Convexity of means and growth of certain
subharmonic functions in an n-dimensional cone

Goran Wanby

1. Preliminaries

This paper extends some results by Norstad [9] on subharmonic functions in the
complex plane, cut along a half-ray, to an sn-dimensional cone.

Cartesian coordinates of a point x of R®, n=3, are denoted (x,, ..., x,). We
introduce spherical coordinates for x by

x| =7, x=rcosb, xizrcosei]];;;sin()j for i=2,..,n—1
and
. n~1
X, =r [[[7sin0;.

Here 0=0,=n for i=1,...,n—2 and 0=0,_,=2n. When integrating, we shall
also use the parameter o, defined by x=rw. Then dw=Vgdb,...do,_, with
Ve = IT;Z{ (sin 0"~

Let Q=Q(,)} be the cone {x; 0=0,<y,}, where ¥, is given, O<y,<mn.
If v is a function, defined in Q, we shall let »(r, 0) denote the value of v at the point
x=(r,0,...,0). Also, if v is independent of 0,, ..., 8,_;, we shall write »(, 0,)
for the value of v at any point whose first two spherical coordinates are r, 8.

In spherical coordinates the Laplacian is

2 n—19

:W_*- r 3r+ 6

(1.1

where the Beltrami operator § is given by

S = 1 nla(V_a]
Ve <=t 96, (g, 96,
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Here g =1 and g = [/ (in0)® for j=2,..,n—1, so g=[[[g.
If the function F only depends on 6,

(1.2) OF = F"(0))+(n—2) cot 6, F'(y).

For two C?2 functions u# and » we also let

_ gl ou o

Let u be subharmonic in Q. We are going to study the means L,(r),«=1, and
J(r), defined by

4 1/a
Lo(r, u) = (”—(“"_)] 0 Od],
( u) [fS f;.(91) .fl( l)g/l( 1) @
where § is the part of the unit sphere |w|=1 where 0=0,<y,, and
_ u(row)
J(r, u) = sglpm)—.

Here f, and g, are certain eigenfunctions of the Beltrami operator. Some of their
properties are listed in the next section. When 1<a<-<e, u is required to be non-
negative.

We shall also examine the relation between M(r)=sups u(rw), J(r) and
L{r)=Ly(r).

2. The functions f, and g,
We first consider the case n=3. If k is a given number, k>0, we denote by
F,=F(0) the unique solution of the problem
Q.1 OF+k(k+n—2)F=0 for 0=60<m,

F,(0)=1 and F;(0)=0. It is known that F, depends continuously on k and has a
first zero Y (k) in (0, 7). As a function of k€ (0, =) (k) is strictly decreasing with
range (0, n). Let k() denote its inverse. Now fix k=k({,). Then

2.2) v(x) = v(r, 6,) = r*F.(8)

is harmonic in Q and exhibits the Phragmén—Lindeldf growth for subharmonic
functions in Q, vanishing at 9Q. When Y,==/2 so that Q is a half-space, k=1
for all n.

With a given 4, O<A<1, let f3(0)=Fu(@)F,(Wo) " (Fu(ho)=0 since
Yo=Y (k)<y(kd).) Hence f,(yp)=1 and f; solves

2.3) SF+kA(kA+n~2)F = 0.
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It follows from the minimum principle that £, is strictly decreasing for 0=0=y (k1).
Let w(r, 6;)=¢**£,(6,). Then w is harmonic in 2, w(x)=|x|** at 02 and on |x|=1,

24 1=wx) =/0)=CA)™,

by which C(4) is defined.

Since the indicial equation at §=0 of (2.1) is p(u+n—3)=0, (2.3) also has
solutions g;, unbounded at #=0 and such that (sin 6)"%g,(0)~0 as 8-~0. We
may choose g, such that g,(0)~+ when 0-+0 and g,(i/o)=0. An application
of Sturm’s comparison theorem shows that g; has no zeros in (0, {,). The minimum
principle then gives that g, is strictily decreasing for 0=0=y,, so g3(0)=0 for
these values of 0. Actually, g7(¥,)=0, since otherwise g, would be identically zero.
Thus we may prescribe g;(¥e)=—1. These conditions determine g, uniquely.

