H-+BUC does not have the best approximation
property

Carl Sundberg

§ 1. Introduction

Let L= denote the usual Lebesgue space of functions on the unit circle
[|z]=11 and let H> denote the bounded analytic functions on the unit disc [|z]<1].
By identifying functions in H® with their boundary values we may regard H®
as a closed subalgebra of L. The closed algebras between H® and L~ are
called Douglas algebras and have been studied extensively ([3], [4], [5], [9], [11], [14],
[15]). For background and general information on Douglas algebras see [6] and [13].

Let C denote the space of continuous functions on the unit circle. It was
shown by Sarason [10] that the linear span H=+C is a Douglas algebra. In fact
it is the smallest such algebra properly containing H*; see {7]. In [12], Sarason
asked whether H=+C has the best approximation property, i.e. whether given any
feL™ there existed a g€ H=+C such that

If—gle=d(f, H=+C) sz inf {| f—gl»: geH=+C}.

This question was answered affirmatively by Axler, Berg, Jewell, and Shields [1],
who then raised the question of whether all Douglas algebras possess this property.

A subsequent paper of Luecking [8] provided a simpler proof of the H”+C
case using the theory of M-ideals. In an unpublished manuscript, Marshall and
Zame give a very simple proof of this case and also give many interesting examples
of Douglas algebras possessing the best approximation property. Another such
example is given by Younis in [16].

In this paper we answer the question for general Douglas algebras negatively,
our counterexample being a certain “natural’” Douglas algebra. In order to describe
and work with this algebra it is convenient to move over to the real line R and the
upper half plane 4={z=x+iy: x, y€R, y>0}. Henceforth in this paper L= and
H= will refer to the corresponding function spaces on R and 4. Let BUC
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denote the space of bounded uniformly continuous functions on R. It is shown
by Sarason [11] that H=+BUC is a Douglas algebra, and this is the algebra which
we will show fails the best approximation property.

The following definitions and notations will be used. For feéL” and z=
x+4iy€A we define the Poisson integral of f at z by

PIf1(2) =—n1" fwm;izjy—zf(f)df;

then P[f] is harmonic in 4 with boundary value f, and if f€e H* then P[f](z)=
f(@. For z,weAd we define the pseudo-hyperbolic distance between z and w

A

w . .
by Q(Z—W)Z‘ —i. For an interval ICR and a function /' on R we define
Z~W

Var; (f)=sup, . crlf(x)—f(x2)| and |[fl;=sup,¢,|f(x)]. We denote the length
of I by |I]. Finally we will use the following facts, the first of which is shown by
Sarason in {11] and the second of which is an easy exercise with the Poisson integral
formula: if f,gc H*+BUC then

sup |PLfgl(x+iy)— PLf1(x+ip) Plgl(x+ ) -0 as y - 0;

and if f€BUC and O<x<1 then
sup {|{P[f1(W)—P[f1(2)]: o(z,w) =%} -0 as Imz — 0.

Other information about H=+BUC is developed in [11] and in Exercise 8, Chapter
IX of [6]. ;

It is a pleasure to express my gratitude to the Mittag—Leffler Institute for
their hospitality and support during the time this research was conducted.

§ 2. Theorem. H=+BUC does not have the best approximation property.

Proof. First, a bit of motivation for the construction. Returning to the unit
circle for a moment, Marshall and Zame pointed out that (H=+C)/H> has
continuous best approximations, i.e. given f€L* such that d(f, H*)=14¢ and
d(f, H*+C)=1, there exists h€¢C such that d(f—h, H*)=1 and |h].=5(e),
where 6(e)~0 as ¢—~0. We now will do a preliminary construction whose essential
point is that this property fails in H=+BUC, and the theorem will then follow
easily.

