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I n t r o d u c t i o n  

The purpose of this paper is to present a Kiinneth formula for the cohomology 
of the de Rham--Witt complex (cf. [15]) for smooth and proper varieties over a per- 
fect field k. To explain the details of this let me recall the form the Kiinneth formula 
takes for the crystalline cohomology. In this case the cohomology of a smooth and 
proper variely X over k is a certain complex of W-modules RV (X/W) where W is 
the ring of Witt vectors of k. The Ktinneth formula then takes the form R V (X/W)| L 
RV (Y/W)=RV (XxkY/W). The reason for the appearance of the tensor product 
is that it is the product universal for the properties of the cup product in crystalline 
cohomology namely W-bilinearity. The Ki~nneth formula is proved by first, with 
the aid of the cup product, defining a morphism RV(X/W)|  --* 
R[-(XxkY/W) and then noting that as both sides of this morphism are complexes 
whose cohomology are finitely generated W-modules to prove that it is an isomor- 
phism it suffices to show that W/p| applied to it is. Finally, W/p|174 
(--))= (W/pQL(--))|174 and W/p| R[ - (Z/W)=HDR(Z/k) for any 
smooth k-variety Z. That the Kiinneth morphism is an isomorphism is now clear as the 
Kiinneth morphism in de Rham-cohomology is. From our point of view lhis proof has 
one drawback. It needs the rather precise piece of information that R [-(Z/W) has 
finitely generated cohomology when Z is a smooth and proper variety over k. This 
may be rectified as follows. For a general morphism M ~ N  in the derived category 
of W-complexes it is true that if W/p| applied to it is an isomorphism then its 
completion also is, where the completion functor, (-~), is defined to be the composite 
R l i m  . L {W/p | n}, ~ being the morphisms induced by projections W/p"+l~W/p ". 
We hence get a Kiinneth formula involving the completed tensor product, 
( (_ ) |  ^, this time there being no need to assume that X and Y be proper. 
This version of the Ktinneth formula is then completed by a calculation of (M| ^ 
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when M and N has finitely generated cohomology namely in that case it equals 
M| The plan of proof for the present Kfinneth formula is very similar. The de 
Rham---Witt complex is a module over the Raynaud ring R, the W-ring generated 
by F, d and V and having certain relations. The multiplication in the de Rham--Witt 
complex fulfills, apart from W-bilinearity, certain relations wrt the operations of the 
elements of R. We define a product ( - ) , g ( - )  on R-modules universal for these 
relations. The reduction modulo p is now replaced by reduction modulo V and dV 
and a suitable completion functor is defined. As the reduction of the cohomology of 
the de Rham--Witt complex is the Hodge-cohomology we conclude the proof of the 
Ktinneth isomorphism by the Kiinneth formula for the Hodge-cohornology. This 
first step can be clone in very great generality. Apart from some minor technical 
conditions it is proved for smooth varieties over a perfect scheme of characterislic 
p>0.  The last step, the computation of the Ktinneth formula is less satisfactory. 
Ideally we would like to compute it completely for complexes with coherent coho- 
mology (of. [16: I, D6f. 3.9]). The actual result is a far cry from the ideal. We will be 
able to compute it only in some very special cases, which still leads to some interest- 
ing consequences however. 

Here follows a more detailed description of the contents of the particular chap- 
ters. 

In chapter I we develop the necessary R-module formalism. Proposition 1.1 is 
our version of Nakayama's lemrna which will enable the reduction to the Hodge- 
coh0mology. Two points should be noted. Firstly, we will more generally want to be 
able to transfer properties of the reduction modulo Vand dVto the completion hence 
the very general form of the proposition. Secondly, contrary to the case of W-com- 
plexes, the Nakayama's lernma is not true without any boundedness restrictions on 
the complexes involved. An R-complex may be regarded as a double complex and the 
lemma will be true if the complexes involved are bounded in any of the four direc- 
tions. In section 2 we show that the completion functor behaves as expected notably 
that the completion of a complex is complete. In section 3 we define ( - ) . R ( - )  and 
obtain some of its properties the main result being that R*RR is free on a countable 
number of generators. In section 4 we continue this study. The main result is that the 
reduction modulo V and dV of ( - ) . ~ ( - )  is what is expected and needed. In section 
5 we define the right adjoint of ( - ) * R ( - ) ,  the internal Hom-functor, and study its 
properties which will be needed in some of the explicit computations. Theorem 6.2 is 
the main result of the chapter. It says that a certain subcategory of D (R) admits a 
structure of a rigid tensor category and that reduction modulo V and dV is a tensor 
functor. In section 8 we study the relation with crystalline cohomology or what 
amounts to the same, the simple complex associated to an R-complex: 

One general comment on chapter I should be made. All our results are valid in a 
perfectly ringed topos satisfying a certain technical condition. The proofs of our 



On the multiplicative properties of the de Rham-Witt complex. It. 55 

assertions are not very different from what they would have been in the pointual case 
with one notable exception. Sometimes we want to compute Ext: s by resolving the 
first variable by flee modules. This is, of course, not possible in general. If  we simul- 
taneously resolve the second variable by flasque modules it is possible however. 

In chapter 1I we prove the Kfinneth formula. With the ground already covered 
this is very simple indeed. Using the internal Horn-formalism we also get a new proof 
of the duality formula for the cohomology of the de Rham--Wit t  complex which 
also works over any perfect base. 

In chapter III we get down to some explicit calculalions. First we prove in Pro- 
position 1.1 that a complex of R-modules bounded from above is coherent iff its 
cohomology consists of coherent R-modules. As the category of coherent complexes 
is a triangulated subcategory of D (R) this implies that the category of coherent R- 
modules is an abelian subcategory of R-rood a fact which, strangely enough, seems 
to be difficult to prove directly. Apart from the case when one of the varieties is ordi- 
nary (cf. Prop. 2.1) the terms in the Kfinneth formula are very difficult to compute. 
We do it in some particular cases by the following method. We know the associated 
simple complex by the Kiinneth formula for the crystalline cohomology and the 
reduction modulo V and dV by the Kfinneth formula for the Hodge-cohomology. 
The results of chapter I enable us to obtain these formulas purely algebraically. By the 
tensor formalism we can also compute the fixed points under F, the logarithmic 
cohomology. Combining this we obtain our computations. As one particular con- 
sequence of these partial computations we can prove that ( ( - ) . ~ ( - ) ) ~  has ampli- 
tude [ - 2 ,  0] on the category of coherent complexes. Finally, we apply our results 
to compute the cohomology of the product of the Igusa-surface with itself. As a 
consequence of this we obtain an example of a smooth and proper morphism f :  X~W 
such that the higher direct images in the flat topology Rif. Gm are not pro-repre- 
sentable for i=3 ,  4. In the course of proving this we obtain for a smooth and proper 
morphism f :  X'-*Spec k the relations between the Rif,~,~ and the Hi(X, W~)) 
without assuming that the Rif. dm are smooth, a result which is hopefully of independ- 
ent interest (cf. [2]). 
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Table of notations 

p,  k - -  a fixed pr ime number  and  a fixed perfect  field of  char.  p. 
z~=i, z>i, t~=i, t>i - -  see (0: 1.1) 
pointual  topoi ,  surjections between topoi  - -  see (0: 2) 
M[X], M a graded  group  sheaf, X a graded sheaf  - -  see (0: 2) 
(S, ~s) - -  see (0: 5) 
Ws, W,s, Rs, R,, Z, ,  B,, gr", gr'~, R., inv-drw-S - -  see (0: 5) 
Dc(R), Dperf(R ), D*'~ ( & )  - -  see (0: 5) 
Wf2ic/s - -  see (0: 7) 
domino,  Ui, TiM, k as R-module ,  F~BM, V-=ZM,  Couer  M,  
dora i M, A~ AiM, A~,M, A}M, Er/s, slope 0, posi t ive slope, 
semi-simple torsion - -  see (0: 8) 
Di(M), A 2 M -  see (0: 9) 

Gs, Gf, G a formal  group  - -  see (0: 10) 
( - ) * R ( - )  - -  see ( l :  3) 
, - f i a t  R-modules ,  Ws[F, F -a] - -  see (I: 4) 
( _ ) g L ( _ )  __ see (I :  4.7.1) 
H o m ~ ( - - , - - )  - -  see (I:  5.1) 
F-crys-n, R-mod-n  - -  see (I:  7.2) 
K t i n ~ ( - ,  - )  see ( I I I :  3.1) 

O. Conventions and preliminary results 

1. By the word  " f u n c t o r "  we will always mean  a covar iant  functor.  To  any con- 
t rava i ian t  functor  F:  A ~ B  there is associated a functor  A~ which we, by  
abuse o f  language,  will denote  F. Similarly for  mult i functors  of  mixed variance. We  
will use the usual  sign convent ions  for  complexes (cf. [1 : XVII ,  1]), No te  tha t  for  a 
con t ravar ian t  addit ive functor  A ~ B  we obtain two different associated functors  
C(A)~ which however  are canonical ly i somorphic  (cf. [1: XVII ,  L e m m e  
1.1.5.4 ii]). This should cause no confusion. 
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If A is an abelian category with countable sums and X'" is a double complex in 
A then s(X") will be the associated simple complex whose component in degree n 
is z~+j=,  xi 'J  and similarly for multiple complexes, s ( - )  will then commute with 
direct limits. Dually, s ' ( - )  will denote the simple associated complex using products. 
If  T ( - ,  - ) :  A •  is a biadditive functor between abelian categories, if C has 
countable sums and if T(-- ,  --) commutes with sums then for X'EC(A), Y'EC(B), 
T(X', Y') will use s ( - )  in its definition. Similarly for multifunctors. Dually for 
multifunctors commuting with products we will use s ' ( - ) .  Hence if S ( - ,  - ) :  
AIXA2~A commutes with sums and G ( - , - , - - ) : = T ( S ( - , - - ) , - - )  then 
G(X' ,Y ' ,Z ' )=T(S(X' ,Y ' ) ,Z ' )  for X'EC(A1), Y'EC(A2) and Z'EC(B). Simi- 
larly and dually. 

Example." Using all conventions introduced we see that Homz(X' |  Z ' ) =  
Homz(X',Homz(Y',Z')) for X', Y'EC(Z) ~ and Z'EC(Z). 

For a complex X" in an abelian category put 

(1.1) := (... L x,-l  z ' - *  := 

t>~X" := (...0--~ X~+l d-~ X~+2 d-s ..)t<=~X" := X'/t>~X" 

If T ( - ,  - )  is a biadditive functor A •  between abelian categories then we 
clearly have canonical isomorphisms of bicomplexes when X'E C(A) and Y'E C(B); 

(1.2) li__mm {r(z<=,X', Y')} = T(X'. Y') 
i 

li__m. {T(t>,X', r ')} ---- T(X', Y') 
i 

and if C has countable sums 

(1.3) lira {s(r(z~,X' ,  Y'))} = s ( r ( x ' ,  Y')) 
i 

li__m. {s(T(t>iX', Y'))} = s(T(X', Y')). 
i 

Similarly for multifunctors and dually, if C has countable products: 

(1.4) 1 ~  {s'(T(z>,X', Y'))} = s ' ( r ( x ' ,  Y')) 

r ' ) ) }  = s'(r(x', 
Let us also recall 

Definition 1.5, I f  A and B are abelian categories, T: Db(A)--'D(B) is an 
exact functor and d is an interval in Z then T is said to have amplitude d if, for XEA, 
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HI(T(X) )=O if  i~ d. T is said to be of finite amplitude i f  it has amplitude d for some 
finite d. Similarly for multifunctors. 

2. In case a topos T has sufficiently many points one usually constructs the 

canonical flasque resolution of a sheaf by considering the morphism ~,5 P'-~ T where 
P is some conservative set of  points of T and ~o the pointual topos. The only proper- 
lies of  pS~ and t that are used is that epimorphisms split in p ~  and that t is a 
surjection (i.e. t* is conservative). In general Barr's theorem (cf. [18: 7.51]) confirms 
that for any topos T there is a surjection t: P-+ T where all epimorphisms in P split. 
I will refer to such a topos P as an acyclic topos. Again we may define the canonical 
flasque resolution wrt t of  an abelian sheaf M in T which will be denoted C*(M) 
even though this lime it is somewhat less canonical. As there are two slightly dif- 
ferent ways of  constructing such a C*(M) we will, to be definite, choose the one 
which is the cobarresolution associated to the pair of adjoint functiors (t*, t,) (cf. 
[18: 8.20]). 

We will in the following, unless otherwise mentioned, consider only graded 
rings, modules and morphisms. Note that this means that functors generally are 
applied degree wise e.g. if M is a graded group in a topos S and f :  S-+T a mor- 
phism of  topoi then f , M  is the graded group in T whose i: th component is f,M*. 
If  M is again a graded group sheaf and X a graded sheaf (i.e. a disjoint union over Z 
of Sheaves) then M[X] will denote the internal copower of M over X with M[X] i= 
~i=j+k MJ[Xk] ~ If  M is a graded module over the graded ring A then we have a 
canonical epimorphism A [M']-+M of  A-modules where M ' : =  voiM i as a graded 
sheaf. As in [14: I, Lemma 4.6 l] we can construct the canonical free resolution of 
any Xs C -  (A). 

A functor T from A-modules to B-modules where A and B are rings in a topos S 
will be said to be internally additive if it commutes with internal sums over arbitrary 
sheaves and internally right exact if it commutes with all small internal (or local in 
the terminology of  [1: V, 8]) direct limits. Clearly every internally additive right 
exact functor is internally right exact. 

3. Let F: (S, (,0s)-+(T, Or) be a morphism of ringed topoi. I will prove the 
following version of  "trivial duality" for lack of  reference (cf. [14: II, Prop. 5.10]). 

Lemma 3.1. Let MED-(Or) and NED+((9s). Then 

(3.1.1) RJ, R Homes (L f ' M ,  N) = R HomoT(M, Rf ,  N). 

Furthermore, i f  f ,  is of finite cohomological dimension and f of finite Tor-dimension M 
can be arbitrary. 

Proof Let us agree to let f *  denote the inverse image of  ringed topoi and f - 1  
the usual inverse image. Let Y be a group in T, M an (gr-module and N an •s-mo- 
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dule. Then 

Homr_,b (Y , f ,  Hom,~ ( f ' M ,  N)) = Homs-ab ( f - a  y,  Hom~, ( f 'M ,  N)) 

= Homes ( f - a Y |  N) = Homr ( f*  (Y| N) = Hornet ( r |  f , N )  

= Homr- ,b  (g, Hom~ T (M, f ,N)) .  

As this is natural in Y we get the module version of (1.l.1) and as f ,  commutes 
with products we get the underived version of (1.1.1). To get (1.1.1) we may assume 
that M has f*-acyclic components and N injective. Then H0mvT(f*M , N) is 
flasque as in the proof of (I: 5,2) and we are through. 

4. Let again f :  S ~ T  be a morphism of topoi and let C be a small category. 
We then have morphisms sc~--~S(TCJL~T) where the direct images are the 
lira c and the inverse images are the constant objects functor. Clearly the following 
diagram commutes. 

S c I "c , T c 

S J ~ T  
which gives ,~ 

(4.2) R li__mmco R f  c = R (limcof c) = Rf. o R li~mc. 

Furthermore, if ME TC-ab then lim~(M) is the sheaf associated to (U~-~ 
H~(l*U, M) ). If  p: Tc/I*U~ T c is the projection then 7 (l*U, M ) =  V (TC/I*U, M) 
and as the projection TC/l*U~cp factors as Tc/I*U=(T/U)c~Sc~S weget 

(4.3) R[-(l* U, M) = R limc (Re c (l* U, M)). 

On the other hand, if cE C, then T c--~ T(X~--~X(c)) is the direct image of a morphisrn 
of topoi and we also get a diagram corresponding to (4.1). As this functor is exact 
we get for NED + (S c -  ab) 

(4.4) R'fCN(c) = Rif, N(c). 

Applying this'to T/U-,-S and using (4.3) we get a spectral sequence 

(4.5) limic {c ~-~ HJ(U, M(c))} ~ Hi+J(l * U, M). 

In case C = N  this degenerates to a short exact sequence 

(4.6) 0 ~ li~m ~ {H~-~(U, M)} --* H ~ (l* U, M) -~ li~_m {H~(U, M)} ~ 0. 

Definition 4.7. A topos S is, said to be o f  finite cohomological dimension i f  there is 
a set S g~" of  generators and an integer N such that V (U, - )  has cohomological dimen- 
sion <=N for all UES g~". 
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Remark: i) Strictly speaking such a topos should rather be said to be uniformly 
locally of finite cohomological dimension which explains why I have chosen the less 
appropriate expression. Note that BG for a discrete group G is of  finite cohomological 
dimension in this sense even if V (BG, - )  may well have infinite cohomological 
dimension. 

ii) Typical examples of  topoi of  finite cohomologieal dimension are the Zariski- 
topos of  a scheme whose underlying space is locally Noetherian of  finite Krull di- 
mension (of. [12: Thin. 3.6.5]), most 6tale topoi of  interest etc. As any topos locally 
isomorphic to one of finite cohomological dimension also is, one may for instance 
take the classifying topos of some group in one of the above-mentioned topoi. 

iii) In all of the cases in the present paper there will be a fixed prime p such that 
it will suffice that F (U, - )  be of  finite cohomological dimension when restricted to 
Z(p) -sheaves. 

Lemma 4.8. Let S be a topos of  finite cohomologieal dimension and C a small 
category such that F (9 c, - )  has finite cohomological dimension then h mc: SC-ab-+ 
S - a b  has finite cohomological dimension. 