We shall also need

2.5 S1(0)g:(0)—/1(0)g5(6) = (sin 6)*~" (sin )"~

To see this, let 4 be the left member of (2.5). Then, by (1.2), ¥'=f;g,~f.87=
—(n—2)cotf h, which gives h(8)=C(sin 6)*~". Since h(y)=1, we get (2.5).
Above we assumed n=3. When n=2 and k=1,cos 10 and sin A(x/2—0)
are two linearly independent solutions of (2.3).
When n is even, it is possible to obtain explicit expressions for f,. For example,
for n=4, we have Y =n/(k+1),

. T
ST sin(kA+1)0

50 = Sinnkl-i-l sin 0
k+1
Also,
. T
01(0) = SIMETT sin (kA4 1) (o—6)
A kA-+1 sin 6 :
Especially
sinz E'l—-*_—l
e = k+17r
(kA+1) sin |

A recurrence formula, from which f, can be evaluated by means of residues, is
given in Hayman [7, p. 160].
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3. Statement of results

Let u be subharmonic in € and A a given number, O<A<1. Throughout the
paper we assume that u satisfies the boundary condition
3.1 u(y) = C(Mu(ly), 0) when pcoQ\{0}.
Here u(y) is defined when y€dQ as limu(x) when x-y, x€Q. C(4) is given by
(2.4). We shall prove

Theorem 1. Let uz —eo be subharmonic in Q and satisfy (3.1). Then the mean
L,(r), a=1, is a convex function with respect to the family Ar**+Br ***7" r=0.
If a=1, u is supposed to be non-negative.

Theorem 2. If u is subharmonic in Q and satisfies (3.1) then J(r) is convex with
respect to the family Ar**+Br~****7" p=0.

Theorem 1 corresponds to theorems I and IV of Norstad [9] and Theorem 2 is a
generalization of Theorem 111 of [9]. Transferred to the right half-plane the two-dimen-
sional results are that

[f i/:/z ( Zé:i? ]u cos A0 sin A (_z-_ lel] dg]

u(re®)

|6 <n/a cOS A0

1a

and

) An .. .
are convex with respect to Ar*+Br—*. Here C(A)zcosT. Continuity on the axis

of symmetry and on the boundary is implicit in [9].
The limiting case A=1, which corresponds to boundary values u(y)=0, was
treated, for a half-space of R", by Dinghas [4]. His result is that

-1 f ___u(rco) acosz()dco "
=1 cos 0 :

10| <n/2
is a convex function of ", which is the conclusion of Theorem 1 in case k=A4=1.
When a=1 and u=log™ |f(z)| with f analytic in the right half-plane and such
that [f(z)]=1 on the imaginary axis, the result is a classical theorem by Ahlfors [1].
From the convexity we get

Corollary, Under the assumptions of Theorem 1 and 2 and if u(0)< oo, r— L, (r)
and r~*J(r) are non-decreasing, so the limits

limr—*[L,(r) and lim r=* g (r)

rereo

exist, possibly = o,
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Let w(r, 0;)=r**,(6;) and put L(,w)=d(4), that is
dd) = 2nf;”°f,1(0)gl(9) (sin 6)"~2d6 ]]j”z':f: (sin @)y"~7-1d0
with obvious interpretation if n=3. We then clearly have
3.2 L{ry=d@Q)J().

From our assumptions it follows that »—**M(r) has a positive limit as r—oc if u
is non-negative somewhere. A proof is given in Dahlberg [3] or Essén—ILewis [6].
If u(x)=0, we conclude from the Corollary that u is non-negative at some point
at |x|=r for all r=|x,]. We then have

(3.3) J(r) = M(r) = C)~1I ().

From (3.2) and (3.3) we get some trivial relations between the three limits. A precise
result is

Theorem 3. Ifu satisfies the conditions of Theorem 1, if u(0)< oo and if u(r, 0)=
0(**) when r—0, then lim,,.r *J(r)=c or

@) lim FRLG) = d(A) lim = A I (r).

