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concerning chord-arc curves 

Stephen Semmes 

1. Introduction 

Suppose that F is an oriented Jordan curve in the plane which passes through 
and separates the plane into two complementary regions f2+ and f2_. Let 4+ 

and 4_ be conformal mappings of the upper and lower halfplanes U and L onto g2+ 
and g2_, respectively, each taking ~o to itself. These two mappings extend homeomor- 
phically to the boundary, and hence ~+1o~_ determines an increasing homeo- 
morphism h of the line onto itself. 

The reverse process through which the curve F is obtained from h is called con- 
formal welding. There are three basic questions concerning this correspondence: 
given h, when does F exist, when is it unique, and how are the geometrical properties 
of F reflected in h? 

R 

Figure 1 
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The theory of quasiconformal mappings contains the following result. (See 

[1, 2].) Suppose that there is a C > 0  such that --<-1 h(x+t)-h(x)<=C for any 
c - h ( x ) -  h ( x -  0 

x, tER. Then F exists and is unique (up to conformal equivalence), and F must be 
a quasicircle, that is, the image of the real line under a quasiconformal mapping of 
the plane onto itself. Conversely, if h corresponds to a quasicircle and some choice of 
conformal mappings, then h must satisfy a doubling condition like the one above. 

There is an analogous question for chord-arc curves which was asked by Jeri- 
son and Kenig [5]. A chord-are curve is a rectifiable curve for which there is a C > 0  
such that Is-tl<-flz(s)-z(t)l for all s, tER, where z ( . )  is the arc length para- 
meterization of F. I f  F is a chord-arc curve, then l~_(t)l is locally integrable on R 
(because F is rectifiable), and in fact 1~+ (t)l belongs to the Muckenhoupt class ,4~0 
of weights. This last statement is a theorem of Lavrentiev, and a proof can be found 
in [5]. Because 1~'__ (t)lE A oo also, it follows from the basic properties of A~ weights 
(i.e., the A~ condition is an equivalence relation - -  see [3]) that h is locally abso- 
lutely continuous and h'EAo.. 

The question asked in [5] is whether the converse holds: if h'EA.o, must F be 
a chord-are curve? This is known to be true if log h" has small BMO norm, and in 
fact that implies that the chord-arc constant o f f  is close to 1. (See the proof of Theo- 
rem 2 in [4].) There is also a VMO analogue of this last result which is true. (See 
[6].) The answer to the question, however, is no, even if log h'EL**. 

Theorem. There is a non-locally rectifiable Jordan curve F with a corresponding 
pair of  conformal mappings ~+, 4)_ such that h= ~+ao ~_ satisfies 

l [ h(x)-h(Y) 1 (1.1) c ~- ___ c 
I x--y  

for x, yER. 

The curve F will be obtained as the limit of an iterative construction, and the 
estimate (1.1) will come from comparing the harmonic measure of arcs of F with 
respect to the two complementary domains. The sort of curves that we consider come 
from the standard method of constructing nonrectifiable curves, i.e., one starts 
with the real line and puts teeth on it, and then teeth on the teeth, etc. (See Figure 2). 
Unfortunately, if one does this naively by, say, alternating the directions the 
teeth are put on at each stage of the construction, then it is not clear how to keep 
harmonic measure from building up on one side. This problem is avoided by not 
constructing the curve in the naive way, but by recursively constructing a sequence of  
curves {F,} in which F,+x is obtained by putting teeth on F,  in a way that depends 
on what F n looks like, and not according to some prearranged plan. These (n+ 1) th 
order teeth are chosen according to the size of the ratio of the upper and lower 
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harmonic measures on Fn at a given location (where the tooth is being built). This 
part of the construction (dealing with the harmonic measure estimates) is carried 
out in Section 4, and the basic rules for building the F / s  (e.g., concerning conver- 
gence to a limit curve and nonrectifiability) are described in Section 3. In Section 
2 we discuss preliminary harmonic measure estimates needed in Section 4. 

Figure 2 

This is a picture of the naive approach, where the directions that the teeth point 
(in or out) alternates at each stage. In our construction this dental direction depends 
on what the preceeding stage of the construction looks like. 

I would like to thank Peter W. Jones and Lennart Carleson for their valuable 
suggestions and helpful comments, and I would like to thank Ronald R. Coifman 
for reading this manuscript and making some useful remarks. I am also grateful to 
the Mittag--Lefller Institute for their hospitality and support, and to the U.S. Nation- 
al Science Foundation for financial support in the form of a graduate fellowship. 

2. Some harmonic measure estimates 

Let 01 and 03 be given, 0<01<02, and suppose that y is any Jordan arc which 
connects -01 to 01 and which is contained in the rectangle {z: - 1/2<=y <= 1/2, -01 <- 

x~=01}.WedefinetwonewarcsTland~,2byadding . 01+02 -02  u 0 1 , - - ~  
2 ' 2 

and [-02,-01]u[01,  02] to 7, respectively. 
Let R be the boundary of {-3/2~=y~-3/2, -02<=x~_O~}. The real line divides 

R into two arcs R1 and R~, the top and bottom halves of R. We can join R1 and R2 
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to 7 z to obtain two new Jordan c u r v e s / ' 1  and F2, Let D1 be the interior ofF1 and D~ 
be the exterior of F2, so that iED~C=D2, 

Suppose that F is any Jordan curve which passes through o~ and which agrees 
with 73 inside of R. Denote by t2+ and t2_ the complementary regions of F, where 
iE f2+, so that D1 ~ f2+ ~D3. Define ~+ and ~_ to be the conformal mappings of 
the upper and lower half-planes U and L onto I2 + and f2_ which fix -01 ,  01, and ~o. 
These mappings extend homeomorphically to the boundary, and we can use them to 
pull Lebesgue measure on the line back to two positive measures # and 2 on F. 

