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1. Introduction and statement of the results 

This work was finished when the author was visiting the Institute Mittag-Leffler in spring 
1981. The support from the Royal Swedish Academy of Science is gratefully acknowledged. 

It was found by Atkinson (see [1], [2]) that the mean value problem for 

(;-)r +it has "more than superficial affinities" with the classical Dirichlet divisor 

problem. 

Let 
I(T) = f f  ~{~ +it)rdt  , 

D (x) = Z.~_x a ( . ) ,  

where d(n) denotes the number of positive divisors of n. In [1] Atkinson reproved 
Ingham's result, viz. 

(1.1) 

with 

(1.2) 

via the formula 

I(T) =- Tlog (T/2z 0 + (2y -  1) T+ E(T) 

E(T) << T 1/~'+~, 

I(T) = 27~D (T/2n) + O (T 1/2 +"). 

(Atkinson's proof is also presented in Titchmarsh [11], pp. 120--122.) An application 
of Dirichlet's formula 

(1.3) D(x) = x log x +(2~-- l )x  + A (x) 

with the elementary estimate A (x)<<x a/2 yields now (1.1) - -  (1.2). In (1.1) and (1.3) 
denotes Euler's constant. 
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The error term A (x) in (1.3) can be given by a formula of Voronoi, which in a 
truncated form reads as follows (see Titchmarsh [11], eq. (12.4.4)): for l<=N<<x 

(1.4) A (x) = (n1/2)-I x~/~ Z,~_~v d(n) n-3/4 cos (4n ~ -  ~/4) + O (x 1/2 +*N-~/2). 

In [2] Atkinson proved an analogous result for E(T). Let 

c  -1"tc 1'2 
(1.5) e(T,n)=[l+-~-~) i[--~n) a r s i n h [ ( - ~ )  j j  , 

(1.6) f (T, n) = 2 T  ar sinh + (rc~n ~ + 2renT) ~/~- ~/4, 

(1.7) g(T, n ) =  Tlog[~-~n)-r+rc/4. 

Atkinson's formula states that 

E(T) = Zl(T) AC Z2 (T) -t- O (log s T), (1.8) 
where 

(1.9) •1 (T) = ]/2 (T/2zc) 1/4 Zn_~N ( -  1) n d (n) n-3/4 e (T, n) cos (f(T, n)), 

(1.10) Z,z(T)=-2 ~,~N,d(n)n-al2[log(2@n))-lcos(g(T,n)), 

(1.11) AT ~ N <= A'T, 

(1.12) N" = u ' ( r ,  N )  = r /2~ + N/2- -  (~V2/4 + Nr/2~)l/~; 

in (1.11) A and A" are any fixed positive constants with A<A'. (In the formula- 
tion of the main theorem in [2] the sign in front of  the second sum should be + ,  
as can be seen by (4.4), (9.1) and Lemma 3.) 

By (1.5) and (1.6) we have 

(1.13) e(T, n) = l +O(nr-1), 

(1.14) f (T ,  n) = -- n/4 + 4~z (nT/2zr) 1/2 + 0 (n a/2 T -1/2) 

for n~=N. Now a comparison of  (1.9) and (1.4) reveals a similarity between 2;1(T) 
and 2zcA (T]2~), apart from the oscillating sign ( - I ) "  in (1.9), for the first o(T 1/3) 
terms in the respective sums are asymptotically equal in absolute value. In applica- 
tions the effect of  the sum 2;~(T) can usually be eliminated by a smoothing process, so 
that in a certain sense there is also an analogy between E(T) and 2~zA (T/21t). 

It is somewhat surprising that Atkinson's formula has found concrete applica- 
tions only recently-, in two interesting papers of  Heath-Brown ([7], [8]). However, 
in future this formula will probabIy play a more central r61e in the theory of  the zeta- 
function. Therefore it would be desireable to have a more flexible version at disposal, 
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with the condition (1.11) replaced e.g. by the condition 1 <_-N<<T 3, in analogy with 
the approximate functional equation for ~3(s). This generalization seems to be pos- 
sible, if the error term in (1.8) is allowed to depend on N. 

The estimate (1.2) for E(T)  was sharpened by Titchmarsh, who was able to 

1 b 5 replace ~- y - ~  in the exponent. But in view of the above mentioned analogy, one 

would expect that if 01, 0~ are the least constants such that for all x =>2, T=>2 and any 
fixed e>0.  

(1.15) A (x) << x~ +" , 

(1.16) E(T)  << T~ +~, 

then 01---03; also there are reasons to conjecture that 01=03= 1/4. It is not known 
whether or not 01 = 03, but anyway the best known estimates for these constants are 
equal. This result was first obtained by Balasubramanian [3], by using the Riemann--  
Siegel formula and very complicated techniques. Another proof was given by Heath- 
Brown [6]. But it seems to have remained unobserved that this result can be deduced 
fairly easily from Atkinson's formula. We shall sketch the argument in the end of 
the paper. 

The best known estimate for 02 and 0~ is 346/1067=0.3242 ..., due to Kolesnik 
[9]. It follows from (1.16) that 

(1.17) ~(-~+it) <<t~ for t=> 2, 

for by Lemma 3 of Heath-Brown [7] we have 

(1.18) ~(-~+it) 3 (log t) (1 log,, _, 1 << + f _,og2,e ]~(Y +i(t+u))12du) �9 

For the time being nothing better than (1.17) is known. This argument has, however, 
a theoretical limit, for it is known that 02=>->1/4 (see Good [5], or Heath-Brown [8]); 
this is an analogue of Hardy's theorem 01=>1/4. 

