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1. Introduction and summary 

The main theme of this paper is that an operator T which is bounded on a 
parametrized family of Banach spaces will exhibit further properties (in addition 
to boundedness) on individual spaces in the family. In [RW] this theme was devel- 
oped for families of spaces obtained by complex interpolation. The resuks there 
concerned a mapping 6 which is the differential of the natural map between the 
spaces of the complex interpolation family. Although 6 itself is generally unbounded 
and nonlinear, boundedness results for the commutator between fi and various 
linear maps T were obtained. In this paper similar studies are made for spaces 
obtained by real interpolation. Although there are strong analogies between the 
two cases, the details are very different. Hence it was rather a surprise to us that 
in some (but not all) cases the specific results obtained here are the same as those 
in [RW]. Our resuks here involve maps f2 derived from an analysis of the real inter- 
polation process. As was true with 6, 12 is generally unbounded and non-linear. 
In some cases f2 is the same as the map 6 obtained in the complex interpolation 
theory. 

In Section 2 we recall the basics of real interpolation theory. We introduce 
the K and J functionals and the associated interpolation spaces. We also introduce 
other functionals E and F which are closely related to K and Y and which lead to 
alternative forms of f2. 

In Section 3 we give our abstract results. The basic philosophy is that inter- 
polation spaces are constructed by finding efficient ways of decomposing functions 
into pieces which can then be effectively studied separately. I f  there is also a bounded 
linear operator T in the picture, the decomposition can be done before or after 

* The authors supported in part by grants from the National Science Foundation. 



192 BjSrn Jawerth, Richard Rochberg and Guido Weiss 

the application of T. The estimates in Section 3 control the difference between 
the two quantities so obtained. This leads to consideration of operators g? related 
to the decomposition process. Our two basic abstract results are that the commutator 
of T with I2 is bounded on the interpolation spaces and that T is bounded on the 
domain of definition of f2. 

In Section 4 we compute the specific forms of I2 for the common interpolation 
situations of classical analysis. Generally the K and E methods give different forms 
for f2. (f2's obtained from the J functional are discussed in Section 5.) In Section 4.1 
we show that, for interpolation between a Lebesgue space LP(dx) and a weighted 
space LP(w dx), the f2 obtained using the K method is given by multiplication by 
log w. In this case f2=6. As an example we consider potential spaces based on 
L2(Rn). Fourier transform theory reduces their study to the study of L 2 with weights. 
We conclude that if an operator is bounded on potential spaces then the commutator 
of that operator with the logarithm of the operator I +  A = (Identity + Laplacian) 
is bounded on L~(R"). An interesting choice for T is composition with a homeo- 
morphism of R n. This leads to the following: 

Theorem 1. Suppose q~ and ~p-X are smooth homeomorphisms of R". The map 
o f f  to (log (l+A)f)oq~-log (l+A)(foq~) is a bounded map of L2(R ") to itself. 

When the E method of interpolation is used, we obtain a different form for f2. 
To describe this we first introduce a piece of notation. For functions a, b on a meas- 
ure space (X, d#) we denote by B(a, b) the lal-measure of the set on which b 
is big: 

B(a, b)(x) = flb~)l>lb(x)l [a(y)J d/~(y). 

In particular, B(1,f)(x)=2f([f(x)I) where 2f is the distribution function o f f  
The map obtained by the E method involves f2f=flogB(]flPw, w). Here is an 
example of a particular result that follows from those general considerations. For 
l < p< ~o ,  O<e, fELP(R), define lp,~(f) by 

Let Mp,~={fELP;flogIp,~(f)CLP}. We measure size in Mp,~ with IlfllL~-t- 
[t f l o g  Ip,~(f)JIL~. Mp,, can be thought of as a type of potential space. 

Theorem 2. I f  l < p < o o ,  0 < ~ < m i n  ( p - l ,  2), then Mp,~ is a linear space. It is 
mapped boundedly to itself by the Hilbert transform. 

This will follow from the general results when we relate Mp,~ to the domain of 
definition of a suitable f2. 
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In Sections 4.2 and 4.3 we consider L ~ spaces for variable p. In [RW] the map 6 
obtained in that context was 

(1.1) (r f )  (x) = f (x)  log If(x) I. 

This is the same as the map 12 we obtain here with the E method. The map f2 obtained 
using the K method is 

(1.2) (f2f)(x) = f ( x )  log B(1,f)(x). 

Similar but more complicated formulas are derived for weighted L p spaces. Curi- 
ously, we obtain a formula involving log B(w ~, wf). (Note the position of the vari- 
ables in contrast with the B(IflPw, w) mentioned before.) 

In Sections 4.4 and 4.5 we study the interaction between our constructions and 
maximal functions. We look at maximal functions as maps on L p spaces and we 
look at the identity operator as a bounded map between L p spaces and L p spaces 
renormed using maximal functions. (The two points of view are roughly equivalent.) 
A typical result is: 

Theorem 3. Let M be the HardyuLittlewood maximal function. The maps 

R f  = f l o g  IMf/fl 
and 

S f  = f log  (B(1, Mf)/B(1, f))  

are bounded maps of  LP(R ") to itself l<p<r  

Using the results from Section 4.5 and 4.6 we also obtain the following result 
involving M and the Hilbert transform H acting on L p (R). 

Theorem 4. For 1-<p<~o the map o f f  to f log {MHf/fl is a bounded map of  
LP(R) to itself. The same holds for the map o f f  to / / f log  Igf/Hf]. 

This last result is a quantitative version of the informal notion that M f  and 
H f  are "big at the same place". 

In Section 4.6 we give the explicit forms of fl obtained when interpolating 
between various Schatten ideals of compact operators. We obtain a formal analog of 
(1.1); f l S = S l o g  Isl but now log IS] must he interpreted using the functional 
calculus for the positive operator IS ]. 

Interpolation between an L p space and a weighted L p space is closely related 
to interpolation between a Banach space X and the domain of definition of an 
unbounded positive operator A defined on X (i.e. A is multiplication by the ptb 
root of the weight). In the more general context the fl which occurs is given by 
f l=log (I+A). This abstract situation is considered in Section 4.7. 

Besov spaces can be realized as interpolation spaces between Lebesgue spaces 
and the domain of definition of certain unbounded differential operators. Then we 



194 BjOrn Jawerth, Richard Rochberg and Guido Weiss 

can study f2 for the Besov spaces using the results of Section 4.7. Alternatively 
Besov spaces can be studied using molecular decompositions. This reduces the inter- 
polation theory for Besov spaces to the corresponding theory for sequence spaces 
and leads to a different form for f2. This is in Section 4.8. 

In Section 5 we return to the abstract theory and develop a version of f2 based 
on the J functional. The formalism of that section shows a very close analogy to 
the results of [RW]. The f2 obtained is shown to be the differential of a naturally 
occuring map between the spaces of the real interpolation family. 

Our primary aim here is to present a formalism and general results. We present 
only a few examples involving specific operators. However we should emphasize 
that these abstract results apply to the commonly studied operators of analysis. 
For instance, [RW] contains the results of applying conclusions similar to the ones 
in this paper to Calderdn--Zygmund operators and to fractional integral operators. 

2. Background on interpolation 

In this section we introduce the formalism of real interpolation theory. We will 
be rather brief. See [BL] for more details. 

Suppose .4=(A0, A1) is a compatible pair (or couple) of Banach spaces; that 
is (At, I1" 113, i=0 ,  1, are Banach spaces both inside a common large Hausdorff 
topological vector space. The K-functional corresponding to ff is given by, for 
aEAoq-A1, t>0,  

(2.1) K(t, a; 4) = K=(t, a; A) = inf max{[[a0110, trlal111}. 
a=aO-~a 1 

Here the infimum is over all decompositions a=ao+al with aiEA i i=0, 1. The 
J-functional is defned for a in A 0 c~ A1 by 

J(t, a; .4) = max {ilall0, tllaII1}. 

The norms of the real interpolation spaces are defined by taking certain averages 
of K or J functionals. More precisely, for 0<0<1 ,  l<-q<=~, we let Ao, q,r be 
the space of all a in Ao+A1 with 

]]al]o,q,K = (f (t-~ A))q dt/t) 1/q<~. 

