Cr  l+~ 

for #OH Mmost every x and for all sufficiently small r (depending on x), and this 

in turn implies dim(#cH)_> l + s >  1 by standard estimates. 

On the other hand, PCH can also be written as the image of fo  9 where 9 is 
a K-quasiconformal self-map of the disk and f is conformal. The g image of a 

set of dimension 1 is uniformly bounded below in terms of K (use e.g., Astala's 

theorem [1]). On the other hand, the push forward under f of a-dimensional Haus- 

dorff measure is singular to (2-Cc~)-dimensional Hausdorff measure by a result of 
Jones and Makarov (Theorem B-3 of [25]). Combining these results shows that  

dim(PcH) is bounded away from 2 by a constant depending only on the constant 

K in Sullivan's theorem. 
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5.6.  I n t e g r a l  m e a n s  

Suppose f :  D--+ft is a univalent map and define the integral mean 

I(t, f )  = lim sup log J02~ Iff (re ~~ I t dO 
,--+s - l o g ( l - r )  

and set 

B(t)  = sup I( t ,  f ) ,  

where the supremum is taken over all univalent maps f .  In other words, 

smallest number/3  such that ,  

B(t)  is the 

2~ 1 

for all univalent f .  Clearly B ( t ) > 0  and H61der's inequality implies that  B(t) is a 
convex function of t (since L p norms of a function are log-convex). The Brennan 
conjecture is equivalent to B ( - 2 ) = l  (see e.g., [33]). More generally, it is conjec- 
tured tha t  B(t)=max(l t l -1,  �88 Brennan 's  conjecture, easy known results and 

convexity would imply that  this is true for all t < - 2  (it is currently known for all 
t_<t0 < - 2  by a theorem of Carleson and Makarov [16]). 

For I _<K<e c ,  define the integral means for quasiconformal self-maps of the 

disk by 
2~r 

I(t. f )  = lira sup log Jo ( ( 1 - I f ( r ' e  i~ I ) / ( 1 - r ) )  t dO 
' ,~1  - l o g ( l - r )  ' 

and set 

B(K, t) = sup I(t, f)  

where the supremum is over all K-quasiconformal maps of the unit disk to itself. 
We have used distance to the boundary instead of derivatives so that  the integral 
exists for all r. By Koebe 's  distortion theorem, this yields the correct values in the 
conformal ( K =  1) case. Corollary 1.7 shows that  Sullivan's theorem with constant 
K implies B(t)<B(K,  t) for t_<0, and so for Brennan's  conjecture it would be in- 
teresting to compute B(2, t). Some values are easy, e.g., Astala 's  theorem combined 
with the argument in [16] gives the following result. 

T h e o r e m  5.5.  I f t < - 2 / ( K - 1 )  then B ( K , t ) = - ( K - 1 ) t - 1 .  

Pro@ Suppose f is a K-quasiconformal self-map of the disk and let 9 = f  -1 
be its inverse. By Astala 's  theorem, g' is in weak L ~ with p = 2 K / ( K - 1 ) .  Fix a 
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0 < r < l  and let N~(c~) be the maximmn number of disjoint intervals I of length r 
on 0D such that  f (I)  has length 

r l+~+e <_ If(I)l <_ r l+a. 

Let {Ik} be a maximal  collection of such intervals and let {ark} be their images 
under f .  Let {Qk} be the Carleson squares corresponding to the intervals {Jk}. 
Then the top half of Qk has area > r  2(1+~+~) and on this top half, Ig'l~r -~. Since 
g t is in weak L p, this implies that  the region where Ig'l>r ~ has total  area less 

than r p~. Thus 
N~(c~) < rP% -2(1+~+~) = r (t'-2)~-2-2~. 

Moreover, a K-quasiconfbrmal self-map of the disk is H61der of order 1/K, so there 
can be no such intervals if c ~ > K - 1 ,  so N~(c~)=0 if c ~ > K - 1 .  