For  any domain D we let co(E, z, D) denote the harmonic measure of EC=OD 
with respect to zED. 

Lemma 2.1. There exists k1(01, 02)>1 which is independent o f  7 and F such that 

1 
k1(ol, o~) ~(E) <= co(E, i, ~+) <= k1(01, O~) ~(e)  

for any measurable subset E o f  7. 

We shall refer to such an inequality by saying that the two measures are equiva- 
lent on 7, with bound k1(01, 0~). 

Lemma 2.1 is proved by showing that ~+ (i) stays away from the real line and 
~o, so that co(., ~+ (i), U) (U=the  upper half-plane) and Lebesgue measure are 
equivalent measures on [ -01 ,  0~1. The position of ~+ (i) is controlled by the fact 
that co(E, i, 0~+)->e for E=7 ,  [01, 03], or [ - 0 ~ , - 0 1 ] ,  where ~>0 depends only 
on 01 and 03. We omit the details. 

Lemma 2.2. There exists k3(01, 02)>1 independent o f  7 such that 

co(E, i, D1) <- co(E, i, D3) <- k2(01, 02)oJ(i, E, Dx) 

for all measurable subsets E o f  7. 

We can map D3 conformally onto the unit disk in such a way that i is carried to 
the origin, 7, ~1, and 7 ~ are taken to circular arcs I, I x, and 12, and R~ is mapped onto 
a Jordan arc A1 with endpoints on the unit circle. Lemma 2.2 is proved by control- 
ling the relative position of I, 11, and A 1 (with harmonic measure estimates) and 
using Harnack's inequality and the conformal invariance of harmonic measure. We 
omit the details. 

Suppose now that 0~=1 and 0a=3, and let 0a>0 be given. Suppose also 
that c and d are real numbers, - 3 /2<c<d<3 /2 ,  such that c and d lie on F and 
02(d-c)<-1/2. For z, wEF let A(z, w) denote the arc of F which joins z and w. 

Lemma 2.3, There is a constant ka(0a)>l independent o f  c and d such that if  
A(xo, xl)C= {z: xo<=x<=xl, -03(d-c)~y<=Oa(d-c)} when (xo, x I ) = ( - 1 ,  c), (c, d), 



A counterexample in conformal welding concerning chord-arc curves 

or (d, 1), then 

and 

1 
k~(O~ 

k8(03) 

/ x  
- 1 1 '  v 

! 

, A ( , 1 ,  c) 
L 

( d -  c) <- v (A (c, tO) ~_ k,(03) (d - c) 

( d -  c) <_- 2(A (c, tO) ~- ks (0o*) (d -- c). 

"1 I 
! 

I 
! 
L c l  
! 

A(c, d) 

I 
! 

d !  i 
s A ( d ,  1) ,! 

..I . . . . .  .J 

145 

I 

t t 
Figure 3 

By symmetry it is enough to consider only the estimate for/t ,  and by Lemma 2.1 
it is enough to estimate o~(A(c, d), i, f2+) instead. Consider the Jordan curve F l 
obtained by adding together the segments {x+O3(d-c)i: -oo<x<=c}, {c+iy: 
-03(d-c)<=y<=O3(d-c)}, {x-O~(d-c)i: c<=x<=d}, {d+yi: -03(d-c)<=y~_ 
Oa(d-c)}, and {x+O3(d-c)i: d<=x<~}. (See Figure 3.) By the maximum prin- 
ciple co(W(c, d), i, f2~_)-<_co(A(c, d), i, I2+). Let u(z)=co(Ab(c, d), z, fie+) for 
zEg2~_. There exists ~/(0a)>0 such that u(z)>=~l(O~) if zEI={w: Im w=Oz(d-c), 

�9 [ c2d[<=(d-c)/lO I . -  " - Thus u(i)>=q(O3)to(I,i, U'), where U ' = { w :  I m w >  R e  w - -  

1 
03(d-c)}. It follows that u(i)>= (d-c) for some kz(0~)>l. 

k 3 ( 0 z )  

Similarly, let 

F u = {x-O3(d-c)i: _ oo < x <- c}u{c+yi: -03(d-c  ) <= y <= 03(d-c)}u 

{x+O3(d-c)i: c <= x <= d}u{d+yi: -Oa(d-c) <= y <= Oz(d-c)}u 

{x = 03(d-c)i: d<= x < oo}, so that o~(A(c, d), i, f2+) <= o~(au(~, d), i, aX). 
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Let 

J={w: Imw=-Oa(d-c),  lRe w -  C2d -<_(d-c)}, U"={w: Imw>-O3(d-c)} ,  

and define v(z) and ~(z) by v(z)=co(AU(c, d), z, f2~+) and ~(z)=a~(J, z, U") for 
z~f2~_ and zCU". Then ~(z)>=rf(03) for some rf(03)>0 and all zEA"(c,d), 
and hence ~ (z) _-> ~/" (0a) v (z) for a!l zE f2~_, by the maximum principle. Thus v (i) <- 
k3(0a) ( d -  c) for some k3(03) > 1. 