If further u is non-negative somewhere, then

b) lim M) = C(A)1 lim r*¥J(r),

while, if u=0 throughout 9,

(© lim r* M (r) = lim r=*J(r).
Our boundary condition (3.1) implies

G4 u(y) = CAOM*(lyD,

where M *(r)=max (M(r), 0). Among the consequences of (3.4) is the generalized
Ablfors—Heins theorem in R”, proved by Essén—Lewis [6]. Related problems are
studied in Dahlberg [3] and Wanby [10]). We also refer to Hellsten, Kjellberg and
Norstad [8] and Drasin and Shea [5].

4. Some results on the Green’s function

Let Qx=0n{|x|<R} and denote by G(x, y) and Gx(x, ) the Green’s functions

for Q and Qp respectively. Also let —- denote the inner normal derivative with

ON

respect to y€dQ or dQg. In the following we will need some estimates by Azarin
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Gy . G .
[2] of N and N With F, and » as in (2.2) we have
aG ¥
@) O N [ ST ACKE TACK D)

x|

@2 %f—f,—(x,y) @) 20 (E) brn it 0<p <21

. 4
69 Lo~ row 2o () e 1 o=t
0G . 4 5.
@ Soe )~ RO RO it == 3
Here f~g means that there are positive constants C; and C,, only depending on Q,

such that C,=flg=C,.
Let do(y) denote Lebesgue measure on 0Q. Following [6, pp. 117—118] we let
u be the measure on 9, defined by

m=2dtdu(y) = do(y), ly|=1
and

oG

B6) = [ (f,N[lxI ) du(y).

We then get, with |x|=r,

fﬂ!)ﬁ(]y[ =1 ({)N (x, y) d.u(y) = rl"”B(t/r, 1)
We also note that
4.5 mB(t, 0,) = B(1/t, 6,).

In the following we shall also use the following notation:

Dy = Qn{|x| = R}, K =02n{x| <R}
and
0Q

thrz = Qﬂ{rl = le = 7‘2}, Kl‘1,l’2 1, '2 aQ.

5. Proof of Theorem 1

We shall first prove

Lemma. Let u be a subharmonic C? function in @ and suppose that u satisfies
3.1). Then

(5.1) [s [%(Z%) i (du(rw)+kA(kA+n—2)u(ro))g, (6, do = 0.



Means and growth of subharmonic functions 35

Here S denotes the part of the unit sphere |w|=1, where 0=6,<vy,. When a>1,
u iy supposed to be positive.

Proof. We first assume o>1, Denote the integrand of (5.1) by D, and put
u(x)=q(x) f,(6,). We get
D, = ¢*~'(fi0q+40f, +2(Vq, V) + kA (kA+n—2)qf)g;.
Since f, satisfies (2.3), we have
S Dedoo = [ w-l(mwz(v% Vf))g,deo

n13 Vg 9q n11343f,1]
__,[qa [ J 138 (g 331) ZJ lgjae 20 ;,V,Edgl...don__l

0.,=a
n— 1[V-aq a1 ]j 7
g db,...d0;_ . do;....do,.
f =1 g ao 2 loj=0 1 J=1%Vjit+1 1

n1V8 0
—fZ'J ;Z—aeq [86 (qa lf;’tg/l) 29“'1351&) d@l...dO,,,l.

Here a,=Y,, a,=n when 2=j=n—-2 and g,.,=2n. In the first sum all terms
are zero. For j=1 we use that g,(y,)=0 and that g,(8;) (sin 8)""2~0 as 6,—0.

is indepen-

When 2=j=n-2 we note that Kg=O for ;=0 or n. Finally
gj gn—l

dent of 4,_, and q“~! has the same values for 6, ;=0 and 2z for fixed

agn—l
0y, ...,0,_p with 0<0,<y,, 0<0;,<n when 2=j=n-2. Thus we get

[ Dedo = 1—a) [ *-*f,2,(Va, V9) doo
+[ Ve ¢ "(fl(eagxeo ~/3(6)5(6) b, ...d6,_,

= Gingo)~2 ¢~ 1 [1}5) Gin 6,"~*~7 6, ...d0,,

= o~ (sin )2 f [4(r, Oy ..., 0p I ZYe 177 sin 6,17 d6,... 6, _,.