Indeed, using the notations of  (4.7) and supposing that H~(S c, - ) = 0  for 
i>M, then (4.5) shows that H~(I*U, - ) = - 0  if i > M + N  and U~S g~". When taking 
the sheaf associated to (U~-~H'(I*U, M)) we need only let ~ r u n  through S *~n 
and thus l i m ~ ( - )  is zero for i>M+N.  

Let us also note that (3.1.1) applied to the morphism I: sC~s ,  a ring (gs 
in S, a C-system of rings (9 and a morphism l*(9s~(9 gives us for MCD-((gs) 
and NED+((9) 

(4.9) R li.j~_mc R Hom o (LI*M, N) = R Homes (M, R lij~_m c N). 

If  (9=l*(9s and S and F 0p c, - )  has finite cohomological dimension then (4,8) 
shows that (4.9) remains true for arbitrary M. 

5. For the rest of this paper, unless otherwise mentioned, (S, (gs) will be a ringed 
topos with S of  finite cohomological dimension and with (gs a perfect ring of charac- 
teristic p > 0 .  W(gs will denote the ring of Witt vectors and the W,(9 s the rings of  
truncated Witt vectors. Rs will denote the graded W(gs-ring with generators F, V in 
degree 0 and d in degree 1 and relations (cf. [16]) FV=VF=p, Fa=a~F, 
aV=Va~(aEW(gs), FdV=d, d~=0 and da=ad(aCW(gs) where a: W(gs-+W(gs 
is the ring-automorphism induced, by functoriality, from the p: th power-map- 
ping on Os. R,s:=Rs/dV"Rs+V"Rs, ~s:=li~m R,s. As in [16: I, 1.1.445 and 
1.3.3] one sees that 

(5.1) Rs = ~,>oW(gsV"e ~,~oW(gsF"|174 

R.s = Z.>m>.w._~(9~v=ez=>=ow.(gsF=e Z.>=>ow._=esdV=e Z~ow.(9~F. d 
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By analogy with [15] we define right Rs-modules Z1 and B1 as the kernel and cokernel 
respectively of multiplication by d to the left on R1. I claim that F: R ~ R I  induced 
by multiplication to the left by F on R induces an isomorphism C - I :  R ~  
tT.ZfftT.B1. This and relations to follow can be proved in two ways. Either by 
direct inspection using (5.l) or by observing, as has done Illusie, that if E( t )  are the 
"formes entifres" of [15: I, 2] then R s ~ E ( t ) ,  (1 ~-~t) presents Rs as a direct factor, 
as Rs-modules, of E( t )  and then the desired relations follow from the ones 
already proved for the de Rham--Wit t  complex. I will have nothing further to say 
concerning the proofs but just refer to the result for the de Rham--Wit t  complex. 
Again by analogy we define Zn and Bn recursively by the exact sequences 

(5.2) 0 -~ B1 ~ Bn+l c_~ Bn ~ 0 

o -~B, +Zo+x~--~z~ --o, 

where C is the inverse of C -1. We let re.: R . + , - - R .  be the projections and Q.: R.--  
R~+, the morphisms induced by multiplication by p. We put 

(5.3) 0 ~ gr" -+ Rn+ 1 --~ R .  --~ 0 

0 ~ R .  ~ R . + I ~  gr~ ~ 0  

and then we have exact sequences (cf. [8], [15] and [16]): 

(5.4.1) 0 " - '~B 1 - . ~ Z 1  C - ~  R 1 --~ 0 

(5.4.2) 0 ~ a~,RI/B, --, gr" ~ a% Rf fZ , ( - -  1) ~ 0 

(5.4.3) 0 ~ B,(1) ~ gr~ ~ Z .  --. 0 

(5.4.4) 0 '"~ Z 1 ~ o , R  1 ~ B1(1 ) - -  0 

(5.4.5) 0 --*- ff , R1/Z l --~ ffn,+ l g l /Z ,+  1 --~ (Tn, R1/Zl --,- 0 

(5.4.6) 0 ~ (r, R1/Z~ --, tr~+ i R~/B,+ ~ ~ ~r~ Rx/B, ~ 0 

(5.4.7) O ~ R ( V ' - V )  R @ R  r+v R ~ B ~ ( 1 ) ~ O  

(5.4.8) 0 ~ R(--I)  (~,-,o ~ R(--I)@R a v , + v  R .=+Z I ~ 0 

(5.4.9) 0 ~ R(--1) (v-.-F-d) R ( - - I )O R a v , + v ,  R ~ R ,  ~ 0 .  

((5.4.5.-6) are not  to be found in the references and 1 leave their verification to the 
reader. They are clearly "dual" to (5.2).) 

If  X" is a complex of R-modules lhen we will say that X" is bounded (from above, 
from below, to the right, to the left, horizontally resp. vertically) if there is an NEN 
such that Hi(zIf)J=O unless -N<=i , j<=N (i<=N, i > = - N , j < = N , j > = - N ,  -N<=j<=N, 
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resp. -N<=i<=N). We will say that X" is bounded in one direction if X" is bounded 
either to the left, to the right, from above or from below. D*'~ will denote the 
derived category of complexes bounded in different directions according to * being 
0 (no vertical restriction), + (from below), - (from above) and b (vertically) and 
0 being 0 (no horizontal restriction), 1 (to the left), r (to lhe right) and h (horizontally). 

Recall ([8 : I I I ,  Def. 2.1]) that an inverse de Rham--Wit t  system on S is a system 

(5.5) (M., re:M,, --,- Mn_l, F:M. -+ cr.M._l,  d:Mn -+ 34.(1)(1), 

V:~,M._I  -~ M.). 

where M,  is a W,(9-module, (Tr, F, d, V) are W,•-homomorphisms with the relations 
rcF=Fn, dn=rcd, nV=VT~, FV=p=VF, FdV=d, dZ=0. (R, ,n,F,d,  V) is such a 
system denoted R. and, by functoriality, for any R-module M R. |174 
7~, F, d, V) is an inverse de Rham--Wit t  system. Its left derived functor 

(5.6) R. |  ): D-(R) ~ D-( inv- -drw--S)  

has amplitude [ - 2 ,  0] by (5,4.9) and hence extends to D(R). 
If  M.  is an inverse de Rham--Wit t  system then lira {M,, 7c} is in a natural way 

an R-module, the (F, d, V) being induced by the (F, d, V) of M., giving a functor 
lira: inv-drw-S~Rs-mcd. The forgetful functor from inv -d rw-S  to inverse sys- 
tems of graded sheaves commutes with inverse limits so the free objects functor 
exists and inv -d rw-S  has a set of generators. As i nv -d rw-S  evidently is an Ab-5' 
category we see, by the criterion of Grothendieck [12: Thin. 1.10.1], that i nv -d rw-S  
has sufficiently many injectives and hence that li._m__m derives to 

(5.7) R lira: D+(inv-drw-- S) ~ D+(Rs). 

We have forgetful functors inv-drw-S+SN'ab (M.~+(M,, ~z)) and R-rood+ 
S - a b  and the following diagram commutes 

lira inv-drw - S ~ R-mod 
i l 

lim S N-ab ~-.  S-ab.  

Lemma 5.8. The following diagram commutes 

(5.8.1) 

D+( inv-d rw-S)  Rlim D+(R) 

D+(SN-ab) Rli~m.D+(S--ab). 

What needs to be shown is that if M.  is an injective object in i nv -d rw-S  then 
(M,, 7c) is [im-acyclic. It is clear that the system (3~,, n) = ( z ~ ,  Mi, ~) of "disconti- 
nous sections" has a structure of inverse de Rham---Witt system such that the cano- 
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nical embedding M.  ~)~r is a morphism in inv-drw-S.  Hence M.  is a factor in 
M. and therefore has surjective transition morphisms ~. I claim that M, and Ker rc: 
M,+I~M,  are flasque for all n. To see this it suffices to embed M.  in some object 
in i nv -d rw-S  with this property as M.  is injective. Choose an acyclic topos T and 
a surjection t: T-*S. Ring Twith the perfect ring t*~)s thus making t a flat morphism 
of ringed topoi. We get functors t,  : inv-drw-  T ~ i n v - d r w - S  and t* : i n v - d r w - S ~  
inv-drw--T. By acyclicity of T and left exactness of t,  every N~inv -d rw-S  in 
the image of t, has N, and Ker ~, flasque for all n. Now M. embeds in t , t*M..  
It is now clear that for all UCSH'(U, M . ) = 0  for i > 0  and as re, is surjective and 
Ker ~z, flasque, F(U, M. )  has surjective transition maps. (4,6) now shows that 
Hi(I*U,M.)=O for i > 0  which implies that l i m i M . = 0  for i>0 .  

Corollary 5.8.2. li~mm: inv -drw-S~Rs-mod  has finite cohomological dimension 
and hence R ljm extends to all o f  D(inv-drw-S) .  

This follows from Lemma 4.8. 

If  M~D(Rs) we define the completion M of M, by 

(5.9) M := R lj~_m (R.| 

There is a canonical morphism 

(5.10) M ~ 37I 

defined as follows: We may assume that M has R.| components and 
therefore that R.|174 We have the projection morphism M-* 
(R.| and the induced morphism M~lim_m(R.| is evidently an R- 
morphism. Now define (5.10) as the composite M~lim_m (R.| ~ R  ~ (R.| 
We will say that M is complete if (5.10) is an isomorphism. 

It is clear that without the assumption of finite cohomological dimension on S 
all these results and definitions make sense and are true on D + (Rs). 

Lemma 5.11. Let f:  (T, ~)T)~(V, (gv) be a morphism of  ringed topoi where (9 r 
and (9 v are perfect rings of  characteristic p. Then R f ,  : D + (Rr) ~-D + (Rs) commutes 
with completions and hence takes complete complexes to complete complexes. 

Indeed, (4.2) and (5.8) show that it suffices to show that R f , ( R . |  
R.| R f , ( - ) .  As the functors M. ~-~M, form a conservative set of exact functors 
it suffices to show that Rf,(Rn| (--))=R.@~ R f , ( - ) .  This is just the projection 
formula which in this case follows from (5.4.9). 

Lemma 5.12. Let ( &) be an endofunctor of  an S-enriched category C and 
^ 

c: ida(  ~- )a natural transformation such that i f  X~C then c=Y: )(---,-)(. I f  X, YEC 
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then the following diagram commutes: 

Homc()(, Y) c *  Home (X, Y) 

Homc (2, c* Homc (2, f3- 

Indeed, the right hand triangle is just naturality of c. Let q~: J ~ Y .  Then 
c, (q~)--c~o which equals ~c by naturality of c. On the other hand, by functoriality 

of (=), 

Definition 5.13. A complex M of  Rs-modules is said to be coherent (perfect) i f  
RI@L M is coherent (perfect) and M is complete. The category of  coherent (perfect) 
complexes will be denoted Dc(R) (Dperf(R)). Here a complex of  (gs-modules is said to 
be perfect i f  there is a finite interval d in Z such that the complex is locally isomorphic 
to a complex concentrated in d whose components are free (9 s-modules on finite sets. 

Remark: The notion of coherentness and perfectness for R-complexes has little 
to do with the usual notions. They should rather be thought of as giving the right 
notions on the "ringed" protopos (S, R.s). Indeed, it follows from (I: 1.1) that if 
~s is a coherent ring and MED-(Rs) is coherent then R,| L M is coherent. Note 
however that even if M is perfect R,| L M will rarely be. Note also that our notion 
of a perfect ~)s-complex differs slightly from the usual notion in requiring uni- 
form boundedness. Of course, if the final object of S is quasi-compact there is no 
difference. 

Finally, if f :  (S, es)-~(T, 0r) is a morphism of perfectly ringed topoi of cha- 
racteristic p let us agree to write f , :  (S, W,~s)-~(T, W, OT) resp. f.: (S ~, W.$s)~ 
(T N, W..(9~) for the induced morphisms of ringed topoi. 

6. Let W,~s[d ] be the ring of dual numbers where d has degree 1. As usual, if 
M, N are W,0s[d]-modules we may endow Homw,v~ (M, N) and M| N with 
canonical W,~s[d]-module structures and we let R Homw.r ( - ,  - )  and 
(-) |  denote the corresponding derived functors. As W,~s[d ] is flat 
over W~) s the underlying W,~)s-complexes of R Horn/e~ (M, N) and M@Lr N 
for MCD(W, Vs[d]) NCD+(W, es[d]) (resp. NC(W,(gs[d])) are simply R Homw,e~ 
(M,N) and M| N now computed in D(W, Os)~215 (resp. D(W,r 
D (W,~s)). A complex of W,~)s[d]-modules will be said to be perfect if its underlying 
W,~)s-complex is perfect. The category of perfect complexes will be denoted 
Dperf(Wn~s[d]). 

Left multiplication by d on R, gives R , |  a structure of W,~s[d]-module for 
any Rs-module M and hence gives a functor 

R.| D(Rs) ~ D(W.d)s[d]). 
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7. Recall [15] that for f :  X ~ S  a scheme smooth over a perfect scheme S there 
is defined a sheaf of graded commutative differential algebras Wf2xl s which is an 
Rs-module and such that the following relations hold: 

(7.1) F(O)I" s = F O ) I "  FO)2, (_01 �9 Vco 2 ~ V(Fco 1 �9 co~) o)1, a~EWf2x/s. 

Furthermore, (cf. [16: II, Thin. 1.2]) 

( 7 . 2 )  Rn @LR W a x  = Rn @R W~"~x =i W n ~~x 

w ~ ' ~  = li _m (w,,,~'~}. 

We also know that W , ~ x  is coherent as W,t~x-modules for all i and n and 
Wlf2x=f2"x/s . From (4.6), (7.2) and [6: Thin. 1.3.1] it then follows, as (Ixl, W,~x) 
is a scheme, that Wg?'x=R lira {W.a I=R li. _m i.e. that Ws2 x 
is complete as R-module in the ringed topos (IXl,f*r Thus by (5.11) R f ,  WY2" x 
is complete. 

8. Recall ([16]) that if S = S p e c  k where k is a perfect field of characteristic 
p > 0  an Rs-module is said to be coherent if it is a sucessive extension of R-modules 
of  the following types: 

I. An R-module which is finitely generated as W-module. 
II. A degree shift o f  the R-modules 

Ui:~j>=okVJa--~j>=okdV~+J where dV-k:=Fkd for k ~ 0 .  

Recall also (loc. cit.) that an R-module M is said to be a domino if' it is a successive 
extension of U,: s and that in that case one puts dirt' k M:=dimk M ~  ~ which 
is always finite. 

In [8] a canonical filtration 0 =  T2MC= TIMC= T ~  of  a coherent R-mo- 
dule by coherent submodules such that T~M is a successive extension of shifts of 
Ui: s and the R-module k ( F = d =  V=0),  T I M / T 2 M  is a successive extension of  
R-modules of  finite length as W-modules, with d = 0  and F bijective and F-crystals 
of' positive slope i.e. a finitely generated flee W-module with F and V topologically 
nilpotent in the p-adic topology and d = 0  and M / T a M  is a slope zero (or unit 
root) F-crystal i.e. a finitely generated free W-module with F bijective and d=0 .  

Following [16], we put, for any R-module M:  

(8.1) F ~ B M  := (J I m F " d  
n 

V -  ~ Z M  := U Ker dV" 
n 

Coeur M i := V - ~ Z M ~ / F ~ B M  ~ 

d o m M  i := M~/V-~ZMid-2-... F~BMi+ I  
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which all are R-modules. We wilJ call and denote (cf. [8]) A~Mi:=Coeur TZM i 
the nilpotent torsion (in degree i) of M, A 1M f :----p-tors (T1M/TIM)I the semi-sim- 
ple torsion (in degree i) of M, AXMi:=(TIM/T2M)i/p-tors the positive slope part 
(in degree i) of  M and A~ the slope zero part of M (in degree i). 

Let us also agree to call a coherent R-module elementary if  it is one of the follow- 
ing types of modules: Slope zero, semi-simple torsion killed by p, positive slope, k 
or U0. It is then clear that any coherent R-module is a successive extension of shifts 
of elementary modules. (Note that we have exact sequences 0 ~ U i ~ U ~ _ l ~ k ~ 0  
and O~k(-1)~Ui~Ui+:+O.)  Also put Ej / i+ j : :R~  j, i>0 .  

9. In [8] a contravariant functor D ( - )  from complexes with coherent cohomo- 
logy to complexes with coherent cohomology is defined by putting 
Di(M):=Hi(D(M)) for such a complex and A2(N):=T2N for a coherent R- 
module N, 

Theorem 9.1. i) There is a natural exact sequence o f  R-modules 

0 --,- A~ --,- DO(H-I(M)) -~ D2(HI-'(M)) -,- A2(Di+I(M)) --,- 0 

ii) AXn (D' (M)) 1 = D I(A] (HI-~ (M) - j - l ) )  (_ 1) 

A~ (D i (M))J = O I(A ] (H 1-i (M)-i)~ 

A~(D'(M)) = D2(A~(H2,i(M)-J-1))(-- 1). iii) 

I f  M is a coherent R-module then 

D~ = H o m  w (A~ W), (F, d, V) = ( F - l * a . ,  0, pF-1), 

DI(AX(M)) = Horn W (A](M), 14:)(1), 

DI(A~(M)) = Hom w (A~(M), K/W), 

D2(A~(M)) = Horn y (A~(M), K/W)(1), 

n ~ (Ui) = U_ i (2), 

(F, d, V) = (V* ~r., O, F'o;1),  

(F, d, V) = ( F - l ' a . ,  O, pF-1), 

(F, d, V) = (V* a. ,  O, F* a,1), 

D 1 (Ui) = 0, 

D * ( M ) = 0 ,  i ~ 0 , 1 , 2 .  

