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The question of "What  kind of subspaces must a nonreflexive Banach space 
X have?" has received a lot of attention. Pelczynski [23] (in 1962) has given the most 
general answer to date: X contains a basic sequence which is not shrinking (and 
hence spanning a nonreflexive space). For special cases more is known. Johnson 
and Rosenthal [8] have shown that X and X* contain reflexive subspaces if X** 
is separable. (This was extended to the case when X**/X is separable by Clark [2].) 
In another direction, Davis and Johnson [5] have shown that if X**/X is infinite 
dimensional then X contains a basic sequence that spans a nonquasireflexive sub- 
space. Perhaps the main reason for this interest are the following two long open 
questions: 

(1) Does each Banach space contain an unconditional basic sequence? 
(2) Does each Banach space contain a subspace isomorphic to c0,/1 or to a reflexive 

space? 

Indeed, James [6] has shown that a positive answer to (1) implies a positive answer 
to (2). And clearly these results are partial answers to (2). 

On the other hand, consider the collection of spaces to which the special cases 
apply. James [7], Lindenstrauss [9], Davis, Figiel, Johnson and Pelczynski [4] and 
the author [1] show how to construct an X so that X**/X is a pregiven Z (with 
restrictions on Z). All these constructions depend on reflexivity or quasireflexivity 
in a strong way and the constructed X has lots of quasireflexive subspaces. 

This paper attempts to unite these results. It is shown that if X**/X is separable 
then each element of X**/X is "reachable" by an order one quasireflexive sub- 
space ZcX ,  so that Z has a shrinking basis (Theorem 8). I f  X** is separable, 
both X and X* have subspaces and quotients which are order one quasireflexive 
with bases (Theorem 9). And if X* is separable then X has a nonreflexive quotient 
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with a basis (Corollary 10). Thus most of the known results about reflexive sub- 
spaces in the first paragraph now follow from the 1957 paper of Civin and Yood [3] 
(the result is contained in Corollary 11). However, as Newton, we stand on giants, 
we use these earlier results to obtain our results. 

Define a Banach space X to be somewhat quasireflexive (resp. quowhat quasi- 
reflexive, somewhat reflexive, quowhat reflexive) if each nonreflexive subspace 
Y (resp. nonreflexive quotient, any subspace, any quotient) has a further subspace 
(resp. quotient, subspace, quotient) which is order one quasireflexive (resp. ditto, 
reflexive, reflexive) with a basis. It is convenient to use these notions in stating 
theorems. Note that question (2) above can be equivalently stated as 

(2') Does each nonreflexive Banach space contain an isomorph of c o or /1 or 
must it be somewhat reflexive? 

This question is implied (for positive answers) by 

(3) Does each nonreflexive Banach space contain an isomorph of c o oi /1 or must 
it be somewhat quasireflexive? 

Furthermore, with the exceptional case of X*, when X**/X is separable, but 
X is not separable, each known positive answer to (2) or (2') has a positive answer 
to (3) as well. 

There seem to be two ways to look at these results. Either "Quasireflexive 
spaces abounded in nature!" or "These spaces are all rather special". We leave 
to the reader this decision. 

w O. Preliminaries 

Our notation is fairly standard and generally follows that of [10] where unde- 
fined terms and unproved statements may be found. In particular, we write (x.) 
or (x,), for (X,)n=I,~.X . or ~nX, for ~ = l x ,  and [x,] for the dosed linear 
span of (x,). Continuous duals, biduals and triduals of  X are written X*, X**, 
and X*** respectively. Our main departure for convention is that we do not require 
that a basis (x,) satisfy IlXnll = 1, but require the weaker condition that 0 < i n f l l x . I I  <-- 

s u p  IEx.l[ < co. 

A sequence (x,)EX is a basis if for each xEX, there is a unique scalar sequence 
(a,) so that x = l i m N ~ c t ,  x . .  Equivalently, there is a constant K so that 

for all (~n), p, q and r. If  K = I ,  then (x,) is said to be bimonotone. (Monotone 
is K = 1 when p is restricted to be one.) A space X with a basis can always be 
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renormed so that the basis is bimonotone. A sequence (x , )cX  is a basis sequence 
if it is a basis for [x.]. 