In attempts to analyze or utilize the analogy between El(T) and 2zrA(T/2~r), 
one faces two difficulties: firstly, there are the extra factors ( - 1 )  4 in (1.9), and se- 
condly, the terms with n>>T 1/3 in the respective sums are no more comparable in 
absolute value. 

The first obstacle can be removed by going over from D(x) to the function 

(1.19) 

for which 

(1 .2o)  

(1.21) 

D*(x) = - D (x) + 2D (2x) -- ~ D (4x), 

we have by (1.3) the asymptotic formula 

D* (x) = x log x + ( 2 r - 1 ) x  + A* (x), 

1 A* (x)  = - A (x)  + 2 ~  (2x)  - -  -r ,~ (4x).  
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It turns out that 2rcA*(T/2n) is the "right" analogue of St(T), for with l ~ N< < x  
we have 

(1.22) 
A* (x) = (rr l/2)-t xl14 ~,~_u ( -  1)" d (n) n-a/a cos (4~ l/~x - rt/4) + O (x 1/2 +~ N-1/2). 

It may be of  interest to point out that the function D* (x) can also be interpreted 
as the sum function of  a certain arithmetic function d*(n). Namely, by elementary 
considerations it is easy to verify that 

(1.23) D* (x) = Z,-~,~ d* (n), 
where 

(1.24) d* (n) = Z~nk=, 1- �89  Z~k=, ( -  1) n+~ 

(see the remark in the end of section 2). Observe that d* (n) takes both positive and 
negative values. 

The other difficulty mentioned above was how to treat the tails of the sums in 
(1.9) and (1.22). By a smoothing process, similar to that in Heath-Brown [7], we first 
truncate these sums, and take then mean squares of the truncated sums. By a lemma 
of  Gallagher, the mean squares are expressed in terms of coefficient sums over short 
intervals. The absolute values of these short sums are still comparable with each 
other, though a termwise comparison is no more useful. This argument leads to a rela- 

tion between integrals of ~ +it over short intervals, and sums of d*(n) (or 

d(n)) over other short intervals. This correspondence with its consequences is the 
main topic of this paper. 

Because of  the square roots in (1.6) and (1.22), it is convenient to work with the 
functions 

(1.25) A* (y) = 2erA* (y=/2rc), 

(1.26) Eo(y ) = E(yZ). 

We introduce some notations. Let T be a large positive number, z = T  ~/2, 
L = l o g  T. Let G be a parameter satisfying, for some constants l[2>a>-b>O, the 
inequality 

(1.27) T -~ <_- G ~_ T -b 

and write H=GL. The main result will be stated in terms of the smoothed functions 

(1.28) 

(1.29) 

(x) = G-1 ag (x + u) e- au, 

el(x) = c-lf  e0(x+ u)e-('G'au, 
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+ ;')1 and the corollaries are formulated for "natural" functions E(t),  A* (x), and I( 1 
1 which we are in the first place interested in. 

Theorem. Suppose that G satisfies (1.27) with b = 1/6, and write K= T-1/2G -2. 
Then for 0<~<<G and any fixed e > 0  we have 

(1.30) fK_ x (El (z + y + 4) -- E1 (z +y))2 dy 

K 2 
<< T~ f J~/,~ (A* (z + y + r AZ (z + y)) 2 K2 + y2 dy + T~(T-S G-17 + T-I/~G-2). 

Corollary 1. Let T1/2~ Y = T X  -2, and let Ax . . . .  , A R be non-over- 
lapping subintervals of  lenght A>>X of  the interval IT-- Y, T+ Y] such that 

(1.31) sup ]E(fi)--E(ta)l ~ U >> X, i = 1 . . . . .  R. 
tz, t ! E A i 

Then 

2 T/27~+Z , , (1.32) R<<AU-2Tz+~x-6 sup sup Z - f ~ , 2 =  z( a ( x + n ) - a  (x))2dx 
O < ~ _ X  Y ~ Z ~ _ T / 8  

+ A U -2 T * ( T I X  "-19 + TX-4). 

Note that for t l<  t2 the difference ]E(q)-E(t2)[ indicates how much the integral 

f:': I~(-~+iO ~dt 

deviates from its expected value. Hence Corollary 1 gives information on both large 
and small values of such integrals. 

Let us consider large values of  ~ + i t  . I f  for some tE ~ T, 2T 

(1.33) [ ~ + i t ) [  ---- > V>> T", 
then by (1.18) and (1.1) 
(1.34) E(t +L ~) - -E(t- -L z) >> V2L -~ . 

An application of Corollary 1 gives the following result. 

Corollary 2. Suppose that V>>T ~/~~ and let fi, ..., tR be a set of  points in the 
interval [ T - T V  -4, T + T V  -~] such that (1.33) holds for each fi, and [q-tj[_~l 
for ir  Then 

(1.35) 
R << T2+*V-14 sup sup Z _  2 fr/2~+Z(A.(x+q)__A.(x))~dx+T4+.V_,O 

0-<tl :~ V8 T V - 4 ~ _ Z ~ T ] 8  J T / 2 * t - - Z  
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The truth of  the famous conjecture 

(1.36) A (x) << x 1/4+~ 

would imply the same estimate for A*(x) by (1.21). On this conjecture, the first term 
on the right of (1.35) is <<TZ/2+*V -1~ Then for V---T ajz~ the inequality (1.35) 
is impossible even for R = I. Thus we obtain a conditional improvement of the esti- 

mateof l~( l+i t ) .Thehypothes is (1 .36)wouldalso implyanewes t imate forE( t ) .  

Corollary 3. I f  the conjecture (1.36) is true, then for all t~_2 

(1.37) ~ (-} + it)l << t 3/~~ 

(1.38) IE(t)l << t 5z16+~. 

