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1. Introduction 

Let D denote the unit disc in the complex plane and let F be a Fuchsian group. 
A function W(z) meromorphic in D is said to be additive automorphic relative to 
the Fuchsian group F if for each transformation TCF there exists a constant Ar  
such that W(T(z))=W(z)+AT for each zCD. The numbers AT are called periods 
of W(z). A function W(z) is said to be additive automorphic if it is additive automor- 
phic relative to some non-trivial Fuchsian group. An analytic function f(z)  in D is 
said to be a Blochfunction if there exists a constant B: such that (1 - [zl a) ]f'(z)I ~=B: 
for each z~D. A function f(z)  meromorphic in D is said to be a normal function 
if there exists a constant iV: such that 

(1--1zI2)lf'(z)l/(l+ [f(z)l 2) ~ N: 
for each zCD. 

Conditions under which an additive automorphic function is a normal function 
have been studied by Aulaskari [1], [2]. Pommerenke [6] has given an example of  
an additive automorphic function W(z) such that W(z) is not a Bloch function but  
ffr [W'(z)I~dxdy < ~ ,  where F denotes the fundamental region for F. In this 
note the main result is the following theorem. 

Theorem 1. There exists an additive automorphic function W(z) relative to a 
Fuchsian group F such that W (z) is not a normal function, W (z) has only imaginary 
periods, and 

ffF Iw'o)l  dx dy < ~ 9  

where F denotes the fundamental region ofF.  

This theorem will be proved in Section 2, by means of a modification of Pomme- 
renke's method. In Section 3, some important consequences of this theorem will 
be given. 
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w 2. Proof of Theorem 1 

The proof  of  Theorem 1 consists of constructing an appropriate Riemann sur- 
face together with appropriate conformal mappings. 

Let N denote the set of all positive integers, and let N* denote the set of  all 
non-zero integers. For  each nEN, let 

Q. = {z = x+iy: Ixl < a., lyl <= b.}, 

where a._->3 ", a .+ l :>a .+3 ,  and b .>0.  Also for each nEN, let 

T.= { z=x+iy :  a . - - 2 < _ - - x ~ a . - - l ,  y = 0 } ,  

and for h E N - { 1 }  let 

T~ = {z = x+iy: a . _ 1 - 2  <- x <= a . _ l - 1 ,  y = 0}. 

Finally, for nEN*, let 

E. =: {z = x+iy: Ix I < al.i, y = (sgn n)bl.i} , 

where sgn n=n/lnJ, and let Q =  U.EN Q.. 
Let S be a covering surface for Q obtained by joining copies of the rectangles 

of  Q. as follows. Let Q.(s) denote a copy of  Q., and let T.(s), T'.(s), E.(s) and 
E_.(s) denote the subsets of  Q.(s) corresponding to T. ,  T ' ,  E . ,  and E_ . ,  respecti- 
vely. For  each nEN, let Q.(s) be slit along the line segment T.(s) and let Q.+~(s) be slit 
along the line segment T~+a(s), and let the upper edge of the slit along T.(s) be joined 
to the lower edge of the slit along T.'+I (s) and also let the upper edge of  the slit along 
T'.+~(s) be joined to the lower edge of the slit along T.(s), so that the two sheets Q.(s) 
and Q.+~(s), thus joined, have a local resemblence to the surface corresponding to the 

function ]/(z-a.+ 1 ) ( z - a . + 2 ) .  Thus, Q.(s)uQ.+l(S), joined as indicated, is a 
two-sheeted surface with points of ramification of order one at the points corres- 
ponding to z=a . -1  and z=a. -2 .  Let S=U.~NQ.(s), where for each nEN, 
Q.(s) and Q.+~(s) are joined as described above, with no additional identification 
of points on S. For  each wEQ.(s), let lr0(w ) be the point of  Q. to which w corres- 
ponds. Thus S is a covering surface for the set Q with the projection map n 0. On 
the surface S, a point w is a point of ramification if and only if there exists nEN 
such that wEQ.(S) and ~0(w)E { a . - 1 ,  a . - 2 } .  