Such integral expressions show up often. Hence, for convenience we define, for 
any positive function f ( t )  defined for t >0, 

~o,g(.f) = ~ ( f )  = ( f  o (t-~ f(t))qdt/t)l/q" 
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(The choice of 0 and q will generally be clear from the context.) Thus, putting 

( 2 . 2 )  llall0,q,K = #(K(t, a; A)). 
For the same range of O, q we let A0,q,j be the space of all a in Ao+A1 for which 

(2.3) Ilall0,g,~ = inf {#(J(t ,  u(t); A))} < ~  
a =  f~ u(oa,/, 

where the infimum is over all representations a=fo u(t)dt/t (convergence in 
A 0 + A 0  with u(t) a measurable function taking values in A0o:A i. A basic result 
of real interpolation theory is that 

(2.4) Ao,,,r = Ao, q,s 

with equivalent norms. Hence we will often simply write -40,q. 
We will be most interested in those representations of a in (2.1) and (2.3) for 

which the infimum is (almost) attained. Given a in Ao+A1 and given C > I  we 
will say that the decomposition a=ao(t)+al(t), t >0  is almost optimal if, for 
all t>0  

K(t, a, A) <- max {Ha0(t)ll0, tilaa(t)lh } _~ CK(t, a, 4). 

(This notion depends on the choice of C but we will leave that implicit.) We then 
write 

D(t)a = Dr(t; A)a = ao(t). 

We call Dr(t ) the almost optimal projection. Thus, for each t, DQ) maps Ao+A1 
to A0 + A1. The map is not uniquely determined by A; all we need is a choice of 
such a map (such maps certainly exist). D(t)a is not required to be smooth in t 
(although a smooth choice can always be made (IT] Sections 1.3--1.5)) and will 
not, in general, be linear in the variable a. A pair (A0, A1) for which D(t) can be 
selected to be linear is called quasi-linearizable. We consider such decompositions 
for (2.3) in Section 5. 

Another basic abstract result is that the spaces A0,q are stable under iteration 
of the interpolation process. In fact, the proof of this in [BL] shows that this sta- 
bility occurs at the level of the almost optimal decomposition with respect to the 
K functional. More precisely, suppose A N is the pair (A0o~o, A01~) with 0<00< 
01<1, l<=qo, ql <-,,o. Set A=0!-Oo, then DK(t,X~) given by 

(2.5) DK(t, A~)(a) = Dr(t 1/~, A)(a), 

is an almost optimal projection for the couple .4~. (It is not true, however, that every 
almost optimal projection for A~ is obtained this way.) 

Although the K and d functionals are the most widely used, there are other 
similar functionals which are at times more natural or convenient. We now intro- 
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duce some of these. For 7 > 1  we define E, for t > 0  and a in Ao+A 1 by 

E,(t, a; ~)  = inf max{(l[a0[]0/t) TM, (Haallx/t)x/(~-x)}. 
a = a o + a  l 

For a = l  we set 

Ex(t,a; .4) = i n f  ~1__ []a-  all[0}. 
Ilallll--t J. t 

These are variations on the K functional. Ex is essentially the "best approximation" 
functional of approximation theory. Functionals of  this sort have been studied 
before in, for instance [Pe], [HP], [BL] and Section 1.4 of  [T]. The corresponding 
substitutes for J are, for a in A0n AI, t > 0  

F~(t, a; ~) = max{(~ailo/t) 1/~, ([[a~x/t) x/(~-a)} 
for ~>1.  For ~=1  

I ~aH~ if t-> [lab 
Fl(t, ~) a; 

I otherwise. 

We now define the interpolation space. Select 0, q with 0 < 0 < 1 ,  l<_-q<=oo and 
set cp=(0 -~)  -1, r=q(o~-O). Ao, q,g, is defined by requiring finiteness of the norm 

Ilallo, q,E. = ( ~ q , , , ( E ~ ( t ,  a ; /~)))(a-0) 

and Ao, q,r, is defined by the finiteness of 

Ilallo, q.F. = inf (r u(t); .~)))(,,-o). 
a= f :  u(t)dt[t 

A simple adaptation of the proof  of  (2.4) given in [BL] shows that for ~ => 1 

(2.6) ao, q,E. = ho, q,F,~ 
with equivalent norms. 

Lemma 2.1. Let ~ >= 1. 
(1) For each a in Ao+A 1 the right continuous inverse of the function of t, 

E~(t, a; A), is K(t, a; A)/t ~. 
(2) For each a in Aoc~A 1 the right-continuous inverse of F,(t ,a, .~) is 

J(t, a;/ i) / t  ~. 

Proof. (1) let F(a) be the Gagliardo set of  a, F ( a ) =  {(x0, Xl)~RZ; there is a 
decomposition a=ao+ai with ai in A t and Ila~lli~_xz}. It is easy to check that 
for any t, (K(t), K(t)/t)  is on the boundary of  the convex set F(a) and also that 
for any r>0 ,  (rE,(r) ~, rE,(r) "-x) is on this boundary. Comparing coordinates gives 
t=E~(r), K(t)/t~=r as required. 

(2) is direct. 

In fact this proof  shows a bit more. It shows that the almost optimal decompo- 
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sitions for the K and E~ methods are obtained from each other by change of vari- 
able. Precisely 

(2.7) DK(t; A-)a = De,(r; .4)a; E~(r) = t, r = K(t)/t ~. 

This lemma, the change of variable in (2.2) of t to E~(r), followed by integra- 
tion by parts shows -~0,q,e, =-40,q;K (with norms in fact constant multiples of each 
other). Combining this with (2.4) and (2.6) we obtain 

(2.8) -~0,~ = ]O,q,E, = -~,,q,e.. 
The corresponding almost optimal decompositions a=ao(t)+al( t )  and almost 

optimal projection D(t)(a)=ao(t ) are defined by the requirement that, for some 
c independent of t, a 

E=(t, a; A) <= max {(llao(t)llo/t) 1'=, (llax(t)lldt)v('-l)} <- E~(t/c, a; A-) 

if ~>1. For ~=1 
El(t, a; a--) <= I[ao(t)Ho/t <= El(t/c, a; ,4-) 

and ][al(t)l[~<-t. As with the operators D~, these operators have a certain stability 
under iteration. The analog of (2.5) is 

(2.9) DE(=-oo)ia (t, .g~) (a) = DE, (t, A-) (a). 

The proof of this is a simple modification of the proof of (2.5). Alternatively (2.9) 
follows from (2.5) and (2.7). 

3. Commutators 

Throughout this and the following sections we will follow the custom of using 
the letter c to denote a positive quantity which will vary from occurrence to occur- 
rence. 

Suppose -~=(A0, A1) and B=(Bo, B 0 are two couples of Banach spaces. 
Suppose T: A-+B; that is, suppose Tis  a linear operator from A0+A1 to Bo+B1 
and for i=0,  1 T[a ~ is a bounded map of A i to B i . Suppose D is one of the almost 
optimal projection operators introduced in the previous section. Our first result 
concerns the local commutators IT, D(t)] defined for a in Ao+A1, t>0,  by 

IT, D(Ola = (TD( t ) -D( t )  T)(a) = (TD(t, A ) - D ( t ,  B) T)(a). 

Proposition 3.1. Suppose T: A--,B then 

(1) J(t, [T,D(t)]a; B) <-- cK(t, a; A-) with D(t) = DK(t). 

(2) F,(ct,[T,D(t)]a; B) <- E,(t /c ,a;  ~) with D(t) =Dg,( t )  

for all ~>=1. 
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Here c is independent of t and of a in Ao+A 1. 

Proof We start with (1). T is bounded from Ao+B0; hence 

II[T, D(O]allo <: IIT(D(Oa)llo + IID(t)Tal[o <= c(llD(t)a!!o + I! D(t)Talio) 

<-- c(K(t, a)+ K(t, Ta)) 

where the last inequality follows from the definition of D(t). Since T: A ~ B ,  we 
have K(t, Ta)<-cK(t, a). Thus we continue the previous estimate to 

(3.1) H[T, D(t)]aI] o <= cg(t, a). 

To estimate the A x norm of [T,D(t)], we rewrite the commutator as 
[T, D( t ) ]a=(I - -D( t ) )Ta- -T( I -D( t ) )a  (here I is the identity operator). Now, using 
the fact that T is bounded from A~ to B1 and estimating as before, 

(3.2) tII[T,D(t)]aH1 <- ct(i]a--D(t)al[l + IiZa-D(t)Za[]~) <- cg(t,  a). 