10. If  G is a finite type formal group over a perfect field k then Gr~ d is a sub- 
formal group scheme. Put 

(10.1) G~ := G,~d G: :-- G/Gr~d. 

Note that Gs is a smooth formal group scheme and G: a finite group scheme. 
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I. The tensor formalism of perfect complexes 

Proposition 1.1. Let A be a thick subcategory o f  W(gs-mod (ungraded) stable 
under a, and let MED(Rs). 

i) l f  M is bounded from the left or from above and H~(RI| M)JEA for (i,j)E 
E{(i,j): ( i + j = r ;  i ~ = s ) v ( i + j = r ' l ;  i>=s+l )v ( i+ j=r+l ;  i k s + l ) }  for some 
r, sEZ then, for all n, H~(Rn| for i+j=r;  i~s .  

ii) l f  M is bounded from the right or from below and H~(Rn| for (i,j)E 
{(i,j):(i+j=r; i<- s ) v ( i+ j=r+l ;  i < - s ) v ( i + j = r - 1 ;  i ~ s - 1 ) }  .for some r, sEZ 
then, for all n, H i ( R , ~ M ) J E A  for i+j=r;  i<=s. 

iii) Under the conditions o f  i) the conclusion remains valid for R, replaced by gr". 

Let us first agree to write B<_ - C if B and C belong to some Abelian category and 
B is a subquotient of  C. This is dearly a transitive relation and B <_-0 implies that 
B--0.  Let Us also, for simplicity of notation, put --1R~'i, ~17~'J, B~J etc:=Hi(Rl| 
H'(zI| j, Hi(B1Q~M) j etc. 

Lemma 1.1.1. Let MED(R). I f  R~'J=0 then ~+a'J<-7i '~+l R ~'j+l-<ei'j+l 
z i ,  J~tTti, J 7 i ,  J < z  R I + I , j - 1  

1 ~ - ~ 1  ~ ~ 1  ~ 1  

This follows immediately from the long exact sequences associated to (0: 5.4.1) 
and (0: 5.4.4). 

Lemma 1.1.2. Let MED(R). 
i) I f  M is bounded to the left or frcm above and R~J=0 for i+ j=r  or r - l ,  

i>=s then 7i 'J--  l:li'J--o" i ~ s .  

ii) I f  M is bounded to the right or from below and R~'J=o for i+j=-r or r -  1 ; 
7 i 'J - l~i 'J -o  for i+]=r; i<=s. j>=r--s then ~ 1 - ~ 1 - ~  

Indeed, (0: 5.4.8) and (0: 5.4.7) show that i , - i  i.,-i Z i' =B~ -=0 for i>-~0 (resp. 
i<<0). On the other hand, by lemma 1.1.1, if i>=s then 7~'~-~<R~"-i<-7~+~'"-(i+~)<- ~ 1  ~ ~ 1  - -  ~ 1  

IS~i,r--i-.~z T i ,  r~i <z lTti-- l,r--(i--1) ~ ~lrli+l"r--(i+l)~z7i+2'r--(i+2)~z'"~O~l = (resp. if i<--s then ~ = ~ 1  = ~  -- 

Z~-l'~-(i-~)~...<=O) and hence, by the remark made above, 

Z ~ ' ~ - i - - B ~ " - i = 0  if i>=s (resp. i<=s)' 

We can now prove the proposition assuming first that A=0 .  (0: 5.2) shows 
that if B~'J=0 then, for all n, B~J=0  and (0: 5.2) again shows that if B~,J= 
Z ~ J = 0  then Z~'J=0 for all n. By (0: 5.4.2) Z n i + l ' j - 1 - - B . i + l J - O i ' i - R i ' j - l - c ~ - . . a  - -"1 --~ 
implies that ( g r " f J = 0  and (0: 5.4.3) shows that if ZiJ--B~J+X--O then - - t l  - -  --11 - -  - -  

(gr~)iJ=O. Lemmas 1.1.1-2, (0: 5.3) and induction on n enable us to conclude 
the proof. In case A # 0  we just redo the argument calculating modulo A. 
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Remark." It should be noted that even when S is the spectrum of a perfect field 
there is a non-zero MCDc(Rs) s.t. RI| 

Corollary 1.1.3. Let M,  NED(R) and suppose that they both are bounded in the 
same direction and that there is a morphism f :  M ~ N  such that Rl| f is an isomor- 
phism in D (~)s). Then f is an isomorphism upon completing. 

This follows immediately from the proposition applied to a mapping cone o f f  
and all pairs (r, s) of integers. 

Corollary 1.1.4. i) Let N be an R~-acyclic R-module. Then N is acyclic for all 
the R-modules appearing in (0: 5.4.1-9) and the exact sequences (0: 5.2-3, 5.4.1-9) 
remain exact when tensored with N. 

ii) Let N be as in i) and T~S. I f  N is Y (T, --)-acyclic then so is N tensored 
with any o f  the R-modules occuring in (0: 5.2-3, 5.4.1-9). 

Proof: Z1- and Bl-acyclicity follow from lemma 1.1.2. Acyclicity for the rest 
of the modules follows from (0: 5.2, 5.4.2-3) and then the sequences obviously remain 
exact when tensored with N. As for ii) we note that all the R-modules involved have 
finite resolutions by finite free modules. As N is acyclic for these modules the resolu- 
tions remain exact when tensored with N and then we get an exact sequence 

0 ~ N(i~)rl ~ N(i2)'* . . . .  N(i ,)  ~. ~ X |  ~ O, 

where X is one of the R-modules in question. This shows that X|  is F(T, --)- 
acyclic. 

Proposition 2.1. Suppose MED(R). Then the morphism M ~ M  induces an iso- 
morphism 

(2.1.1) R.@RM-- , R . |  

In particular f l =  ]~I. 

Fix X an acyclic topos and a surjection ~o: X-~S and ring X by ~O*0s. The 
projection formula L * _ �9 L R, QR qo , q~ N--qo, qo (R, QRN ) shows that i f N  is an R~-acyclic 
module then so are the components of z~_,,C*(M) (cf. [l: XVII, 4.2.9]). As 
R.| has finite amplitude we may first replace M by a complex M" with 
R.| components. I f  S has finite cohomological dimension _<-A and 
S g~ is the set of generators required in (0: 4.7) then S(z~AC*(M)) will be a complex 
whose components are R.|  and sge"-acyclic. As (-~) has finite amplitude 
we may hence assume that M is an R . |  and Sge"-acyclic R-module, I claim 
that 

(2.1.2) 0 ~ M . ( - l )  (v-,-v-a) M . ( - 1 ) |  av ,+v ,  M. -~M,, ~ 0  
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is an exact sequence of pro-objects, where M . : = R . |  and M , : = R , |  

(This is due to Illusie.) Indeed, suppose it true for M a free R-module (not necessarily 
sgen-acyclic). We may then take a free resolution f :  F ' ~ M .  Put Y : = C ( f ) .  Then 
Y . : = R . N R Y  and Y , : = R , |  are acyclic as M is R,-acyclic. Hence the simple 
complex associated to 

(2.1.3) 0 ~ Y.(- 1) ~ Y.(- 1)@Y. ~ Y. ~ Y, ~ 0 

is acyclic and the second spectral sequence of (2.1.3) plus exactness of  (2.1.2) for free 
modules show exactness of (2.1.2) for M. As for exactness of  (2.1.2) for a free module 
we may, as internal sums are exact, assume that M is free on one generator in which 
case it is a simple calculation (cf. [16: III, 3.3.3]). Let us return to the case of M being 
R. |  and sge"-acyclic. I f  we can show that M. is lii__m-acyclic the ~ applied 
to (2.1.2)is still exact which by (0: 5.4.9) is exactly what we want to show. By 
(0: 4.6)it  suffices to show that M, is sge"-acyclic for all n and that V (T, M , + I ) ~  
V ( T , M , )  is surjective for all n and T~sge".M,  is sge"-acyclic by (1.1.4)and, 
again by (1.1.4), we have an exact sequence O ~ g r " |  with 
g r " Q R M  sg""-acyclic, which shows that V (T, M , + I ) ~  F-(T, 3//,) is surjective for 
TE S gen. 

Definition 3.1. Let  M,  N~ R-mod. M * R N  is defined to be the R-module gene- 

rated by m * n  ( m ~ M ,  n 6 N )  using the relations; 

i) V m * n  = V ( m *  Fn), m . V n  = V ( F m * n )  

ii) F ( m  * n) = F m  �9 Fn 

iii) d (m * n) = d m  * n + ( -  1) deg m m �9 dn 

iv) ( m l + m 2 ) * n = m l * n + m 2 * n ,  2 m . n = 2 ( m . n ) ,  ),CWOs 

m . ( n l + n 2 ) = m . n l + m . n 2 ,  m . 2 n = 2 ( m . n ) ,  2EWOs. 

The existence of  M . R N  is obvious and it is clear that ( - ) * g ( - )  is an internally 
biadditive and right exact functor. 

Proposition 3.2. R * R R  is a f r ee  R-module on generators 

(3.2.1) F i . 1 ,  i > 0 ;  I * F  i, i ->0 ,  

F i d . 1 ,  i > 0 ;  l * F ~ d ,  i>=O. 

From (0: 5.1) and (3.1 iv) it follows that R * R R  is generated, as an R-module, by 

V i . V J, F i ~ V j , V i �9 F j , F i -~ F j, 

d V  i * V j , F i d �9 V j , dV i * F J, F i d * F j, 

V i .  dVJ, F ~ * dV~, V i* F j d, F ~ �9 FJ d, 

dV  i , dV  j, F i d . dVj ,  dV i * F j d, F i d * Fjd .  
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By i), ii) and iii) we get 

V%VJ = V ipJ (1 .F  i-j) if i >=j; VJpi(FJ-~*l) if i < j  

Fi*V  j = VJ(Fi+i.  1) 

Vi* FJ = V~(1 * F i+~) 

F i * F J = F ~ ( I * F  J-~) if j>=i; FJ(FI-J .1)  if j < i  

dV*-*VJ=V. i (FJ- id .1)  if j>=i; p ~ d V i ( l * F i - J ) - V i ( 1 . F i - J d )  if j < i  

F ~ d . V  y = VJ(F i+j d . 1 )  

dVi*  F j = dVi(1 * Fi+J)- -pJVi (1  �9 F i+j d), 

(3.2.2) 

F ~ d , F ~ = F J ( F i - ~ d , 1 )  if i>=j; F ~ d ( 1 , F J - i ) - F i p ~ - i ( 1 , F J - * d )  if i < j  

V~ ,dV j = V i ( 1 , F i - i d )  if i >=j; p idV . i (F- i -** l ) -VJ(FJ- id ,1 )  if i < j  

F i .  dV j = dV ~ (F ~+~. 1) - pl V j (F i +j d * 1) 

V*. FJ d = Vi (1 .  Fi+J d) 

F i * F J d = F i ( l * F J - i d )  if j>=i; F J d ( F i - J . 1 ) - - F J p * - J ( F i - J d . 1 )  if j <  

dVi*dV J = d V i ( l * F i - j d )  if i>=j; - d V J ( F J - l d . l )  if i < j  

F* d * d V  ~ = -dVi(Fi+J d* 1) 

dV** F ~ d = dV~(1 �9 F ~+~ d) 

F * d * F ~ d = F i d ( l * F ~ - i d )  if j~=i;  - F ~ d ( F ~ - 3 d . 1 )  if j<=i. 

This shows that R .  R R is generated by (3.2.1). To show that they freely generate 
it one must show that every morphism of sheaves 0,>0 F** 1 to F i d .  1 w U~-o 1 . F  ~ 
w 1 �9 F i d ~ M  where M is an R-module extends to a morphism R . R R ~ M  of R- 
modules. By (3.1 iv) and (3.2.2) one can define this extension on r .  s (r, s t  R) and it only 
remains to show that (3.1 i--iv) are fulfilled. This is a very tedious and completely 
straightforward verification which I leave to the reader. 

Corollary 3,2.3. I f  M is an R-module then 

R * R M =  G V ' ( 1 . M ) @ ( ~  F'* M ) ~ ( ~  dV*(1. M ) ) ~ ( Q  Fi d .  M). 
/ > 0  i--~O i > 0  i~>O 

Indeed, there is an evident additive morphism from the right hand side to the 
left hand side. Both are internally additive and right exact so to show that this mor- 
phism is an isomorphism we may assume that M =  R but then it follows easily from 
the proposition. 



On the multiplicative properties of the de Rham-Witt complex. II. 71 

Proposition 3.3. Let M, NE R-rood and suppose that F is bijective on N. Then 

(3.3.1) M . R N  = M| 

Proof." By (3.1 iv) there is a morphism of Ws-modules 

(3.3.2) M| ~ M*RN 

m|  

On the other hand, we may put  an R-module structure on M| by 

(3.3.3) F(m| = Fm| d(m| = dm|174 

V(mQn) = V m |  

It is easy to see that m|174 fulfills (3.1 i--iv) so that there exists a mor- 
phism of  R-modules 

(3.3.4) M*R N ~ M |  

mQn ~--~ m| 

and again it is easy to see that (3.3.2) and (3.3.4) are inverses of each other. 
Let us also record that for M, NER-mod there is a canonical isomorphism; 

(3.4) M * R N - ~  N * R M  

m * n  ~-~- ( - -  1)degm'degn n .  m .  

4. We will now study the derivation of  the functor ( - ) * a ( - ) .  

Definition 4.1. An R-module M is said to be .-flat i f  M . l e ( -  ) (and hence 
( - - ) . gM)  is an exact functor. 

Lemma 4.2. i) Every free R-module M is . - f la t  and every Wd~s-flat R-module 
having a bijective F is ,-f lat .  

ii) Let M and N be R-complexes such that N is bounded from above with 
�9 -flat components. If  either M or N is acyclic then M . g N  is acyclic. 

That  a free R-module is . - f la t  is clear as ( - ) . g ( - )  is internally additive and 
(3.2.3) shows that a one generator free module is .-f lat .  The second assertion of i) 
follows from Prop. 3.3. As for ii) note first that by (0: 1.3) and exactness of inductive 
limits we may assume that the non-acyclic component is bounded in which case it is 
obvious. 

Definition 4.3. WO[F, F -1] is defined to be the R-module ~ i~z  Wd?s Fi con- 
centrated in degree O, with d = 0  and F and V having the obvious action. 
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/_,emma 4.4. Suppose that M is a complex of R-modules bounded from above 
and to the right. Then there exists a quasi-isomorphism X-*M such that X is bound- 
ed to the right and from above and has components of  the type 

R[T]•WO[F, F-1][T '] T, T'ES. 

Indeed, consider the category AN(NEZ) of R-modules M such that M~=0 
for i > N  and F is bijective on M s. It suffices to show that As has sufficiently many 
objects of the required form as As is a thick subcategory of R-rood. By (4.2 i), if 
MEAN then put F(M)=R[(.Ji<N M~]| F-1][MN]. As F is bijective on R 1 
(i.e. REAa) F(M)~AN and we have an epimorphism of  R-modules F(M)~M. 

Proposition 4.5. (_) .L(__)  is defined on D(R)xO-(R)wD-(R)xO(R).  It 
takes D-(R)xD-(R)  to D-(R) ;  D'(R)xD-'r(R)wD-'r(R)xD'(R) to Dr(R) and 
DI(R)xD-'I(R)wD-'a(R)xDI(R) to DI(R). 

The first statement follows from lemma 4.2. The statement concerning D-(R)  
is obvious. The one concerning Dr(R) follows from lemmas 4.2 and 4.4 and the one 
concerning Da(R) is clear as taking free resolutions preserves boundedness to the left. 

Lemma 4.6. Let M, NER-mod. The mapping, 

q~: M ~ w e N  ~ M~nN 

m| ~-,- m * n 
induces an isomorphism 

(4.6.1) (R1 | M) |162 (R~ | N) ~ R~ Qn (M,R N). 

Proof. q~( Vm| Vqg(m| Fn), ~o(dVm| +__ dVq~(mQ Fn) +__ V(q~(m@ Fdn) ) 
etc. which shows that ~o does indeed induce a morphism (4.6. I). To show that we have 
an isomorphism we reduce, by internal additivity and right exactness to M =  N - R  
where we use (3.2) and (0: 5.1). to explicitly calculate both sides. 

Remark." For n > l  it is in general not true that 

(R. @g M) @w.r (R,, | M) = R. @g (M*n N). 

Proposition 4.7. Let MED(R), N~D-(R). Then 

(4.7. i .) (Ra | M) | (Ra | N) = R~ | (M * L N). 

Suppose first that MCD- (R). Then we may assume that M and N are free com- 
plexes and hence so is M*RN by (3.2). By (0: 5.1) R~| and R~| are free 
r Thus R~|174174174174 and R~| L 
(M.LN)=R~|  We now conclude by Lemma 4.6. In particular 
this shows that if M is an R~-acyclic module and F a free R-module then M .  R F 
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is Rl-acyclic. As R1 has finite Tor-dimension MED(R) can be assumed to have R1- 
acyclic components and N to have free components. Thus M . a N  has R~-acyclic 
components and R1QRN has (gs-free components so the argument above still works. 