7~ 
Let ct, 0 < ~ < ~ - ,  be given (think of ~ as small) and let T~ be the two legs of the 

isosceles triangle having [ -  1, 1] as its base and with ~ as the angle at the third vertex 
v~, which lies on the positive y-axis. Consider the Jordan curve J~ formed by connect- 
ing T~ to the real axis and throwing away ( - 1 ,  1), and let U~ and L~ be the upper 
and lower domains. Let O~ and kv~ be the conformal mappings of the upper and lower 
half-planes onto U, and L~ such that -Oa[v~[, 04[v~], and oo are fixed for a given 
0~>0. By symmetry, ~ (O)=v~=~(O) .  

- 1  1 

U~ 

L~ 

Figure 4 

Define positive measures p~ and 2~ on J~ as the pull-backs of Lebesgue measure 
on the line using the mappings ~ and ~, .  These measures are both mutually 
absolutely continuous with respect to the arclength measure ldzl, and near v~, #~ 
gets large while 2~ becomes small. 

Lemma 2.4. For any r/>0, 04>0, and M > 0  there is an %:>0 so that i f  
0<~-<_% then dp~/d2~>=M for all zC(T~),=J~c~{w: Imw_->~/lv~]}. 

We shall show that d#~>-_c(rl, 04)]dz[ and d2,<=e(rl, 04, ~)ldzl on (Z=),, where 
c(r/,04)>0 and e(q, 04,~)~0 as ~ 0 .  
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1 
From Lemma 2.1 and rescaling it follows that d#~>=c(O~)--dog(., 2lv, li, U,) 

1 
on T,, since Iv,l ~ - - .  Let r+ and r_ be the two rays with endpoint v which pas s 

through + 1, and let R, be their union, a Jordan curve. Let A, denote the angular 
region (with angle 2zc-~) which lies above R,. Then og(.,21v~li, A,)<= 
C(q)~o(., 21v,]i, U,) on (T,),. (This is simply a variation of Lemma 2.2, and it can 
be proved using conformal mapping.) By conformal mapping it is easy to show that 
oa(., 2[v~,Ii, a3>--Coc]dzl on T,. Thus d#~_c(rl, 04)]dz ] on (T,),. 

1 
Let ku,(1)=a,, so that ~ ( - 1 ) = - a ,  and <=ao,~_a(04) for some 

a(04) 
, ,1  

a(04)>l, since 2a~=2,(T,) --o~(T~,, -lv~,]i, L~,),',,1, by Lemma 2.1. Define b , > 0  
(Z 

1 
by ~ , ( - i ) = - b , , i ,  so that <-b,,<=b(04), since co ( [ - a , , a J ,  - b j ,  L )=  

b(04) 
o~(T~, - i ,  L~)~ 1. Because ~o(., -b~i, L) a n d  Lebesgue measure are equivalent 
measures on [-a~,  a J ,  with bounds depending only on 04, the Same is true of ~ 
and ~o ( . ,  - i ,  L~) on T~. If  A" is the angular region lying below R~ (and determined 
by T~), then to(. ,  - i ,  L~)<-C0/)t~(., - i ,  A') on (T~)~ (another variation of Lem- 
ma 2.2). An elementary calculation shows that e~(., - i ,  A~)~e0/, ~)[dz] on (T~)~, 
where ~0/,~)~0 as ~-~0 for any fixed 17>0. Thus d2~<-e(~,O4, ct)[dzl on (T~)~, 
and the lemma is proved. 

Because of the singularities at the three vertices, the curve J~ is not quite suitable 
for our purposes. Thus for each ~ we consider a smoothed-up version of J~ which we 
call SJ~, and which we may assume has the following properties: 

(a) SJ~ is a smooth Jordan curve; 
(b) SJ~--ST~u(-~o, --1)w(1, ~), where ST~ is a Jordan arc connecting - 1  

and 1 ; 
(c) ST~ is contained in the union of T~ and its interior; 
(d) ST~ agrees with T~ outside of very small neighborhoods of the three vertices 

(with radii of 10 -12, say); 
(e) the length of STy, is about the same as that of T, (e.g., [T~I <= I ST=I <-- 1.0IlT=l ); 
(f) if s/~, and s;t, are the corresponding measures on SJ~, (for a fixed 04, which 

2 1) 
will turn out to be 3 1440 ' then 1/2<=d(s#~)/d2~=2 and 1/2<-d(s2~)/dl~<=2 

on {z~T~: IO-l~176 For each �9 we choose such an SJ~ and 
fix it for the rest of the paper. 

Let N =  1v,1/1440, so that N _  -> 100 if e is small enough, and let P be any subset 
of the integers. Define a Jordan curve SJ~ by constructing an upwards-pointing copy 
of STc, on [~N-1,  EN+ 1] exactly when ~EP, and by letting SJe~ agree with the real 
line outside these intervals. Let U~ and L~ be the upper and lower complementary 
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domains of SJ~, and let of'Pt. ~-ogt 2lv~,li, u~) and of 'P( . )=o9( . ,  -2]v,li, L~). 
Let s#~ and s2~ be the measures on SJe~ obtained by pulling Lebesgue measure on the 
line back to SJ~ using the conformal mappings of U and L onto U~ e and L~ which 

2 2 
fix - T N ,  ~-N, and o~. 

