On additive automorphic and rotation automorphic functions

R. Aulaskari and P. Lappan

1. Introduction

Let D denote the unit disc in the complex plane and let Γ be a Fuchsian group. A function W(z) meromorphic in D is said to be additive automorphic relative to the Fuchsian group Γ if for each transformation $T \in \Gamma$ there exists a constant A_T such that $W(T(z)) = W(z) + A_T$ for each $z \in D$. The numbers A_T are called periods of W(z). A function W(z) is said to be additive automorphic if it is additive automorphic relative to some non-trivial Fuchsian group. An analytic function f(z) in D is said to be a Bloch function if there exists a constant B_f such that $(1-|z|^2)|f'(z)| \leq B_f$ for each $z \in D$. A function f(z) meromorphic in D is said to be a normal function if there exists a constant N_f such that

$$(1-|z|^2)|f'(z)|/(1+|f(z)|^2) \leq N_f$$

for each $z \in D$.

Conditions under which an additive automorphic function is a normal function have been studied by Aulaskari [1], [2]. Pommerenke [6] has given an example of an additive automorphic function W(z) such that W(z) is not a Bloch function but $\iint_F |W'(z)|^2 dx \, dy < \infty$, where F denotes the fundamental region for Γ . In this note the main result is the following theorem.

Theorem 1. There exists an additive automorphic function W(z) relative to a Fuchsian group Γ such that W(z) is not a normal function, W(z) has only imaginary periods, and

$$\iint_{\mathbb{F}} |W'(z)|^2 \, dx \, dy < \infty,$$

where F denotes the fundamental region of Γ .

This theorem will be proved in Section 2, by means of a modification of Pommerenke's method. In Section 3, some important consequences of this theorem will be given.

§ 2. Proof of Theorem 1

The proof of Theorem 1 consists of constructing an appropriate Riemann surface together with appropriate conformal mappings.

Let N denote the set of all positive integers, and let N^* denote the set of all non-zero integers. For each $n \in \mathbb{N}$, let

$$Q_n = \{z = x + iy : |x| < a_n, |y| \le b_n\},\$$

where $a_n \ge 3^n$, $a_{n+1} > a_n + 3$, and $b_n > 0$. Also for each $n \in \mathbb{N}$, let

$$T_n = \{z = x + iy: a_n - 2 \le x \le a_n - 1, y = 0\},\$$

and for $n \in \mathbb{N} - \{1\}$ let

$$T'_n = \{z = x + iy: a_{n-1} - 2 \le x \le a_{n-1} - 1, y = 0\}.$$

Finally, for $n \in \mathbb{N}^*$, let

$$E_n = \{z = x + iy : |x| < a_{|n|}, y = (\operatorname{sgn} n) b_{|n|} \},$$

where sgn n=n/|n|, and let $Q=\bigcup_{n\in\mathbb{N}}Q_n$.

Let S be a covering surface for Q obtained by joining copies of the rectangles of Q_n as follows. Let $Q_n(s)$ denote a copy of Q_n , and let $T_n(s)$, $T'_n(s)$, $E_n(s)$ and $E_{-n}(s)$ denote the subsets of $Q_n(s)$ corresponding to T_n , T'_n , E_n , and E_{-n} , respectively. For each $n \in \mathbb{N}$, let $Q_n(s)$ be slit along the line segment $T_n(s)$ and let $Q_{n+1}(s)$ be slit along the line segment $T'_{n+1}(s)$, and let the upper edge of the slit along $T_n(s)$ be joined to the lower edge of the slit along $T_{n+1}'(s)$ and also let the upper edge of the slit along $T'_{n+1}(s)$ be joined to the lower edge of the slit along $T_n(s)$, so that the two sheets $Q_n(s)$ and $Q_{n+1}(s)$, thus joined, have a local resemblence to the surface corresponding to the function $\sqrt{(z-a_n+1)(z-a_n+2)}$. Thus, $Q_n(s) \cup Q_{n+1}(s)$, joined as indicated, is a two-sheeted surface with points of ramification of order one at the points corresponding to $z=a_n-1$ and $z=a_n-2$. Let $S=\bigcup_{n\in\mathbb{N}}Q_n(s)$, where for each $n\in\mathbb{N}$, $Q_n(s)$ and $Q_{n+1}(s)$ are joined as described above, with no additional identification of points on S. For each $w \in Q_n(s)$, let $\pi_0(w)$ be the point of Q_n to which w corresponds. Thus S is a covering surface for the set Q with the projection map π_0 . On the surface S, a point w is a point of ramification if and only if there exists $n \in N$ such that $w \in Q_n(S)$ and $\pi_0(w) \in \{a_n-1, a_n-2\}$.