Definition 4.7.1. Let M, NED(R) be such that M , ~ N  is defined. Put 

(4.7.2) M ; ~ N : =  (M*LN)  ^ (:= Rlim(R. |  

Theorem 4.8. Assume that MED(R) and NED-(R)  (or vice versa). 
i) I f  M and N are both bounded either from above, or to the left or to the right, 

then so is M * ~ N. Furthermore, 

R1 | (M ;~ N) = (R~ | M) | (R 1 @RL N). 

ii) / f  MED+(R), Ra| is bounded to the right, NEDbperf(R) and M is 
complete then M *  L NED + (R). 

iii) I f  M, NEDbperf(R) then so is M ; L N .  

Indeed, i) follows from (4.5), the fact that completions preserve boundedness in 
any direction and (4.7) combined with (2.1). To prove ii) we will need the following 
result which we record for future use: 

Lemma 4.9. i) I f  MED- (R)  and RI•L M is bounded to the left then so is 29I. 
ii) I f  MED+(R) and RI•L M is bounded to the right then so is M. 

This follows immediately from (1.1)and the fact that lim preserves boundedness 
to the right or to the left. The lemma now implies that M and N are bounded to the 
right and hence so is M . ~ N .  As RI| (M%^LN)--(RI| LM)|174 

RI| (M*R N) is bounded from below and hence (1.1) the assumptions imply that L ^L 
together with the fact that ~ preserves boundedness from below and Prop. 2.1 
show that M;~NED+(R) .  iii) now follows from ii) and i). 

5. The next step is to define the adjoint of ( - ) . R ( - ) ,  the internal Hom-functor. 

Definition 5.1. For M, NER-mod put 

(5.1.1) Hom~(M, N) := HomR ( R , M ,  N) 

HomR(ReM,  N) (and hence Hom~(M, N)) will be given the R-module structure 
induced by the right R-module structure on R~RM induced by right multiplication 
on R. 

Lemma 5.2. i) I f  X is a complex of  R-modules and Y is a complex o f  injective 
R-modules then HomR(X, Y) is acyclic i f  either of  X and Y is. RHom~ (--, --) is 
hence defined on D (R)~ + (R). 
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ii) I f  M is either R[T] or W(~[F, F-1][T] and I is a flasque R-module then 
RHom~ (M, I ) = H o m ~ ( M ,  I). 

Suppose that X is acyclic. If  Y is bounded then i) is clear as R .R( - - )  is exact 
by (3.2.3). In general Hom~ (X, Y)=! im [Hom~ (x, t<,r)}.  We thus have the 
following general situation: An inverse system of  double complexes F:" such that 
F. ~'~ is essentially constant and s ' (F:  ") is acyclic. Furthermore, as Hom~(M, N ) =  
Hom e (R,RM, N)  Hom~ (M, N)  is, by [1, V, Prop. 4.10], flasque when N is injective, 
and so F~ ,J is flasque. I claim that in this case li._n!m {s'(F: ")} is acyclic. Indeed, as li_m_m 
has finite amplitude there are two convergent spectral sequences ]kmJ {H i(s' (F: ))}=~ 
R* li~_m {s'(F: ")} and lira ~ {s'(F: ")i}::~R* lira {s'(F: ")}. The first shows that the 
second converges to zero and it only remains to show that s ' (F:  ")J is li_~_m-acyclic 
for all j .  By the assumptions it is the product of essentially constant systems with 
flasque components and (0: 4.6) gives lim-acyclicity. The case of  Y being acyclic is 
shown similarly or using that Y is actually contractible. 

By definition R Hom~(M, I ) = R  HomR(R*RM, I) and, by (3.2), if M is free 
then so is R*RM on a sheaf T', say. Hence R Hom~(M, I ) = R  [[T,I. l iT , ( - - )  is 
simply Jr,*J~,(--), J'T, : S/T,-~S, so R [ ] r '  I = / / T '  I as j~, I is flasque by [1 : V, Prop. 
4.11]. As for M=W(9[F, F-a][T] (3.3) shows that Hom~(M, N ) =  
Horn R (R| N ) = H o m w e  (M, N) for any R-module N. As R is flat (free even) 
as a W0-module R Hom~(M, I ) = R  Homwe (M, I)  and M is free as W0-module. 
We now redo the argument for R[T]. 

Remark: i) could also be proved as in [14: II, 3.1]. 

Proposition 5.3. R Hom~(-- ,  --) takes O + (R)~ - (R) to D + (R), DI(R) ~ )< 
xD+'r(R) to Dr(R) and Dr(R)~ to D~(R). 

Indeed the first statement is obvious, for the second we need to show that every 
complex bounded from below and to the right has an injective resolution with the 
same properties. Let M be an R-module such that M~=0  i>N. I claim that if I 
is its injective envelope then I~=0, i>N. In fact, ~ > N  12 is a submodule of  I whose 
intersection with M is trivial and as M ~ , . I  is an essential extension ~ />~  I t is zero. 
It is now clear that the desired resolution can be found. For the last statement we 
reduce, using (0: 1.4) as in (5.2), to the case of  the complex in the first variable being 
bounded from above. We then take a resolution as in Lemma 4.4 in the first variable 
and a canonical ftasque resolution in the second (which preserves boundedness to 
the left) and then use (5.2 ii). 

Proposition 5.4. If M, N, PE R-mod then 

(5.4.1) HomR (M+RN, P) = HomR (M, Horn~ (N, P)). 
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Proof." Consider an R-morphism (p: M-*Hom~(N, P). It gives rise to ~0': 
M| N-* P; m|176 . n). Onehas ~o" ( Vm| . n)=~o(m)(V, n)= 
~o(m)V(1.Fn)=Vqo(m)(l.Fn)=Vqo'(m| and similarly for the other rela- 
tions, qY thus induces an R-morphism (p': M.RN--*P. Conversely, given qY: 
M.RN--*P an R-morphism we obtain for m6Mq~,,: R| r| 
~o'(rm ,n)  and one verifies immediately that for variable m it gives an R-morphism 
~0: M ~HomR (R*R N, P) and that these two processes are inverses of each other. 

Remark: The existence of an internal right adjoint of ( - ) * R ( - )  follows from 
commutation with internal direct limits and the form (5.1.1) is forced upon us by 
putting M =  R in (5.4.1). 

Definition 5.5. Let M, NE R-mod. The morphism 

(5.5.1) Rn| Hom.~ (M, N) ~ Homw, e (RnQRM, R,| 

is defined to be the adjoint of  R,|174 R Hom~(M, N) ~ R,| 
Hom~(M, N)) R,| R,| where ev: M*R Hom~(M, N)-~N is the composite 
of(3.4) and the ad.ioint o f  id: Hom~(M, N)-+Hom~(M, N) and q~ is induced from 
NI| as in (4.6.1). 

Proposition 5.6. Let XED(R), Y~D-(R)  and ZED+(R) then 

(5.6.1) R Horn R (X.~ Y, Z) = R Homa (X, R Hom~ (Y, Z)) 

RHom~ ( x . ~ r ,  Z) = RHom i (X, R Hom~ (Y, Z)). 

Indeed, we may assume that Y is a free complex an d Z is injective. Note that (5.4.1) 
shows that Hom~(M, 1) is injective if M is ~-flat and I is injective. As products of 
injectives are injective Hom~ (II, Z) is an injective complex and the first part of 
(5.6.1) now follows from (5.4.1) and (0: 1). The second part follows in the same way 
replacing X by R*RX. 

Proposition 5.7. Let XED-(R),  YED+(R). The morphism (5.5.1) extends to 

(5.7.1) R,|  Y) ~ RHomw,~(R,|  , R,N~Y). 

i) I f  n = l  then (5,7.1) is an isomorphism. 
ii) Suppose that F is bijective on H*(Y) and that Hi(Y) is bounded horizontally 

for all i then (5.7.1) is an isomorphism. 

Let us first define (5.7.1). As R, has finite Tor-dimension we may assume that Y 
has R,-acyclic components. Fixing, again, an acyclic topos and a surjection onto S 
we see, as above, that s(C*(Y)) has R,-acyclic and flasque components and hence 
we may assume to begin with that Y has. Similarly, we may assume that X has free 
components. By (5.2 ii) R Hom~ (X, Y)---Hom~ (X, Y) and, by assumption, 
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R, |174  and R, N L y = R ,  QR Y. Hence, using (5.5.1), we may define 
(5.7.1) as R,|  R HomR(X, Y)-~R,| R HomR(X, r ) = R ,  QeHom.~(X, Y) 
Homw, e (R,| R,| Y) = Homw.r (R,| X, R,| L Y) ~ R  Homw, e (R, QR L X, R, 

To show i) we may assume that X is a free R-module on a sheaf T and Y is an 
R-module which is Rl-acyclic and flasque. Then RI| is flasque by Cor. 1.1.4 
and RI| is a free 0s-module by (0: 5.1). Thus, by the analogue of  Lem- 
ma 5.2, R Hom e (RI| X, R~| e (RI| Rx| We thus want to 
show that R1@~ l--IT ttqm"R(R, Y ) = / / T  Horn (RI, R~NRY). To be able to see this 
we need a description of Hom~(R, Y)=HomR(R~RR, Y). Note that H0m~(R, Y) 
has a structure of  R-bimodule, the first structure being the natural one and the second 
being induced by right multiplication on R. 

Lemlna 5.7.2. i) Let MER-mod. Every (p~Hom R (R, M ) = H o m  R (R*RR, M)  
can be uniquely written as a product 

(5.7.3) f[i>o Vimi+]][,>=o m - , F i +  f[i>o dVin,+j[],~o n-i Fid 

where Vim, mF i, dVim and mFid are the homomorphisms taking the value m on 
Fid ,  1, - ( 1  �9 Fid), F i .  1 resp. 1 �9 F i and is 0 on the other basis elements (c f  (3.2)). 
Any such product may be multiplied by 2EW and F, d and V to both the right and the 
left, where, apart from the usual relations, we also have 

(5.7.4) Fm = F(m)F, mV = VF(m), VmF = V(m) 

dm = d ( m ) + ( -  1)~r 

(E.g. V(mF 2) = VmF 2 = VmFF= V(m)F, F(mF) = FmF= F(m) F2). 
In this way (2, F, d, V) of  the first R-module structure on HomR(R, M) is given 

by left multiplication by (2, F, d, V) and the second by right multiplication by (,~, V, d, F). 
ii) I f  M is flasque and acyclic for R1 and has F injective then 

(5.7.5) R,| L Hom~(R,  M)-= Ir[,>,>oV'(R,_,|174 i 

0]-].>i>o dVi(R,,-iQR M ) ~  [][i'>o (R,,| M) F i d, 

where the tensor product is taken wrt the first structure. 

i) follows from (3.2) and the relations (3.1). As for ii) the proof is a simple cal- 
culation almost word for word as (0: 5.1) and [16: II, Thm. 1.2], the only point being 
that the assumptions together with (1.1.4) and the fact, proved in (1.1.4), that 
(V"R+dV"R) |  is flasque allow us to compute at the presheaf level. 

Let us return to the relation R~| L HT HomR(R, l z ) = / / T  H~ RI| 
As F is injective on R we may assume that apart from being flasque and R~-acyclic Y 
also has F injective. (5.7.2 i) shows that Horn R (R, Y) is the product of flasque sheaves 
and hence is flasque. The projection formula for Jr :  S/T-~S then shows that 
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RI| [IT Hom~(R, Y)=R [IT (RI@~ Hom~(R, Y)). By (5.7.2 i) Hom~(R, Y) is 
Rl-acyclic and as it is flasque, RI| Hom~ (R, Y) is flasque by (1.1.4). Thus, 
RI |  Hom~(R, Y ) = [ I T  R~| H0m~(R, Y) and we are reduced to showing that 
R1QR Hom~ (R, Y)=Homr (R1, Rz| The left hand side is described by (5.7.5) 
and (0: 5.1) shows that the right hand side has the same description and it is easy to 
see that under these identifications (5.5.1) is the identity. 

In proving ii) we may assume that Y is an R-module with F bijective and bounded 
horizontally. By filtering by ~ i  >N Y~ we may assume that Y is concentratedin a single 
degree and by shifting that this degree is 0. By truncating a resolution by modules of 
the type W(9[F, F-a][T], TCS, and d6vissage we may assume that Y is R~-acyclic 
and p is injective and by taking a canonical flasque resolution we may assume that 
Y is flasque. As in the proof of i) we reduce ourselves to showing that 
Rn@ R Hom~ (R, Y)=R Homw. ~ (R., R.| and that Homw. ~ (R., Rn| ) is 
flasque. Let us first convince ourselves that R Homw. ~ (R., R.| 
HOmw.~(R.,R.| ) and that it is flasque. By (0: 5.1) Homw.e(R.,M)= 
//.>i>0 V i Homw.r (W.-i(9, M)O[II>0 Homw. ~ (W.6, M)Fi ~) [[n>i>o dV i Homw. ~ 
(W.-i(?, M)|  Homw.,(W,,~, M)Fid where M is a W.-module and Vi(p, 
~oF i, dVi~o and ~pFid are lhe morphisms taking the value 9(1) on dV i, Fid, V i 
resp. F;. This represents Homw.o(R., --) as the composite of Homw. ~ (W._~6, - ) : s  
and a product. It is therefore clear that it suffices to show that R Homw ~o (W._iO, 
R.| R.| ) and that it is flasque. As F is bijective and 
d=0  on Y R.| Thus Homwr , R.@RY)=p"-~(Y/p 0) -= y/p.-i 
as Y is p-torsion free. Y/p"-~ is flasque because of the exact sequence 0 ~ Y  v " - '  y 
-~Y/p"-~O and flasqueness of Y. Furthermore, the exact sequence ..~W.d~ P-~ 
I4/.r v"-' W.(g p'_~ W.(q~W._~r shows that, for j > 0 ,  ExtJw ~(W._~),M)= 
p,(M)/p"-~M i f j  is odd; p"-~(M)/p~M if j is even. This shows that, for j > 0 ,  
Extw.~(W._i(9, Y/p"Y)=O. We have just described HOmw.~(R.,R.| ) as 

[i.>i>0 ViY/P"-iY@ [I,>o (Y/p"Y) F' @ H.>,>o dV~Y/pn-~Y| [Ii>o (Y/p"Y) F ~ d. 

By (5.7.5) R.| _Hom~(R, 1~) has the same description and it is easily seen that 
under these identifications (5.5.1) is, up to a sign, the identity. 

Lemma 5.8. Let M, S~R-mod. Then Hom~(M, N)=HomR(M, Hom~(R, N)), 
where the first R-module structure on Hom~(R, N) is used to compute Horn R 
(M, Hom~(R, N)) and the second to give this sheaf the structure of R-module inher- 
ent in Hom~(M, N). 

Indeed, 

Hom~ (M, U) ----- Horn. ( R .  M, N) = HOmR (M �9 R, N) = HomR (M, Hom~ (R, N)) 

and the rest of the lemma is obvious. 
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Remark: In the case where S=Spec k, k a perfect field, (5.7.3) and [8: III, 
Prop. 3.5] show that Hom~(R, W)=/~ in the terminology of [8]. The lemma then 
shows that R H o m ~ ( - ,  W)=RHoma(-, /~) .  The results of [8] then make it 
eminently reasonable that R H o m ~ ( - ,  w)  should be dualizing in the general case. 
(5.8) also enables us to compare the results of [8] and the present paper. Finally, the 
expression of R Hom~(- , /~)  as R H o m ~ ( - ,  W) could be said to throw some 
further light on [8]. 

Proposition 5.9. I f  XED(R), YED+(R) then 

(5.9.1) R H. om h (X, Y)^ = R Hom.~ ~-, I?), 

(5.9.2) R HomR (X, 17) = R Hom R (X, I7). 

Proof." Put M~:=RH.om~(R,M) for MCD+(R). Then RHom~(X,Y)= 
R HomR (X, Y!). This should be interpreted as follows: Y! is a complex of R- 
bimodules and R Horn R (X, Y") should be computed by replacing Y~ by a complex 
of bimodules whose components are injective when considered as R-modules through 
the first structure. However, as Hom~ (R, - )  has an exact left adjoint, R.R(--), Y' 
has injective components if Y has and the desired equality follows from Lemma 5.8. 
As R, has a resolution by finite free R-modules R.Q~ R HomR(X, Y!)= 
R Homa (X, R.| and by (0: 4, 9) R 1]mm (R HgmR (X, R.| Homa 
(X, R li_m_m (R.| Thus R Hom~ (X, Y) ̂  = R  HomR (X, (Y') ̂  ). The following 
lemma then finishes the proof. 

Lemma 5.9.3. Let XED(R), YCD+(R). 

i) ( r : )  ^ = (17y 

ii) R HomR (a r, 17) = R HomR (~7, 17). 