Combining (3.1) and (3.2) gives the required estimate. 

The proof  of  (2) is similar. This time the boundedness of T from .4 to B 
implies that 

(3.1)" (I[[Z,D(t)]aJ[o/t)v~ <- c((ilZD(t)a)Ilo/t)~'~+(HD(t)Zal',o/t)v=) 

<= c((]lD(t)aHo/t)I/=W(nD(t)Zallo/t)v~ ) <= cE=(t/c, a). 

Rewriting the commutator as above, we also find that 

(3.2)' ([][T, D(t)]allx/t) 1/(~-x) <- c(l[a -D(t)a]ll/t) x/(~-a) +(llZa --O(t)ZalIi/t) I/(~-a) 

~- cE~ (t/c, a) 
for ~ >  1 and 

(3.2)" I][T,D(t)] a < (1] a-- d ( t a  ]t +I] Ta -D(t)ZalI ~) <: ct 

for ~=1.  Putting (3.1) and (3.2) (or (3.2)" if cr together, gives us (2) and 
finishes the proof. 

We now integrate this to get our main result. For any a in Ao+A~, define 
IT, I2]a 

[T, f2](a) = iv, D(t)]a(dt/t). 

The domain of [T, I2] is defined to be those a for which the integral converges 
in Bo + B~. 

Theorem 3.2. Suppose T: A-~B, 0 < 0 < 1 ,  l<_--q_ <-~o, then [T, ~] is a bounded 
operator from Ao,q to Bo, q. 

Proof If IT, f2] is based on D r then we set u(t)=[T, D(t)]a in (2.3) and 
use part (1) of  the previous proposition and (2.2) to conclude I[[T, O](a)[[O,q,Z <- 
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e []a[[0,q,K. We then invoke (2.4). If  [T, ~] is based on E, we use part (2) of  the 
proposition, the definitions of the E, and F~ interpolation spaces, and the equiv- 
alence (2.8). 

In fact a bit more is true. In the terminology of DeVore, Riemenschneider and 
Sharpley [T, ~2] is of generalized weak type ((1, 1), (0% oo)). That is, for all t > 0  

K(t, [T, t2]a) -<_ Cfo min(1, t/s)K(s, a) ds/s. 

This is a direct consequence of the definitions of  K and J, the triangle inequality 
for][ �9 ][0 and I[ �9 []1, and Proposition 3.1; all applied to the decomposition IT, ~2]a= 
f o  = f~ + f ~ .  This type of  estimate, which is also satisfied by more familiar opera- 
tors such as the Hilbert transform, is an efficient way of summarizing information. 
Once it is established Theorem 3.2 follows as do various refinements of  the theorem 
(involving, for instance results at the end points 0 = 0  and 0 =  1). An introduction 
to this point of view is given in [BS]. 

Formally we have just established the boundedness of the commutator of T 
with f~  D(t)dt/t. However, for large t, D(t) is almost equal to the identity and 
thus the integral diverges. We salvage the situation by a renormalization. Let I 
be the identity and define ~ =  (2 K 

(3.3) ~a = ~ a = f [  (DK (t)-- I .  2(1.~)(t)) a (dt/O 

= f~ D,,(t)a(dt/t)-f2 (a-V,,(t)a)dt/t 

= f :  ao(t) d t / t - f [  al(t)dt/t 

where the ai(t ), i=0 ,  1 are obtained from the almost optimal decomposition used 
to define D K. f f a i s  in some-~0,~, 0 < 0 < 1 ,  l<=q<_-~o, then K(t,a)=O(t ~ ([BL] 
page 45). With this estimate we check that ~a  is in A0+AI: 

f :ao( t )d t / t  o <- f :  liao(t)llodt/t <= ~ f2  K(t, a)dt/t  ~ c f :  t~ < ~ ,  

llf7 a,(t)dt/t , f :  llo,(t)lEldt/t c f :  t-XK(t,a)dt/t <= c f ;  t-lt~ 

Thus the map of a to ~2 a is well defined as a map from, say, Uo<0<x-~0q to Ao+Ax. 
Similarly we define 

(3.4) Qa = ~E,a =-f2(I-D~=(t))(a)dt/t+ f ~  D~.(t)(a)dt/t. 

For ~2's defined this way [T, ~2] is actually a commutator. 

Corollary 3.3. [T, g2] = Tg2- g2T. 
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Note. Here and below we are suppressing some of the variables. We really have 
[7, s = TO~, K-- OB, X T and similarly for E~. 

There were several choices in the formula (3.3). O could have been defined 
using f0 +f~ for some c~ 1. This would change O by a constant multiple of the 
identity and [T, O] would be unchanged. Changes would occur if we change the 
choice of almost optimal projection from DK(t) to /3g(t). However, the difference 
is not large. Let O K and ~K be the two maps obtained. 

Corol lary3.4 .  For 0<0<1 ,  l=<q_~,  OK--I~K is a bounded map of Ao,~ to 
itself. 

Proof. Apply the theorem with A=B, DK(t, A)=DK(t ), DK(t, B)=DK(t), 
and T= L 

Of course there is a similar result with O E , - ~ .  It is not generally true that 
f 2 ~ - O  K or f2e -O~o, ~ / ~ ,  is bounded. We give an explicit example in Sec- 
tion 4.3. Here we use (2.7) to give the exact relation between these operators. By (3.4) 

: f o  - z .  z(0,1) (g)) d log r. 

Guided by (2.7) we make the change of variables r=K(t)/t~; we then use (2.7) 
to go from De~ to DK 

a~. = f o  (DK (t) - IZ(~, . ) ( t ) )  d log (K( t ) / t ' ) ,  

where K(c)/c'= l. Thus, since f~ d log(K(t)/t')=IogK(1, a) 

De. = f o (DK-- Ixa'=)) d tog (K(t)/t~)-log K(1, a)L 
Hence 

- og ,  = -  1) f o (DK -- IZ(1, ~.)) d log t 

s o  

aE.--O~, = - -  (~-- 1) OK. 

Thus there are two basic quantities, O K based on integrals with respect to d log t 
and OE~ based on integrals against d log (K(t)/t). The change from t to K(t)/t 
is closely related to the change from function to inverse function (e.g. from the 
non-increasing rearrangement to the distribution function). We will see explicit 
examples in which these two points of view produce what could be considered 
"dual" results. 

We now describe the way in which the theorem is stable under iteration. We 
start with a couple _~ and almost optimal projection DK(t)=D(t ). For 0<0o< 
0~<1, l~_q0, q~=~o let A0-~ be the couple (-~00,q0, A0~,~) and/3(t)  be the almost 
optimal projection for this new couple obtained using equation (2.5); that is, 
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~(t)(a)=D(tXla)(a) with A=01-Oo. The map ~ obtained from /3 is given by 

= f~ ~ d t / t - f ~  (I-:3)dt/t= f l  ~ D(tl/~)dt/t-f'~ (I-D(tl#~))dt/t 

= A(f2D(s)ds/s-f? (I-D(s))ds/s)  = A12. 

Under the hypotheses of Theorem 3.2, we can also conclude that T is a bounded 
operator on the domain of  definition of  the (generally unbounded) operator 12. 
We now make that precise. Given a couple .4 we fix X =  40,q for some 0, q with 
0 < 0 < 1 ,  l~_q<__,o. Pick and fix a choice of  12 given by (3.3) or (3.4). We define 
D(12)=D(12; X) to be the domain of  12 on X; that is, the set of  a in X for which 

]Iallo(o) = Ilallx+ IIf~alix 
is finite. Because 12 need not be linear it is not clear that this is indeed a linear space. 
First we consider scalar multiplication. For 2 in C define M~(a)=2a. Then 

l]2allvco) = l l ,~a[Ix+ 1112(2a)Hx = 12lllallx + l 1 2 1 2 ( a ) - [ g ~ ,  121(a)llx 

<- c(i),l + ~[gz, f~lll)llallv<o). 

By Theorem 3.2 we conclude that ll[g~, 12111 is finite and hence that 2aED(12) if 
aED(f2). Suppose now that a and b are in D(K2); we wish to show a+bED(f2): 

lid + bit v(o, <- l] allx + [I bllx + [112 (a + b) - f 2 ( a ) -  12 (b)[lx + 1[ t2a lIx + I[ fZbllx. 