Here we used (2.5).
Now, if y is the point with polar coordinates (r, ¥y, 85, ..., 8,-1),

[9%(r, By, - O] 280 = (u(P)F—(u(ly], YC)Y,

which is non-positive because of (3.1). Thus the lemma is proved if a>1. Small
changes are needed in case a=1. We omit the details.
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Remark. 1t is clear from the proof that the lemma is true under the somewhat
weaker boundary condition

(@~ fur(r, 0, 04, ..., 0,-0) [T}, (sin 6,2~ d0, .. d9,_1)"* = C()u(r,0).

Here the domain of integration is given by 0<8;<=n for 2=j=p-2 and

0<0,_;<2n and
(27-5)("—1)/2

W lf nis Odd
a= Hjn;zlf(Sin 0r~1~7do; = 22n)-202 .
W if n is even.

This corresponds to Norstad’s boundary condition

1o
[—12— (w(ir) +u(— ir))] = cos zzi u(r).

Now suppose a>1 and L,(r, u)=Ar**+Br **2=" for r=r, and ry, ry<r,.
A and B are constants. The assertion of Theorem 1is that L,(r, u)=A4r**+ Br 4+
for ry<r-<r,. We shall first approximate u by C? subharmonic functions u,, which
also satisfy the boundary condition (3.1). If the restriction of u to the positive x,-
axis is not continuous, we first replace u by its least harmonic majorant in a small
cylinder around the x;-axis: r,—n=x;=r,+1, gxﬁénz. The new function is
then subharmonic in €, satisfies (3.1) and is continuous on the x;-axis for
r=x,=r,. Now, if &>0 is given, there are points x™, ..., x™ on 9Q and a
0>0 such that each point in the set K, , belongs to some ball |x—x®|<é and
such that

(5.2 u(x) < u(x®+¢ if |x—x"®| < 28.
This follows from the semicontinuity at the boundary and a compactness argument.
Since u is continuous on the positive x, -axis for ry=x;=r,, we may take é so small
that
(5.3) lu(t, 0)—u(s,0)) <¢ if |t—s]<28, m=t=s=r,.

2¢
1-C()
domain D which contains Q, r. If x€K, , we get according to (5.2), (3.1) and
(5.3),

Let u,(x)=u(x;+9, x3, ..., X,)— Then %, is subharmonic in an open

u(x) = C(Hu|x|, 0)—&(1—-C(A)).

ki
Let v (x)=u,(x)+ r] f2(8,) to make v,>0. Note that 7*f,(0))

3¢ (
1-C()\n
satisfies (3.1) with equality. Now choose a sequence u,, of subharmonic functions
which decrease to v, in D.
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We have to show that the functions u,, satisfy (3.1). For x in K, », we first ob-
serve that w,(x)<v(x)+e(l—C(1))<C)v,(|x], 0), if m=some m=me, x).
Since u,, and v, are continuous on the positive x;-axis for ry=x;=r,, we get

Uy, (X +y) < C(Dv(x+y,0) if [y] < some 75(e, x).

Now, by another compactness argument, we see that there are finitely many x®¢9Q
such that each x€K, , may be written as x=x®+y and such that

U, (P +y) < CDo(x®+ |, 0) for some k.
With M=max m,, by using that the sequence u, decreases, we obtain
U (%) < C(D,(|x], 0) = C(Du, (x}, 0)

for all xEK,v,z, if m=M.

It is easy to see that, for r=r; orry, L,(r,u,)=L,(r,u)+0(), so L,(r, u,)=
=A4,/**+ B,r ¥+2=" where 4,4 and B,~B as ¢—0. If the theorem is proved
for the C? function u,,, the rest is standard, letting in order m—> <, e—~0 and 50,

If =1, to make u finite, we start by replacing u by max (u, —N), which tends
to u when N-. This does not affect the boundary condition.