If (x,) is a basic sequence, then define (x.) LxM to be the space of  all scalar 
sequences (~,) so that 

( , )  sup lieu =.x.II 

We will often write the sequence (~,) as the (formal) sum ~ a , x . .  If  (x,) is mo- 
notone the left side of ( , )  will give the norm on (x.) rxM. (Otherwise it is an equivalent 
norm on [x.] which is monotone.) 

The basic sequence (x.) is boundedly complete if [x,]=(x.)  TM. The basic 
sequence (x,) is shrinking if and only if the sequence of coefficient functionals 
(x*) is boundedly complete. Note that . ,,rim (6,) is isomorphic to [x,]* for any 
basic sequence (x,). If  (x.) is shrinking then [x,]** is isomorphic to (x.) TM. 
Note [x.] is reflexive if and only if (x,) is both shrinking and boundedly complete. 

A space X is (order k) quasireflexive if X**/X is finite dimensional (k dimen- 
sional). A basis (x.) is k-shrinking (k-boundedly complete) if (X.*)rIM/[x.*] 
((X.)UM/[X.]) is k-dimensional. For notational reasons we will assume that quasi- 
reflexive implies nonreflexive. 

Finally, we include a result of  Pelczynski [13] (or see Marti [11, pp 75, 58]). 
For readability, we include an outline of the proof. 

Lemma 1. I f  (x.)~X, x**EX**\X and x.-~x** in the a(X**, X*) topology, 
then (x.) has a subsequence which is basic. 

Proof. Since (x**-x.) is a weak-star null sequence and X* norms X**, 
a minor modification in the usual Mazur product construction yields a basic sub- 
sequence. Thus we may assume the whole sequence is basic and x l=0 .  It P is 
the projection of  [x**-x . ]  onto the span of x * * - x l = x * * ,  then T=I-P:[x .]~-~ 
[x**--x.]~ is one-one and onto. Hence (x.)~ is basic, since Tx. =- (x**-x . ) .  

w 1. Bimonotone basic sequences 

This section is mostly preliminary in nature. However it is the largest part of  
the paper and many of the results may be of  interest by themselves. 

Lemma 2. I f  (e.) is a bimonotone basis, then the quotient space (e.)LIM/[e.] is 
(e.) uM modulo the equivalence relation 

Z anen "~ Z fine. r limlim HZ ~  = o 
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with norm given by 
[]~' a.e.][ -- lism lim IIZ~ =.e. II. 

Proof. Straightforward. 

Remark. Note that bimonotoneness is required to obtain the quotient norm 
isometrically. 

Lemma3. Let (e.) be a basis with coefficient functionals (f.). Suppose 
further that .~e.C(e.) T M  and (fn)UM is separable. Then there is an increasing 
sequence oJ'integers (N(i)) with N(0)=0 so that i f  

bi = Z ~ ]  )- 1) +1 e,, 
then (bi) is shrinking. 

Proof. Assume (f,)LlM\[f,] is non-empty else there is nothing to pIove. 
Let (Om)E (f,)LIM be a countable dense subset. The method of proof is to diagonalize 
subsequences of subsequences of...etc, to obtain the (N(i)). 

Indeed, let (ci) be the coefficient functionals to the (bi) and J:  [bi]-~[e,] 
be the injection. Then J*:(f,)Lira-~(Ci)UM is the quotient map. So we want 
J* to map each Om into [ci]. For then (ci)LIMEj*((fn)LIM)E[Ci] and thus (bi) 
will be shrinking. 

Thus it suffices to show that for each Om and any subsequence (M(i)), there 
is a subsequence (P(i)) so that for any further subsequence (N(i)) then J*(Om)E[Ci]. 
To see that this can be done, observe ([[~M(o e.[[)i is bounded so that (Ore(Z1M(i) e.))i 
has a convergent subsequence. Thus pick P(i+ 1) (for large i) so that 

(~,P(i+l) 2_~. 
m~z.ap(i) +1 en)] < 

It is straightforward to complete the proof. 