Let &, R=8,n be given positive numbers — we are thinking of ¢ and # as
being small and R as being large. For k=1, 2, ... we pick widely spaced intervals
LCR, all of length 7. Let Lcl,cl, where I, I, and I, have the same mid-
point, |I|/|l]~ < rapidly as k-, and |I/—|J,| is constant. We choose all these

intervals so that the [;’s are disjoint. Denote the midpoint of I, by x;.
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Pick x very close to 1, O<x<1, pick 8;>0 to be small numbers such that
0;,~0 as k—co, and define ={x+i5,: xcL}. Let {z,},__y,_ v bea maximal
set of points on the line /, having pseudohyperbolic separation of adjacent points
being equal to %, and such that z,,=x,+:5,. Thus the points {z,,} are distributed
symmetrically with respect to the line Re z-xk Define the finite Blaschke product

b, with these points as zeros: by(z)= ] _ N . Then from the symmetry of

Z'_n

the {z;,} it follows easily that b,(x;+iy)=0 for all y=0. Define w,=x,+/ —— 320R

Now set b=]],~ by, S@=]]= o . Standard methods easily show that
—W

k
both products converge uniformly on compact subsets of AUR and define Blaschke

products if the intervals are widely enough dispersed. Clearly S¢BUC. It is also
easy to check that if the [’s are widely dispersed then |1 —b(w,)|<1 Vk, and if
in addition |[;|/|l;|~<> fast enough (where “fast enough” will depend on the
choice of the §s), then |1—b(x)|<1/2¢ for x¢ul.

If » is chosen close enough to 1, the §,’s are all small enough, and the
I’s are widely enough dispersed, then the set {w,}u{z;,} will be an interpolating
sequence with interpolation constant close to 1 (see [2] and [6], Chapter VII); what
this means for us is that if complex numbers o, f;, are given for k=1 and
—N,=n=N, and [¢|=1, |f,|=1, then there exists ¢cH*= such that [|¢].=
14+¢/2 and o(w)=0, ¢(Zin) =P B

Because of the conditions imposed on the lengths of the intervals I, I, I,
we can find y¢BUC such that 0=y=1, y=1 on (), J,, and y=0 off (", f,. Then

d(xSb~yS, H*) = d(x—xb, SbH*)
=|1-»A-b)|o+d(1—b, SbH=).

The first term is bounded by 1/2¢ since if x€R, 1—x(x)=0, then x¢ ), I,, hence
1 —~b(x)|<¢/2. To estimate the second term we write

d(1~b, SbH=) = inf |1—b—Sbgl.
= inf (gl 9 () = 1=b (), @ (Gin) = 1—b(5) = [} =14~

by the above comments and the fact that |1 —b(w,)]<1. Hence d(3Sb—xS, H=)<
1+e.

What we have done so far has been to start with a function having distance 1
from H®=, namely xSb, and then to change it by the large BUC function xS
to get a function whose distance from H®™ is only slightly greater than 1. The
point of what we will do next is that it is impossible to get back to a function having
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distance 1 from H* by adding a small BUC function. Actually we need a local
version of this fact.

Assume, to get a contradiction, that there is a function h¢BUC and a geH>
such that [A]|.=R, | gl-.=R, Vary (h)<1/2 for all k, and ||x.§l3—x§—h—g||;k§1
for all k. Define h=h-h(xy), gx=g+h(x;). Then |hl.=2R, | gl-=2R,
Ilhkllzkél/l and

1x5b—xS—h—gly, = |ISb—S~h— gz, = |1 —b—Sbh,—Sbgilr,,
so that |1 —-b—Sbh,—Sbg,| =L Fixing attention on a point z;, we write
1_b'—Sbhk_Sbgk = 1_b*“P[hk](an)Sb—ngb”—[hk_P[hk](an)] Sb.

Now #—P(h]J(z.,)=h— P[hl(z,), and since A¢BUC and Imz,=d,—~0 as
k- we have for z satisfying o(z, z,,)=x that

|P[(h~P[1] (7)) SB] (2)| = |P[(h— P[H](2:,)) SB] (2)]
= |P[hSbI(2)— P[h)(z1) S(2) b(2)| = | P[hSD](2)~ P[] (z) P[Sb](2)|
+1P[h](2)— PRI (z:)| 1S )] 1B (2)] < %
where A,—~0 as k—oo,

Also since 6,0 and |I|/|[,|] > as k—oo, we have by the Poisson integral
formula that (|l—b—Sbh,—Sbg, ||1k§1 implies that

sup {|P[1—b—Sbh,—Sbgl(2)|: 0(z, zxn) = 2} = 1+ 4
where A;—~0 as k-, Hence
sup {[1-b(2)~Ph](zu) S(2) b(2)— g (D) S(2) b (2|: ¢(2, zi) = %}
= sup {|P[1—b—P[h](z,)Sb—g, SbI(2)|: 0(z, Zpy) = %} = 1+ +4; — L.
Writing  x,,=Re z,,, define
Bin(2) = b(20+ X1n)y Gin(2) = 1+ P[] (2n) S (285 + Xp) — 81 (261 + i) S (285 + Xicr)-