We can now estimate the integral means just as in Section 3.5 of [16]. Let 
c b = e  j for j = l ,  ..., ( K - 1 ) / e ,  then 

2w (K-1)/z (K 1)/E 
~o If'((1-r)e~~ ~ rl+aJtN~(~ E ~l+ctjt4-(p--2)o~j--2--2~ 

j 1 j=l 

The exponent is negative for 0 < a j < K - 1  and if t < - 2 ( K - 1 )  it a t tains its most 
negative value when c ~ j = K - 1  and this value is equal to ( K - - 1 ) t + I - 2 E .  Thus 

f02T r (K 1 ) / e  K__I(II_(K_I)t_I+ee" if,((l_r)e.iO)ltdO < ~_, r(K-1)t+l 2e• 
j=l s 

Taking c-+0 shows B(K, t ) < - ( K - 1 ) t - 1  for t<_-2/(K-1). 
To show B(K, t) k - ( K - 1 ) t - - 1  for tG - 1 / ( K -  1), simply consider the K-quasi-  

conformal map on the upper halfplane given in polar coordinates by (r, 0) ~-+ (r K, 0). 
The details are left to the reader. [] 

Unfortunately, this does not give anything interesting for conformal maps until 
K is close to 2. For values of t close to 0, we can make the following guess based 
on the corresponding conjecture for conformal maps. 

Q u e s t i o n  5.6. For"-2/(K-1)<_t<_O, is it true that B(K,t)=�88 

Q u e s t i o n  5.7. For t<O is it true that B(t)=B(2, t)? 

Even if Sullivan's theorem is true for K = 2  it is not clear whether we should 
expect B(t) =B(2 ,  t). First of all, the set of 2-quasiconformal maps which arise from 
simply connected domains via Sullivan's theorem may only be a "small" subset of 
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all 2-quasiconformal self-maps of the disk, with strictly smaller integral means. 
Second, saying B(t)=B(2, ~) says that  the "expanding" factor in Corollary 1.7 can 
be ignored, which might not be the case. 

For t_>0 we know that  B(t)>_B(K,t) for some K and conjecture that  B(t)>_ 
/3(2, t). However, this is probably not useful since for t > 0  the main contribution to 
B(t) comes from places where If'l is large and hence depends on the "expanding" 
part of the decomposition. In fact, it is not hard to see that  B(K, 1)=0 for all 
K>_I, which is known to be strictly less than B(1) (e.g., see [15]). 

5.7.  M i n i m a l  s e t s  

Although conformal maps can reduce tile dimension of some subsets of T, 
they cannot reduce the dimension of every subset. We shall say a set E C T  is 
minimal for conformal maps if dim(f(E))>_dim(E) for every conformal f :D--+ft .  
Obviously intervals are minimal and Makarov proved that every set of dimension 
1 is minimal, but it is not obvious whether there are minimal sets with dimension 
0 < ~ < 1 .  Similarly we shall say E C T  is conformally thick if f(E) has positive 1- 
dimensional measure for every conformal map f (otherwise there is a map f so that  
f(E) has zero linear measure; such an E is called an L-set by Makarov in [31]). 

A subset E of the unit circle T is called minimal for quasisymmetric mappings 
if dim(f(E))>dim(E) for every quasisymmetric map f :  T--+T. Jeremy Tyson has 
conjectured that  there are no such minimal sets with dimension 0<c~<1. Using 
Corollary 1.7 and Lemma 1.9, it is evident that the following result holds. 

C o r o l l a r y  5.8. If E c T  is minimal.fbr quasisymmetric maps it is also mini- 
real for conformal maps. 

Thus Tyson's conjecture can be related to Makarov's theorems. A special type 
of minimal set for quasisymmetric maps are the quasisymmetriea]ly thick sets, i.e., 
f(E) has positive length for every quasisymmetric self-map f of the circle. As 
before it is evident that  the following result is true. 

C o r o l l a r y  5.9. If E is quasisymmetrically thick then it is conformally thick. 

So far as I know, this is a new result, but it is hardly surprising. A result of 
Staples and Ward [41] says that  if E C T  is compact with complementary intervals 
{Ij} then E is quasisymmetrically thick if  E j  IIj I c~ <0 for every c~>0. On the other 
hand, Makarov [31] has shown E is conibrmally thick if we have 

i 1 1 ~lIjl l o g ~ l o g l o g l o g ~ j  I < ~ ,  
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which is much, much weaker. Quasisymmetrically thick sets have also been consid- 
ered by Buckley, Hanson and MacManus in [14]. 

Q u e s t i o n  5.10. Are theT~ minimal sets for conformal maps with dimension 

strictly between 0 and 1? 