We would be done if we knew that 

(3.5) 1112(a + b) - f2(a) - .Q (b)llx ~ c(Hal[ x + [1 bllx). 

Suppose that 12 = 12,: (the 12E, case being similar). Arguing as in the proof  of  Propo- 
sition 3.1, J(S, D(s)(a+b)-D(s)a-D(s)b)~_c(K(s ,  a)+K(s, b)). Applying �9 and 
using (2.4) gives (3.5). 

If  12 = 12~ we can in fact go one step further in the analysis. We can select D K to 
satisfy Dx(t)(2a)=AD~(t)(a ). In this case 12(2a)=X12(a), 112allv(m=[2111allvco), and 
thus II �9 II.(o) is  a quasinorm. 

Finally note that, by Corollary 3.4, the space D(12) is unchanged if 12 is replaced 
by another choice, ~. In summary: 

Proposition 3.6. D(12)= {aEAo, q; Ilallo(m< oo} is a linear space. The space ob- 
tained may depend on the interpolation method but does not depend on the choice o f  
the almost optimal decomposition. I f  12= 12x then D(12) has a quasinorm equivalent 
to ll" Ilv~m. 

If 12=12E, the situation is more complicated. For instance, with the choice 
given by (4.2), f2a=a log lal, we find that the norm of the operator of  multiplica- 
tion by positive 2 is of the order lA](1 + ]log A[). In this case ll" llo is not a quasinorm. 
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Theorem 3.7. Suppose X=Ao.q, Y=Bo.q for some 0 < 0 < 1 ,  l=<q-<_oo. Suppose 
T: A~B.  Then Tis  a botmded operator from D(Q, X) to D(f2, Y). 

Proof. By interpolation T is bounded from X to Y. By Theorem 3.2 [T, 12] is 
bounded from X to Y. Hence 

llZall.<~) : IlZalI~+ l[~Za[l~ ~ IlZallr + ][TOallr + IIET, O]all r 

c(l[allx+ 1l~2al[x+ llaTIx) ~ cHal[o(m. 

There are a number of variations possible on these themes. It is possible to 
develop an operator Oj based on the almost optimal decomposition in (2.3); we do 
that in Section 5. In fact these techniques can be applied to most of the common 
variations of real interpolation theory. In particular they apply to the discrete 
analogues of the K and J methods (in which a=fo u(t) dt/t in (2.3) is replaced 
by a sum) and hence can be extended to quasi-normed spaces (e.g. L p, p <  I) or 
further (quasi- normed Abelian groups...). 

Generally 12 is not linear (although it is close, as shown by (3.5)). If, however, 
is quasi-linearizable then we can choose f2 to be linear. In this case we can iterate 

the results to obtain information about higher commutators. More precisely, after 
using Theorem 3.2 to conclude [7, f2] is bounded from Zlo,q to Bo, q we can then apply 
Corollary 3.5 to [T, t2] to obtain boundedness of [[T, f2], f2] etc. We don't  know 
what the analogs are of these higher commutator results are if .4 is not quasi-line- 
arizable. 

4. Examples 

In this section we compute f2 for various commonly encountered couples of 
Banach spaces. By Corollary 3.4, once the interpolation method is selected, the 
different possible choices of f2 are equivalent; hence, it suffices to find a single one. 
Often we will not rewrite the conclusions of Theorems 3.2 and 3.4; however, we do 
give some specific choices of T. Other interesting choices of T and ~ to which these 
conclusions apply are in [RW]. 

4.1 L p with variable weights 

Suppose p is given 1 ~p.<o~. We consider L p of some measure space X. Given 
positive functions w~, i=0 ,  1 on X w e  define the weighted space LP(w~ dx) by the 
norm (f ]flPw, dx) lip. 
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Let _~=(LP(w0 dx), LP(wl dx)), The definition of D~ is not changed if we 
replace K by an equivalent quantity. A convenient choice of equivalent functional is 

gp(t,a) = a=ao-kalinf ( f  xlaofwodx+tP f xla~l~WldX)In'" 

Using Kp it is easy to see (and well-known) that an almost optimal decomposition is 
given by 

a(x) = a(x)Z,(x)+a(x)(1-Z,(x)) 

where Zt is the characteristic function of the set {x; wo(x)<-tPw~(x)}. Thus D(t)a= 
azt and Oa is given by 

(I2a)(x) = f~ a (x)z,(x) dr / t - f?  a (x)(1 -Zt(x)) dt/t. 
SO 

When we apply the theorems of the previous section we recapture some of the results 
of [RW] and obtain the direct extension of those results to Lorentz spaces. 

Here is a further application. Let A0 be the inhomogeneous Sobolev space 
(potential space) H 2 consisting of those functions f in L2(R ~) with the property 
that the Laplacian o f f ,  Afis also in L2(R"), I[fllo=llfllL2+llAfllz,. Let _~o= 
{f; fEAo} where ^ denotes the Fourier transform. Using ( f)^=lxl f w e  see 
.~0={F; (I+Ixl2)FEL~}. Using this Fourier transform point of view it is easy to 
see (and well-known) that i f f  is in A 0 then all the first and second order partial 
derivatives of f a r e  in L ~. Suppose now that q~ and q~-i are smooth homeomorphisms 
of R n. Let c o be composition with cp: c~,f=fo~o. If f is in Ao then, using the 
fact that the first and second order partials o f f  are in L~; we conclude by direct 
computation that c~,f is in Ao and that c o is bounded on Ao. 

For A 1 we select H -2 defined by _~I={F;(I+Ix[2)-IFCL2(Rn)}. A1 is the 
dual of Ao with respect to the duality pairing given by the inner product on L 2 (Rn). 
To see that ce is bounded on A x we note that cgl=ce_x is bounded on A 0 and hence 
(c~-1) * is bounded on (A~)*=A 1. By direct computation (c~l)*=Mc~ where M 
is given by multiplication by a smooth positive function (i.e. the Jacobian deter- 
minant). M is bounded and invertible on A~ (this is most easily checked for M* 
on Ao) and thus c~ is bounded on A1. 

The computations we just did show that f2 for the pair (-40, -'~1) is given by 
multiplication by c log (1 +lxl~). Using the inverse Fourier transform to return 
to (Ao, A~) and using the functional calculus for the positive operator A we obtain 

Of = c log (I+ A)f. 

Since (Ao, A1)II~,2=L~(R ~) (see, for example, [BL] for this identification) we have 
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Theorem 4.1. ( =  Theorem 1 of Section 1.) Suppose q~ and qg-1 are smooth homeo- 
morphisms of R n. [%, log (/+A)] & bounded on Lz(Rn). 

Many variations on this are possible. First of all, using 0 and q other than 
1/2, 2 we obtain a similar result on certain Besov spaces. Second, working on the 
torus, we obtain results involving log A (rather than log (I+A)). Finally, % is 
also bounded on the potential spaces based on L ~ for 1 <p<~o.  The duality argu- 
ment then shows that % is also bounded on the H -2 type spaces based on L ze, 
1/p' + l/p= t. Then, using complex interpolation and the results of [RW], we can 
obtain an analog of Theorem 4.1 for LP(Rn), l<p<~o .  (The difference here is 
that for p ~ 2 ,  LP(R n) is not obtained by real interpolation between potential 
spaces.) 

We also use the formula for D K to compute I2 E. Using the formula after Corol- 
lary 3.4 

o = = (DK(t)-- I)c~l,-~(t)) d log (K(t)/t) 

= - a (x) log [ (-~o l llP(x)K, { {--~l ) mlP(x) l ] + a (x) log Kt,(1). 