Proposition 4. I f  (e,) is a bimonotone basis with (e,) uM separable and 
~en6(e,)  LIra, then there is an increasing sequence of integers (N(i)) with N ( 0 ) : 0  
so that i f  

b i : Z ;{~) l )+ l en  
then (b.)LIM=[{Zb,}u(bi) ]. 

Proof Identify (bi) T M  with the obvious subspace of (e~) LIM. Suppose 
0C(e.) uM which is not in the span of ~e~+[e.].  We will find an increasing function 
f :  N ~ N  so that if (N(i)) is an increasing sequence of integers with N(0)=0 and 
so that (N(i+l)>=f(N(i)) is true for large i, then 0 will not be in (bi) Ll~a. So 
that a diagonalization will complete the proof, f must be chosen so that 
dist (0, (bi) Lua) is "large". 

Let Z=(e~)HM/[e~] and let ~0: (e.)LIM~z be the quotient map. Let W= 
[q~(2e.)] in Z and let K=dist(~p(0), W) in Z. Since O~2e~+[e.],K is positive. 
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We show how f can be chosen so that 

( # ) dist (0, (bi) LIM) > 1s 

Write O=•O.e .  and let a = Z e  . .  Let S=llo-]l~suplle.[] and s=inf[le.H>O. 
6 m Let ~>0 to be determined later. Choose { t}t=l to be (e/S)-net in the scalar set 

{~: I~I<--(K+IIOII)/S}. 
For each t, ILq~(O)=cp(Sta)l[z>=K. Lemma 2 implies 

lim IIz  <0 n-- 5), e. II >= g 

T h u s  for each positive integer N, we can find M ' = f ( N )  so that for all l<-t<=m 
and M =~M' 

I IZL1  (~  > g - ~ .  

This completes the construction of the function f. Let (N(i)) and (b,) be the 
resulting objects. 
Consider El  : 

If  IAI>(K+IIOII)/S, then since 

IIZ~Z,+~0.eoll <--II01t and II~,Z~IL1)e.ll => I~,ls 

we have Ei>K. On the other hand if II~iI<=(K+IIOII)/S, there is a t with IA-Sd< 
e/S and hence Combining with (+)  yields E i > K - 2 e  
for large i. Thus if ~flibiE(bi) LIM, then 

I I 0 - Z  [l,b,[I ~ lifo(0)- ~o ( Z  fl,bO[[z >= lim supE~ _-> K - 3 e .  
This completes (#). 

The diagonalization goes as follows. Let fm be the function for (#) for 
O,,E(e,)LIM\[{~e,}u(e,)],  where (Ore) is dense in this subset. Let f :  N ~ N  be 
defined via f ( n ) = m a x  {f,,(n): 1 <=m~n}. This function f will exclude all unwanted 
elements. For if 0 and K are as above, choosing m so that IlO-O,,ll<g/4, yields 

dist (0, (b,) HM) > 3K/8 - K/4 > O. 

Obviously ~ b i = ~  e,E(b,) LIM, 

Corollary 5. I f  (e,) is basis which is not boundedly complete but (e.) L~M is 
separable, then there is a block basic sequence (b,) o f  (e,) with 

(hi ]LIM = [ { Z  b,}w(b,)]. 
Proof By renorming, (e.) can assumed to be bimonotone. If  ~ / / . e . E  

(en)LiM/[e.], then for some (N(i)) with N(O)=O 

bi S'N(i) [3.e. : ~-~N(i-1) +1 

will have ~ biE(b~) LIM. The proposition can now be applied. 
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The dual result to Proposition 4 is much easier to prove. 

Proposition 6. I f  (e,) is a basis with coefficient functionals (f.) so that (f.)LIM 
is separable and ~ f .  E (f,)rxM, then for some subsequence (bi) of  (e.) with coefficient 
functionals (ci), (q)LIM= [ { 2  C,}U(C~)]. 

Proof. If O=~O,f.~(f ,)  LIM, then for any subsequence of the integers (M(i)) 
we can find a further subsequence (N(i)) so that 

(1) Limi0N(0=L and 
(2) lOmo-Ll<2 -i, for large i. 

Doing this for a countable dense set in (f,)riM and diagonalizing to obtain (N(i)) 
that satisfy (I) and (2) for each element ot the dense set. 