Lemma 2.5. There is a constant X(~)> 1 which is independent of P such that 
1 1 

.~= P P <= X(~)<=do9~P/dof'e<-X(~) and X(~ =d(s#~)/d(s~)=X(~) everywhere on je. 

We shall show that d(slF~) and d(s2~ e) are each comparable to ldz], and do9~r P 
and dw "-e are each comparable to (1 + lz[2) -1 [dz 1, with bounds that depend only on ~. 
We shall do this only for #e and w+"e, since ).e and og~e can be treated similarly. 
Also, the estimate for o9~e implies the estimate for /~,  and so we need only consider 
the former. 

To estimate w+ we trap SJ, between two other curves. For each integer j let 

, A s = A  j -  N, , As =Ae~ j -  j+-~ N and 1 e where A~(z, w) 

is the arc of S3"e~ which connects z and w, and let Ij and 11 denote the intervals of the 
real line with the same endpoints. Let k be a fixed integer, and define F~ by replacing 
A s with Ij for every j~k .  Then F~ is either the real line or it is SJ, translated over 
kN steps. 

curve F~ we start offwith the line y=lv,l for x<=[k--~}U, come For the down 

smoothly to the line y = 0  and connect up to A t, leave A~ at x=lk  + 4 ) N  and go 

backup tothe line y=lv,] at x = ( k + 7 ] N ,  and go out to oo on that line. smoothly 

We require that the smooth connections between y=lv=l and A~ are done the 
same way for each k. There are two possiblities for what F~ looks like, depending 
on whether or not k~P. 

Thus the shape of F~ and F~ depends only on whether or not kEP; ifkz and k2 
both do or do not lie in P, then F e~, and F~, are translations of F~, and F~. This implies 
that the conformal mappings of the upper half-plane onto f2~_~ e and f2~:" are smooth, 
even at o% with estimates that do not depend on k or P. Thus o9(., 2]v, ii ' 07 _k ~) 
and (1 + lz[*)-itdz] are equivalent measures on F~, with bounds that depend only on a, 
and similarly for F~. Thus there is a C(a)>0 such that for any measurable EC=AZ, 

1 
C(~) (IklN+ 1)-alEI --< og(E, 21v=li, a~:") 

og :P(E) og(E, 21 ,1i, <- C( )(IkIN+I)- IEI. 
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This proves that (1 + ]zI~) -1 [dzl and dco~ P are comparable on A~ for all k, and hence 
on SJ~, with a bound that depends only on ct. This proves Lemma 2.5. 

Suppose now that 0EP, and let ST~ be as before. 

Lemma 2.6, For any M > 0  there is an e l > 0  (depending only on M) such 
1 that d(s#~)/d(s)~)>=M on {zEST,: ~[v,l<=y<=(1-10-l~ i f  0<~<=at. 

I f  P :  {0} then SJ~:SJ ,  and this lemma follows from Lemma 2 .4  (with 

t / = ~  and 0 4 = ~  ) and the definition of SJ~. For general P, OEP, 

SJ~ and SJ~ are the same inside the strip {z: [xl~=3N/4}, and one can reduce to the 
P =  {0} case using Lemmas 2.1 and 2.2. 

3. The construction, part 1 

We are going to obtain a curve F= satisfying the properties of the theorem in 
Section 1 as the limit of a sequence {F,} of smooth curves which will be defined 
recursively. In this section we shall describe the preliminary rules governing this 
construction, which will imply that {Fn} converges to a nonrectifiable quasicircle 
F=.  The final steps of  the construction will be carried out in Section 4. 

To construct the F, 's  we shall take a tooth and put teeth on it, and then put 
teeth on the teeth, etc. By a tooth we mean anything that is obtained from ST, 
(defined in Section 2) by translating, dilating, or rotating. The parameter ~ should be 
thought of as small and fixed throughout the construction, although we shall not 
choose ~ until the end of Section 4. We do require now that 0~ be small enough so 
that [v~t _-> 144.000. 

We shall call v~ the node of  the tooth STy, and the points +__ 1 will be called its 
base vertices. The interval [ -  1, 1] is the base of the tooth. The rectangle that circum- 
scribes T~ will be called the fence of STy. The interior of  the fence will be called the 
yard of the tooth. The nodal neighborhood N(ST~) is defined to be STun {z: ]v~l/8 <= 
Iz-v~l<= ]v~[/4}, which is the union of two intervals of STy. (Here "interval" will 
mean an arc of a curve which is also a line segment.) These definitions will also be 
applied to the corresponding objects of a general tooth t. 

: For the first curve F~ in the sequence {F,} we take simply the curve SJ~. The 
second curve is obtained by putting new teeth on the nodal neighborhood of STy. 
More precisely, we shall specify in Section 4 a subset CS1 ("construction site") of  
N(ST~) which is made up of finitely many small intervals and which satisfies 
ICSII>-_160[N(ST~)[/IV~I. (Here IEI denotes the arclength of  E.) The new curve F~ 
is.obtained by replacing the intervals of CS 1 by teeth. The directions that these 
teeth point in will be independent of each Other and will be specified in Section 4. 
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We may take the intervals of  CS1 to be as small as we like, but they do have to 
be small. This keeps the new teeth from crashing into each other, and it is also needed 
to make the sequence of  curves converge. This will also keep the new teeth and their 
associated yards contained in the yard of  STy. (It would perhaps be useful at this 
point to look again at Figure 2 in Section 1.) 