Q u e s t i o n  5.11. Are there minimal sets for quasisymmetric maps with dimen- 

sion strictly between 0 and 1 ( Tyson's conjecture is that there are not). 

5.8. C o n f o r m a l  w e l d i n g  

Given a closed Jordan curve F bounding two simply connected regions we 
define a corresponding homeomorphism of the circle by taking ~P=~l ~  1, where 
~i, i=1 ,  2 are conformal maps to the complementary regions to the disk. It  is well 
known that  ~p is quasisymmetric if and only if r is a quasicircle and tha t  every 
quasisymmetric ~p occurs in this way. Sullivan's theorem allows us to do a similar 
thing for every simply connected region by taking r where c:D--+S is the 
isometry onto the convex hull boundary and ~ is conformal from f~ to the disk. 
This is formal in the sense that  we do not know that  ~ and ~ have continuous 
boundary values, but the composition ~ocro~ (where a is Sullivan's map) defines a 
quasieonformal map of the disk (with constant independent of ft) which extends to 
a quasisymmetric map of the boundary. Obviously, not every quasisymmetric map 
occurs since those tha t  do have uniformly bounded estimates, but which ones do 
occur? 

Q u e s t i o n  5.12. Does every quasisymmetric map with a 2-qnasiconformal ez- 

tension to the disk correspond to a convez hull welding ~o~? Is this true if we 

replace 2 by l + e ?  Find some sufficient condition .for a homeomorphism to occur 

as a welding in this way. 

Starting with a simply connected domain f~ we can obtain a quasisymmetric 
map of the circle by the convex hull welding and then get a quasidisk f~ by the 
usual conformal welding. Which quasidisks can occur? What  properties of f~ are 
reflected in the geometry of f~? 

5.9. T h e  ac t ion  o n  q u a s i s y m m e t r i c  m a p s  

Given any simply connected domain ~2, and a Riernann mapping f :  D-+~2 the 
mapping t lo f gives a quasisymmetric homeomorphism of the circle to itself (unique 
up to MSbius transformations).  Such a homeomorphism gives rise to another do- 
main ~ which is a quasidisk by the usual conformal welding procedure. Composing 
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these two procedures gives a self-mapping on the space of quasisymmetric mappings 

on the circle. The image of this map is actually a bounded set (contained inside 

maps with a K-quasiconfbrmal extension, where K is from Sullivan's theorem). 

Is this mapping a contraction? What  happens under iteration of the map? Does 

everything converge to the identity after renormalizing? 

5.10. Quasiconformal maps in higher dimensions 

Is Theorem 4.1 true in higher dimensions? Of course, there are not enough con- 

fbrmal maps to make it interesting as stated, but we can substitute quasiconformal 

maps as follows. That  the d - 2  case is true ~bllows immediately from Theorem 1.4. 

Question 5.13. Suppose f ~ c R  d is a C-quasiball with diameter >1. Then is 

there a K-quasiconformal, locally Lipschitz map from f~ to the unit ball (with I f  
depending only on C)? 

5.11. Uniformly perfect sets 

As noted in [18], Sullivan's theorem does not hold for general multiply con- 

nected domains in the plane because the presence of annuli with large moduli causes 

a problem. Does it hold if we assume there are no such annuli? More precisely, 
recall that  a compact set E is called unifornfly perfect if there is an c > 0  so that for 

every x E E  and 0 < r < d i a m ( E )  there is a y E E  with or_< [x-y[_<r. There are many 
equivalent definitions of this condition (e.g., see [36], [19], [22]) and if ft is an open 

set such that E=0~2 is uniformly perfect, then the covering map from the disk to 

f~ has many of the same properties that  univalent maps do. 

Question 5.14. I f  OQ is uniformly perfect is there a K-quasieonformal map 
from ft to S (the boundary component of the convex hull of Oft facing ft) which is 
the identity on Of~? 

5.12. Lipschitz preimages of  the disk 

We said in the introduction that any quasiconvex simply connected domain 

can be mapped to the disk by a quasiconformal map which is also Lipschitz with 

respect to the Euclidean metrics. It is also easy to construct some non-quasiconvex 

domains with this property. On the other hand, the complement of a ray cannot 
be so mapped to the disk. 
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Q u e s t i o n  5 .15 .  Can one give a simple geometric characterization of the do- 

mains which can be mapped to the disk by a quasiconformal Lipschitz map? 
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