Let bi=eN(o and q~: [bi]~[e,] be the injection and hence q~*: (f.)LIM~(ci)LIM 
is the quotient, By the above a dense set of (f.)r~M gets mapped into [{z~ c,}w(c,)], 
hence everything does. Clearly z~ ci=q~*(~f,)C(q) L~M- 

Corollary 7. I f  (e,) is a non-shrinking basis and [e,]* is separable, then there 
is a block basis sequence (bi) of (e,) with coefficient functionals (q) so that, 
(c,)L'-= [ { z  c,} ,_, (c,)]. 

Proof. Assume (e.) is bimonotone by renorming and let (fn) be the coefficient 
functionals. If Z#.A~(U.)L'~\[U.]. Choose (U(i)) and (~.) so that if d~= 

h _~N(O ~,e. then llbill=l, the (l[d~[I) converges to S'~(i) fl.fn and ~i-~m~-,)+~ ~-.~N(i-1) + 1 

a nonzero and (b i, di) is biorthogonal. Thus it (c~) is the sequence of coefficient 
functions to (hi) we have ~ciE(ci) LIM and (ci) LIM as a quotient of (fn) uM is 
separable. The proposition completes the proof. 

Remark. There is a nice duality here. Let us say X has a minimal shrinking 
basis if it has a shrinking basis (e,) with (en) LxM= [{~e,}u(e.)] .  I fXhas  a minimal 
shrinking basis, then X* has a minimal shrinking basis and there is a space Y with 
a minimal shrinking basis with X isomorphic to Y*. 

Indeed, if (f.) are the coefficient functionals to the minimal shrinking basis 
(e.), then (g.) is a minimal shrinking basis for X* where gl=j~ and g . = f . - f . _ l  
for n=>2. (That (g.) is a basis is proved similar to the construction in Theorem 8 
below. The other conditions are straightforward.) 

Now (Z .  = e~). are the coefficient funetionals to (g.). Furthermore, ([g217)= 
[ ~  e~]~=~ is isomorphic to X=[e.], since their intersection is codimension one in 
both spaces. 
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w 2. Results and applications 

Theorem 8. I f  X**/X is separable and x**EX**\X, then there is a shrinking 
basic sequence (e.)cX so that 

(1) [e,l**=[{Ze,}u(e,)], in particular [e,l is order one quasireflexive, and 
(2) S**(~en)=x **, where S is the injection: [e,,]~X. 

Proof Let X and x** be given as above. By McWilliams [12, p. 122], there 
is a bounded sequence (Xn)CX so that x,~x** in the o'(X**, X*)-topology. 
Let y*EX* so that x**(y*) = 1. Using a small perturbation we may assume y*(x,) = 1 
for each n. By Lemma 1, we may also assume (x.) is basic. 

Let el=x1 and e ,=x , - x ,_ l  for n > l .  Clearly ~;ei~x** in tr(X**,X*). 
We claim (e,) is also basic. Note [e,]=[x,]. If  xE[x,] is written ~ e , x ,  then 

( l l 2 ;  =. x.l l) -. 0, hence f,(x)=y*(Z~=~ixi)-~O. Let fl,=f.(x). Now 

X = lim Zx N C~iX i = lira ~ f f  (fi(x) --fi+l(x))x, 

= lim (Zf f /~ , e , -  flN+l XN). 

Thus x= l im  ~ / ~ e , .  Since (e~,fi) is biorthogonal the sequence (/~) is the unique 
one so that x=~[3ie i. Therefore (ei) is basic. 

Since (e.)cX, (e.)LlM/[e.] is a subspace of  X**/X and hence [e.]** and 
[e.]* are separable. Thus by Lemma 3 we may assume (e.) is shrinking and still 
have ~ e i ~ x * *  in a(X**, X*). Thus Proposition 4 implies that in addition we 
may assume (e,)LIM= [{~e~}u(e~)]. This completes (1), (2) follows since ~ a N e ~ e l  
in a([e.]**,[e.]*) and S** is weak-star continuous. 

Theorem 9. I f  X** is separable, then both X and X* are both somewhat 
quasireflexive and quowhat quasireflexive. 