Let γ be a free group which is generated by the elements $\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_n, \ldots$. Then each element $\sigma \in \gamma$ has the form

$$\sigma = \sigma_{n_1}^{k_1} \sigma_{n_2}^{k_2} \dots \sigma_{n_p}^{k_p}$$

where each $n_j \in \mathbb{N}$ and each $k_j \in \mathbb{N}^*$. If we define $\sigma_{-k} = \sigma_k^{-1}$, we can take $n_j \in \mathbb{N}^*$ and $k_j \in \mathbb{N}$ in the representation of σ , and we will do this in what follows. For each $\sigma \in \gamma$, let S_{σ} denote a copy of S and if I denotes the identity element of γ we take

 $S=S_I$. Thus if $\tilde{w} \in S_{\sigma}$, we may take $\tilde{w} = (w, \sigma)$, where w is the point of S corresponding to $\tilde{w} \in S_{\sigma}$. Let $R = \bigcup_{\sigma \in \gamma} S_{\sigma}$, where the only identification of points on the surfaces S_{σ} is given by $\tilde{w} = (w, \sigma) = \tilde{w}' = (\tilde{w}', \sigma')$ if and only if either (1) w = w' and $\sigma = \sigma'$, or (2) there exists $n \in N^*$ such that $w \in E_n(S)$, $w' \subseteq E_{-n}(S)$, $\sigma = \sigma_n \sigma'$, and $\pi_0(w) = \pi_0(w') + 2i(\operatorname{sgn} n)b_{1n1}$. Define the projection mapping $\pi \colon R \to \emptyset$ by

$$\pi(\tilde{w}) = \pi_0(w) + 2i \sum_{i=1}^q k_i (\operatorname{sgn} n_i) b_{|n|}$$

where $\tilde{w}=(w,\sigma)$ with $\sigma=\sigma_{n_1}^{k_1}\sigma_{n_2}^{k_2}...\sigma_{n_q}^{k_q}$. It is easily verified that R is a simply connected open Riemann surface with projection mapping π such that the only points of ramification are those of the form $\tilde{w}=(w,\sigma)$, where w is a point of ramification of the surface S, that is, there exists $n \in N$ such that $w \in Q_n(S)$ and $\pi_0(w) \in \{a_n-2, a_n-1\}$.

Let f be a conformal mapping from the unit disc $D = \{z : |z| < 1\}$ onto the simply connected Riemann surface R, and let $W(z) = (\pi \circ f)(z)$. Then W(z) is an analytic function. For $\sigma \in \gamma$, define a mapping $\tilde{\sigma} \colon R \to R$ by $\tilde{\sigma}(\tilde{w}) = (w, \sigma \tau)$ where $\tilde{w} = (w, \tau)$. Since $\pi \circ \tilde{\sigma}(\tilde{w}) - \pi(\tilde{w})$ is a constant, we have that $\tilde{\sigma}$ is a conformal mapping of R onto itself and thus $T = f^{-1} \circ \tilde{\sigma} \circ f$ is a conformal mapping of R onto itself, for any point $\tilde{w} \in R$, the orbit $\{\tilde{\sigma}(\tilde{w}) \colon \sigma \in \gamma\}$ contains no limit point because at most two points of the orbit may belong to a single S_{τ} for a fixed $\tau \in \gamma$. Thus, the collection $\Gamma = \{f^{-1} \circ \tilde{\sigma} \circ f \colon \sigma \in \gamma\}$ is a Fuchsian group. The set

$$F = f^{-1}(S - \bigcup_{n \in \mathbb{N}} E_n(S))$$

is a fundamental set for the Fuchsian group Γ , that is, for each $z \in D$ there exists a unique $T \in \Gamma$ and $z' \in F$ such that z = T(z'). Since F is connected — it is the image of a connected set under the homeomorphism f^{-1} — we call F the fundamental region for Γ .

For $T \in \Gamma$, there exists $\sigma \in \gamma$ such that $T = f^{-1} \circ \tilde{\sigma} \circ f$, so that

$$W(T(z)) = (\pi \circ f)(T(z)) = \pi((\tilde{\sigma} \circ f)(z))$$
$$= w(z) + 2i \sum_{j=1}^{q} k_j (\operatorname{sgn} n_j) b_{|n_j|}$$

where $\sigma = \sigma_{n_1}^{k_1} \sigma_{n_2}^{k_2} \dots \sigma_{n_q}^{k_q}$. Thus W(z) is an additive automorphic function having only imaginary periods.