The analogue of (5.7.5) for the second structure shows that, when M is R.- 
acyciic and ftasque and has Finjective, R.| M ! = I I  i~o Vi ( R.| M) O//i>0 ( R.-i| 
M) Fi | IIi~o dVi (R.QR M) �9 1-[i > o (R._ IQRM) F i d. This analogue may either be pro- 
ved directly or by noting that (3.4) exchanges the two structures of HomR (R~RR, M). 
We thus see through (1.1.4) that R.| is li.__m_m-acyciic and R ~ (R. |  
[[i>=o Vi~| _/r174 dViM| as ~ commutes with 
products. This is, however, nothing but Hom~ (R, ~Q). On the other hand, as for 
TESRF(T, iCl)=RF(T,M) ^ (0: 5.11) and RV(T,M)=M(T)  and by Cor. 1.1.4 
R.|174 has surjective transition maps and hence is li_m_m-acyclic, 
we have RF(T,h~r F(T,M) so M is flasque and thus, by (5.2 ii), dQ!= 
Hom~ (R, aT/)=M ! ̂ . Having i) for R.-acyclic and flasque R-modules with F 
injective we easily get it for XED + (R). Incidentally, it is clear that this isomorphism 



On the multiplicative propert ies  of  the de Rham-Wit t  complex. II. 79 

is characterized by the commutativity of  

f - : _ _ .  I~., A 

(5.9.4) I x ' ' ,  l 
I~-'--- f:^ 

As for ii), by (2.1) it suffices to show that if Y is complete then X - ~ 2  induces an 
isomorphism R.HOmR(2, Y)~RHomR(X,  Y). This follows immediately from 
(0: 5.12.1) once we have verified the condition of (0: Lemma 5.12). We may as 
usual assume that X is a flasque and Rl-acyclic R-module and then we need to verify 
that a sequence {x,,} in X is equal in R,| to the constant sequence {x,}. This 
follows from (2.1.1). 

Proposition 5.10. i) I f  + MEDperf(R), NED+'t(R) and RI| then 
R Hom~ (M, N ) ^ E D -  (R). 

ii) R Hom-~ ( - ,  --) takes b op b b Dverf(R) xDverf (R) to Vverf (R). 

Indeed, (5.3) and (4.9) show that R Horn R (M, N)  and hence R Horn R (M, N)  ^ 
is bounded to the right and (2.1) and Prop. 5.7. i) show that RI| L R Horn R (M, N)  ^ 
6D-(d~) so by (1.1) R Hom"R(M,N)^ED-(R). ii) now follows from i ) and  (5.3) 
and (5.9) which shows that R Horn R ( - ,  - )  takes complete complexes to complete 
complexes. 

Definition 6.1. I f  MED(R) put 

(6.1.1) D(M) := R H o m - ~ ( g  , We) 

where W(f has the obvious R-module structure. 

The following theorem is the main result of  this chapter: 

Theorem 6.2. i) (--)*R L (--) is a coherently commutative and associative (addi- 
D b 0 -~ b tive) functor perf(R)xDperf(R) Dverf(R ). 

ii) R Hom~ ( - ,  - )  is an (additive) functor 

b op b b 
D p e r f ( R )  xDperf(R) ~ D p e r f ( a  ). 

iii) W 0 ~ ( - ) = i d  on D~rf(R). 

iv) RHo.mR(Wr R H o m ' ~ ( - - , - ) )  = RHomR(- -  , --) on 

D~or~(R)~ 
v) R H o m ' ~ ( ( - ) ~ ( - ) , - )  = R H o m ~ ( - , R H 0 m ~ ( -  , - ) )  on 

b op b op b 
D p e r f ( R )  xDperf(R) xDperf(R). 
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vi) For all finite sets I 

iEI ;~ R Hom.~ ( - ,  --) R Hom..~ " ^'- : (,~I*-(-), i ~ : ~ ( - ) )  

vii) i d = D ( D ( - ) )  

viii) RI| (--)  : Dverr(R)b ~Dbwrf(C[d]) is a conservative tensor functor. 

Remark: This shows that, in the terminology of [5 : II], D~erf(R ) admits a struc- 
ture of a rigid additive tensor category. 

i) and ii) are clear. For iii) we have W(9,~X=W(9| 
Hence W~).~X=f( but any X~D~rf(R) is complete. If X, Y,Z~D~rf(R) 

then RH om R(X *~Y , Z )=R HomR (X ?~Y ,Z )  by (5.9.2) and by (5.6.1) 
R HOrnR (X.~  Y, Z ) = R  HornR (X, R Hornk (Y, Z)).  Th sshowsthat  RHorn  k ( - ,  --) 
is an internal Horn in the sense of tensor categories, v) is now formal 

b b from this (cf. [5: II, 1.6.3]), I now claim that Rx|  Dperf(R)---,-Dperr(d)) 
preserves the adjunction units. As, by (4.8 i), it is a tensor functor; this is, however, 
purely formal. 

The rnorphisms vi) and vii) are now defined by the general theory of  tensor cate- 
gories. As R1| ( - )  preserves adjunction units and internal Horn: s, (5.7), applying 
it to the morphisms of vi) and vii) gives the corresponding rnorphisrns in o Dperf((9) 
where they clearly are isomorphisms. We now conclude by Cor. 1.1.3. that viii) is 
clear and iv) follows from (5.6.1). 

Remark: It is easy to see directly that v) is valid only under the assumption that 
the complex in the last variable be complete. One of the isornorphisms obtainable 
from vi) and vii) can also be defined directly, namely, D (X;  L Y ) =  R H orn~ (X, D (Y)) 
for X~D(R), YED-(R). 

Proposition 7.1. Let XED (R). Then R,• L D(X)=R Homw:(R, ,@ ~ X, W,,dT) 
in D (W,(9 [d]). 

This follows directly from (5.7 ii)). 

Definition 7.2. i) An R-module of level n (n=>0) is an R-module concentrated 
in degrees 0 to n with F bijective in degree n. The category of R-modules of level n 
will be denoted R-mod-n. R-mod-n is evidently an Abelian subcategory of R-rnod 
closed under kernels, cokernels, extensions and internal sums and products. 

ii) An F-crystal of  level n on S is an ungraded W(Ps-module together with a 
a-linear map F and a a-X-linear map V such that VF= FV=p". The category of  
F-crystals of level n (on S) will be denoted F-crys-n. It is clearly equal to the category 
of (ungraded) Wf)[F, V] (n)-modules where W(9[F, V] (n) is the WC-ring with gene- 
rators F and V and relations Fa=a~F, aV= Va ~, FV= VF=p" aCW~) (cf. [16: I, 
4.1]). 
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Lermna 7.3. i) I f  MER-mod-m and NER-mod-n then M,RNER-mod-(m+n) 
and Hom~ (M, N)(-m)E R-mod-(m+n). 

ii) I f  ME F-crys-m, NE F-crys-n then M| and Homw~(M, N) may be 
given structures of  F-crystals of  level m+n by F(m|174 V(mQn)= 
Vm| Vn and Ff(m)= F(f(Vm) ), Vf(m)-~ V(f(Fm) ). 

As ii) is obvious let us consider i). It is clear that every TER-mod-t is the image 
of L=R[X]| F-1][Y] where X is concentrated in degrees 0 to t - I  and Y 
is concentrated in degree t. Furthermore, as it has been noted in Lemma 4.4, 
LER-mod-t, As ( - ) * R ( - )  is right exact and commutes with internal sums and 
H o m ~ ( - ,  - )  is left exact and commutes with internal products we may assume that 
M is either R ( - i ) ,  O~i<m, or W(~[F, F-1] ( -m) .  The first case is now clear 
from (3.2.3) resp. (5.7.3). We learn from Prop. 3.3 and the proof of Lemma 5.2 
that W(D[F, F-~].R(-)=W(9[F.F-~]|162 ) resp. Hom R(W~[F, F-l], --)= 
Homwr F-l] ,  - )  which again makes everything clear. 

Lemma 7.4. i) ( - ) * R ( - )  derives to a functor D-(R-mod-m)xD(R-mod-n)u 
D (R-rood-m) xD + (R-rood-n) ~D  (R-mod-(m + n)) whose composite with D (R-mod- 
(n+m))~D(R-mod) is ( - - ) .~ ( - - )  and hence will also be denoted ( _ ) . L ( _ ) .  
Hom~ (--, --) (-- m) derives to a functor D (R-mod-m)~ + (R-rood-n) ~D (R-rood- 
(re+n)) whose composite with D(R-mod-(m+n))~D(R-mod) is R H om ~( - ,  - )  
and hence will also be denoted R H.om~(-,  - ) .  

ii) ( - ) |  derives to a functor D-(F-crys-m)xD(F-crys-n)wD(F-crys-m) 
xD-(F-crys-n)~D(F-crys-(m+n)) whose composite with D(F-crys-(m+n))~ 
D(W~)-mod) is ( - ) |162 and hence will also be denoted ( _ ) |  
Homw~ (--, --) derives to a functor D (F-crys-m) ~ xD + ( F-crys-n) ~ D (F-crys-(m + n)) 
whose composite with D(F-crys-(m+n))~V(Wr is R H o m w ~ ( - , - )  and 
hence will also be denoted R Homwo(- ,  --). 

Proof: That ( - ) * R ( - )  derives as stated is clear as, by the proof of Lemma 4.4, 
there are sufficiently many ~-flat objects in R-mod-t for all t=>0. This also makes 
the second statement concerning ( - ) * R ( - )  clear. As for Hom.~(-,  - ) ,  R-mod-n 
is evidently a Grothendieck category so it has sufficiently many injectives and 
Hom~( - ,  - )  derives as stated. We also have a natural transformation from this 
derived functor composed with D (R-mod-(m + n)) ~-D (R, mod) to R Hom~ ( - ,  - ) .  
To see that this is a natural equivalence we may, as in the proof of Prop. 5.3, assume 
that the complex in the first variable is bounded from above and then compute 
R Hom~ ( - ,  --) by taking a resolution by modules of the type R[X] | W(9 [F, F-~] [Y], 
X concentrated in degrees 0 to m - 1  and Y in degree m, in the first variable and a 
canonical flasque resolution in the second. These will be resolutions in R-mod-m 
resp. R-mod-n and thus will also compute the derived functor of Hom~ ( - ,  - ) .  
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Remark: Injective objects in R-mod-t will rarely be injective in R-rood. An in- 
jective object in R-rood-0, for instance, will be injective as R-module only when it is 
zero. 

In ii) the case of ( - ) |  is similar to that of ( - ) * R ( - )  as WO[F, VJ(n) 
is fiat as W~-module. The case of Homwr ( - ,  - )  will follow if we can show that an 
injective WO [F, V] (n)-module is injective as W0-module which is true as the forget- 
ful functor WO[F, V](n)-mod~W(9-mod has an exact left adjoint by WO-flatness 
of  WIV [F, V] (n). 

Definition 7.4. i) W.~Nw~(-)  is the functor M~-"{WO/pnW(9| proj} 
from F-crystals of  level n to inverse systems of F-crystals of level n or, as the case 
may be, the same functor from W(9-modules to inverse systems of W~-modules. 

ii) lira will denote the functor {M.}~-+|im {M.} from inverse systems of  F- 
crystals of  level n to F-crystals of  level n (or, as the case may be . . . .  ). 

iii) (--~): O(F-crys-n)~D(F-crys-n) is defined to be Rl i~m{W.~|  }. 
(Idem for (--~): D(WO-mod)~D(W(9-mod).) 

Lemma 7.6. i )There  is a canonically defined functor (Z) :  D(R-mod-n)~ 
D(R-mod-n) whose composite with D(R-mod-n)~D(R-mod) is the ( - )  of (0: 
5.9). 

ii) The canonical natural transformation ida(~-) in D(F-crys-n) induces an 
isomorphism 

(7.6. l) W. |  ) ~ W. | ). 

In particular (_~)=(L) .  
To prove i) it clearly suffices to show that if MCR-mod-n is flasque and R1- 

acyclic then 2O6R-mod-n. We already know that ~f  as a complex is concentrated in 
degree 0. It is immediately clear that M is concentrated in degrees 0 to n so it suffices 
to show that F is bijective in degree n on M. As ~r=l im {R.| this will be 
proved if we can show that F is an isomorphism of the pro-object (R.| 
This is a condition closed under cokernels, finite sums, and internal copowers. We 
may therefore assume that M=R(- i )  ONi<n or W0[/~. F - 1 ] ( - n ) .  The second 
ease is obvious as R.| F - a ] = ~ i  W.OFt In the first case we want to show 
that F is an isomorphism of  the pro-object R. ~ which is an easy calculation using 
(o: 5.1). 

ii) is proved in the same way as Prop. 2.1. 

Definition 7.7. i) W•(n) is defined to be the F-crystal of level n whose under- 
lying W~-module is W0 and which has F:~pna, V:=a -1. 
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ii) For any MEC(F-crys-m) M(n):=M| ). If 
n' =>n any F-crystal N of level n, may be regarded as an F-crystal o f  level n' with the 
new (F, V) being (F,p"'-"V). By abuse we will regard the functor thus obtained an 
inclusion and say that M is an F-crystal of level n'. 

Remark: The reason for putting the two similar functors (M, F, V ) ~  
(M,p"'-"F, V) (resp. ~--~(M, F,p'-"V)) on unequal footings is, of course, that 
F is the basic endomorphism and V should rather be regarded as putting conditions 
on F. When M is torsion free F determines V and this is literally true. 

Proposition 7.8. Let ME C(F-crys-m), NE C(F-crys-n) and QE C(F-crys-q). Put 
r=max (re+n, q+n) and s--max (m, q+n). Supposing that Q is torsion free we 
have an isomorphism in C(S-ab) 

(7.8.1) Hom'v.crys.r(M| Q(n)) -- Hom.~-.crys.s(M , Hombre(N, Q)). 

We clearly have Hom'wr174 Q)=Homw~(M, Hqmw~(N, Q)) and it 
only remains to show, assuming that M, N and Q are concentrated in degree 0, that 
~o: M| ) is a morphism in F-crys-r iffits adjoint ~o': M~Homwo(N , Q) 
is a morphism in F-crys-s. As Q is torsion free and FV=some power of p it suffices 
to check this condition for F. We have ~o'oF(m)(n)=qg(Fm| and Fo~o'(m)(n)= 
Fq~(m| whereas 9oF(m|174 and Fo~o(m|174 
Assume now that Fo~p =q~o F. This implies by torsion freeness of Q: 

q~(Fm| FVn) -- p"Fcp(m| Vn) =; p"~o(Fm| -=-p"Fq~(m| Vn) ~ cp( Fm| -=- 

F(p(mQ Vn) ::. q~'o F(m)(n) = FoqY (m)(n). 

Conversely, if Fo~o'~qr then (q~oF)(m|174174 
p"F(p(m| Foq~)(m~n). 

The moral of (7.8) is that although it does not show that F-crys-r-mor- 
phisms M| corresponds bijectively to F-crys-s-morphisms M-~ 
R Homw~ (N, Q) it does so for all practical purposes. Let us illustrate this by show- 
ing how to define the evaluation morphism ev: M| o R Homw~ (M, N)~N(m) 
ME D- (F-crys-m), NE D + (F-crys-n) as a morphism in D (F-crys-(2m + n)). We may 
replace M by a complex of free W(9[F, V](m)-modules which is, afortiori, WrY-free 
and N by a torsion free flasque complex. Thus M| R Hom..wr (214, N ) =  
M| Homwo (M, N) and R Homwo (M, N)~Homw~ (M, N). As N is torsion 
free we may apply the proposition and define ev as the adjoint of the identity. 
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Defini t ion  7.9. i) Let M be an R-module of  level n. Let M denote M considered 
as a complex of F-crystals of  level n where F and V are defined as follows (cf. [19]): 

M 0  d_ , M 1  d_s M 2 d . . . .  M " - I ~  M "  

M0 d_K_+ M 1 a , M~ d_2_,. . .M,_l d ~ M ~ 

M~ d--q-~ M1-2-d * M 2 . . . .  M ~ - I  a--2-~ M"  

M0 d.._.q_+ M1 e , M2__~d . . . .  M " - I  ~---q--* M". 

(The relations dF=pFd, Vd=dpV show that F and V are morphisms of complexes 
and VF= FV=p that  we get complexes in F-crys-n.) 

If  M is a complex of R-modules of  level n let s (M)  denote the associated simple 
complex regarded as a complex of  F-crystals o f  level n. s ( - )  certainly preserves 
quasi-isomorphisms and hence defines a functor s: D(R-mod-n)~D(F-crys-n). 
We define similarly s: D(Wn(9[d]-mod)-~D(W~(9-mod) and s: D ( R - m o d ) ~  
D(W0-mod) .  

Propos i t ion  7 .10.  i) Let MCD(R-mod-m) then 

(7.10.1) W~/p ~ WO | S (M) = s (R, | M). 
A 

it) s(3~r) = s(M).  

Proof: First assume i) and let us prove it). As usual we may assume that M has 
R, -- ,  W. r - and sgen-acyclic components. Then s (M) has W. O-acyclic components 
and, using i), s (31)=s( l im ( R . |  (s(R.| (W.t~| 

s(M).  Note lhat only finite sums are in this case involved in s ( - )  so s ( - )  and 
do commute.  
Let us now prove i). As p'R,=O we have a mapping R/p"R~Rn of  right R- 

modules. Furthermore,  as R is torsion free R/p"R| n, M), the mapping 

cone of  p" on MCD(R). We thus have a morphism W~)/pnW~)| 
C(p n, s(M))=s(C(p", M))=s(R/p~RQLM)-+s(R~| and to show that this 
is an isomorphism we must show that R/p~RQLM-+R~QLM induces an isomor- 
phism on the associated simple complex. By (0: 1.3) we may assume that M is 
bounded f rom above and by taking a free resolution (which means that we leave 
R-mod-10 we may assume that that M is a free R-module. As the problem commutes 
with internal sums we may finally assume that M=R and we are thus reduced to 
showing that s(R/pnR)~s(R,) is a quasi-isomorphism which is a simple calculation 
using (0: 5.1) (cf. [15: I, 3.17.2]). 
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Definition 7,11, MED(F-crys-n) is said to be perfect if ~| 
and M~3,1 is an isomorphism. The triangulated subcategory of D(F-crys-n) con- 
sisting of perfect complexes will be denoted Dp~rr(F-crys-n). 