For comparison, the respective best known exponents are 173/1067=0.1621 .... 
346/1067=0.3242 ..., as was mentioned earlier, while 3/20=0.15, 5/16=0.3125. 
Thus the improvements would not be very striking, but it is of some interest in prin- 
ciple that such implications exist. Also it should be noted that we do not need the 
full power of the conjecture (1.36) at all, for (1.37) follows already from the local 
estimate 
(1.39) A ( x + y ) - A ( x )  <<: X 1/4+~, O<y<<x all~ 

and the consequence of this is, beyond (1.37), that 

fT+x ~{_~+it) Zdt ~ XlogZforTa/2o+ ~ ~ X  <= T. 
T 

This does not follow e.g. from the Lindelbf hypothesis. 
Though the hypothesis (1.39) may seem to be essentially easier than (1.36), both 

problems are nevertheless of equal difficulty at the present state of knowledge, for we 
cannot estimate non-trivially the change of  A (x) in an interval Ix, X+Xo] which is 
shorter than the best known estimate of  A (x). However, the mean value estimate 

fx (a ( x + y ) - A  (x))~dx << Xy log~X, 1 ~_ y <= X 1/2, (1.40) 1 

suggests that perhaps 
A ( x + y ) - A  (x) << yl/~x". 

This would give the exponent 1/8 +e  in (1.37). The estimate (1.40) is an analogue of 
a result of Good [5] concerning differences of the function E(t). In fact Good has an 
asymptotic formula with an error term, and a similar refinement is possible also in 
(1.40). The proof can be based on Voronoi's formula (1.4). 
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In conclusion we point out that if E(t) changes rapidly near T, e.g. because 

~(l+iT) is very large, then A * ( x ) a l s o  necessarily changes rapidly near T/21r. 

This means that d(n) behaves in an anomalous way near at least one of  the numbers 
T/2rc, Tire and 2Tire. We do not formulate a quantitative result in this direction. Quali- 

it can be said that if ~ [ + + i T }  is very large, i.e. of the order T ~ with c~ tatively 

near 1/6, then there exists an interval [T/2~z-T p, T/27z + T p] with fl slightly larger 
than 1/3, where the oscillation of A*(x) exceeds T r, with 7 slightly less than 1/3. 

2. The analogue of Voronoi's formula for A*(x) 

We are going to prove the expression (1.22) for A*(x) by modifying suitably the 
proof  of  Voronoi 's formula (1.4) in Titchmarsh [11], w 12.4. 

1 
Let N<<x be a positive integer, N+~=-T2(4~r~x) -~, ct=l  + 1/log x. We shall 

evaluate the integral 

in two ways. 
First, by Perron's formula, 

(2.1) I= ~-~-f f~+~T ~2(S)S-I(X~--(2Xy+I (4x)')ds 

-= D (x) - D (2x) q- 1 D (4x) -t- O (x 1 +* T-l) .  

The error term can be written also as O(x~/2+"N-~/2). 
Secondly, we apply the theorem of residues to the rectangle with the vertices 

o~+iT, fl• where f l = - l / l o g x .  Note that the integrand is regular at s = l ,  
and that its residue at s = 0  is O(1). The integrals over the horizontal sides can be 
estimated by the error term in (2.1). Thus we obtain 

z =  (1--2s-1)2~2(S)Xas-lds21-O(x1/2+P'N-1/2)" 

Next we use the functional equation ~(s)=X(s)~(l - s ) ,  and observe that for Re s < 0  

(1-2s-1)2~2(1-s)  = 5 '~ d(n)nS-~, 
~; . r  = 1 

2J(n 
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by considering the Euler product of the function on the left. This is substituted in the 
preceding integral, and the series is integrated termwise. The situation is now the 
same as in the proof  of Voronoi's formula, except that we have the extra condition 
2~'n. Hence we get, in analogue with (1.4), ~ 

I = (re r ~ ,  d (n) n -3/, cos (art l/n"x-- re/4) + 0 (x '1~ +" N-1/2). 

This and (1.4) show together that A ( x ) - 2 1  equals the right hand side of  (1.22). On 
the other hand, by (2.1), (1.3) and (1.21) 

A ( x ) -  21 = A*(x) + 0 (x 1/z +~ N-1/2). 

The formula (1.22) now follows by a comparison of  these expressions for A (x)-21.  

Remark. The equation (1.23) can be verified as follows. Defining d*(n) by (1.24), 
we have 

~'.~_,= d*(n) = ~ ,~_ ,=  1 - -~  ,~,hk:~4x (-- 1) h+k 

1 ----- D(x)---~ (Zhk~_4. 1 1+  Zhk~--4:, 1) 
21h , 2]k - -  2 ~hkh~4~k 2{hk 

= D ( ~ ) - ~ { D ( x ) - 2 Z , ~ x  1+2 Z~_~  I+Z~_,~ 1 - 2  

= D (x) ---~- {D (x) -- 2D (2x) + 2D (x) + D (4x) - 2D (2x) + D (x)} 

= --D (x) + 2 D (2x)--{- D (4x) = D* (x). 

3. Gallagher's lemma 

This lernma (see Gallagher [4], or Montgomery [10], Lemma 1.9) relates the mean 
square of the absolutely convergent trigonometric series 

(3.1) S(y) = ~ v  c(v)e(vy) (e(ct) = e 2=') 
1 

over the interval [ - Y ,  Y] to short sums of  its coefficients. Let 6 = ~  y - l ,  

C(x) = 5-1~lv_x[<~ a c(v). 

Gallagher's lemma is usually stated and applied in the form of the inequality 

(3.2) f_ r  r IS(y)[ 2 dy << f_~ IC(x)l ~ dx. 