Using the almost optimal decomposition we find explicitly 

Kp [[-~~176 l (x)J T M  [[aIPWo, WO]] lip 

As an application we consider L201) and wo=w[l=lxl ", for some e>0.  Thus 

K~(Ixl~)~ ~/7~([xl")~ -fl,l<txl laO')l'lYl'dy+fr,I.-txl la(y)[~ lYI-'aY. 
Define g2, by Q , ( a ) = a  log (~z([x[")z). I f  Tis  a linear operator whichis bounded on 
L~(Ixl• then, by Theorem 3.2, IT, f2E~] and [T, f2/d are both bounded on 
the intermediate spaces. Subtracting we find [T, ~2, + A] is bounded where Aa= 
a log/~z(1, a). Suppose now that T"=I for some positive integer n. It follows 
that /~2(1, Ta)/I~(1, a) is bounded above and below. Hence IT, A] is bounded. 
Thus [7', f2,] is bounded. Now, by the same proof as Theorem 3.7, T is bounded 
on D(f2,), the domain of f2,. For instance we can select T t o  be the Hilbert trans- 
form. If  e<  1 then the theory of  weighted norm inequalities applies and we con- 
clude that T is bounded on L~(lxl• (see [G]). All the previous discussion 
applies and Tis  a bounded map of {a; a(L 2, f2 , a (L  z} to itself. The space of those 
a in L 2 for which 12,a is in L ~' is not an easy one to understand. Note, however, that 
f2,a=alogK2(lx[") 2 and, if a is supported on (0, oo) then (d/dx)g2(lx[92= 
la(x)12(x"+x-'). Thus g2([x[~) z is an integral operator and the condition on I2,a 
can be regarded as defining a generalized potential space. 
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4.2 L p with variable weights,  variable p 

Suppose l_<-p0<p~<-~ and wi, i=0 ,  1, are positive functions. Let 
A=(Lpo(wodx), LPl(wldx)). This is an example where the K functional is a bit 
awkward but E, with ~ =Pl/(Pl-Po) is easy to work with. 

f[ i ~I]~Po ~11~PI 1 
E~(t, a; A) inf ~[~-~o fx [a~176 ' (--~ fx  - max ]allPlWldX) I" 

a=ao+a 1 

This quantity is comparable to 

(:I l '~ I l' ,,,,o 
(4. I) inf wo + a=aoq.at W1) �9 

Let X, be the characteristic function of  {x; [a(x)](w~(x)/Wo(x))l/~'~-Po)>t}. It is 
easy to check, using the fact that E,(t) is comparable to the expression (4.1), that 
a=azt+a(1 -Zt) is an almost optimal decomposition. Hence D(t)a=azt and thus, 
doing a direct computation in (3.3) 

{ f Qa=f2E=a:a(x)log [a(x)[i,w--'~) )" 

In particular, when Wo=W~= 1 we have 

(4.2) f2a = a log ]a[ 

for the couple -4=(L p0, LP~). Here we recapture Proposition 3.34 of  [RW]. 

4.3 L p with variable p,  the K-method 

For p0<pl ,  let _~=(L po, LP9. For a function a(x) defined on the underlying 
measure space X let a* (t) be the non-decreasing rearrangement of  a. It is well-known 
that an almost optimal decomposition of a(x) is given by a(x)=a(x)zt+a(x)(1 -Xt) 
where X~ is the characteristic function of  the set 

{x; la(x)l > a*(t')}, 1/~ = 1/po-1/pl. 
(In fact we demonstrate something more general than this in the next section.) 
Using this we compute directly 

1 
(4.3) t2a -------- a logB(1,  a). 

(Z 

We now check explicitly that there is no analog of  Corollary 3.4 which involves 
f2 n of  (4.2) and OK of (4.3) at the same time. Suppose p0= 1, pl=~o. (f2 e -  f2K)(a)= 
a log la l+a log B(I,  a)=a log ([aIB(1, a)). If  the functions considered are on 
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(0, oo) and a is positive and decreasing then /~(1, a)(x)=x. Thus we need to know 
if f l o g  [xf[ is in LP((0, oo), dx) wheneverf is  in L p. To see this is not so, let p = 2  
and set f(x)=x-l12(log x) -3/4 (for large x). 

Here is another observation which shows how differently the operators in (4.2) 
and (4.3) can behave. Let T be the operator of multiplication by a bounded function 
m. By Theorem 3.2 [T, f2] is bounded on, say, L 2. We compute 

(4.4) [T, f2z]a = cam log [ml, 

(4.5) [T, (2K]a : cam log (B(1, am)/B(1, a)) 

using the f2's from (4.2) and (4.3) respectively. In fact the result that the operator 
in (4.4) is bounded is trivial, because rn log [rnl is bounded ifrn is bounded. The fact 
that (4.5) gives a bounded map on L z seems less obvious. We don't  know how to 
give a direct proof of this without dividing X according to the size of a and of ma 
(thus imitating the proof of Theorem 3.2). 

Because the operators (2e~ and OK behave so differently in this context We 
include an explicit description of K, OK, and D K for couples of weighted spaces. 
By change of notation we may assume one of the weights is 1. First we consider 
the couple g=(LV(dx) ,L~(dx))  where L ~ = { f ; f w ~ L ~ } .  L~ is normed by 
[1 fwH ~. For h defined on X we denote by h* the non-increasing rearrangement of h 
regarded as a function on (X, w(x) -v dx). We will show that 

K(t, f ,  .4) ~ (f P (wf) *p (s) ds) lip = L ( f )  (t) 

and that an almost optimal decomposition is given by 

f = f0 + f l  = fz,  +f(1  -- Zt) 

where Zt is the characteristic function of the set 

{x; [w (x)f(x)l > (w f)* (t')}. 

First note that L(f)(t)<~J[fl[p. This is because L(f)(t)llP<-L(f)(oo) I/p= 
( f  Jwf fw -pdx)llp=lrfllp. Next note that L(f)(t)<=tlIfllA<=tllwf]l~. This is 
because L( f ) ( t ) / t  is decreasing and hence 

1 L ( f ) ( t  ) 1 lira L(f ) ( t )  = sup ]fw] = [lwf[1=. 
t t~o t 

Finally note that L(f+g)<=c(L(f)+L(g)). Thus, if f - - fo+f~ 

L ( f)  = L(J'o § fl) <- c(L(fo) + L(fl)) 
t ! t! <: c(Ilfo!IAo + t ~ l f . ) .  

Taking the infimum over all decompositions gives L(f)( t )<:cK(t , f ) .  To establish 



Commutator and other second order estimates in reaI interpolation theory 207 

the other inequality we set fo=fzt so 

Ilf0lI,~, = [lfz, llf.,= f [ f f z ,  dx = f I fwl 'w- 'z ,  dx 

= f'o" ds = Lf O (0". 
Also 

t l l A I l a ,  = tIIwf(1-z311.. = t(wf)*(t) 

~_ t ( l  f:'(wf)*(s)dO 1/" ~_ L(f)(t). 

Combining these estimates shows K<=cL. This also shows that the decompasition 
fo +f~ is almost optimal. Hence 

(f2f)(x) = f :o(X, 0 dt / t - f  sf~(x, t) dt/t 

= f(,O z,f,Odt/t-f? (l 

= c f log[w- 'dx  measure of {y; lwfl(y) > Iwfl(x)}] 
= of log B(w- ' ,  wf). 

A completely analogous argument works for (LPo(dx), L~,(dx)) where L~,(dx)= 
{ f ; fwCL p'} and we use the norm r l fwl l : , .  (The reason for including the weight 
with the function rather than with the measure is to obtain a formulation which has 
the same form for px=oo and pl<~o.) Let e=pl/(p~-po). Zt is selected to be 
the characteristic function of the set 

{x; [w'fl(x ) > (w*f)*(t*~o)} 

where ( )* is the rearrangement using w *po dx. The resulting f2 is 

f2f = cflog B(w-'P*, wf). 

We have not yet described the intermediate space -~0, p. I f  1/p = (1 -O)/po + O/pa, 
then -~a.p is the "expected" weighted L p space LP(w p~ dx). The off diagonal case 
is more complicated. (See Chapter 5 of [BL].) 

4.4 L p spaces and maximal functions, the E-method 

In this and the next section we use the results of Section 3 to study maximal 
functions. In this section we use maximal functions to define alternative almost 
optimal decompositions, use the E-method of interpolation, and then use Corol- 
lary 3.4. In the next section we use maximal functions to produce a new couple 
with an alternative norm, use the K method of interpolation and use Theorem 3.2 
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to study the identity map between the two couples. These two approaches are only 
minor variations on each other; the main difference in the results is in the form of g2 
obtained by the different interpolation methods. 

Our results are fairly complete for maximal functions which satisfy the usual 
boundedness and sublinearity conditions and also satisfy the pointwise estimate in 
(4.6) below. Thus our results apply, for example, to the Hardy--Littlewood maximal 
function, strong maximal function, non-tangential maximal function as well as, of 
course, the identity operator. We do not have any systematic approach which would 
include various square functions and sharp functions which fail to satisfy pointwise 
estimates. However, we do give the computation to show that our results hold for 
the sharp function. 