Remark: The exact sequences O-+W(g/p~W(9/p"+a~W/p"-~O show that if M 
is perfect then W.C| is bounded and hence M:Rlim(W.(9|  ) is. 
Therefore Dp~rr( F-crys-n) C=Db ( F-crys-n). 

Theorem 7.12. a) s(--) maps D~rf(R-mod-n ) to Dperr(F-crys-n ). b) For 
M~ Dbperf(R-mod'n), N~ D~erf(R-mod-n ) s ( M ~  N) =s(M) ~ r  where 
( - ) 6 ~ A - ) : = ( ( - ) |  ^ and s(RHom~(M,N)(-m))=RHomw~(s(M), 
s(N)) in D(F-crys-(m+n)). 

Indeed, a) follows from Prop. 7.10. By the definition of ( - ) * R ( - )  we have a 
morphism ( - ) | 1 6 2  and this gives 

C r.12.1) s ( - ) |  = s ( ( - ) |  ~ s ( ( - ) * R ( - ) )  

and therefore a morphism s(M)| ) ~ s (M,~ N) which clearly will be a 
morphism in D(F-crys-(m+n)). Applying W(P/pW(9|162 ) to cp and using (7.10) 
and (4.7) give s(R~| M)|174 LN)~s((R~@ LM)|174 N)) which clearly 
is an isomorphism. The exact sequences O-,-W(g/p~W(g/p'+~-~W(P/p"--,-O show 
that W.d~| ) gives an isomorphism and thus applying R li.Lmm(-)s(M)6~v 
s ( N ) = s ( M , ~  N) ^ = s ( M ~  N), the last step by (7.10 ii)). A morphism 

(7.12.2) s(R Hom~ (M, N)(m)) ~ R Horn w (s(M), s(N)) 

is defined, using (7.8), as the "adjoint" of s(--) applied to the evaluation mapping 
M ~  RHom~(M,N)(m)~N(m)  composed with s(M)~vs(RHom~ (M,N)(m)) 
=s(M~R L R Hom~ (M, N)(m)). W(Y/p| applied to (7.12.2) gives by (7.10) 
and (5.7) an isomorphism and (7.12,2) therefore becomes an isomorphism after comple- 
tion. By (5.9), a) and the analogue of (5.9) for R Homwr ( - ,  - )  both sides are already 
complete and (7.12.2) is an isomorphism. 

Remark," The interested reader will easily find analogues of(6,2) for ( - ) ~ v ( - )  
and R Homwe( - ,  - ) .  

8. Later we will need the following result. 

Lemma 8.1. Let (R.| v, M~D(R), denote the complex of prosystems 
{Cone (R,+~@~M F-~ R,|  and (R/p'| v the complex of prosystems 
{Cone (R/p"+~| M ~ R/p"+~| L M)}, The projection (R/p'| M) v-~ (R,@ L M) ~ 
is an isomorphism in D(pro-S-ab), 

Indeed, we reduce first to M being a free R-module and then, as the problem is 
stable under internal copowers, we may assume that M is R. Note also that in 
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D(pro-S-ab) (R/p'|174 v-1 R/p"| As F and 1 
are of degree 0 we may consider the degrees separately. In degree 0 R~176 
and R~176 is surjective. Hence we need to prove that F - 1  is a proisomorphism 
on K e r : = K e r  (R~176 As V is injective on R and VF=p this system is 
isomorphic to { . . . .  RO[F,+I v RO/F,~. ..}. F - l :  Ker,+l-+Ker,  lifts to F - l :  
K e r , + l ~ K e r , + l  and the two cones are proisomorphic so it suffices to consider the 
last morphism, but F is nilpotent on R~ "+~ and thus F -  1 is an isomorphism. In 
degree 1 it is dear  that F - 1  is injective on R/p" and hence on Ker (R/p.~R.). 
On the other hand it is easily seen from (0: 5.1) that WCdV"--,R induces a surjection 
W,6dV"~(Ker(R/p'~R.)I/F-1), and thus that Ker(R/p'~R.)I/F--1 is the 
zero system. 

9. Let me finally say a few words on functoriality. I f  f :  (S, 6s)~(S', ~s') is 
a morphism of ringed topoi where both 6s and 6s, are perfect rings of characteristic 
p and both S and S '  are of finite cohomological dimension we have functors L f*: 
D-(W, Os,)~D-(W,6s) (resp. D-(Rs,)~D-(Rs)). It is further clear that 
Lf*(R,| L ( - ) ) = R , |  L (L f*(--)) and 

Lf*(( - - ) .L(- - ) )  = Lf*(-),LLf*(-).  If  we put Lf*(-) := (Lf*(--))* 

this shows that Lf* takes D~r to D~r once it is known that L f* preserves 
boundedness to the right (cf. (4.9)). This is clear because it is easily seen that Rs-- 
WOs| , which implies that W~)s,-flat Rs,-modules are f*-acyclic 
which in turn implies that W(~s,[F, F-1][X] is f*-acyclic and we conclude by (4.4). 
(This also shows that L f* preserves D-(R-mod-n)). We get furthermore morphisms 

r f*(- )  ,L Lf*(--) = Lf*((-- ) *~ (--)) 

1 1 
Lf*(--)*LL]*( - ) L f * ( ( - )  ;~(--))  

Applying R~| L (--) gives us nothing but isomorphisms and we thus get isomorphisms 
after completing. Hence Lf*(--).L Lf*(-)----Lf*((-)*L (_) ) .  This shows that 
Lf* is a tensor functor between rigid tensor categories and [5 : II, Prop. 1.9] shows 
that Lf*(R Hom~ ( - ,  --))---R Hom R (Lf*(-), Lf*(-)). 
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II. The Kiinneth and duality formulas 

0. In this chapter S will be a perfect scheme whose underlying topological space 
is locally Noetherian of finite Krull-dimension and hence, by [12: Thin. 3.6.5], its 
Zariski-topos will be of finite cohomological dimension. 

Lemma 0.1. a) Let MED(R) be bounded in one direction and suppose that 
Rl| MEOqc(es). Then R,| MED~c(W, Os). for all n. 

b) Suppose that ME D(R) is bounded to the left or from above, that 
Hi(RI| for i>N and RI| Then Hi()~r for i>N. 

Proof." Let A be the category of Wd~s-modules killed by some power of p, p', 
and quasi-coherent as W,d~s-modules. Then A fulfills the condition of (I: Prop. 
1.1) and a) follows immediately from this. As for b) it follows from (I: Prop. 1.1) 
that H~(R,|174 for i>N and that H](R,| is quasi- 
coherent for all j. Thus li__m_m * (H*(R.Q~M))=O for i>1 by (0: 4.6). Furthermore, 
as HN+I(gr"| the transition maps HN(Rn+~|174 are 
surjective, which together with quasi-coherence and [6: Thin. 1.3.1] implies that 
1A.m_m ~ (HN(R.| M))--0. b) now follows from the spectral sequence 

|ira' (HJ(R. | M)) =* H'+ J(iQ). 

Theorem 1.1. i) Let X ~+ S, Y o_§ S be schemes smooth over S and suppose 
that either Rf,  Wf2"xl s or Rg, WOx/s is bounded from above. Then 

(1.2.1) Rf, Wf2"x/s~*L Rg,Wf2x/s = R(fxsg),Wf2x~sr/S. 

ii) Let X L S be smooth and proper of relative dimension N. Then Rf,  WOxlsE 
E D~e~f(R-mod-N) and 

(1.2.2) D(Rf .WI2x/s)[-- NI(-- N ) = Rf  .Wf2"x/s. 

Indeed, let us first define (1.2.1). The relations (0: 7.1) show that for open U ~  X, 
Vc=y multiplication in Wf2"vX~v/s induces a mapping WOxIs(U).RWf2"rls(V)~ 
Wf2x~r/s(UxsV). Hence, taking affine hypercoverings U" and V" of X resp. Y 
and an affine refinement W" of U'xsV" we get V(U', Wf2"xls)*RV(V', Wf2"r/s)~ 
V(W', Wf2x~r/s). Using that V(U', WI2"x/s)=RV(X, Wt2"xl s) etc. and sheafi- 
fying we get Rf,  Wf2xls, R Rg, WO'rls~R(fxsg),Wf2"x~r/s . Deriving and com- 
pleting and using (of. (0: 5.11)) that R(fxsg),Wf2"xxsr/s is complete we obtain 
(1.2.1). As the two complexes involved are complete and bounded to the left to 
show that (1.2.1) is an isomorphism it suffices to show that RI| (1.2.1) is an isomor- 
phism. Using (0: 7.2) and (I: (4.7)) we conclude by the usual Ktinneth formula for 
the Hodge-cohomology. As for ii) the hypercovering argument shows that R f ,  Wf2"XlSE 
ED(R-mod-N) and RI| Rf,  Wf2"x,s=Rf, f2"x/s, which is perfect by [17: 2.5]. We 
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also get from [6: Cor. 4.2.2] and a limit argument that Rif, f~'x/s=O if i>N 
and deafly Rif,12"x/s is quasi-coherent. By Lemma 0.1 R*f, Wf2"xfs:O, i>N. The 
spectral sequence R~f, WO{/s=~Hi+J(s(Rf,(WO'xls)))=R~+Jf,(W/WOs) shows that 

2 N  _ _  N N N N - - 1  R f,(X/W•s)--R f ,  Wl2x/s/dR f ,  WOx/s . From [II: VI, Prop. 1.6] we get a mor- 
phism R2Nf,(X/Wd~s)~W(gs and hence a morphism of R-modules of level N Tr: 
RNf, WO'xls-~W(gs(-N). As R~f, WI2"xls=O if i>N we obtain a morphism in 
D (R-rood-N) 

(1.2.3) Tr: Rf, Wax/s ~ We~(-N)[-N]. 
�9 ^ L  ~ ~ . From (1.2.1) we get the internal product Rf,  Wt2xls,RRf, Wf2x/s Rf ,  Wf2x/s 

and composing with Tr we get the pairing 

(1.Z4) Rf  , Wf2"x /s (~ R f  , Wff  x /s -+ Ws (-- N) [-- N]. 

Taking the adjoint gives us (1.2.2). As all complexes involved are bounded in all direc- 
tions and complete, to show that (1.2.2) is an isomorphism it suffices to show that 
R~| (1.2.2) is. By (0: 7.2) and (I: 5.7) this is simply the duality morphism for Hodge 
cohomology which is proved to be an isomorphism in [17: 2.5]. 

Corollary 1.2.5. Let f and g be affine. Then f , W ~ x / s ,  R "  ̂L g, Wt2r/s. _- 
(fXsg), W f2"XXsYiS. 

Remark: It is clear that (1.2) admits many variants. One could for instance throw 
in finite groups acting o n f a n d  g and (1.2.1) resp. (1.2.2) would then be equivariant. 
One could also replace Wf2"x/s and Wf2"r/s by Wf2xfs| resp. WO'rls| 
where E and F are unit root crystals (cs [7]). 

III. Consequences and some calculations 

0. In this chapter, unless otherwise mentioned, S will be the spectrum of a per- 
fect field and X and Y will be smooth and proper S-schemes. 

1. We will now convince ourselves that the results of [16: I--II] remain valid in a 
slightly more general context. 

Proposition 1.1. i) Let M~D-(R).  Then MED~(R) iff Hi(M) is a coherent 
R-module for all i. 

ii) Let MED~(R). In the spectral sequence 

E{. i = Hi(M)J =, Hi+J(s(M))B~J c= F=BHJ(M) ~ V-~ZHJ(M),  C= Z~J 

("survie du coeur"). 
iii) Let M6D-(W) .  Then M~D~erf(W ) iff Hi(M) is a finitely generated W- 

module for all i, 
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The proof of i) and ii) is, up to a change of  notation, the same as the proof  of [16: 
II, Thin. 2.2, Thin. 3.4]. I will do this change for i) and leave it to the reader in the 
case of  ii). (For a different proof  of  ii) see [9].) From [16: I, Cors, 3.6-7] it follows that 
a coherent R-module is in Dc(R ) considered as a complex concentrated in degree 0. 
As Dc(R) is a triangulated subcategory of D(R) we get one implication and for the 
other we may assume that H i ( M ) = 0  for i>r and that we want to show that 
Hr(M) is coherent. By assumption Hi(R,| is of  finite length and hence 
H~(M)=] im (H'(R.| (I: (1.1)) then shows that Hr(M) is bounded hori- 
zontally. The spectral sequences 

(1.1.1) TorR_i(R,, Hi(M)) =~ Hi+ J(R, | M) 

show that R.|174 and hence that H'(M)=ISm_m(R.| 
and R,| is of  finite length for all n. In the terminology of [16] this says that 
Hr(M) is a profinite R-module. (1.1.1) shows that Tor~(R,,  H~(M)) is of  finite 
length and in [16: I, Thm. 3.8] it is shown that a profinite module N, bounded in 
degrees, with Torf(R1, N)  of  finite length is coherent, iii) is well known and may be 
proved in a way similar to i). 

Proposition 1.2. i) I f  M, NC Db~(R) and Fisbijective on H*(M), then M*~ N= 
L M| 

ii) I f  NEDbperf(F-crys-n), mCDbperr(F-crys-n), then MQwN=MQwN.̂L L 
To see i) note first that by (I: 3.3, 4.2) L L M.RN=M| so it only remains to 

show that M.~ N=M| is complete. Clearly if P is an R-module with d = 0  
and F bijective and Q is any R-module then R,|174 QRQ), 
Taking �9 -flat resolutions in both variables we get R.| (M| X) =M|174 X) 
for XCD-(R). This shows that the question of  completeness only depends on the 
structure of H* (M) as W-module. It is clear, however, that H ~ (M) is finitely generated 
as W-module (cf. [16: II: Cor. 3.8]). By ddvissage we are thus reduced to M=W 
where it is obvious, ii) is shown similarly. 

Let ~(Sperf, 0S o~,) be the ringed topos of sheaves on the 6tale site of  perfect 
S-schemes ringed by the structure sheaf and let f :  (Spo~r, 0s o~)-~(S, ~s) be the 
natural projection. ~. L . P. b ~ b Put ( - )  .-- (R.| Lf ( - ) ) .  D (pro-S or0 (cf. 
(I: 9.1) and [16: IV, 3.6.3]). 

Lemma 1.3. i) (_)F  has amplitude [0, 0]. 
ii) I f  MC D~(R) then H* (M r) is a pro-quasi-algebraic group of finite type whose 

connected part is essentially constant. 

Indeed, by [16: I: Cors. 3.6-7], R.|174 in D(pro-S)  if M is a co- 
herent R-module and by [16: IV, 3.8, 3.10] F - 1  is surjective, in pro-S, on 
f.*(R.| As f and hence f.  is flat we get M r =  (Lf.*(R.| F - l :  
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f . * (R . |  v in the terminology of [16: IV, 3.6.3). i) is now clear and ii) fol- 
lows from [16: IV, 3.11]. 

Lernma 1.4. Let k~=k ' be an inclusion o f  perfect fields and f:  S ' ~ S  the cor- 
responding morphism o f  schemes. Lf*: b b D c(Rs)~Dc(Rs, ) is a conservative functor o f  
amplitude [0, 0]. 

We have Lf*-=R lira (Lf.*(R.| L ( - ) ) )  and R.| L ( - )  has amplitude [0, 0] 
on Dbc(R) by [16: I, Cors. 3.6--7], f .  is flat a s f i s  and R lira has amplitude [0, 0] on 
systems whose cohomology has components of  finite length. This shows that Lf* 
has amplitude [0, 0] and it is conservative as Lf*: D(Os)~D(~s,) is (cf. (I: 1.1.3)). 

Lemma 1.5. The following sequences are exact for S a perfect scheme: 

(1.5.1) 0 -'~ h r i -VS~ R ~ Ej/ i+ j ~ O, i > 0 

(1.5.2) 0 --" h (v,-~) [{|  v+v h ~ k -~ 0 

(1.5.3) 0 -- R(--1) -~v,'-av) , /~(--1)| Fa+r.  k ~ Uo ~ 0 

where F i -  V j etc. denote multiplication to the right. 

Indeed, (1.2.1) is well known in degree 0 so it suffices to show that F i -  V j 
is bijective in degree 1. It follows from (0: 5.1) that Vis bijective in degree 1 and that 
F i is topologically nilpotent. Hence F i -  VJ= V i ( V - J F i - 1 )  is bijective. (1.5.2) 
is the simple complex associated to 

k Z - k  

R-L. R. 
It therefore suffices to show that F is bijective on v k ,  injective on RIV and that 
k/(F,  V)=k.  However, V is injective on k and bijective in degree 1 and it suffices 
thus to show that F is injective on (R/V) ~ and (k/(F, V))~ This is clear from 
(0: 5.1). It follows from(0:  5.1) that Uo=~/(Fd, F). Exactness at the other places 
is shown exactly as [16: I, 3.2]. (Indeed, the isomorphism R ~ R  ~ taking (F, d, V) 
to (/I, d, F) transforms (1.5.3) to the completed version of (0: 5.4.9).) 

I f M  is complete (I: 5.9.3 ii) shows that R Hom• (/~, M ) =  R Horn R (R, M ) = M  
and hence 

Corollary 1.5.4. Let MED~(R). 

i) R H o m  R ( E : / , + j , M ) = s ( 0 ~ M  P,-v~ M ~ O )  i > O ,  

ii) R Horn R (k, M)  = st0 ~ M ( v , - r )  M O  M F+v, M ~0),  

iii) R Home (U0, M)  = R~ | M[-- 2] (1). 
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Proposition 1.6. The functor D ( - ) :  D~(R)~ ) coincides with the one 
of  [8]. 