Let
$$Q_n(S_\sigma) = {\tilde{w} = (w, \sigma): w \in Q_n(S)}$$
 and let

$$Q_n^* = \bigcup_{j \in N^* \cup \{0\}} Q_n(S_{\sigma_n^j}).$$

Then Q_n^* is a connected subset of R and

$$\pi(Q_n^*) = \{ z = x + iy \colon |x| < a_n \}.$$

Further, the set of points of ramification in Q_n^* is a subset of the set

$$\{\tilde{w}\in Q_n^*: \operatorname{Re}(\pi(\tilde{w})) \geq a_{n-1}-2\}.$$

For each $n \in N$, let $z_n \in D$ be such that $f(z_n) \in Q_n^*$ and $W(z_n) = 0$. Then there exists a neighborhood U_n of z_n such that W(z) maps U_n conformally onto the disc $\{t: |t| < a_{n-1} - 2\}$. It follows that $(1 - |z_n|^2)|W'(z_n)| \ge a_{n-1} - 2$ (see, for example, [5]). Since $a_n \to \infty$, we have that

$$\sup \{(1-|z|^2)|W'(z)|: z \in D, W(z) = 0\} = \infty$$

and hence

$$\sup \{(1-|z|^2)|W'(z)|/(1+|W|z||^2)\colon z\in D\}=\infty.$$

Thus W(z) is not a normal function. Therefore, the function W(z) is an additive automorphic function which is not a normal function and all periods of W(z) are imaginary. To complete the proof, we need only choose the sequences $\{a_n\}$ and $\{b_n\}$ such that $\sum_{n=1}^{\infty} a_n b_n < \infty$. Noting that $\iint_F |W'(z)|^2 dx dy$ gives the Euclidean area of the image of the fundamental set F under the function W(z), counted according to multiplicity, we have that $\iint_F |W'(z)|^2 dx dy = 4 \sum_{n=1}^{\infty} a_n b_n < \infty$. This completes the proof.

§ 3. Consequences of Theorem 1

There are a number of important consequences which flow from Theorem 1 and its proof, and we now explore some of these.

Corallary 1. There exists an additive automorphic function W(z) having only imaginary periods such that W(z) is not a normal function but W(z) omits 3 values in the fundamental region F.

Proof. For the function W(z) in Theorem 1, the image of F under the function W(z) has finite area, and so omits many values.

Remark 1. If W(z) is an additive automorphic function such that $\iint_F |W'(z)|^2 dx \, dy < \infty$ and if appropriate restrictions are placed on F (or equivalently, on the group Γ), then W(z) is a normal function (see [1, Theorems 3.7 and 7.2]). In the construction in the proof of Theorem 1, the fundamental region F does not satisfy these restrictions. In particular, the group Γ in the construction is infinitely generated and contains no parabolic transformations.

Definition 1. We say that the harmonic function u(z) is a normal function if

$$\sup \{(1-|z|^2)| \operatorname{grad} u(z)|/(1+|u(z)|^2): z \in D\} < \infty.$$

(Here, |grad u(z)| denotes the length of the gradient vector.)

This definition has appeared in [4].

Corollary 2. There exists an additive automorphic function W(z) such that $\iint_F |W'(z)|^2 dx dy < \infty$ and $u(z) = \operatorname{re}(W(z))$ is an automorphic harmonic function which is not a normal function but $\iint_F (u_x^2(z) + u_y^2(z)) dx dy < \infty$.

Proof. Let W(z) be the function constructed in Theorem 1. Noting that $|W'(z)|^2 = u_x^2 + u_y^2$, we have that $|\operatorname{grad} u(z)| = |W'(z)|$ and hence

$$\sup \{(1-|z|^2)| \text{grad } u(z)|: \ u(z)=0\} = \infty.$$

Thus u(z) is not a normal function. Since the periods of W(z) are all imaginary, the function u(z) is an automorphic function.

Remark 2. The function u(z) in Corollary 2 can be written in the form $u(z)=u_1(z)-u_2(z)$, where both $u_1(z)$ and $u_2(z)$ are non-negative harmonic automorphic functions. To see this, let g be a conformal mapping from D onto the interior of F. Then the function $h=W\circ g$ has finite Dirichlet integral, so h is in the Hardy class H^1 and so $\operatorname{Re} h(t)$ can be written as a Poisson integral of its boundary values. Also, $\operatorname{Re} h(t)=V_1(t)-V_2(t)$, where $V_j(t)$ is the Poisson integral of the boundary values of $\frac{1}{2}\left(|\operatorname{Re} h(t)|-(-1)^j\operatorname{Re} h(t)\right),\ j=1,2$. Now let $u_j(z)=(V_j\circ g^{-1})(z)$ for $z\in F$. For $z\in\partial F$ and $T\in\Gamma$ such that $T(z)\in\partial F$ we have that $u_j(T(z))=u_j(z)$. j=1,2. because u(T(z))=u(z). Thus $u_j(z)$ can be continued harmonically across ∂F to all of D so as to satisfy the relationship $u_j(T(z))=u_j(z)$ for all $T\in\Gamma$, $z\in D$, j=1,2.