Let .4=(LP~(w0 dx), LPl(WI dx)) 1 <=po<pl<=~o. Suppose M is an operator 
which satisfies, for a, ax, a2 in Ao+A1, x in X 

M: .4 -,- ] boundedly 
(4.6) | [a(x)[ <--IMa(x)[ 

[ [M(al +a2)(x)[ -< [Mal(x)[+lga~(x)l. 

Let X, be the characteristic function of the set 

{x; lMa(x)I(w~(x)/Wo(X)) 11~ > t}. 

We will show that a=azt+a(1-Zt)  is an almost optimal decomposition with 
respect to E, for ~=Pl/(Pt-Po). We will do the computation for ~>1, px<o~ 
leaving the case c~= 1, pl =~o for the reader. By our assumptions on M 

(E~(t, a))p0~ <__ ([[aZtHo/OPo+([]a(1- Zt)ll~/t)~l 

--< (N (Ma)z,!!0/t),0 + (n( ta)0 -z,)hlO"'. 
From Section 4.2 we know that Ma=(Ma)zt+(Ma)(1-Z~) is an almost optimal 
decomposition of Ma. Hence the last expression is dominated by E,(t/c, Ma) po'. 
We now use the fact that M is bounded on A to conclude that this is dominated 
by E,(t/c, a) p~ which completes the required estimates. The corresponding f2E, is 
given by 

(4.7) (Oa)(x) = a (x) log (lMa (x)I(w~(x)/Wo(X))l/~,l-po). 

We now apply Corollary 3.4 (rather, the version of that corollary for E,) and con- 
clude that ~ -~2  is bounded for this ~ and the f2 given in Section 4.2. Thus, 

(~-f2)(a)  = a log [Ma/a] 

is bounded on the intermediate -~0,q. Furthermore, if M'  is another such operator 
then we obtain the boundedness of 

(4.8) ( ~ ' - ~ ) ( a )  = a log IM'a/Ma [. 
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As was the case with the estimate (4.4), this particular result can be obtained: 
much more directly, xlog[x[ is bounded for 0_<-x~l and, by hypothesis, 
[a/Ma[ <- 1 ; thus tla log tMa/a[ II = liMa (a/Ma) log IMa/a[ 11 ~ c  IIMall. However, this ele- 
mentary point of view doesn't seem to apply to the sharp function considered below 
or to the f2 obtained in the next section. 

We now specialize to the case of .4=(LPo(R"), LPl(R~)) for some 1 <p0<pl<~o 
and consider the sharp function MSfdef ined  by 

M$f(x) = sup inf ,1-~ [,,If(x)-c I dx 
x s 1 6 3  

where Q are cubes in R ~ with sides parallel to the axes. Let ct =Pl/(Pl-Po) and let 
Zt be the characteristic function of the set {x; M~f(x)>t}.  We wish to show that 
f=fxt+f( 1 -Xt) is an almost optimal decomposition with respect to E~(t, �9 ; A-'). 
For convenience we only write down the case t =  1. Trivially 

e,(1, f, ~)po, <= f [fzl[,Odx + f If(1 -zl)[p, dx 

M~if(x)~_]~f(x) where ~r is the Hardy--Littlewood maximal function. Thus by 
what we just saw about ~r, 

f{ If[n0 < f <- E~(1/c,f; A-),g. 
M ~ f > l }  -- ~ f> :}  

To finish we need to estimate f l f(1-XI)[ vl. To do this we use (a minor modifica- 
tion) of the Bennett and Sharpley result [BS]. They show that, denoting by BMO 
the space of functions of bounded mean oscillation, (L no, BMO)o, vo=Lno with 
1/po=(1-O)/po. Furthermore, an almost optimal decomposition with respect to 
El(l,  �9 ; (L v~ BMO)) is given by f=f0+f~ 

1 

where {Q1} are the cubes in the Whitney decomposition of {x; M # f ( x ) > l } .  (See 
[BS] for more details and definitions. The work there is modulo constants which 
doesn't affect this argument.) By (2.9) we conclude that this same decomposition is 
almost optimal for E~(1/r ~) thus 

f{M zf---1) Ifl'~ ~- f{M zz-  IAI', --< E~(1/c,f; $)'Po. 
_ _ 1 }  

Thus, in  particular, the operator (4.8) is bounded on LP(R ~) . l < p < ~  if 
M, M" are drawn from the set {identity, sharp function, any maximal function which 
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satisfies (4.6)}. This gives half of Theorem 3 of the introduction. The general con- 
clusion that maximal functions must be comparable to each other where either is 
large has a suggestive (and not well understood) resemblance to results in [FGSS] 
comparing the nontangential maximal function and the Lusin area function. 

To get Theorem 4 we need to know that if M is the Hardy--Littlewood maximal 
function and H is the Hilbert transform then the map of f to H ( f l o g  IMgl)- 
(log [Mg])Hf is a bounded map of LP(R) to itself 1 < p < ~ .  (This for g in UI<~<~ LP) �9 
This is because log IMg[ is in BMO. (See, for instance, Proposition (3.43) of [RW]; 
also see the argument in Section (4.1).) If we set g=f  we get the boundedness on 
LP(R) of 

H(flog Im/l)-(Iog [MUDHU. 

When we use formula (4.7) (with w~=wo =- 1), the fact that H is bounded on L p, 
1 <p<~, ,  and Theorem 3.2, we obtain the boundedness of 

H ( f l o g  Im/ l ) - ( log  IMHfl)HU. 

Theorem 3 of the introduction, applied to Hf, gives the boundedness of 

(Hf)(log ]H/l)-( log [mHfl)Hf. 

Arithmetic combination of these three expressions gives half of the Theorem 4 
involving (Hf)log [Mf/Hft. The other half follows on writing f=Hg and using 
H ' =  --L 

We could obtain similar results with f2 given by (4.3) if we knew log B ( l , f )  
is in BMO. For instance, i f f  is positive, symmetric, and for x > 0  is decreasing 
then log B(1 , f )=  tog [2x[ which is a typical BMO function. However, easy examples 
show that some conditions are needed. 

Question. What conditions on f insure log B(1,f)  is in BMO? 

4.5 L ~ spaces and maximal functions, the K-method 

Suppose l_-<po<pl_<-oo and A=(LPo, LP,). Suppose M is an operator which 
satisfies (4.6). For p with po<=p<-pl define the "maximal L p'' space L~ to be those 
a in Ao+A1 for which I[a[ILg,=IlMaHL,,<~. Let B be the couple (L~,L~I). We 

Po P, and let be the charac- wish to compute f2 K for the couple B. Pick a in L M +L M )~t 
teristic function of the set {x; [(Ma)(x)[>(Ma)*(t~)}. (Again e=PoP~/(P~-Po).) 
We wish to show that a=ax,+a(1-Xt) is an almost optimal decomposition: 

max (Ilaz, ilL~, tlIa (I -Z,)iIL,I) = max (llM(az,)iiL,0, titM(a (1 - Z,)IILo, ). 
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Since M is bounded on .4 we can estimate this by 

max < ([I 11 tll (1 )1[ ) = c max azt l.po, a -- Zt l.p, �9 

We now increase all the functions involved and continue the estimate to 

max <_- c max ([](na)ztllzpo, t][(na)(1 -Z,)IIL.,)- 

Now use what we know from Szction 4.3 about  an explicit almost optimal decomposi- 
tion to estimate this by 

max <= cK(t, Ma, .~). 

Since M is bounded on _~ we next  get 

max -< cK(t, a, 4) 

and finally, by (4.6) again, the norms of A t are comparable to those of  B~ i=0 ,  1. 
We conclude that 

max <- cK(t, a, B) 

as required. Using this decomposition we compute 

12K, B(a)(x) = ca(x) log B(1, Ma)(x) 

with the same c as in Section 4.3. We now apply Theorem 3.2 to the identity opera- 
tor  mapping .g to B. Comparing the previous formula with (4.3) we conclude that 
the map of  a to 

(f2a-O~)(a) = ca log (B(1, Ma)/B(1, a)) 

is a bounded operator from -~0q to Boq. Next note that the conditions on M insure 
that .~=B up to equivalent norms and, hence, ~o~=Boq. Finally note that, as 
in the previous section, these arguments extend to pairs of  maximal operators M, 
M' .  In summary, the map 

a ~ a log (B(1, Ma)/B(1, M'a)) 

is a bounded map of L p to itself 1 <p<~o  when M, M" are drawn from {identity, 
strong maximal function, Hardy--Li t t lewood maximal function . . . .  }. 