A precise form of the result is, however, the identity 

(3.3) IS(y)I 2fs inz@lz f~* t ~ay ) dy  = _~  IC(x)l~dx,  
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which obviously implies (3,2); this was Gallagher's proof of (3.2). But (3.3) can be 
applied to bound the right hand side in terms of S(y). We shall apply this argument 
in the proof of the theorem, except that in place of C(x) we shall have a somewhat 
modified sum. 

For future reference we prove the following lemma. 

Lemma 1. Suppose that the trigonometric series (3,1) is absolutely convergent. 
1 

Let Y>0, 5 =- -  Y - l ,  and suppose that co(x) is a continuously differentiable function 
2 

such that for all real x 
(3.4) [~(x)[ ~ B1, 

(3.5) fx+~ lr <- B~a -1. 
X 

Let Ba=max (B~, B2). Then we have 

(3.6) f =  IZtv-~t<~, c(v),(v)l ~& << n~ f ~  [S(y)I2 dy. 
_ ~ 2 , 2  _ b y 2  

I f  c(v)~O only for v in a certain finite interval [A, B], then it is enough to suppose the 
validity of  (3.4) and (3.5) for A-5<-x<=B+5. 

Proof. Let 
C(x, u) = Z~-~<v<~-~+. c(v). 

By partial summation, 

2~,-~.~,, c(v)~(v) = C(x, a)~(x+-} a)-f~o C(x, u ) r  a+ u)du. 

Hence by (3.4), Cauchy's inequality, and (3.5), the integrand on the left of (3.6) is 

< <  B~,lC(x, a ) l " + B 2 a - l f 0  ~ I f (x ,  u)l"du. 

The integral of this with respect to x is by (3.3) 

(sin 1try) ~.  . /sin 7ruy~ 2 <<Bfr-,f_~ IS(y)l,(---~-;--/ay. B25-1f:  u, duf~_. IS (y ) l , (~ /  dy 

du <<B[ f~-o. y2+y21S(Y)Pdy+B2a-lf "_. IS(Y)l"{f~o y=+u-2)dY 

<< B.f= IS(y)[" dy. 
2-5 + y2 

This proves (3.6), and the last assertion is obvious. 
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4. Formulae for A'~(x) and El(x) 

In the next lemma these functions, which were defined in (1.28) and (1.29), are 
expressed by truncated sums of Voronoi and Atkinson type. ,The method of proof is 
due to Heath-Brown [7], but for completeness we give the details also here. We 
retain the notations and assumptions of the introduction. For convenience we shall 
denote by e generally a small positive number, not necessarily the same at each occu- 
rence. 

1 
Lemma 2. For Ix-~I~-~[z we have 

w 

(4.1) 

A* (x) = (2nx~) 1/4 ~,<=u ( -  1)" d (n) n-a/4 exp ( -  2nnG 2) cos (2 ]/~unx - n/4) + 0 (T~). 

(4.2) 
E4(x) = (2nxZ) 1/4 ~,~_M (--1)" d(n)n-3/4e(x 2, n)r(x, n)cos ( f ( x  2, n))+O(L2), 

where M=G-2L 2, and 

(4.3) r(x, n) = exp {-4G2(x ar sinh ((nn/Z)l/Zx-1))~}. 

Proof. We choose N = T  in the formula (1.22) for A*(x). Then by (1.25) and 
(1.28) 

A •(x) = (2/n) 1/4 G --l f : .  (x + u)l/~ T ( -  1), d (n) n -3/4 

�9 cos (2 ]/2zc, (x + u)-n/4)e -("/~)' du+ O(T~). 

Here (x + u) a/2 can be replaced by x 1/= with an error << 1. The integration can be extend- 
ed over the whole real line with a negligible error. The sum is integrated termwise, and 
the integrals are evaluated by the formula 

(4.4) f~_= e "-e"~ du = (n/fl) 1/2 exp (~2/4fl) (Re fl > 0). 

The contribution of the terms with n > M  is negligible, and (4.1) follows. 
Turning to the proof of (4.2), we express E(t) by (1.8), choosing N = T  in the 

definition of ~ l ( t ) .  By (1.29) and (1.26) we have 

(4.5) el(x) = Z =I a-4 f "  z,((x + u)~)e -("/")~ du+O(L2). 

Consider first the term with j =  1. By (1.9) this is 

(4.6) (2,) 1/4 a - i  f~_, (x+ u) 1/2 Z,~_r ( -  1)" d(n)n-3/%((x+ u) ~, n) 

�9 cos (f((x+ u) 2, n))e-("/a)'du. 
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(4.7) 

whence 

As above, we may replace (x+u)  1'2 by x 1/~, and likewise e((x+u) 2, n) may be replac- 
ed by e(x s, n). Further, by (1.6) 

f ' ( t ,  n) = 2 ar sinh ~-~-/-) j ,  

iO s 
~ f ( ( x  + u) ~, n) << n3/2T-3/s, 

los 
f f ~ f ( ( x  + u) 2, n) << n3/ST -s. 

Hence we have the approximation 

f ( ( x  + u) s, n) = f (x ~, n) + 4x ar sinh ((zcn/2) 1/2 x - l )  u + A (n, x) u s + 0 (T -1/~ GaL3), 

where 
.4 (n, x) << (n/T) ~/~. 

We substitute this in (4.6), omitting the error term. This effects an error <<G3L4<<l. 
The sum in (4.6) is integrated termwise, and the integrals are again extended over the 
real line. The new integrals are evaluated by (4.4), and as before, those with n > M  
are very small. Hence (4.6) can be rewritten as follows: 

(4.8) (Z/re) 1/' x 1/~ G -1 .~,  ~_M ( -  1)" d (n) n - a/a e (x 2, n) 

where 
/~(n,  x )  = a - ~ - A ( n ,  x)i. 