This follows from the remark following (I: 5.8). 

2. Recall that X is said to be ordinary if F is bijective on R* F-(W~2x) and that X 
is said to be Hodge---Witt if R* [- (Ws is finitely generated as W-module (cf. [16: 
IV, 4.6, 4.12]). Note that an ordinary variety is Hodge--Witt.  

Proposition 2.1. i) If  X is ordinary then 

R 7(W~'~r) = R r(W~'x) | r(wa'~). 

ii) (c f  [16: IV, 4.14]) i f  x and Y are ordinary then so is X X Y .  
iii) I f  X is ordinary and Y is Hodge--Witt then X X Y  is Hodge--Witt. 

Indeed, i) follows from (II: Thin. 1.1) and (1.2 i) and ii) and iii) follow from i). 

Remark: We will see later that iii) is the only case where X •  Y is Hodge~Wit t .  

Corollary 2.1.2. I f  X is ordinary there is a canonical, (non-canonically) spot, 
short exact sequence 

(1.2.2) 0-~ @ RJlF(Wf2"x)| RJF(Wf2"x• 
J~Ji+Jz 

-- @ Tor~ (R J, r(Wf2x), R4 r(Wf2})) -+ 0. 
J+l=Jl+J 2 

3. Definition 3.1. For  M, NED-(R)  put 

(3.1.1) Kiin~ (M, N ) : =  H - ' ( M ~ N ) .  

Proposition 3.2. i) I f  M, N are coherent R-modules then Kiin~(M, N) is a cohe- 
rent R-module for every i and 0 i f  i<0 .  

ii) For M, N<Dbc(R) there is a spectral sequence o f  R-modules 

(3.2.1) E~ ,j = @ KfinR_,(HJl(M), H4(N))  =~Kiin~+j(M, N). 
J=Jl+J~ 

iii) There is a spectral sequence o f  R-modules 

(3.2.2) �9 KfinR-i(RJ*y(WO'x), Ri'[-(Wf2"r))=:*Ri+Jv(WOx• 
J=Jl+J2 

Indeed, the first part of i )  follows from (I: Thin. 6.2) and Prop. 1.1. The second 
part will follow from the proof of ii) and iii) follows from (II: 1.1) and ii). Let us 
therefore prove ii). If  F, and F2 are free R-modules then F**RF 2 is also free by (I: 
3.2). Hence R.|174 and as R.| has surjective 
transition maps for any R-module M (F~%F2)^=l im (R.| Thus 
F,g~ F2=Kiino R (/:1, F~). This shows that Mg~ N may be computed by taking free 



92 Torsten Ekedahl 

resolutions F" and G" of M resp. N and then taking the simple complex associated 
to the double complex whose components are the Kiin0 g (F ~, G J). ii) now follows 
from [4: XVII, 2]. 

Remark: Even though ( - ) . R ( - )  is, Ktin0 R ( - ,  - )  no doubt is not, in the ter- 
minology of [4: V, 8], left balanced as a bifunctor on R-modules. 

4. We will now attempt to compute Kiln. a (M, N) for some coherent R-modules 
M and N. To do this we will on the one hand use the spectral sequence which follows 
from (I: 7.12 b) and (1.2 ii) 

(4.1) KiinR-f( M, N) j -c J)( s(N)) =~TorW i+" s(M), 

and on the other hand that we can compute D(M.LN)  and (M;LN) F. Namely, by 
(I: Thin. 6.2) we get 
(4.2) D (M 7r N) = D (M) ;LD (N) 

and if f :  Sp~rr-~S is the natural projection we get from (I: 6.2, 9.1, 10) and Cor. 
1.5.4 i): 

(M~ LR N) ~ = Cone ( F - l ,  Z/p" | Lf*(M ~ ~ N) ) = Z/p'| R Hom• 

Zip | R HomR (WOspor ? R Hom~ (Lf*D (M)), Lf*N) =- �9 L (Lf*D (M), Lf*U). 

We will compute the last term using Cor. 1.5.4. In fact, I will only compute the geo- 
metric points i.e. I will assume that k is algebraically closed and compute Ext~ 
(D(M), N) and then identify the pro-quasi-algebraic group. With some abuse of 
language we may then write 

(4.3) KtinR_, (M, N) v = Ext~(D (M), N) 

using that ( - ) v  is, by Lemma 1.3 i), exact and hence Hi(PV)=H*(P) v for PCD~(R). 
I leave to the reader the task of making the computations in Sperf and hence justify- 
ing my alleged identifications. 

Recall (cf. [16: IV, 3.11]) that a shifted domino in degree i and i+1 gives rise, 
through (-)F,  to a connected quasi-algebraic group in degree i+  1 whose dimension is 
equal to the dimension of the domino, that semi-simple torsion gives rise to finite 
quasi-algebraic groups whose (graded) rank as such is equal to the (graded) length 
of the module, that slope zero gives rise to finite type torsion free 6tale pro-quasi- 
algebraic groups whose rank as such equals the W-rank of the module and that all 
other parts of coherent R-modules give rise to the zero pro-quasi-algebraic group. 

Let now E and Fbe  coherent R-modules of positive slope (cf. (0: 8)) concent- 
rated in degree 0. By (0: 9.1) D(E)=E v[-1] (1), D(F)=F ~ [ -1 ]  (1) (E v := 
Homw (E, W), F v :=Homw(F, W)). Hence, using (4.2), D(E~ L F ) =  
E * ;~ F ~ [ -2 ]  (2). This implies, by (0: 9.1), that Kiin~(E, F)=0 ,  i>2,  as the 
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different parts would be dual to parts in Ki inf (E v, F v) for negative j :  s which are 
zero by (3.2 i). By the same reasoning Kiing(E, F) consists solely of slope 0 and 
Kiinf(E, F) is of finite type as W-module (cf. [8: Rein. foil. IV, 3.5.1]). 

We know from (3: 7.4) that Kfing. (E, F) is of level 2 and hence that it is zero in 
degrees >2  and < 0  and that Fis  bijective in degree 2. Furthermore, s(E)| ) = 
E| which is an F-crystal of slopes <2.  This implies by (4.1), "survie du coeur" 
and what has already been proved that Kiing(E, F ) = 0 ,  Kfin~ (E, F) is 0 except in 
degree 1 and Kiinf  (E, F)I~=E| Kiln0 R (E, F) is 0 except in degree 0 and 1 and 
Kiln0 R (E, F ) l=dKi in0  R (E, F) ~ In particular, Kfinf (E, F) is torsion free being a 
subgroup of  ENw F. 

Let us now further assume that E=F=EI/2. We have (E1/~;~E1/2)v= 
R H o m g  (D(E1/2), E~/2)=RHOmR(E~/2, E1/2) [1] ( -1 ) .  (1.5.4 i) shows that 

~ p e r f  HomR (E1/2, Ex/2)=W(Fp,) �9 1 | and Ext~ (E~/2, E~/2)=W �9 1/pW. 1 ~G a . 
This shows that Kiln0 R (Ez/g, EI/~) contains a one-dimensional domino and no semi- 
simple torsion. As E1/~| is of slope 1, (4.1) shows that Kiin0 R (Ell2, Ell2) 
is torsion and Kfinf (El/z, E~/2) ~ is of slope zero, of rank 4 as E1/~NwE~/2 is. 
I now claim that Ki),nRo(E~/2, EI/2)~ Indeed, from (I: 6.2 viii) we get for 
M, NEDbc(R): 

(4.4) TorR_, (R~, KfinR_j (M, N)) ==~ @ TorR_2~ (R1, M)| (R1, N). 
i + j = J l + j  ~ 

Note that this is a spectral sequence of k[d]-modules. In particular, Kiino a 
(El/z, E1/2)~ Toro R (R1, Kfino R (E1/2, El/z)) ~ = g R = Toro (R1, E~/~)| Toro (R~, E1/2) = 
E~/dV| EI/JV-~k. As Kfino g (E~/2, E~/2)/V-tors is V-torsion free dimk Ktino R 
(E~/~, E~/2)~ V-tors/V+dimk Ktino R (E~/2, E1/~)~ but the domino 
part contributes 1 to the last term so V-tors/V and hence V-tots itself is zero. There- 
fore Kiino R (EI/~, Ez/~) is a 1-dimensional domino and by (0: 8) isomorphic to U~ 
for some i. As it has already been observed d is surjective in degree 1 which shows 

that i ~ 0 .  Clearly E~176 (Kiino R (E~/~, Ex/2) ~ ~-~ Ktino R (E~/~, E1/2)) in the spec- 
�9 " R 0 tral sequence (4.1) and it also clearly equals Im (E~2| (E1/~, E~/2) ). 

We have a morphism of spectral sequences from (4.1) to 

(4.5) r R (k, s (M) | S (N)) To _ ~ (R~ L j W , M*RN) ::*Tor_(~+i) 

and hence E~/~| ~-~ Kiln0 R (E1/~, E~/2) is a factor of E~/2| 
R~|174174 and so is non-zero. On the other hand, q~ factors 
through EI/a.~Ez/~ and .. R Ea/~*REI/~Kun o (E~/~,Ea/~) is an R-morphism. As 
FE~/z= VEa/z we get Im ( VEa/2.gE1/~)~ Vim (E~/2.R FE1/z) ~ Vim (E~/~.RVE~/z)~ 
V 2 Im (FE~/~,RE~/z) ~ . . . .  ~ ,  V" Kiin0 R (Exit, E~/z) ~ which is 0 as Kiin0 R (El/z, E~/~) 
being a coherent R-module is separated in the V-topology. Thus Im (VEx/~| 
and similarly Im(E~/2| is 0 and 9 factors through Ex/2/V| 
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and we see that the k-dimension of  Im q~ and therefore of Ker: Kiino R (E1/2~ E1/2) ~ 
Kiino R (E1/2, E1/~) is exactly 1. This shows that i =  1 and in conclusion: 

Kiin0 R (E1/2, E~/2) --~ U1 

(4.6) Kiln R (Ell2, E~/~) --~ W~( - 1) 

Kiin~ (El~2, E1/2) = O, i r O, 1. 

Remark: If E is a supersingular elliptic curve RV(Wf2"E)-~W|174 
W [ - 1 ] ( - 1 )  and RV(WY2"~x~)-~W|174174 
[--2] and (4.6) gives a computation of  the Hodge-Witt  cohomology of E X E .  Of 
course, the same argument applied directly to the Hodge-Witt  cohomology of E •  
gives the result without using the Kiinneth-formula, the last argument being replaced 
by considerations of  the cup-product. HI(W~)),RHI(WO)~H~(W~9).  The same 
type of considerations applied to a super-singular Abelian twofold not the product 
of  elliptic curves show that in that case R 2 V (Wf2")-~ U~ | W ( - 2 )  thus giving a 
direct proof  of [15 : II, 7. 1 b)]. 

5, Let us now consider Uo;LUo . Note first that by [16: I, 3.7] and (1.5.4 iii) 
we have 

Rl| (k% k(-1)) 
(5.1) Tor~ (R1, Uo) = 0 

Tor~ (R~, Uo) ~ (k ( -  1) ~ k ( -  2)), 

HomR (Uo, Uo) - ~  k �9 k ( -  1) 

(5.2) Ext~ (Uo, U0) = 0 

Ext] (V0, V0)-  k (1) ,  k. 

Finally, as s(U0)=0 (4.1) converges in this case to 0. 
By (0: 9.1) D (U0) ---- U0 [ -- 2] (2) which implies that D (U0 ~,L Uo) = 

Uo;LU0[-4](4) .  By "survie du coeur" there is no heart and by (5.2) and (4.3) 
we have one 1-dimensional domino and one shift one step to the right of one in 
Kiln0 R (U0, Uo), the shift one step to the right plus the shift two steps to the right 
of 1-dimensional dominoes in Kiin~ (U0, U0) and the rest of the Kiin~: s are zero. 
(4.1) then shows that Hi(KiinoR(Uo, U0), d ) = 0  if i~0 .  The long exact sequence 
of  cohomology associated to the short exact sequence of  complexes: 

0 ~ (dom ~ Kfing (Vo, Uo), d) -~ (Kfing (Vo, Uo), d) 

(dom ~ Kfino R (Uo, Uo)( -  1), d) -~ 0 

shows that H*(dom~KiinoR(Uo, Uo) ,d )=0  and as doml KfinoR(Uo, Uo) is a 1-di- 
mensional domino it is necessarily isomorphic to U o. On the other hand, 



On the multiplicative properties of the de Rham-Witt complex. II. 95 

dom ~ KiinoR(Uo, Uo) is isomorphic to U i for some i and the long exact sequence 
from above shows that i~0 .  I f  i > 0  then d: RI| R KfinoR(Uo, Uo)~247174 Kiino R 
(Uo, Uo) 1 is 0 but (5.1) and (4.4) show that it is not. Therefore i = 0  and 
Kiin R (Uo, Uo) is an extension of Uo by Uo(-1) .  (5.2) shows that such an extension 
is trivial so KiinoR(uo, Uo)-~Uo@Uo(-1). By duality and using (0:9.1) we get 

Kfino R (Uo, Uo) ~-~ Uo @U0 ( -  1) 

(5.3) Kiin~ (Uo, U o ) ~  Uo( -1 ) |  

Kiin~ (Uo, Uo) = 0 i # 0, 2. 

Considering U o ~  E where E is of positive slope concentrated in degree 0 we 
see, as R~| Tor~(R1, E)=E/FE(-1) and Tor~(R1, E ) = 0 ,  that 
Kfino R (Uo, E) consists of a dimkE/VE-dimensional domino killed by p. If  one admits, 
which is not hard to show (cf. [10]), that every domino killed byp is a direct sum of 
U~: s an argument similar to the one above shows that 

Kiino R (U o, E) -- '~ udo imkE/VE 

(5.4) Kiinf (Uo, E) - ~  Uo(-- 1) dlmk~/r~ 

Kiln R ( U o , E ) = 0 ,  i ~ 0 , 1 .  

Consider, finally, Uo;R L k. The same type of arguments show that 

Kiino R (Uo, k)--~ U o 

(5.5) Kiin a (Uo, k) --~ U o | U o ( -  1) 

Kiln R (Uo, k) --~ Uo(-  1) 

(Uo, k ) =  O, i # 0, 1, 2. 

k. We have from (0: 9.1) that D(k)=k[--2] (1). 

Kiin~ 

6. Let us now turn to k~ L 
(1.5.4 ii) gives 

HomR (k, k) = k 

(6.1) Ext]~ (k, k) = k ~ 

Ext~ (k, k) = k. 

This gives that Kiin0 R (k, k), Kiin R (k, k) and Kiln R (k, k) contain a domino of 
dimension 1,2 resp. 1 and that the rest is of  finite type. We see also that there is no 
semi-simple torsion. 

From [16: I, 3.5] we find that, as k[d]-modules; 

R I @ R k  -~ k 

(6.2) Tor R (R,, k) -- (k id-~ k ( -  1)) 

Tory (R1, k) = k ( -  1), 
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which gives 

Yoro R (R1, k ; ~ k) 

Torf  (R1, k ;  r k) 

(6.3) Tor~ (R1, ]r L ]r 

Tor~ (R1, k ;  LR k) 

Torf  (R~, k ;  L k) 

= k  

= (k ~ ~ k ~ ( -  J)) 

= (kOa,-ia) k(__l) ~ ia+id k ( _ 2 ) ) |  ~ 

= 2) )  

= k ( -  2). 

It is clear from (0: 5.4.9) that if M is an R-module concentrated in non-negative de- 
grees then Tor R (R1, M)  ~ 0. (4.4) and the fact that Kiin~ (k, k) is concentrated in 
non-negative degrees show that 

(6.4) R1QKiin~ (k ' k)O c_, Tor~ (R1, k~ Lk)~ 

If N is a domino then dim k (Rl|176 N~176 N. The dominoes in 
Kiino a (k, k), Kiinf (k, k) and Ktinf (k, k) thus give a contribution of 1,2 resp. 1 to 
the dimension of  RI@R Kiin0 R (k, k) ~ RI| Kiinf (k, k) ~ etc. (6.3) shows that 
dimk Tor~ a (R1, k;Lk) ~ is 1, 2, 1, 0, 0... for i=0,  1, 2, 3... and (6.4) shows that 
R~| k)~ k;LRk) ~ which, with the aid of (4.4), shows that 
Torf  (R1, Ktin.R(k, k))~ As Ktin.R(k, k) is zero in negative degrees (0: 5.4.9) 
shows that Torf  (Rt, Kiin~ (k, k))~ (k, k) ~ and hence that V is injective in 
degree 0. This implies that there is no nilpotent torsion in degree 0 and by 
duality and (0: 9.1) we see that there is no nilpotent torsion whatsoever. As 
the Kiin~ (k, k) are torsion and, as we have seen, they contain neither semi- 
simple nor nilpotent torsion they have no hearts. The same argument as in the 
case of E1/~;~E1/~ shows that Kiln0 R (k, k)-~U1. Duality and (0: 9.1) imply that 
Kfin~ (k, k)-~U_ 1. (4.1) degenerates in this case at E2 for trivial reasons and, as we 
have seen, E~2 ~ and E~ -z both have dimension 1 and therefore fill out the whole 

As Ktinf (k, k) is a domino 

Kiin0 R (k, k) -~ U1 

(6.5) Ktin~ (k, k) --~ U~ 

Kiln R (k, k) --~ U_ 1 

Ktin~ k, k ) =  0, i ~ 0, 1,2. 