Let 7 be a free group which is generated by the elements ~1, ~ ,  a3, ..., a . . . . . .  
Then each element aE7 has the form 

where each njEN and each kjEN*. If  we define a _ k = a / ~ ,  we can take niEN* 
and kjEN in the representation of a, and we will do this in what follows. For  each 
aE7, let S~ denote a copy of S and if I denotes the identity element of ~ we take 
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S=S~. Thus if # E S . ,  we may take #=(w,  ~), where w is the point of S corres- 
ponding to #ES . .  Let R=U~c~ S~, where the only identification of points on the 
surfaces S~ is given by #=(w,  e ) = # ' = ( # ' ,  a') if and only if either (1) w=w" and 
a = e ' ,  or (2) there exists hEN* such that wEE.(S), w'C=E_.(S), e = ~ . a ' ,  and 
rco(w)=rco(w')+2i(sgnn)bl. I. Define the projection mapping 7r: R + 0 z  by 

(#) = ~r 0 (w) + 2i Xq=l kj (sgn n j) b I',1 

where ~ = (w, a) with r e,~kl a,,k'.., a~q,q. It is easily verified that R is a simply connec- 
ted open Riemann surface with projection mapping ~ such that the only points of 
ramification are those of the form # = (w, or), where w is a point of ramification of 
the surface S, that is, there exists n E N such that wE Q, (S) and 7r 0 (w)E { a , -  2, a , -  1 }. 

Let f be a conformal mapping from the unit disc D = { z :  lz l<l} onto the 
simply connected Riemann surface R, and let W(z)=(Trof)(z). Then W(z) is an 
analytic function. For  trET, define a mapping 6: R ~ R  by t?(#)=(w, a~) where 
#=(w,  z). Since l ro8(#) -Tr(#)  is a constant, we have that 8 is a conformal mapping 
of  R onto itself and thus T=f-loffof is a conformal mapping of D onto itself. 
Further, for any point #ER, the orbit {#(#): aET} contains no limit point because 
at most two points of the orbit may belong to a single S~ for a fixed zEy. Thus, the 
collection F={f -~o~q f :  aET} is a Fuchsian group. The set 

F = f - a ( S - -  U E.(S)) 
n E N  

is a fundamental set for the Fuchsian group F, that is, for each zED there exists a 
unique TEF and z'EF such that z=T(z') .  Since F is connected - -  it is the image 
of  a connected set under the homeomorphism f - a  - -  we call F the fundamental 
region for F. 

For TEF, there exists erEy such that T = f - l o ~ o f ,  so that 

W(T(z)) = (=of)(T(z)) = zr((ffof)(z)) 

= w(z)+2i~ .=l  kj (sgn nj)bl.ji 

where a-- a.a,,kl k,... ak~.,. Thus W(z) is an additive automorphic function having 
only imaginary periods. 

Let Q.(S,,)={#=(w, a): wEQ.(S)} and let 

Q* = U Qn ( SoJ.) �9 
jCN*U{O} 

Then Q* is a connected subset of R and 

zc(Q*) = {z = x+iy:  i x] < a,}. 

Further, the set of points of ramification in Q* is a subset of the set 

~ ~ .  {wEQ.. Re (zr(#)) => a ._a -2} .  
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For each nEN, let z, CD be such thatf(z,)~Q* and W(z, )=0.  Then there exists a 
neighborhood U, of z, such that W(z) maps U. conformally onto the disc 
{t: [ t [ < a , _ l - 2 } .  It follows that (1-[z,l~)lW'(z,)l>-a,_l-2 (see, for example, 
[5]). Since a , ~  ~,  we have that 

and hence 
sup {(1-Izl2)lW'(z)t: zED, W(z) = 0} = 

sup {(1-1zl2)IW'(z)l/(1 + IW[zll2): zED} --~.  