4.6 The Schatten ideals 

For  a compact operator S on a Hilbert space H we write IS] for ( S ' S )  1/~. 
IS I is a pasitive compact operator and hence I s I = z ~  ~n<- ; ~0.)~0n for an ortho- 
normal set {r in H and scalars an which can be assumed positive and decreasing 
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to zero. Then S =  VIS[ for some partial isometry V and 

(4.9) S = V(Z~ ~ a , ( .  ; q~n)q~n). 

For l<=p<_--oo, S is said to be in the Schatten ideal SaP if {an}={a,(S)}E~P. SaP 
is a Banach space with norm [] {a,(. )}l[e~- 

We now consider the couple .4=(SAP0, Sap1), 1 -<_p0<pt<~o. It is a consequence 
of  the general theory~of 6 ap spaces that optimal decompositions for S in Sap0 +sap, 
will be obtained by forming the optimal decomposition of  the sequence {cr,(S)} 
with respect to the couple (gp0, t~ (This is a consequence of  the description of  
the an(s) as approximation numbers.) Thus, following the pattern of Section 4.2, 
an almost optimal splitting for the E~ method, ot=pl/(pl-Po), is given by 

s = 

and an almost optimal splitting for the K method is 

S = V(Z,<t~)+v(z,~_ta), ~=popl/(pt-po). 
This leads to 
(4.10) 
and 

f2E S = V(Zan log a , ( . ,  ~p,)q%) 

I 
(4.11) - - -  K2KS = V(Za, log n ( . ,  q~,)cpn). 

(4.11) is an analog of (4.3) and we do not understand it very well. (4.10) is an analog 
of  (4.2) and we can analyze it further. [S [ is a positive operator and as such admits 
a nice functional calculus. In particular we can define log I S [ = ~ '  log a, ( . ,  r 
Thus the right side of (4.10) is vlsI log [S[. Recall V[S[=S. Thus, in stronger 
analogy with (4.2), 

(4.12) E2S = f2ES = Slog  IS[. 

Suppose R is a bounded map of H to itself. T(S)=RS defines a bounded operator 
on .4 and hence, by Theorem 3.2 [T, f2] is bounded in -40,~ 0 < 0 < 1 ,  l<=q<=o~. 

[T, 12]S = RS(log IS[- log  IRSI). 

In contrast to (4.4), we cannot simplify further. (It need not hold that log IRS[= 
log IRI +log [S].) Thus the boundedness of  this operator is more delicate than was 
the case in (4.4). 
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4.7 Domains of definition of positive operators 

Suppose A is a Banach space and A is a unbounded closed linear map of A to 
itself which has a dense domain D(A). We give D(A) the graph norm, IlalID{A)= 
IlallA + II AalIA. We will consider the couple A= (A, D(A)). 

Such a theory is simplest if A is a Hilbert space and A is a positive operator 
on A. Spectral theory can then be used to reduce to the case of L ~ with variable 
weights. A simple but typical and important example of this was given in Section 4.1. 
There Ao=tt 2 was the domain of A acting on L~(R ~) and we used the Fourier 
transform (rather than abstract spectral theory) to reduce the couple (D(A), D(A-1)) 
to a couple of L z spaces with weights. We computed that g2=C log (I+A). 

Similar results can be obtained if we suppose merely that A is a positive opera- 
tor in the following abstract sense. We suppose that there is a C so that for all 
t>=O, [l(A+tI)-lll <=C/(1 +t). In this case it can be shown that 

a = ( t T + I ) a + ( t A ~ ) a  

is an almost optimal decomposition with respect to K(t, a; 4). (See Section 1.14 
of [T].) Thus, formally, 

1 A d t - f =  1 dt P fl 
=-0t-YT71 1 tA-+ I t 

- :; .{,o.<,.+ i>)-:" c ,o.(.+.) 

To go further with this analysis we would need a general theory of powers and 
logarithms of positive operators. Parts of such a theory are given in Section 1.13-- 
1.15 IT] and the references given there. See also [HI and [P] and the references there. 

4.8 Retracts and Besov spaces 

In this section we consider homogeneous Besov spaces. For  definitions and 
background on these spaces we refer to [BL], IT], [P] and [FJ]. 

Let ,~=(/}~ofo,/}slvl~vl ,, l<=p0_<-pa<=oo, - -~176  S l < ~ 176  be a couple of homo- 
geneous Besov spaces based on R n. We could base our analysis of g2 for this couple 
on the ideas of the previous section. That's because the Besov spaces can be obtained 
as interpolation spaces from such couples. Fourier transform considerations would 
let us reduce to considerations of spaces with weights of the sort Ix[ ~ and we would 
obtain formulas for t2 involving the logarithm of the Laplace operator. (We obtain 
[xI ~ rather than (1 + Ixl2) =1~ because we are working with the homogeneous Besov 
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spaces.) Here we take another path. We use the theory of molecular decomposi- 
tions for these spaces given by Frazier and Jawerth in [FJ] to reduce the problem 
to one for weighted Lebesgue sequence spaces and then use the results about gP 
spaces. 

Given two couples .~ and B, we say that .4 is a retract of B if there are linear 
maps In (think of it as an injection), In: A-,B, and Pr (think of  it as a projection), 
Pr: B--,A, so that Prln=Identity on .~. 

We now summarize what we need from [FJ]. Supp3se q~ is a test function and 
~b is suppgrted on a ring about the origin. Precisely, q~ is in the Schwartz class, 
supp ~c= {x; I/2<1~1<2}, [~(~.)I>-C>0 on {4; 3/5<[~[<5/3}, and for any ~ 0  
~ = _ ~  1~(2~)12= 1. For v in Z, k in Z" set qg,k(A)=qg(2V(x--k)). In [FJ] it is shown 
that .,t is a retract of B=(~'~0, E~]) where t'~ is the weighted Lebesgue sequence space 
~st'P--tJ]--'~lf~vkJvEZ, kEZ " ~a~gv(sp--~ ['~'vk[P<c~ In fact we may select In(a)={(a, ~P~k)} 
(using the ordinary inner product on L~(R")) and Pr({2~k})=~2~k~%k. 

Clearly if D(t, B) are almost optimal decomp3sition operators for B then 
PrD(t, B)ln are almost optimal decomposition operators for .4. Thus f2~=Prf2Bln. 
We can now use the results of Sections 4.1, 4.2 and 4.3 to read off various forms 
for ~. 

I f  po=px=p then, by Section 4.1, 

with c the constant 1]p log 2. Hence 

a = Z(a, (~vk)q~vk 
and 
(4.13) f2~ a = c2?v (a, q~k) 9~k- 

If  p0<px the results of Section 4.2 give 

Oxa = CZ, v<a, ~o~k> log I(a, ~o,~>1~o~ 

with C=(s~p~-soPo)/(p,-po). 
Note that derivatives of q~,k involve factors of 2 ". Hence the factors of v in 

these two formulas are closely related to the logarithms of (Identity +Laplacian) 
which arose in Section 4.1 when considering the couple formed by inhomogeneous 
p~tential spaces. Had we looked at homogeneous potential spaces there (or inhomo- 
geneous spaces here), we would have seen that I2;[, the operator in (4.13), differs from 
C log A by a bounded operator. 
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5. I2s and comparison with the complex method 

In [RW] results similar to those of Sections 3 and 4 were obtained using the 
complex method of interpolation. Both sets of results are based on estimates of 
the commutator between a linear operator and the fundamental decomp3sition 
process of the interpolation scheme. H~re we describe two analogies between real 
and complex interpolation which suggest deeper similarities between the two sets of 
results. Our goal here is to display similarities in the formalisms - -  we will ignore 
most technical details. 

We begin by recalling the formalism of complex interpolation. Let D be the 
open unit disk in C and T the unit circle, T=OD. We are given boundary spaces 
{Ae,o}~,ocr. The complex interpolation spaces {Az}zE D are defined by the norms 

(5.1) Ila]lz = i n f  {sup IIF(d~176 F an analytic vector valued function 
on D which satisfies F(z) = a}. 