Consider next k~LR E with E of positive slope concentrated in degree 0. By the 
now familiar arguments one shows easily that modulo finite type Kiln0 R (k, E) and 
Ktin~ a (k, E) contain dominoes and that the rest is 0 and that there is no semi-simple 
torsion. One sees by duality that only Kiin R (k, E), i=0 ,  1, 2, could possibly con- 
tain nilpotent torsion. Hence K t i n ~ ( k , E ) = 0  for i>2.  

E~-term which implies that H*(Kiin~ (k, k), d)=O. 
killed by p we conclude: 



On the multiplicative properties of the de Rham-Witt complex. II. 97 

7. We can now use these calculations to obtain some general results. 

b b Proposition 7.1. ( - ) ~  ( - )  has amplitude [ - 2 ,  0] on Dc(R)xDc(R ). 

Indeed, we want to show that Kfin~ (M, N ) = 0  for i > 2  and M, N coherent. 
Every coherent R-module is a successive extension of elementary ones (0: 8) so by 
half exactness of Kfin~ ( - ,  - )  we may assume that M and N aie elementary. (1.2 i) 
takes care of  the case when either M or N are of slope zero or semisimple torsion and 
sections 4--6 take care of the remaining cases. 

Proposition 7.2. i) Let M, NEDbc(R) and assume that Kiin.  g (M, N) is o f  
finite type as W-module. Then H*(M) and H*(N) are of  finite type over W and one of  
them has F bijective. 

it) Let X and Y be smooth and proper varieties over k. I f  X X  Y is Hodge--Witt 
then one o f  X and Y is Hodge--Witt and the other is ordinary. 

Proof: Assume i) false for some M and N and choose m and n such that H~(M) 
(resp. Hi(N)) has F bijective for i>m (j>n) and such that Hm(M) (H"(N)) does 
not, supposing this ispossible. Using Props. 1.2 and 3.2 we see that H"+'(z~mM?~ 
z~ ,U)  is of  finite type over W. By Prop. 3.2 again we see that Kiin0 a (Hm(M), H'(N))  
is of  finite type over W. It is easy to see that any coherent R-module with F not bi- 
jective has (a shifting of) k as quotient. By right exactness of Kiino a ( - ,  - )  we reach 
a contradiction using (6.5). We thus see that either H* (M) or H* (N) has F bijective 
and from (1.2) we see that the other one must be finitely generated over W. it) is now 
clear from (II: 1.1). 

Remark: (7.2 it) has been shown, independently, by Katz in the case that 
Hc*ys(XXY/W ) is without torsion. 

8. Let p = 2  and k =  k and consider two elliptic curves/71 and/?2 over W such 
that the special fibre of/71 is ordinary and the one of s is supersingular. Fix a W- 
point :r of  E1 such that it and its reduction rood 2 have order 2. Let C2 = (cr), the 
cyclic group of order 2, act on E,• by cr(x ,y) :=(x+~,-y)  and put I :=  
EIXE2/C2. We will want to calculate the cohomology of I and I X I  and their 
special fibers and also to draw some consequences of these calculations. 

To be able to do this we will need some preliminaries. For  these it will not be 
necessary to assume that p = 2 .  

Proposition 8.1. Let f :  X ~ S  be smooth and proper with S p-local. 
i) I f  T is a finite S-scheme then there are exact sequences 

(8.1.1) 0 -~ H~t (T, R ~-~f, G~) -+ Hit (Xr, (~)  ~ R'f ,  G~ (r)  ~ 0 

where the Rff. G,, are the flat higher direct images and ( - )  denotes the infinitesimal part 
i.e. H~(XT, (~ ) : - -Ker  (Hi(Xr, G,,) -~ H'((Xr)~ed, Gin) etc. (c f  [20]). 
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it) We have V-tots (H'(X, WO))=ITC((Ri-af, G,,)s) and 

H~(X, Wtg)/V-tors ---- TC((R' f ,  G,,)~). 

Proof." We know from [20] that the i R f ,  G,, are pro-representable. The proof of 
the theorem of Grothendieck [13: Thin, 11.7] extends to show that if G is a smooth 
formal group over k then H~(T, G)=Hj~(T, G)=0  if i>0.  Any formal group is 
an extension of a smoolh formal group by a finite group scheme which in turn is a 
successive extension of %: s and /lp: s which embed in smooth formal groups. 
Hence H~(T, G)=0  if i>1  for any formal group G. This applies in particular to 
the Rif, ~.,. Leray's spectral sequence for the projection f :  XTc~X~ takes the 
form 
(8.1.2) H~, (T, RJ f ,  G~) ~. Hjff J(XT, G,,) 

and by what has just been observed (8.1.2) degenerates to give (8.1.1). For ii) we start 
from (8.1.1) for T,=Spec k[t]/(t"), go to the limit and split off the non-typical part 
thus getting 

(8.1.3) 0 -+ ITC(R~-l f ,  Gm) -+ H'(X, WO) + TC(R' f ,  Gm) -+ O. 

By the theorem of Grothendieck ~TC(G) =0  if G is smooth and as it is well-known V 
is injective on TC(G). Furthermore, one proves easily that {Hi(T,, G)} is a Mit tag--  
Leffler system for i=0 ,  1 and G a formal group and hence that T C ( - )  (*TC(-))  
is left (right) exact. By d6vissage and explicit computation for % and/~v one then 
shows that if G is a finite group scbeme then TC(G)=0 and aTC(G) is killed by a 
power of V. Therefore, if G is a formal group, TC(G) = TC(G,) has V injective and 
aTC(G)=ITC(GI) has V nilpotent. This together with (8.1.3) gives it). 

Lemma 8.2. Let f:  X-+V be flat and proper where V is the spectrum of  a com- 
plete discrete valuation ring. 

i) The dimension ~ * of  R'f,G~ at the generic point is less than or equal to the di- 
mension at the special point. 

it) i f  R~f, ~,, and R ~ + ~ f ,  G,, are pro-representable then R~f, 0,, is equidimensional. 

Indeed, recall [20: Thin. 2.3.7] that there is a complex G" whose components are 
smooth formal groups and such that ~ " - ~ " R f ,  Gm--H (G) where cohomology is taken 

in the flat topology. The cycles Z ' are formal groups and hence dim Z~_<-dimZ ~ 

where dim and dim denotes the dimension at the generic and special points respecti- 

vely. The exact sequence O-+zi-+G<*B~+*-+O shows that dimB~=>dimB ~ and 

the exact sequence O - + B ~ Z ~ + H ~ O  gives dim H ~ d i m  H ~ which shows i). 
In case H i is pro-representable then so is B ~ being the kernel of Z~+H ~. Hence 

dimB~<_-dimB ~ which together with the inequality proved above implies that 

dimff=di__mmB *. The exact sequence O+Z~-I~G~-~--.B~--*O now reveals that 
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di---mZi-l=di_mZi-1. If  both H i and H ~+~ are pro-representable then d i m H i =  
dim Z i _ dim f f  = dim Z i - dim B i = dim H i. 

Put E:=E1/Jp .  From (1.5.1) we get an exact sequence 0 ~ k  (p~v-v)_~./~O 
k v - v + e ,  - I~ -~F~O which gives 

Hom e (E, E) = (Z /p )~Ok  

(8.3) Ext~ (L  E) = (z/v)~ek ~ 

Ext~ (E, E) = k. 

This gives us the number of dominoes appearing in .. R K u n ,  (E, E) but also that we will 
have semi-simple torsion as well as the exact amount appearing. Using arguments 
very similar to those used in the calculation of .. R Kun .  (k, k) one shows that 

Ktino n (E, E ) - ~  U1 

(8.4) Ktinf (E, E)-=~ U_~|174  - 1) 

Kiln R (E,, E) ~ U_I |  - 1). 

(One also has to use that an extension of Ui by W/p  killed byp  splits but this follows 
by taking fixed points of F and using the corresponding result on extensions of Ga perf 
by Z/p.)  

Let us now return to the calculation of the cohomology of I and I X I  and let us 
begin with the Hodge--Witt  cohomology of the special fiber i. The Kiinneth formula 
gives us 

R ~ F (WOk~x~,)-~ w O W ( -  I) 

(8.5) R 1 r- (WOi,• ~ W|162 1)r  1)OrV(-- 2) 

R~ F (WOk, x~,)--~ E1/~C @W(- 1)| 1) r | 

where ~ denotes the non-trivial character of C~ thus giving us also the action of C~ 
on the Hodge--Witt  cohomology. 

We will now compute the cohomology of i using the spectral sequence 

(8.6) HI(C2,  R j F (WO'E~xr.~)) =* R '+ j [- (WY2~). 

(Note that C2 acts freely on E1 • E2.) This is a spectral sequence of R-modules. (Actually 
of coherent R-modules. As every coherent G-equivariant R-module, where G is a finite 
group, can be embedded in a 7 (G, -)-acyclic coherent R-module and coherent R- 
modules are closed under kernels and cokernels it is clear that H~(G, M )  is coherent 
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for M a G-equivariant coherent R-module.) It we consider first (8.6) in degree 2 we 
see that H ~ (WO~) = 0, H a (Wf2~) -~ W and H 2 (Wf2~-)-~ W. This shows that H 2 (W(~) 
contains no semi-simple torsion as it would be dual to the semi-simple torsion of 
Hx(w~}) .  (8.6) in degree 0 now shows that H2(C2, H~ must 
be killed and as H3(C~, H~ x E) )= 0 ,  H~(C~, H~(Wd)E~x~))~E survives and 
hence injects into H2(W(gr). Finally H~ H2(W(~EI• w h i c h  implies that 
H2(W(Pl)~-E. In degree 1 we get from (8.6) that H~ HJ(WO})-~W ~ 
and H2(WO})/torsion-~W. The nilpotent torsion in H2(Wf2I) is dual to the 
one in H2(W(fr) and is hence isomorphic to E. The semi-simple torsion is dual to 
the semi-simple torsion in H~(W(2}) and is therefore 0. Splitting H2(Wf2}) into its 
nilpotent and semi-simple parts we get: 

R ~ ~- (Wff~)--~ W |  ~) 

(8.7) R ~ r- (Wff~)-~ W |  1) ~ W ( -  2) 

R~r (W~;)-~ ~q~W(- ~) ~ ( -  ~) ~ W(-2). 

Using very similar arguments one shows that 

R ~ ~ ( ~ i ) - ~  W ~ W ( -  ~) 

(8.8) R~F(Oi)--~ WOWZ(-1)|174174 

RzV (f2"~)--~ W/Z| 2). 

We now want to use (8.7) and the Kiinneth formula to compute the Hodge---Witt 
cohomology of i X i. In order to avoid fighting with more spectral sequences we note 
that 

(8.9) R ~- (W~i) =~ | R'(Wff~) [ -  i]. 
i 

This is seen as follows: The obstruction for splitting a complex MED~(R) into the 
sum v~=iM| is the morphism z~=iM~7:<iM [1] which is part of the triangle 
"r<iM~M~'c~iM~v<iM [1]. From Lemma 1.5 and d6vissage it follows that every 
coherent R-module has projective dimension 2 over /~. Hence Homo(R)(z~_iM, 
z<,M [1])=Ext~ (Hi(M), H i - I ( M ) )  ~ Using again Lemma 1.5 one easily sees that 
for M=RV(WOj). Ext~ (H~(M), H i - a ( M ) ) = 0  for all i and we get the asserted 
decomposition. We therefore obtain RV(Wf2xxx)=RI-(W~?'~)g~R[-(WO'x)~. 
Oi, j RiV(W~?'I).~RJV(Wf2"i) [-i-j]. Expanding this, using the additivity of  
( - ) ; ~  ( - ) ,  that W acts as a unit and (8.4) we get 

R~ (w~• w| w~(- 1) | w(-2) 

RIV (Wg2)xz) --~ W~@W~(--1)GW6(-2)GW2(-3) 
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R ~ r (WO}x~) -:+ ~Vq~ E ~ q~ U-1 | E4( - l) q)W~ ( -  1) | U ~ d -  1) e(W/2p(-  1) 

|176 F3(- Z)@(W/Z)4(- Z)@ U_~(- 2)@W6(-3) 

e (w/2)~(- 3), 

(8.10) n ~ r ( W O ) x l ) ~  E~eu~|  

@ U~ ( -  1) q) U~ ~ ( -  1 ) @ Wn (_ 2) @ E 6 ( -  2) @ (w12) ~ (-  2) 

@ U~ ( -  2) | U_~(-  2) @ E2(-  3) | W6(-  3) 

@ ( w / 2 p ( - 3 ) @ w ~ ( - 4 )  

R ~ r (V/P} x ~) - ~  U, �9 E ~ ( -  l) | U~ ( -  1) ~ W ( -  2) e E~( - 2) e tT~ ( -  2) 

�9 w ~ ( -  3) | g~ ( -  3) | w ( -  4). 

From (8.1 ii) we see that for f :  i x ]+S:  

(8.11) (Raf. Gin), --~ d]  

(R' f .  dj,~)~ ~ Ca,. 

On the other hand, using the Kiinneth formula for the Hodge cohomology of the 
generic fiber I" of I and (8.8) we see that h~ and h~ 
h~ As in characteristic zero h ~ equals the dimension of R~f. dm we 
see that none of Rif, Gm, i=2 ,  3, 4, with f ' :  IXI-~Spee W are equi-dimensional. 
As R~f.G,, (cf. [20: Thm. 4.1.2]) and RSf2Gm are pro-representable we conclude 
from (8.2 ii) that none of Rif.G,,, i=3 ,  4, are pro-representable. 

Let us also note that the Hodge-polygons of the generic fiber of IXI coincide 
with the Newton polygons of the special fiber yet i X i  is not ordinary, in fact not 
even Hodge--Witt .  

Remark: i) Similarly we can consider E1 and E2 over Spec kilt]] with E1 ordinary 
at both the special and generic fiber and E2 ordinary at the generic and supersingular 
at the special fiber. We will then get an example of a fourfold with R4f, G= and either 
R2f, ~,, or Raf, G,, non-pro-representable. 

ii) p = 2  is not essential. In general we would consider Ex@E=| where M 
is the augmentation ideal in Z[Cp] and let Cp act by translation by an element of 
order p on E, and its natural action on the second factor. The quotient X will then 
have H~(W(Ox)~E and we would have phenomena similar to the ones just en- 
countered. If  we want a 2-dimensional example we will have to take successive hyper- 
surface sections of sufficiently high degree as in [3] and use a weak Lefschetz theorem 
for the Hodge--Witt  cohomology proved as in [3], We will then have H~(W~3x)~ 
H2(WOy) for such a 2-dimensional section Y. (The details will appear elsewhere.) 



102 Torsten Ekedahl: On the multiplicative properties of the de Rham-Witt complex. II. 

References 

1. A•TIIq, M., GROTHEND1ECK, A., VERDIER, J. L., Sdminaire de gdomdtrie algdbrique 4 SLN 269, 
270, 305. 

2. ARTIN, M., MAZUR, B., Formal groups arising from algebraic varieties. Ann. scient, de I'ENS, 
t. 10 (1977), p. 87--132. 

3. BERTHELOT, P., Le throrrme de Lefschetz ~ faible >> en cohomologie cristalline. 
4. CARTAN, H., EILENBERC, S., Homological algebra Princ. Univ. Press 1956. 
5. DELIGNE, P., ET AL.: Hodge cycles, motives and Shimura varieties. SLN 900. 
6. D~rUDONN~, J., GROTnENDIECK, A., t~16ments de gromrtri e algrbrique III, 1 re partie. Publ. 

IHES 11 (1961). 
7. ETESSE, J. Y., Complexe de de Rham- Witt & coej~cients dans un F-cristal unit~ et dualit~ plate pour 

les surfaces. Th&e, Rennes 1981. 
8. EKEOArtL, T., Duality for the de Rham-Witt  complex. Arkiv Fdr Matematik (1984), p. 185---239. 
9. EKEDAHL, T., The diagonal decomposition of  the Hodge-Witt cohomology. (ln preparation.) 

10. EKEDAHL, T., On the structure of dominoes. (In preparation.) 
11. GIRAUO, J., ILLUSI~, L., RAYNAUO, M., Surfaces algdbriques. SLN 868. 
12. GROTHENDIZCK, A., Surquel ques points d'algrbre homologique. T~hoku Math. J. 9. (1957), p. 

119---221. 
13. GROTHENDIECK, A., Le groupe de Brauer III. Dix exposes sur la cohomologie des schdmas, 

North Holland 1968, p. 88--188. 
14. HARTSHORNE, R., Residues and duality. SLN 20. 
15. ILLUSlE, L., Complexe de de Rham-Witt  et cohomologie cristalline. Ann. seient, de I'ENS, t. 

12, (1979), p. 501--661. 
16. ILLUSlE, L., RAVNAUD, M., Les suites spectrales associres au complexe de de Rham-Witt.  (to 

appear in Publ. IHES).  
17. MILN~, J. S., Duality in the fiat cohomology of a surface. Ann. scient, de FENS, t. 9, (1976), p. 

171--202. 
18. JOHNSTONE, P. T., Topos theory. Academic Press, 1977. 
19. NYGAARD, N., Closedness of regular 1-forms on algebraic surfaces. Ann. scient, de FENS, t. 

12, (1979), p. 33--45. 
20. RAYNAUD, M., ~<p-torsion >> du schrma de Picard. Astrrisque 64 (1979), p. 87--149. 

Received September 15, 1983 
T. Ekedahl 
IHES 
35 Route de Chartes 
F-91 440 Bures-Sur-Yvette 
France 
and 
Chalmers University of 
Technology 
Dept. of Mathematics 
S-41 296 G6teborg 
Sweden 