We replace everywhere fl(n, x) by G -s, and the total error is 

<< T -5/4 G-3/~L 5 << 1. 

Hence (4.8) equals the right hand side of  (4.2). 
To complete the proof  of the lemma, it suffices to show that the term with j = 2  

in (4.5) is <<1. 
Note that since we fixed N = T  in the definition of the sum Ii((x+u)~), the 

number N '  in the definition (1.10) of  the sum I~((x+u) s) depends on (x+u) s ac- 
cording to (1.12). However, it is convenient to replace N'((x+u)  s, T )  by N' (x  ~, T). 
By (1.12) 

N" (x s, T ) -  N'((x + u) ~, T)<< Ta/2GL. 
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For n~_N'((x+H) 2, T )  we have 

log ~ << 1, 

. /(XA~-U)2]~--I [ / X2 //-1 
= log~.2rcn)) +O(T-1/ZGL) �9 log [ ~ ) j  

Hence by (1.10), for lull_H, 
(. x2 ~-1 

~72((x+ u) 2) = --2 Z.~_s,(x,, r) d(n)n -112 [log 2-77n J cos (g((x+ u) 2, n))+ O(V ~ G). 

By (1.7) we have 

Substituting this in the previous formula and arguing as the case j =  1, it is easily 
seen that the term with j = 2  in (4.5) is indeed <<1. This completes the proof of Lem- 
ma 2. 

Lemma 3. Let 0<{<<G. Then with the assumptions and notations of  the preced- 
ing lemma, we have for ]y]=<z/3 

(4.9) 
A ~' ('c + y + 4) - a~' (z +y)  = (21~) 1/4 ('C q_y)l/2 ~an~_M (-- 1) n d (n) n-  3/4 exp (-- 2tonG 2) 

X Re {e i(2 ~ (~+r)- ~/a) (e2t ~ r  1)} + O (T'), 
and for [yl<=K 

(4.10) 

Ea(z + y + ~) - Ea (z + y) = (2rc)a/4(z + y) a/2 Z,~_M (--1)nd(n)n-3/4e( T, n)r(z, n) 

X Re {e ~r ")+h(r,")y) (e2i =r ~_ 1)} + O ( T -  914 +~ G-  15/2) + O (T~), 
where 
(4.11) h(T, n) = 4T 1/2 ar sinh ((rcn/2T)Xl~). 

Proof. We begin by writing the left hand sides of (4.9) and (4.10) by means of 
(4.1) and (4.2). In A~(z+y+{) and EI(z+y+{)  we may replace (~+y+~)1/2 by 
(,+y)a/2 with an error <<1. Then (4.9) follows immediately from (4.1). 

Turning to the proof of (4.10), we make a further simplification on replacing 
e(x ~, n) (resp. r(x, n)) with x = z  + y+~ or "c+y by e(T, n) (resp. r(z, n)). To estimate 
the error, note that by (1.5) we have, if nT -~ is sufficiently small, 

(4.12) e(T, n) = 1 +P(nT-1),  
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where P is a power series with vanishing constant term. Hence 

d 
dx e(x2" n) << nx -8 << nT -8/2. 

Also, by (4.3) 
r" (x, n) << G~n2x -3 << nT-3/2L ~. 

Hence the error to be estimated is 

<< T -  7/4 +,  G-9/3,  

which can be absorbed into the error terms in (4.10). 
Writing 

q~(x, n) = f (x ~, n), 
we now have 

(4.13) 
EI(r + y + O - E a ( z  + y) = (2~)1/'(~ + y) 1/~ ~,~_M ( -  1)"d(n)n-3/4e(T, n)r(z, n) 

• R e  {e ~(~+ Y+ r ") - -  e i~('+ y,")} + O ( T - ~  ~G-XS/~ + O(T~). 

Next we replace here the function ~0 by a linear approximation. For  that we need its 
two first derivatives. It follows from (1.6) that if nT-1  is sufficiently small, then 

(4.14) f (T ,  n) = -- 7z/4 + 2 (2~znT) 1/~ (1 + Q (nT-1)), 

where Q is a power series with vanishing constant term; this is a more precise form 
of  (1.14). Now by (4.7) and (4.11) 

(4.15) 
~o' (z, n) = 4z ar sinh ((nn/2) 1/~ z-l) = h (T, n) ---- 2 (2zcn) 1/~ + O (T -1 n3/2), 

and by (4.14) 
tp"(x, n) << nS/~T -a/2 

for z<<x<<z, n<=M. Hence for y<<K 

tp(z + y, n) = f (T ,  n )+h(T ,  n ) y + O  (n3/~T-S/~K~). 

When this is substituted in (4.13), the error term can be omitted at the cost of  an 
error <<T-9/4+~G -x5/2. We get (4.10), except that in place of  

we have 
e ~ r  1 

e ~h(r'")r 1; 

by the last equation in (4.15) these factors can be 
<<T-Z/4+~G-5/2, which is admissible. 

interchanged with an error 
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5. Proof of  the theorem 

We wan t  to est imate the integral  

J = f"K (el  (~ + y + 4) - e l (~  +y))~ ay 

in te rms of  the funct ion A~. Deno te  the error  te rm on the right o f  (1.30) by R. By 

(4.10) we have 

(5.1) J << TI/~fK_ K [Z~  a (it)e (ity)]~ dy + R, 

where  2 runs over  the sequence 

(5.2) 2 = ;L(n) = (27t)- lh(T,  n), 1 <= n <- M,  

as well as the negative numbers  - i t ( n ) ,  and  

(5.3) a (it) = a (it (n)) 