Associated with this construction are functions which solve the extremal problem. 
That is, we denote by A( . ,  z)(a) the function F for which the infimum in (5.1) is 
attained. (The existence of A is one of the issues we ignore here.) Among the basic 
properties of A are 

(5.2) A(z0, zo)(a) = a zoED, 

(5.3) a(z2, z1)A(z1, Zo)(a ) = a(z$, zo)(a) zo, zl, z~ED, 

(5.4) [IA(z, z0)allz = llalIz0 z0, zCD. 

The resuks of [RW] involve the commutator with 6~ given by 

= (1 -[z] ~) ~ (A (~, z)(a))~=z. (5.5) 6z(a) 

(The factor ( 1 -  Izl 2) is a normalization.) 
One analogy between real and complex interpolation is based on the analogy 

between affine and holomorphic convexity. This analogy is developed in detail in 
Section 5 of [R]. There the definition of intermediate norms given by (5.1) is replaced 
by one involving affine vector valued functions defined on the unit ball of R (i.e. 
{s; - l < s < l } ) .  The role of T=0D is taken by the boundary of the unit ball 
of R. (Note that this boundary consists of two points - -  corresponding to the two 
spaces of a given couple.) When these ideas are carried out in detail in [R] and in 
Section 6 of [RW2], the resulting intermediate norms are a (minor) variation on 
the idea of norming Ao+A1 by K ( t , . ,  ~). When the analogs of the construc- 
tions of Section 2 of [RW] are carried out in this context of affane functions defined 
on the unit ball of R the result is a version of the local commutator estimate of 
Proposition 3.1: J(t, [T, D(t)]a; A-)<-CK(t, a; A). 
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We now give a different analogy. For 0 < c p < l  and v(t) a function taking 
values in Aoc~A1, let G(v)(~0)=fo t~v(t) dt/t. Setting u=t~'v in (2.3) we rewrite 
the definition of the norm on -40.q, J as 

Using the fact that J(t, a )=max  (][a][0, t l[a[ll)~llal[o+tJ[al[ 1 we get 

(5.6) ]]a[l~,q ~ inf{max ( f o  i]tiv(t)Ii~dt/t)l/q; a = G(v)(O)}. 

This is analogous to (5.1). The norm is defined as the inf over a function class of 
a sup of boundary norms. The function class is defined by requiring that a weighted 
mean value give the element of interest. (The requirement F(z)=a in (5.1) is a 
statement about a Poisson integral of the boundary values of F.) We now construct 
the analog of A. Let v be a function so that G(v)(O)= a and the inf in (5.6) is almost 
attained, i.e. for this v 

(5.7) max { ( f o  ][t'v(t)]]~dt/t)a/q} <- C][alI0,~. 

We use this (choice of) v to define B by B(q~, O)(a)=G(v)(~o). In analogy with (5.2) 
and (5.4) 

(5.8) B(O, O)(a) = a, 

(5.9) IIB(~, 0)(a)][./~,~, J <_- Cllallo, a, 0 < ~ < l. 

(5.8) follows from the definition. (5.9) is an immediate consequence of the fact 
that that 0 does not appear on the left side of (5.7) and that v is a competing 
function in computing the left hand side of (5.9). Note that we do not have an 
analog of the propagator equation (5.3). Nor do we have a two sided estimate in 
(5.9). (However, Zafran [Z] studied maps similar to B(cp, 0) (also while considering 
an analogy between real and complex interpolation). His Lemma 9.4 is enough to 
obtain reverse estimates in (5.9) with constants which depend on 0 and ~o (but 
not .4 or a).) B(~p, 0) is a relatively natural map from -4e,~ to -,]~,,a. In analogy 
with (5.5) we set 

0 
(5.10) f21,o, qa = - ~  B@, O)(a)l~=o. 

Since B(q~, O)(a)= f o t~' v(t) dt/t we have 

(5.1) Oa = f 2  t~  = f2 u(t) log t dt/t 

with u=  t~ the almost optimal J decomposition of a. Again we see the ubiquitous 
logarithm. The analog of the commutator results of [RW] is 

Theorem 5.1. For 0 < 0 < 1 ,  l<=q<=oo; i f  T is bounded on A then [T, f2~,o,~] 
is bounded on Ao, q. 
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Before proving this we give some heuristics relating this result to those of Sec- 
tion 3. Suppose we start with a choice of almost optimal projection Dr(t; ,4)(a)= 
D(t)(a) which is smooth as a function o f t .  It is then true that u(t)=tO[Ot D(t)a 
is an almost optimal choice for u(t) in (2.3). (See the proof of the fundamental 
lemma in [BL].) With this u we obtain as v 

and thus 

v(t) = tl-~ D(t)a 

as, o,~a = f o - ~  D(Oa log t dt. 

In particular, for this choice t2s,0, q doesn't depend on 0 or q. This f2 is formally 
related to O~ by integration by parts 

I2j = -  f 7 D(t) dt/t = -  f2r. 

Although this formal integration by parts is wrong (due to boundary terms that 
don't drop out) it is correct at the commutator level. 

It is straightforward to give a direct proof of Theorem 5.1. We first prove 

Proposition 5.2. Suppose that there is an h in Ao., and that there are hi(t ), i= 1, 
2, which satisfy 

f o hi(t) dt/t = h; qb(J(t, hi(t)) = ( f  7 (t-o J(t" h'(t)))~dt/O1ta <: Cllhllo,~, 

then 

(5.12) H = f o  (hl(t)-h,(t))log t dt/t E Aa,~ 

and llHllo.a~Cllhllo.,. Here H is to be interpreted via integration by parth; 

(5.12)' H = f o  H(t) dt/t; H(t) = fo (hl(s)-hds) ds/s. 

Theorem 5.1 follows from this with the choices hl(t)=t-~ h2(t)= 
t-~ (t), The proposition requires the following version of Hardy's inequality: 

Suppose k(t ) is a positive function for t >0  then 

(5,13) ~{f'o k(s~ d-~-~ ) C~(k(t)). 

r (I: t d- 3 k(~) ~= C~(k(O). 
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Proof of Proposition 5.2. 

!!zclf --< ~(:(t ,  g ( 0 )  

< = ~(l[n(t)[]o+ tilH(t)[[1) 

~- �9 (llH(t) llo) + ~(llH(t) Itl). 

We estimate the two terms separately 

�9 ([In(t)][0) ~ �9 (f'o (]lhl(S)]t~ ') ds/s) 

"< ~(J'to , ))q-J(h ~ )))ds ) 

<= Cr (t)) + J(hz(t))) 

<= Cr (J(h~ (t)) + C~ (J(h2 (t)))) 

<-- Cllh~o,~.. 

Here the inequality which introduced the C is (5.13). Similarly using (5.13)' and 
writing H(t) = - f 7  (hi (s) - h~ (s)) ds/s 

(tll H(t)][ 1) ~- ~ (t fS (ll hi (s) ll0 + It h2 (s) l[ ~) ds/s) 

~_ ~[f*~ t ( j (hl )+ J(h~)) d----~) 

"<: CrP (J(h,))+ C~(J(hz)) 

~- cllhlI0,, 
and we are done. 

There are many questions related to this construction of ~s,0, ~. For example, 
how does fls, o, ~ depend on 0 and q in general? Also, which (if any) interesting opera- 

_ _  t tors are obtained by putting positive weights w(t) in (5.12)': H ~ - f o  H(t )m(t )  dlff. 
(The proof of Proposition 5.2 is unchanged with any bounded w(t).) The func- 
tional calculus developed this way may be related to the general theory of unbounded, 
but slowly growing, functions of positive operators as in [P]. 

Hzre is an explicit computation of B in one case. Suppose ~ is the couple 
(A, D(A)) considered in Section 4.7; that is, D(A) is the domain of the operator A. 
We have B(~o, O)(a)=f{ t~v(t)dt/t. If we take v = t - ~ 1 7 6  (did 0 K and use the 
formula for K in Section 4,7 we obtain 

B(tp, O) = C f :  t *-~ ~ A dr. (tA + 1) 3 
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By the  func t iona l  calculus for  posi t ive  opera to r s  (see page  8 o f  [T]) this  gives 

B(q~, O)(a) = C~,oA*-~ a. 

Hence,  in this  case at  least ,  there  is much  more  s t ructure  than  is ind ica ted  by  (5.8) 

and  (5.9). 
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