We then have that B,, is a Blaschke product for which |By,(?)|=|b'(z)|d 1s
bounded below by some positive constant not depending on k,n (since {z}
is an interpolating sequence, see Chapter VII of [6]), G,€ H™, |Gl =1+4R, and

sup {|1—B,,(2)G,(D|: 0(z, 1) = x} = 1+ A+ 1.
A simple argument based on normal families and the open mapping theorem now
yields A;—~0 such that sup {|Gy,(2)]: ¢(z, /)=x}=4;. Hence
1+P)(z) S~ (D SE < X if (2, zi) < %
Then for such z,
Pl1+h S+ g.S1(2) = 1+ Ph](z) S(2) + £ (2) S(2)]
+1P[hS1(2)— P[1d(2) S () + |P[1](2) — P[] (zin) | S (2)].
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The first term is bounded by A;, and the arguments we have used show that the
second and third terms are bounded by numbers 4;, 4;” which goto 0 as k—ce,
since he BUC. Hence for k large enough, |P[1+h,S+g.S1(2)|<1/16 for z¢l,.
The Poisson integral formula (on the line Imz=34,) together with the choice of
w, and the facts that [[1+/4,S+gSle<5R, [Mle<2R, and |kl; =1/2 now

implies that
1 9
IP[1+hkS+ng](Wk)l<§and [Pl S1(wi| =< 1¢-

This leads to a contradiction since
P[1+h S+ g, S1(wy) = 1+ Py S](wy).

(It is of interest to note the similarity at this point to the example at the end of Sec-
tion 3 of [15].)
We have thus shown that if g€ H=, h¢ BUC, | gll.=R, ||h]|..=R, and

lxSb—xS—h—gly, =1 forall k,
then
Vary, (h) = % for some k.

Now find g€ H= such that |ySb—3S—gll..=1+¢ and define f=y28b—%25—
xg, so that |fll.=1+e. Clearly ||g[l..=4<1/2 R. Then f is supported in UkI:k
and if F=-—»*S—yg we have that FEH~+BUC and |f—F|l.=1. If, however,
oeH=, h¢BUC with |¢]l.<1/2 R, [h}l.<R, and Ilf—((p+h)[|1k§1 for all k, then

1=|2*Sb—x*S—yg—¢—hly, = ISb—S~h—(g+)ly, forall k,

o) Var,khzl/2 for some k since g+¢€H> and |g+o¢l.=R.

It is now easy to find a function with no best approximant in H*=+BUC.
For j=1,2,... pick positive ¢;, R;=>8,n; such that ¢;—0, R;~e, 5,~0 as
j—eo. Carry out the above construction to get intervals /< [/ I/ such that |Ij]=n i
functions f; supported in |J, Iz,{ with | fill-=1+¢;, and functions F; supported
in U,j,{ such that F;¢ H+BUC and ||f;—Fjl-=1, and such that if ¢cH",
heBUC with [¢ll.=1/2R;, |h|-=R; and |f;—(¢+h)ly=1 for all k then
Vary (h)=1/2 for some k. This can be done so that |, [\, [ir=0 if j,5,,
so that the supports of the various f;’s are disjoint. Let f=27,f;. Since

¥ F;¢H~+BUC and

“f—2§v=1 FJ’H‘” = HZJN=1 (fj_Fj)'I‘Z';;Nﬂfi“"°

= sup l+g; -1, we have that
j=N+1
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d(f, H*+BUC)=1. However say we could find ¢c¢H=, h¢BUC such that
I f—(p+h)|.=1. If j is high enough then [¢l.<1/2R; and ||hl|.<R;. Then
If—(@+h)ll.=1 implies that ||f;—(¢+h)ll;=1 for all k, which then implies
that Varzy(h)=1/2 for some k. Since |Ij]=#;—~0 this would violate the uniform
continuity of h. This completes our proof.
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