The general construction follows the same pattern. Suppose that Fm has been 
constructed, r n ~ l ,  and let Bm be the union of  all the ruth-order teeth on Fm. Let 
Gin=Fro\Bin, and let Cm be the union of  the nodal neighborhoods of  all the rn th- 
order teeth, so that Cm~Bm. 

In the next section we shall specify a certain subset CSm of Cm which is a union 
of  finitely many small intervals. The next curve Fm+i is obtained by constructing 
teeth on these intervals, so that the old interval is the base of  the new (m+ 1)th-order 
tooth. The direction in which the tooth points will also be specified in Section 4. 

Note that Fro+ 1 agrees with Fm off Cm. 
There are two requirements that we place on CSm. The first is that ]CSm] 

160]Cm[/lV~I. The second requirement is that each of  the intervals of  CSm should 
have small length, less than em for a certain sequence {sin} of  positive numbers which 
tend to 0. We shall specify how small em is as we go along in this section. We should 
emphasize that am will depend on what F ,  looks like, but not on Fn for any n ~ m. 

How small the intervals of  CSm are controls how far the (m+ 1)th-order teeth 
can go from the parent tooth on which they were built. In particular, if e m is small 
enough, then for any ruth-order tooth t the (m+ 1)th-order teeth constructed on t, 
along with their fences and yards, will lie inside the yard of  t. Hence all of  the Fin's 
agree with the real line outside { z : - l ~ x ~ l , O ~ y ~ [ v ~ ] } ,  the yard of  STy. 

Under these conditions it will be true that each Fm is a smooth Jordan curve, 
and that the sequence {Fro} will converge to a nonrectifiable quasicirde F=.  Let us 
verify these facts. 

It  is clear that each F m is smooth, and each F m will be a Jordan curve if the em'S 
are small enough. I f  era goes to 0 sufficiently quickly, then F m will converge to a Jordan 
curve F~ in any reasonable sense, e.g., there will exist a sequence of parameteriza- 
tions of  the Fin's which converges uniformly. We should also point out that G= = 
wG,n is a dense open subset of  F~ ,  and GmC=G,~Fn whenever m~n. 

To show that F= is a quasicircle we use Ahlfors's three point condition [1, 2] : 
a Jordan curve F which passes through co is a quasicirde if and only if there is a 
constant c >0  such that if Zl, z2E F and Za lies on the arc joining them then IZl-Z3l <= 
ClZl-Z~l. This condition will be satisfied by each Fm with a constant independent o f m  
if the em's are sufficiently small, and so F= will also satisfy this condition. 
: The arc A on F= that joins - 1 to 1 has infinite length. Indeed, Bm\Cm ~ Gm 
is contained in this arc for each m=>l, and hence IAI>---IBml/2, since ICml~lBm]/2 
(which can be verified tooth by tooth). The length of  each tooth_is:at least twice its 
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height, which is ]v~l/2 times the length of the base of the tooth. The union of all the 

mth-order teeth is precisely cam_a, and ICS,,,-ll 160 160 I 1 ] -> Ivy---i-Icm-,l--> Iv~'~- , i-6 IBm-d, �9 
Thus [B,,I>=2(.~tv~I)ics,,_ll>-IOIB,._II, and hence/B~I_->10"-~[Bll. Because this is 
true for all m => l, A must have infinite length, and so F~ is not locally rectifiable. 

We can also say something about the convergence of harmonic measure. Let 
12~_ and f2 ~ _ be the complementary domains of F,. (including m =  oo), so that 
2[v~liEf2 ~ and -2[v~]iEfIm_. Consider the measures (0~_(.)=(0(.,21v~1i, 0~) 
and (0~_(.)=co(., . 2 Iv . [ i ,  f2~). For z~,z~EF,,, let A"(z~,z~) denote the arc o fF , .  
which joins za and zz. If  the em'S are sufficiently small, and if z~, z2EG= (so that 
Zl, z~EF. for n large enough), then 

(3.1) l ina (.D~ (Am ( l l ,  Z2) ) = (0 7 (A ~" (z1, zg)), 

and similarly for (0"_. 
In fact, the following is true. If  Fm has been constructed, if F,  for n>m are 

constructed according to the above rules, and if e,, is small enough, then 

(3.2) (1 + 2 - " )  -~ <= (07(A~*(zx, zz))/(0~(A,.(zl, z~)) ~ 1+2 -m 

for any za, zzEG,.. 
We know that for all n>=m (including n =  ~)  F.  must contain F.,\C,. ,  and 

that the rest of F.  must lie within a distance of e,. Iv.] of C,.. Indeed, for the (m+ 1) th- 
order teeth this comes from the fact that the intervals of CS., ~ C,. have length at 
most era. For the higher order teeth this is a consequence of the requirement that a 
tooth and its yard lie inside the yard of its parent. 

Thus F~\Fm must lie as close as we want to C,,. On the other hand, 
zEG,,=F,,\B,,  must be a positive distance away from C,,. Thus 
(0+(A`*(Zl, z~))/(0~_(A'(zl, z2)) will be uniformly close to 1 for zx, z2EGr, if em 
is small enough. 