= ( - - 1 ) n d ( n ) n - 3 / % ( T ,  n)r (z ,  n ) e i Y ( r , " ) ( e Z i ~ l / ~ - l ) ,  it > O, 

(5.4) a(it) = a ( - i t ) ,  it < 0. 
1 

The  t r igonometr ic  sum on the right o f  (4.9) can be written, up  to a factor  ~-,  as 

(5.5) ~ c (v) e (vy), 

where  v runs over  the numbers  

(5.6) v = v(n)  = (2n/rc) 1/2, 1 <- n <- M ,  

as well as the negat ive numbers  - v ( n ) ,  and  

(5.7) c (v) = c (v (n)) 

= (-- 1) n d (n) n -  3/4 exp ( -  2tonG 2) e i (1/~7'~" ~- ~/a) (e~i ~r r  1), v > 0, 

(5.8) c ( v )  = c ( - v ) ,  v < o. 

We may  now apply  Gal lagher ' s  lemma.  By (3.2) it follows f rom (5.1) that  

(5,9) J << TI/~K~f=_= I~'l~_~, I . ~  a (it)[ 3 d x +  R,  

where 
(5.10) 6 = ~ K  -1 = ~ TI /2G 2. 

There  is a one=to=one order  preserving correspondence  between the sequences it 
and  v, defined by the mapp ing  i t = i t ( n ) ~ v ( n )  for  2 > 0 ,  it = - it (n) -+ - v (n) for  
i t<0 .  Hence  we m a y  write a( i t )=b(v ) ,  and the condit ion of  summat ion  for  it in 
(5.9) can be restated in te rms o f  v. We shall do this explicitely below. 
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By (5.2), (5.6) and (4.11) we have 

v(n) = 2~-1~ sinh ( 1 ~).(n)~- 0 . 

In the variable 

(5.11) u = u(x)  = 2n -x z  sinh (~- rex'c-I), 

the condition of  summation in (5.9) may be written as 

(5.12) < u(x+ 6) 

But in place of  this, we want to have the simpler condition 

(5.13) ]u(x)_v[  < 1 76 .  

The conditions (5.12) and (5.13) are actually almost equivalent, for the respective 
sums are identical up to at most two terms. To see this, note first that by (5.11) 

u'(x) = l +O(xZT-1) ,  
whence 

u(x+-k << 6(Ixl + 
1 

On the other hand, the difference between consecutive numbers v near x_+~fi  

is by (5.6) at least >>M-1/2. The assertion now follows from the estimations 

MLI26 (Ix] +6)2T -1 << K - 1 M 3 / 2 T - 1  << T-112G-1L 3 << T-". 

Observing also that by (5.3) 

a(2(n)) << d(n )n -1 / 'G ,  
we have 

[~la_xi<~O a(2)12 << [~lv_u(x)l<~_,~ b (v)[ 2 

+ T"G 2 {min ([x--~ ~ 61-1, 1)+ min ([x _.]_.~. (~[-1, 1)}. 

Hence (5.9) now takes the form 

(5.14) J<< r~/~K-~f_=~ IZl,,-.l<~, b(v)] 2 d u + R ;  

note that 
T 1/2 +"K s G ~ << T -1/2 +" G-2 << R. 

Next we compare b(v) with c(v). Suppose first that v=v(n)>O.  Then by (5.6) 

t 2 

and comparing (5.3) with (5.7) we find that 

(5.15) b (v) = c (v) e (v), 
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where 

(5.16) 
~(v) = e(T, ~ nv2l r(z, ~ tcv2l exp {z2G2v2+ i(n/4+f(T, ~ nv~l- 2wz)}. 

Next we define for x < 0  
= 

then (5.15) is valid for all v. Note that by (4.14)we may now write for Ix]<<M1/2 

(5.17) ~ ( x ) =  e(T, -~zx2lr(z,-~ ~x2)exp{n2G3x~+ 2~zixT1/3Q(-~ ~zx~T-1)}. 

Hence, in particular, e (x) is continuously differentiable in the interval [x l~ (2n-lM)l/3 
where v varies. 

With an application of  Lemma 1 in mind, we find estimates for e(x) and e'(x). 
The function e(x) is bounded, for by (4.3) 

(5.18) 
r (z, ~ 7rx3)e *'~'x' = exp {--G3x 4 T-l(Co + c I (x3T -1) -}- c~(x3T-1)2+ ...)}, 

where the exponent is bounded for the relevant values of x. Also, by (5.17), (5.18), 
(4.12) and (5.10), for ]x]<<M 1/3, 

t~ t (X) "<< G - 1 L 3  T -1  -}- G - 3  T-1/~ L3 << 6-1L 3. 

Consequently we may apply Lemma 1 with BI<<I, B~<<L 4. It  follows from (5.14), 

(5.15) and (3.6) that 

s<< rl/ + K3 f=_. IZ,  c(v)e(vy)p(K3 + y3) -1 dy+ R. 

But the trigonometric sum in the integrand is the same as in (4.9), so that we get 

further 
K 2 

(5.19) J << T* f (A (z + y + 4) -- A; (z + y))2 ~ dy 

To estimate the integral over [y1_->z/3, note that for Y>>z we have by (3.2) and 
(5.7)--(5.8) 

fr__ r IZ~ c(v)e(vy)] 3 dy << Y Z v  [c(v)] 2 << YT~G, 

since the sums C(x) in (3.2) are in this case either empty or contain only one term. 
Hence the second term on the right of (5.19) is 

<< T~K2G ---- T-I+~G -a << T-1/3G -z << R, 

and the proof  of  the theorem is complete. 
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6. A modified version of  the theorem 

In the next lemma we give an inequality of  the type (1.30) in terms of the func- 
tion E(t) and A*(x). The proofs of  the corollaries will be based on this lemma. 