Proof We made assume the spaces are nonreflexive or there is nothing to prove. 
Now X has such subspaces and X* such quotients by Theorem 8. So we turn to 
subspaces of  X*. Let X • be the subspace of  X*** which annihilates each element 
of  XcX**. Let x***EXXN,{0}, and hence by McWilliams [12, p. 123], there is 
a bounded (x*)cX* so that x*~x*** in the a(X***,X**)-topology. Since 
x***EX • x * ~ 0  in the a(X*,X)-topology. Let y**EX** so that x***(y**)=l. 
Again we may assume y**(x*)= 1 with a small perturbation. 

Now [I0, pp. 11, 13] implies that by passing to a subsequence we may assume 
(x*) is both weak-star basic and boundedly complete. Let (f ,)  be the coefficient 
functionals to (x*) in [x*]*. For x*E[x*] and integer N, let x*=~a.x* and 
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note 
[(XIN fn)(X*)] -~- [(X1N fn)(X1 N ~nX*n)] = [y** (~1 N ~nX*n)] 

Y** [[Z~ x~*[[ < K[]y** ][ - I1 II ~n = I[ X*II, 

where K is the basis constant of  (x*). Thus ~ f ,E( f~ )  LIM and hence Proposition 6 
implies that we may assume (f,)L,M= [{Zf ,}w( fn ) ]  by passing to a subsequence. 

We have (x*) is weak-star basic, boundedly complete and 1-shrinking. Hence 
X has a quotient with a shrinking basis (e,) whose coefficient functionals are (x*). 
Clearly [en] and [e~]* are order one quasireflexive. 

Remark. In some sense we can still reach x*** as it remains the a(X***, X**)- 
limit of  (x*). 

Corollary 10. I f  X is nonreflexive and X* is separable, then X has a non- 
reflexive quotient with a shrinking basis. 

Proof. If  l i is not a subspace of  X*, then each element of  X*** is the weak- 
star limit of  a sequence in X* [10, p. 101]. Thus we follow the proof  of  Theorem 9 
to obtain (x*) boundedly complete and weak-star basic, which gives us our quotient 
[10, p. 11]. The quotient is nonreflexive since the above proof  of the theorem shows 
(x*) isn't shrinking. 

If  /1 is a subspace of  X*, then Co is a quotient of  X [10, p. 104]. Clearly 
c o isn't reflexive and has a shrinking basis. 

Remark. This seems to be the most general result about  the existence of  non- 
reflexive quotients with basis in the literature. 

Corollary 11 (Civin and Yood [3]), I f  X is quasireflexive, then X is both 
somewhat reflexive and quowhat reflexive. 

Proof. If  (e~) is shrinking and (e , )L '~=[{Ze,}u(e~)] ,  then (e2~) spans 
a reflexive subspace. An appeal to Theorem 8 shows somewhat reflexivity. The 
quowhat reflexive property follows by duality. (See the remarks at the end of  Sec- 
tion One.) 

Corollary 12 (Johnson and Rosenthal [8]). I f  X** is separable, then X and 
X* are both somewhat reflexive and quowhat reflexive. 

Proof. Combine Theorem 9 with Corollary 11. 

Corollary 13 I f  X**]X is separable, then there is a finite or infinite sequence 
(Xk) of  separable subspaces o f  X so that 

(1) Xk+l/Xk is order one quasireflexive with a shrinking basis, and 
(2)  X/[Xk] is reflexive. 



Somewhat quasireflexive Banach spaces 183 

Proof.  Let  (z,) be  dense in X * * / X  and  p ick  Xk+l induct ive ly  T h e o r e m  8 

on X/Xk  SO tha t  ( z , ) k + l ~ X ~ l .  A n d  cont inue  this unt i l  X/[Xk] is reflexive, 

Remark .  This includes  bo th  results  of  S te rnbach  [14] a n d  a resul t  o f  McWi l -  

l iams [12]. 

Corol la ry  14 (Clark  [2]). I f  X * * / X  is separable, then X and X *  are somewhat  

reflexive. 

P r o o f  F o r  X use Theo rem 9 and  Coro l l a ry  11. F o r  X*, i f  i t ' s  separab le  

use Coro l l a ry  12, else use the  dua l  o f  the  subspace  in Coro l l a ry  13 (2). 
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