To prove the theorem stated in Section 1 we must estimate the homeomorphism 
h corresponding to F=.  This can be restated in terms of measures. For each m=>l, 
including m = co, let q~  and ~,"_ be the conformal mappings of the upper and lower 
half-planes onto I2~_ and f2~, respectively, that fix -lye], Iv~l, and co. Let # ,  and 2,. 
be the measures obtained by pulling Lebesgue measure on the line back to F,n using 

1 
these mappings. What we must show is that there is a C > 0  such that -~- /x`* (A)<= 

2~(A)<=C#~(A) for any arc A on F~.  It is enough to prove this only for small 
arcs. 

If  A lies outside {z: lzl<=3lv~l} then there is no problem, because F`* looks 
like the real line there. On F`*c~{z: Izl<-31v~l} ~`* and (07 are equivalent, as are 2,. 
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1 
and ~o_ ~ , by Lemma 2.1. Thus we are reduced to proving that - -  a ~  (.4) <_- co= (.4) ~_ 

r 

Co)+(A) for any arc A ofF** contained in {z: Iz[<=3[v~l}. 
It is enough to consider arcs with their endpoints in the dense subset G.~. Be- 

cause of (3.1) we are now reduced to proving that there is a C > 0  such that for any 
arc A m of F,, (m:> 1 arbitrary), 

1 
(3.3) "-C ogn~ (A m) ~ ~m_ (A")  <-- Cr (Am). 

One advantage of this is that the curves Fm are smooth, so that do~_/do) 'n_ is smooth. 
In the next section we shall show that (3.3) holds if ~ > 0  is small enough and 

if the CSm'S and the directions that the teeth point in are chosen properly. 

4. The construction, part 2 

We are going to construct the F,,'s recursively, in such a way that for ~ small 
enough, the following properties hold, in addition to the requirements of Section 3: 

(i) on Cm it will be true that 

(4.1) X7., 1 <= d~"~/d~o ~ - <= Xr., 

where X . , = B 1 X ( ~ ) I I T = I ( I + 2 - J ) ,  B I > I  is an absolute constant, and X(~) is 
from Lemma 2.5; 

(ii) on all of F,. it will be true that 

(4.2) Y,7, 1 <= do)~/do)'_ <- Y,,, 

where Yr,=B1B2X(a)2 IIj%l ( l + 2 - J )  2 and B2>l  is another absolute constant. 
The precise values of B1 and B2 will come out of the rest of the construction; BI=  Bz = 

3 8 2 2 10 kxk2k  3 will do, where kl,  k2, and k3 denote the maximum of the constants from 
Lemmas 2.1, 2.2, and 2.3 with 10-10 <= 01, 03, 08-<- 10 l~ The important thing is that B1 
and B2 are independent of ~. 

I f  we can construct such a sequence of  Fin's we will be finished, because the Ym'S 
are bounded and so (3.3) will be satisfied. 

The plan of the construction is as follows. Suppose that F ,  is constructed. When 
we construct teeth on C,, we can make them small and keep them away from the 
boundary of Cm so that the estimate (4.2) is only disturbed slightly, by at most a factor 
of 1 + 2  -m-l,  o n  l " m ~ C  m. On the  (m+ 1)th-order teeth we can get the estimate (4.2) 
for m +  1 from (4.1) for Fm and Lemma 2.5. Finally, on the nodal neighborhoods of  
the (m+ 1)th-order teeth we can preserve the estimate (4.1) by using Lemma 2.6 and 
by choosing correctly the directions that the teeth point in. 
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The curve FI(=SY,) of Section 3 satisfies (4.1) and (4.2) by the definition of 
Jr(a). Now suppose that F,  has been constructed which satisfies (4.1) and (4.2). 

To construct F,+~ we must specify the subset CS,, of C, and the directions that 
the teeth point in. Recall that Cn is the union of the nodal neighborhoods of all 
(finitely many) nth-order teeth, and that each nodal neighborhood is made up of two 
symmetrically placed intervals around the node of the tooth. 

Let I be any one of these intervals and let I0 be its middle third. We shall not put 
any of I \ I 0  into CS,. Partition I0 into a large number of small intervals of equal size. 
How small depends on the following two considerations. First, the requirements of 
Section 3 state that the intervals of CS,, must be "sufficiently small", that is, of length 
at most e n. We require that the partitioning of I0 yields intervals of length at most e.. 
Second, we require that the partition be so fine that if H is any one of the resulting 
subintervals of Io, then 

(4.3) fdof+ �9 zEH} < (1 + 2 -a~ min ~ (z): m a x ~ ( z ) .  = f do f+ zEH}.  

This is possible, since dog"+/dco"__ is smooth. 
If  we apply this procedure to all such intervals I of C. we get a family ~ con- 

sisting of finitely many disjoint intervals contained in C. such that I U {H: HE ~ = 
1 

~- C,.  Let Ha ... . .  H e be an enumeration of this family (with no significance in the 

ordering), and let H ~ denote the middle third of Hi. The set CS,, will be a subset of 
U/-/~ obtained in the following way. Partition each H ~ into a large number of sub- 
intervals of equal size. This number will depend on j and will be chosen in a few 
moments, but we do require that it is an integer multiple of 100N, where N =  Iv~l/1440. 
(We may assume that N is an integer, since this will be true for some arbitrarily small 
~'s.) For eachj  we take every N th interval in this partition o f H  ~ and put it into CS., 
but we put nothing else in CS.. Then ICS.I= 160[C,,]/[v~[, and so CS, satisfies the 
requirements of Section 3. 