Lemma 4. Suppose that G satisfies (1.27) with b = l / 6 .  Let GI=Tll2G, 
HI=G1L, KI=T1/2K=TG~ 2. Then we have 

(6.1) G~ ~ ~'d~ f~+K,{f'i (E(t+v+n)-E(t+v))e-,~/~,)'dv}~dt 

~ 2 ~ - 2  fv/2,~+z (A,(x +~I)_A,(x))2dx T T~(T4G~7 + TG~). << T * sup sup -*Xl i - ,  JT/2~-Z O<t/_~ G 1 K1~=Z~_T/8 

Proof. We average the inequality (1.30) of  the theorem with respect to the para- 
meter ~ over the interval [0, G]. The inequality (6.1) will follow when the left hand 
side of  the averaged inequality is estimated from below, and the right hand side is 
estimated from above. 

Consider first the left side. In terms of  E(t) it reads as follows: 

(6.2) 

a- fo de ff-K {f_" (E((~+y+~ +u)2)-E((z+y+u)~))e-("/~"du)'dy. 

In place of  y and ~ we introduce the new variables 

t = ( z + y )  2, ~/= 2 (z+y)~ ,  

and in the innermost integral we integrate with respect to the variable v=2tX/2u. 
The range of  integration in the t, q-plane contains the rectangle [T-K1, T+KI] • 
[0, GI]. The Jacobian determinant of  the change of  variables (y, ~)~(t ,  7) is of  the 
order T -1. 

In the new variables, 

E((z + y+~ + u)9--E(('r + y+ u) 2) 

= E ( t  + v + 11 + 0 (G 2 L2)) --  E (t  + v + 0 (G 2 L~)) = E (t + v + r/) - E (t + v) + 0 (L ~); 

in the last step we used the assumption G<<T -~/6 and a standard estimate of 

~ -~+it . Denoting by I the expression in (6.2), we now have 

(6.3) 
T-1/~G~3 f : I  - er+K 1 a~] J T__K 1 {fnH, (E(t +V + ~)-- E(t + v))e-(V/2el )'(T/') dr} ~ dt  

<< I +  T 1/2 +~ Gi- 2. 
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Consider next the right hand side of the basic inequality. By (1.28), (1.25) and 
Cauchy's inequality 

(A*(z + y + { ) - a * ( z  + y)) 2 

<< a-* f_" (a*((, + y + r + u)~/2=) - , t *  ((z + y + u)=/2z))~ au. 

The expression to be estimated is hence 

(6.4) 
K s 

<< G_IT  ~ fG d~ f~la+H (A.((z + y+~)2/2~)_A,( (z  + y)2/2~))2.v;z=.___z. , d y + R  ' 
d 0 J - - ~ / 3 - - H  ~ 

where R again denotes the error term in (1.30). 
We introduce here the new variables 

x = (z + y)2/2rc, 

q = (z + y + {)=i2rc-- (z + y)Z/27z. 

Then the range of integration in the x, ~/-plane is contained in the rectangle 

[T/Zrc--x] ~ T/S, 0 <= ~ <= G,, 

and the Jacobian determinant is <<T-L The x-integral is estimated by considering 
separately the ranges IT/2rc--xi<-K~, and 2JKI<=IT/2rc-x[<=2J+IK1, j = 0 ,  1, .... 
The q-integral is estimated trivially by taking the supremum of the integrand. 
The expression (6.4) is found to be at most of the order of the right hand side of (6.1) 
multiplied by T-1/5. Taking also into account (6.3), we obtain an inequality, which 
gives a slightly modified form of (6.1) if its both sides are multiplied by T ~/2. In order 
to get (6.1) precisely, we have to remove the extra factor Tit in the exponent in (6.3). 
Since T I t = I + O ( G ~  ~) and E(T)<<T lla, this change can be made if the term 
Ta/a+"G? 6 is added to the right side of (6.1). But this term can be absorbed into the 
error terms in (6.1). 

7. Proof of Corollary 1 

The function E(t)  may increase rapidly, but it follows immediately from (1.1) 
that it can decrease only relatively slowly, more exactly, 

(7.1) E ( t + x ) - E ( t )  >= - -cxlog t for 2 <=t <=t+x ~ 2t. 

It follows that if E( t2 ) -E (q )  is large and positive for q<t2,  then E(t'~)-E(t'~) 
is also large if the numbers t'~>-_t2 and t'a<-q lie in certain intervals. 

We may suppose that the distance between two adjacent intervals A i is at least 
A, by going over to a suitable subset of cardinality >>R if necessary. 
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We consider in detail those intervals A~ for which there exists a pair of points 
h,  t2EA~ such that 

(7.2) t 1 -< t2, E ( t ~ ) - E ( t l )  ~ g>> X. 

The remaining intervals can be dealt with analogously. 
By (7.1) and (7.2) we have 

f o r  

Hence, defining 

E(t~) E(t ' )  > 1 U 

ti tl ,  " <  t~ < t + X L - L  f i - X L  -~=< '<= t2= = 

G=T-1/2XL -a, i .e.  G1 = X L  -4 ,  /-/1 = ~"L -3 ,  

we have 

(7.3) 

for 

2 1 
(7.4) t l - - -~  X L  -2 <- t~ ~ t l - T  XL-2 ,  

Having fixed G1, we define 

G_~ fn~ (E(t~ + v ) _ E ( t ~  +v))e_(V/2GO2dv >> V 
1 "]--//1 

1 , 2 2 
t2 +-~ X L  -2 <= t 2 <-- t2-k-~ X L -  . 