Definition 2. We say that the meromorphic function G(z) in D is a rotation automorphic function relative to a Fuchsian group Γ if for each $T \in \Gamma$ there exists a linear fractional transformation S_T , where S_T is a rotation of the Riemann sphere, such that $G(T(z)) = S_T(G(z))$ for each $z \in D$.

Let W(z) be an analytic additive automorphic function having only imaginary periods. Then $G(z)=e^{W(z)}$ is a rotation automorphic function (for which the rotations are all about the origin). If W(z) is the specific function constructed in the proof of Theorem 1 and if $G(z)=e^{W(z)}$, then, since G'(z)=W'(z) when W(z)=0,

$$\sup \{(1-|z|^2)|G'(z)|: G(z)=1, z\in D\}=\infty$$

and thus

$$\sup \{(1-|z|^2)|G'(z)|/(1+|G(z)|^2): z \in D\} = \infty.$$

Hence G(z) is not a normal function in D. This conclusion has not made use of any condition on the sequence $\{b_n\}$, so we are free to choose the b_n 's to suit our purposes. The image of $g^{-1}(Q_n(S))$ under the function G(z) is contained in the sector of the circle with center at the origin, radius e^{a_n} , and central angle $2b_n$, so the area of $G(g^{-1}(Q_n(S)))$ is not more than $b_n e^{2a_n}$. Thus, if we require that the sequence $\{b_n\}$

be such that $\sum b_n e^{2a_n} < \infty$, we will have as a consequence that $\iint_F |G'(z)|^2 dx dy < \infty$. This proves the following result.

Theorem 2. There exists a rotation automorphic function G(z) such that G(z) is not a normal function and

$$\iint_{F} |G'(z)|^2 \, dx \, dy < \infty.$$

Corollary 3. There exists a rotation automorphic function G(z) such that G(z) is not a normal function and

$$\iint_{F} (|G'(z)|/(1+|G(z)|^{2}))^{2} dx dy < \infty.$$

Corollary 3. follows from Theorem 2 immediately from the inequality

$$|G'(z)|/(1+|G(z)|^2) \le |G'(z)|$$

for each $z \in D$. However, a slightly stronger result can be obtained by a minor modification of the function W(z) constructed in the proof of Theorem 1. In place of the sets Q_n we may use the sets $Q'_n = \{z = x + iy : |y| \le b_n\}$ and proceed to construct a Riemann surface R' following the construction as in the proof of Theorem 1. (The only other modification needed in this construction is to remove the restriction $|x| < a_n$ from the definition of the sets E_n and E_{-n} .) Let $W_1(z)$ denote the additive automorphic function constructed using the surface R'. Then $W_1(z)$ is not a normal function, since by the same argument as for W(z) we have

$$\sup \{(1-|z|^2)|W_1'(z)|: W_1(z)=0, z\in D\}=\infty.$$

But in the present construction, the fundamental region F does have parabolic vertices. In fact, the group Γ is generated by parabolic transformations. Taking $G_1(z) = \exp\{W_1(z)\}$, we note that the spherical image of Q'_n under the exponential function is $b_n/6$, so that the spherical image of the fundamental region F under the function $G_1(z)$ has area $\frac{1}{6}\Sigma b_n$. Thus, if we require that $\Sigma b_n < \infty$, then $G_1(z)$ is a non-normal rotation automorphic function for which the fundamental region F has infinitely many parabolic vertices and $\iint_F (|G'_1(z)|/(1+|G_1(z)|^2))^2 dx dy < \infty$.

Remark 3. The result of Corollary 2 (and the previous paragraph) contrasts with results of Aulaskari and Servaldi [3] under which, with some additional conditions on F the condition $\iint_F (|G'(z)|/(1+|G(z)|^2))^2 dx dy < \infty$ implies that a rotation automorphic function G(z) is a normal function. Clearly, the fundamental regions for the constructions in this paper do not satisfy these additional conditions.

References

- 1. Aulaskari, R., On normal additive automorphic functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes, 23 (1978), 53 pp.
- AULASKARI, R., On F₀-normality and additive automorphic functions of the first kind, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5 (1980), 327—340.
- 3. Aulaskari, R. and Sorvali T., Rotation-automorphic functions near the boundary *Math. Scand* 49 (1981), 222—228.
- 4. LAPPAN, P., Some on results harmonic normal functions, Math. Z. 90 (1965), 155-159.
- 5. Pommerenke, Ch., On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689-695.
- POMMERENKE, CH., On inclusion relations for spaces of automorphic forms, Lecture notes in Mathematics, 505, Springer-Verlag, 1976, 92—100.

Received April 6, 1982

R. Aulaskari
University of Joensuu
SF-80 101 Joensuu 10
Finland
and
P. Lappan
Michigan State University
East Lansing, Michigan 48 824 USA