We still must specify how finely each H ~ is partitioned and which direction the 
teeth on H ~ point, and we do this one j  at a time. Let F.,j be the curve obtained from 
F ,  by constructing teeth on H ~ . . . . .  H ~ but not on H~ . . . . .  H ~ so that F.,o=F, 
and Fn, t will be F,+a. Define f2 "'j  accordingly, and let ~o~J(. )=co( . ,  +2[v~li, t2~i). 

The arc that you get by replacing subintervals of H~ will be denoted by 
K~ and we let gj+ a o o 1-, n J+a = (F n j ~ a O + a ) u g O + l :  =K)+IU(Hj+I\H)+I), so that , 
(F,,,j\Hj+I)UK, i+I. Let Hff+l be the double of H~ and K~ =K~176 ), 

o 3-ff'o so that Hj+I=3Hj+a=~HJ+t and 

The curves F.,3 will be constructed according to the following three conditions. 
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First, let {3j}~=0 be a fixed sequence of positive numbers (depending on n) such that 
l-re n <1+2-1o .  Then we require that each f l j > l  and J~j=ov.i= 

(4.4) 
1 dco~ -i+J dco~ -i . . dco~ j+l 

#s+x d~o"_,s+* (z) <= ~ ( z )  <= 3s+x dco._,j+, (z) 

for all zCF.,s\H~ 
Second, if zCK~ then 

1 dco ".j+l (4.5) =< r., 

where I7. is as in (4.2) above. 
Finally, to the (n+ 1)th-order teeth being constructed on s  there correspond 

(n+ 1)th-order nodal neighborhoods and the set C.+~, the union of these neighbor- 
hoods. In particular, C.+lC~K~ is the union of the nodal neighborhoods of the 
teeth put on H]+I. Our last requirement is that 

(4.6) 
1 dco~ ~+1 

-Xn' ~ dcon"i+l (z) ~ X. 

for all zEC.+lnK~ where X. is as in (4.1). 
Thus, if the F., is  are constructed according to these three conditions, then 

Fn+I=F., e will satisfy (4.1) and (4.2) with m = n + l ,  and we are ready. 
The base case of s is already given, and so we assume that F.,j is given 

and we construct F.,j+I now. If  the partition of  H~ is fine enough, then the teeth 
on/ /~ will be very small, and K~ will be very close to being the same as H~ 

outside H~ harmonic measure will be changed only very slightly. In particular, 
if the partition of  H~ is sufficiently fine, then (4.4) will be satisfied. 

~--COn, J EHO Wcon, J [HO Let ~ -  + ~ s+xJ/ + ~ j+lj. From (4.1), (4.3), and (4.4) we know that 

(4.7) (1 +2-1~ ~ Q <= (1 +2-a~ 

Without loss of generality we may suppose that Q <= 1, so that harmonic measure for 
f2 "d is too big. We now choose to have the teeth of H ~ point upwards, into f2~r j. - j+l 

I f  the partition of n~ is sufficiently fine then K~ is very close to /-/fl+~. 
Because the curves s s and s  agree except for these two arcs, this implies that 
co~J (H~ 1) and ..... j+lew0 w+ ~-~j+l j must be very close, and the same for c o .  In particular 
we may suppose that 

(4.8) 

1/2 <= co'~.s+lCK]+'l)/co'~J(H~+,) <= 2 and 1/2 <- co"_'J+aCKy+x)/co"_'J(H~+O ~_ 2. 
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We now fix the partition of H~ so that these inequalities hold and so that all 
our ealier requirements are valid. Thus we have specified how the teeth on Ho+~ are 
built, and so F, , j+I  is constructed. It remains to verify (4,5) and (4.6). 

Let z~+ 1 be the center of Hi+a, and let ~j+l be the length of/-//+1. Let Sj+I 
be the square with center zj + 1, side length ~i+ 1, and sides parallel and perpendicular 
to Hi+l, and let Dj+I be its interior. Because Hj+~ was chosen so that E3+1--<=8,, 
we know from Section 3 that the two yards corresponding to Hj+x do not intersect 
F, . j .  This implies that the square intersects F,,~ only at the endpoh-ats of Hi+ ~ 
and that D~+lc~F,,~=Hj+ 1. 

It will be convenient for us to make a renormalization. By making a linear change 
of  variables we can map the curve F,,j+~ to a new curve F such that zj+l is mapped 

to 0, Hy+ 1, Hi~ and Hy+~ get mapped to [ - 1 ,  l], [ - 2 ,  2], and [ - 3 ,  3], $i+~ goes 
to the square with side length 6 and sides parallel to the axes, and o "'i+1 and o "j+x -~q_ - -+  

become the domains t2+ and g2_ complementary to F and satisfying 2i6f2+ and 

-2 iE  f2_. The arcs K~ K~ , and Kj+I will be taken to ares A ~ A-~, and A. Let 
/z and 2 denote the measures on F which are associated to the eonformal mappings 
onto f2+ and f2_ that fix - 2 ,  2, and oo. 
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Figure 5 

We need to compare dp/d2 to dw~_~+X/dw "-3+x. Let P,,j+x and 2,.~+1 be the 
measures on F,,~+I which are associated to the conformal mappings onto o-,J+l 
and g2~ j+l which fix -tv,1, [v~l , and oo. By rescaling and then applying Lemma 2.1 
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(with O1 = 1/2, 02 = 1/2), 