Thus W(z) is not a normal function. Therefore, the function W(z) is an additive 
automarphic function which is not a normal function and all periods of W(z) are 
imaginary. To complete the proof, we need only choose the sequences {a,} and {b,} 
such that ,~=1  a,b,-<oo. Noting that ffF IW'(z)?dxdy gives the Euclidean area of  
the image of the fundamental set F under the function W(z), counted according to 
multiplicity, we have that ffF IW'(z)l~dxdy =4 Z2=~a.b.<~. This completes 
the proof. 

w 3. Con sequences of  Theorem 1 

There are a number of  important consequences which flow from Theorem 1 
and its proof, and we now explore some of these. 

Corallary 1. There exists an additive automorphic function W(z) having only 
imaginary periods such that W (z) is not a normal function but W (z) omits 3 values in 
the fundamental region F. 

Proof. For the function W(z) in Theorem 1, the image of  F under the function 
W(z) has finite area, and so omits many values. 

Remark 1. If  W(z) is an additive automorphic function such that 
f f r  I W'  (z)[ 2 dx dy < co and if appropriate restrictions are placed on F (or equivalently, 
on the group F), then W(z) is a normal function (see [1, Theorems 3.7 and 7.2]). 
In the construction in the proof  of  Theorem 1, the fundamental region F does not 
satisfy these restrictions. In particular, the group F in the construction is infinitely 
generated and contains no parabolic transformations. 

Definition 1. We say that the harmonic function u(z) is a normal function i f  

sup {(1-lzl2)l grad u(z)l/(1 + lu(z)I2): zED} < ~. 

(Here, [grad u(z)[ denotes the length of  the gradient vector.) 

This definition has appeared in [4]. 
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Corollary 2. There exists an additive automorphic function W(z) such that 
f f r  IW'(z)12dxdy < ~  and u(z)=re(W(z)) is an automorphic harmonic function 
which is not a normal function but f fr(u~ (z)+u~(z))dxdy<~. 

Proof. Let W(z) be the function constructed in Theorem 1. Noting that 
t 2 - -  2 2 ]W (z)] -u~+uy, we have that Igradu(z)]=]W'(z)l  and hence 

sup {(1-lzl2)lgrad u(z)l: u(z) = 0} = o~. 

Thus u(z) is not a normal function. Since the periods of W(z) are all imaginary, 
the function u(z) is an automorphic function. 

Remark 2. The function u(z) in Coro!lary 2 can be written in the form u(z)=  
ul(z)-u2(z), where both ul(z) and u2(z) are non-negative harmonic automorphic 
functions. To see this, let g be a conformal mapping from D onto the interior of F. 
Then the function h =  Wog has finite Dirichlet integral, so h is in the Hardy class 
H 1 and so Re h(t) can be written as a Poisson integral of its boundary values. Also, 
Re h(t)=V~(t)-V,(t), where Vj(t) is the Poisson integral of the boundary values 

2 ( l R e h ( t ) t - ( - 1 ) J R e h ( t ) ) ,  ./ '=1,2. Now let uj(z)=-(Vjog-1)(z) for z~F. of 

For  z~OF and TEF such that T(z)EOF we have that uj(T(z))=-ui(z ). j = l ,  2. 
because u(T(z))=u(z). Thus uj(z) can be continued harmonically across OF to all 
of  D so as to satisfy the relationship uj(T(z))=uj(z) for all TEF, z~D, j=  1, 2. 

Definition 2. We say that the meromorphic function G(z) in D is a rotation auto- 
morphic function relative to a Fuchsian group F if for each TE F there exists a linear 
fractional transformation S t ,  where ST is a rotation of the Riemann sphere, such that 
G(T(z))=ST(G(z)) for each zED. 

Let W(z) be an analytic additive automorphic function having only imaginary 
periods. Then G(z)=e w~) is a rotation automorphic function (for which the rota- 
tions are all about the origin). If  W(z) is the specific function constructed in the proof  
of Theorem 1 and if G(z)=e w~'), then, since G'(z)=W'(z) when W(z)=0 ,  

sup ((1-Izt~)la'(z)l: G ( z )  = a, z ~ O }  = 
and thus 

sup {(1-IZl2)la'(z)l/(l + Ia(z)t2): z~D} = ~. 