1(1 = TG{ 2 =- YL s 

as in Lemma 4. By this lemma there exists a number r/0~ ~- G1, G1 such that 

(7.5) -2 r+K, U~ G1 fr-K1 { f -n~(E( t+v+q~  ~dt 

<< T ~ sup sup K?z-*fT/~"+Z(A*(x+~)-A*(x))~dx+T~(T*G;17+TGf~). 
O<=r/~ G x K~_Z~_T/8 JT/2rc--Z 

Let t~ be a number such that not only tl but also all numbers in the interval 
[ t~-G 1, t'~+G~] satisfy the condition (7.4) for t~. There exists an integer J such that 
the number t~=t'~+Jtlo and all numbers in the interval [t'~-G~, t~+G~] satisfy the 
condition (7.4) for t" 2" 

We now apply (7.3) substituting tl+~(resp.' t~+r for q' (resp. t2)," " here ~ is an 
arbitrary number such that I~I-<_G~. It  follows that 

U << (il---~qz~)=lJ_n,l'H' ( E ( t ~ + j q o + ~ + v ) - E ( t ~ + ( J - 1 ) q o + r  e-(o/*GO'dv. 

We square both sides, apply Cauchy's inequality to the j-sum, integrate with respect 
to ~, and finally sum over all intervals Ai under consideration (say RI in number). 
Taking into account that J<<AG; ~, together with the facts that the intervals A, 
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are well-spaced and lie in the interval T--~K1,  T+ /(1 , we obtain 

R~U2G~ << aGr" ~+Y~I f"~ (E(t+v+rlo)-E(t+v))e-(V/2~O~dv}2dt. 
f l--I~ 1 ~.1,' ~ I 1 1  

The assertion of the corollary now follows from this and (7.5). 

8. Proof of Corollary 2 

We apply Corollary 1 with 

X = A = V*L -3. 

We cover the interval [T-TV-*,  T+TV-4], contained in the interval [ T - T X  -2, 
T+ TX-2], by subintervals of length A, deleting those intervals which do not contain 
any point 6. These intervals are classified by the condition that thej ' th class consists 
of those intervals which contain at least 2 j but less than 2 j+~ points 6. We estimate 
the cardinality of the j ' th  class. 

By (1.18) the function E(t) increases in each interval [q -L  2, ti+L ~] an amount 
>>V2L -1. The positive variation of E(t) in an interval of thej ' th class is therefore 
>>(1 +2JL-*)V2L -1. On the other hand, the negative variation in the same interval 
is <<AL<<V2L -~ by (7.1). Hence we may take in Corollary 1 

U >> (1 + 2JL-3) V2L-1. 

Corollary I now gives an upper bound for the cardinality of thej 'th class. Multiplying 
this by 2 j and summing over j ,  we complete the proof of the corollary. 

9. Proof of Corollary 3 

We observed already in the introduction that (1.37) follows immediately from 
Corollary 2. Hence only (1.38) requires a proof. 

We commence by showing that [E(t)l cannot be too large throughout a given 
interval [T-To, T+T0]. Let ToE[T 1/3, T2/5], and define El(x) as in (1.29) by choos- 
ing G = ToT-1/ZL-1. Then E~(x) is given by the formula (4.2), whence by a trivial 
estimation 
(9.1) EI(T 112) << T1/~+~T~ -1/2. 

By the definition of Ex(x) this implies that there exists a number tC[T-To, T+T0] 
such that 
(9.2) IE(01 << TX/Z+*TffV2. 
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We are going to prove that for suitable To the estimate (9.2) is valid in the whole 
interval [T-To,  T+T0], when the constant implied by the symbol << is somewhat 
enlargened, say doubled. If this is not true, then 

sup IE(q)-E(t~)I >> T1/~+~Td -~/2. 
T-- To~--tl, t2~--T+ To 

We now apply Corollary 1 with 

A = 2T0, X = U = T1/~+~T6 -1/2. 

Using in (1.35) the hypothesis (1.36), we obtain 

1 << ToTa/2+eX -6 << T ~ T  -3/2. 

This is impossible for To=cT a/s, with c a suitable constant. Thus (9.2) holds in the 
whole interval IT-To,  T+T0]. This proves (1.38). 

The result could be somewhat sharpened by applying the theory of exponential 
sums in (9.1) instead of the trivial estimate. 

10. On the estimation of E(T) 

We show briefly how the estimate (1.16) with 03<= 1/3 follows from Atkinson's 
formula. 

We begin with the trivial observation that if l<=tx<=T<=t~<=2T, then 

I(tl) <- I(T) <= 1(t2), 
whence by (1.1) 

(10.1) E(t l )+O((T- t l )  log T) <= E(T) <- E(t2)+O((t~-T) log T). 

Let Y be a parameter with T1/4L-I<=Y~_T1/SL -1, and let G=T-a/zYL -~. 
With this value of G we define El(x) by (1.29). Then it follows from (10.1) that 

E~ ((T-- y)1/2) + O (YL) <= E(T) <= El ((T+ y)l/Z) + O (YL). 

The values of EI((T+_Y) l/z) are given by (4.2), where M = T Y - ~ L  6. Using also 
partial summation and putting X =  YL, we arrive at the following result. 

Lemma 5. Let T1/4<=X<=T1/Z and M = T X - 2 L  8. Then 

(10.2) E(T) << X + T  1/" sup ~upl2,~r  n))l. 
It-TI~_X 

The partial summation allowed us to drop the factors e(t, n) and r(t x/~, n). 
Choosing X = T  ~/a and estimating the sum in (10.2) trivially, we get E(T)<< 

T ~/a+*. Sharper estimates are obtained by applying van der Corput's method and 
choosing the parameter X optimally. 
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