1 
< I I  ~j+l -'~l ~n,j+l = 2 v~ m ~ k~pn, j+ 1 

0.9) 
1 

-~l Jl, n,j+l_ <= 21V~I(.o~J+t <= kl~.n,j+ 1 

on the arc of I"n,j+ 1 which joins - [v~l to Iv.l, and hence o n  Kj+ 1. 
Let v and 0 denote the measures on F..i+ 1 obtained by pulling # and Z on F 

over to F.,j+t by the linear mapping which takes F.,j+I to F. Then #..j+l=Cl v 
for some q>O,  because both measures are induced by conformal mappings 
of  the upper half-plane onto O~ j+~ which fix oo, and similarly 2 n'j-bl---~ C2~. Clearly 

cx=p.,j+l(K~176 and c2=2.,j+I(Ky+~)/o(KY+I). Because v(K~ 

o(K~ we havethat  

(4.10) dlt.,i+ x/d2.,~+ l = Q" dv/do, 

where Q' = l~,,j+t(K~176 and hence 

(4.11) (1 +2-I~ (4k~) - t  <_- a '  -<_ 4k~ 

by (4.7), (4.8), (4.9), and the assumption that Q<=I. 
This reduces estimates for F, , i+ t to estimates for F, and we shall reduce further 

to a simpler curve P. This smooth Jordan curve is obtained by taking the arc A and 
adding ( - ~ , , - 3 ) w ( 3 ,  ~)  to it. Thus /~ looks like F inside {z: lx]<=3, lyl<-3}, 
and it looks like the real line outside of that region. Let ~+ and 0_  be  the comple- 
mentary regions of/~,  and let/2 and ~ be the measures on /~ associated to the con- 

formal mappings onto 0_+ which fix -2 ,2 ,  and ~. On A-~ 

1 
k~k2 # <- ~ ~ k~k~.p 

(4.12) 
1 

by Lemmas 2.1 and 2.2, with 0~=1 and 02=3/2. 
Let t be any tooth in A with base vertices a and b, - l < a < b < l .  Let Xo= 

(a+b)/2, C = X o - 2 N ( b - a ) / 3 ,  and d=xo+ 2N(b-a) /3 .  (Recall that N=Iv~l/1440 
is the number of  steps of  length ( b - a )  taken between teeth.) Denote 
by/2 ~d and ice the measures associated to the eonformal mappings onto O+ which 
fix c, d, and co. Then/2~a and ~ are constant multiples of/2 and ,~, and hence 

/2(.4(C, d)) /2~d and ~. ~.(-4(c, d)) ~d, /2 = d)) = . z % & ,  d)) 
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where A(c, d) denotes the arc of F which joins c and d. By definition ~Sa(A(c, d))= 
#*d(X(c, d)), and 

#(d( , ,  ,0) <__ 
k~'2 ~ ,~(d(c, d)) 

by Lemma 2.3, with 

(4.13) 

where t . -2<  -<v2 '~3 : r = , ~ 3 -  

o 4( 1 I 3 = 3  - 1 - ~  ' and a rescaling. Therefore 

d#/dl = r d#*a/dI ~d, 

On the other hand X(a)-l<=d~r by Lemma 2.5 and a linear change 
of  variables. Thus, by (4.12) and (4.13), 

(k 4 k~ k~ X(a)) --1 "<= d#/d,~ <= k 4 k~ k~ X(a) 

on A ~ which is equivalent to 

- 1  <_- &/do =< 

on K~ From (4.10) and (4.11) it follows that 

(4.14) (lOk~k~k~X(cc)X,) -1 <- dl~,,i+l/d2,,y+~ <= 4k~k~k~X(oO 

on K~ and hence (4.9) implies that 

(4.15) (lOk~k~k~X(~)X,) -a <= dco"4J+a/doJ~ ~+x <= 4kS, k~k~X(o~) 

on Ko+1. Thus (4.5) and the right side of (4.6) are valid on K~ 
Thus we are left with showing that the left side of (4.6) holds on C,+INK~ 

i.e., on the union of the nodal neighborhoods of the teeth in K~ Let tj+x be an 
arbitrary tooth in o Ky+~, and let t denote the corresponding tooth in A. Let a, b, c, 
and d have the same meaning (with respect to t) as before. 

If  we make a linear change of variables such that a goes to - 1, b goes to 1, 
and the upper half-plane is preserved, then ze wilt be transformed into a curve to 

~d cd > 8 ~ ~ N(t) if a is small enough. which Lemma 2.6 applies. Thus d~ /d~ = lOklk, k3 on 
By (4.12) and (4.13), dp/d2 >= 10k~ on N(t), or equivalently, dv/do >= 10k~ on N(tj+ 1). 
Hence 

(4.16) dco~J+~/dco"_d+~>=X21 on N(tj+O, 

0 by (4.10) and (4.9). Because this is true for any tooth tj+l on K}+~, (4.6) is valid 
0 on all of  C,,+ICIK~+v 

Thus F,,j satisfies all three of the desired conditions. This recursive construc- 
tion yields the curve F,,e=Fn+I with the desired properties, and so we have also 
finished the recursive construction of  the sequence {F,,}. This completes the proof 
of  the theorem stated in Section 1. 
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