Hence G(z) is not a normal function in D. This conclusion has not made use of any 
condition on the sequence {b,}, so we are free to choose the b,'s to suit our purposes. 
The image of g-l(Q,(S)) under the function G(z) is contained in the sector of  the 
circle with center at the origin, radius e"-, and central angle 2b,, so the area 
of G ( g - l ( Q ,  (S))) is not more than b, e 2"-. Thus, if we require that the sequence {b,} 
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be such that Sb, e2".< 0% we will have as a consequence that f f r  JG'(z)12dxdy < ~. 
This proves the following result. 

Theorem 2. There exists a rotation automorphic function G(z) such that G(z) 
is not a normal function and 

f f  F IG'(z)12 dx dy < ~. 

Corollary 3. There exists a rotation automorphic function G(z) such that G(z) 
is not a normal function and 

f f v (IG'(z)W(1 + IG(z)[2)) ~ dx dy < ~o. 

Corollary 3. follows from Theorem 2 immediately from the inequality 

[G'(z)l/(a + [G(z)l 2) <= {G'(z){ 

for each z (D.  However, a slightly stronger result can be obtained by a minor modi- 
fication of the function W(z) constructed in the proof  of Theorem 1. In place of  the 
sets Q, we may use the sets Q' ,={z=x+iy:  lyl<=b,} and proceed to construct a 
Riemann surface R" following the construction as in the proof  of Theorem 1. (The 
only other modification needed in this construction is to remove the restriction 
[x[<a,  from the definition of the sets E,  and E_ , . )  Let W~(z) denote the additive 
automorphic function constructed using the surface R'. Then W~(z) is not a normal 
function, since by the same argument as for W(z) we have 

sup {(1-1zl2)lwl (z)l: Wx(z) = o, zED} = oo. 

But in the present construction, the fundamental region F does have parabolic ver- 
tices. In fact, the group F is generated by parabolic transformations. Taking G1 (z)= 
exp {W~(z)}, we note that the spherical image of  Q~" under the exponential function 
is b,/6, so that the spherical image of the fundamental region F under the function 

1 
Gl(Z) has area ~-Sb, .  Thus, if we require that Zb,< 0% then Gi(z) is a non-normal 

rotation automorphic function for which the fundamental region F has infinitely 
many parabolic vertices and f fv (IG[ (z)]/(1 + IGl(z)]2))2dx dy< ~. 

Remark 3. The result of  Corollary 2 (and the previous paragraph) contrasts 
with results of  Aulaskari and Servaldi [3] under which, with some additional 
conditions on r the condition f f v  (la'(z)l/(1 + IG(z)12))2dxdy< oo implies that a 
rotation automorphic function G(z) is a normal function. Clearly, the fundamental 
regions for the constructions in this paper do not satisfy these additional conditions. 



On additive automorphic and rotation automorphic functions 89 

References 

1. AULASKARI, R., On normal additive automorphic functions, Ann. Acad. Sci. Fenn. Ser. A. L 
Math. Dissertationes, 23 (1978), 53 pp. 

2. AULASKARI, R., On F0-normality and additive automorphic functions of the first kind, Ann. 
Acad. Sci. Fenn. Set. A. I. Math. 5 (1980), 327--340. 

3. AULASKARI, R. and SORVALI T., Rotation-automorphic functions near the boundary Math. 
Scand 49 (1981), 222--228. 

4. LAPPAN, P., Some on results harmonic normal functions, Math. Z. 90 (1965), 155--159. 
5. POMMERENKE, CH., On Bloch functions, J. London Math. Sac. (2) 2 (1970), 689---695. 
6. POMMERENKE, CH., On inclusion relations for spaces of automorphic forms, Lecture notes in 

Mathematics, 505, Springer-Verlag, 1976, 92--100. 

Received April 6, 1982 R. Aulaskari 
University of Joensuu 
SF-80 101 Joensuu 10 
Finland 
and 
P. Lappan 
Michigan State University 
East Lansing, Michigan 48 824 USA 