When u is C2? we have

5.4 Au = uﬁ’,-l— —1 u; + ! ou = 0.

Let G(r)= Li(r) = fsq"‘flgldw. Then

(5.5 G = [ aq* ug,do
and, if a=1,

G0 = [sule=De w2 do+ f o uyg,d

From (5.5) it follows by use of the Cauchy—Schwartz inequality that

(GO =060) f g2y F do.
Hence, by (5.4)

6" = a—1(G'(M)? n

—1 ’ o -
G(r) - r G (r)'—_ﬁfsqa lgléudw9

so from the lemma we get

a—1 (G’ (N
G(r)

G’(r)— n—l G'(‘r)—r;‘;k,a(kun—zm(r) =0
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or

1 k/l(kl:;n—Z) L(r) = 0.

(5.6) L)+ Lin) -

If a=1, we have G’(r)= [ 1,g,dw so we artive at (5.6) by another differentiation
and the lemma.

Equality in (5.6) occurs if and only if L,(r)=Cr**+Cypr 42" The result
therefore follows from the (one-dimensional) maximum pr1n01ple

Remark 1. An equivalent formulation of the conclusion is that TR ()
is a convex function of F" 2%

Remark 2. The above mentioned theorem by Dinghas follows from ours by
letting A—1. In fact, first replace £, by C(1)f, so that £,(0)=1 and f;(n/2)=C(A).
As A—1, f,(0)—+cos 0 and also g,(#)—cos@ in C! on compact parts of (0, ).
Further [ozp =, 8:d0—~0 when #-0. This is seen by observing that g,(6) is a
decreasing function of A.

6. Proof of Theorem 2 and the Corollary

Let h(r)=Ar**4+Br *+?=" and assume J(r)=h(r) for r=r, and r,,
ri<ry. Solving for 4 and B we get

h(r) — _1(.](7‘1)(7‘“7'"“”“2_"—r’““"z“"rg’l)+J(r2)(r_k’1+2‘”r’{}'—r“rf"’""z—”)),

where D= rkl —kA+2~n rklr—k}.+2 n

Let H(x)=H(r, 0,)=h(r)f,(0,). Slnce P, and r~**+2=f, are harmonicin Q, H
is. We shall see that H majorizes u in Q, . .In order to apply the maximum princi-
ple, we note that v=u—H=0 when |x|=r, or r,. Then either v=0 throughout
Q, ,, or v has a positive maximum at x,€9€. But since H satisfies (3.1) with equa-

u(x) _
f1(6)
h(r) when |x|=r, ry=r=r,. Consequently J(r)=h(r) for these values of r, and
we are through.

lity, v(x)=C{L)v(Jx,, 0), so the maximum cannot be positive. Thus

Proof of the Corollary

Since Iim, ., ou(x)=u{0)< s, J(r) is bounded above when 7 is small. Also, A(r)
is a positive linear combination of J(#,) and J(#;) for r,<r<r,. Thus we may let
r,—0 in the inequality J(r)=h(r). We obtain J(r)=r**/(r,)r—** which is the asser-
tion. The proof for L, is the same.
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Remark. Theorem 2 is actually true with (3.1) replaced by u(y)<e and
6.1) u(y) = CHOM*(|yl, ) when y€Q

provided that u(x)=0 somewhere on D, for rz=r,, so that J(r)=0. To see this,
we note that M *(H, r)=H(r, 0) so v satisfies (6.1), and the conclusion is reached as
above.

In general, (6.1) is not sufficient for Theorem 2 to be valid. Let A’€(4, 1). A tri-
vial example is then u=—r*"'f,,, (9,), which is harmonic in Q, satisfies (6.1) and has
r ¥ (r)=Cr** - where C is a negative constant. (Actually C=—1.)

7. Proof of (a) of Theorem 3

Assume that A= lim, ., r~*J(r)<<c. We use the notation of Section 4. The
function
(1.1)

Hy®) = [, 578 Royu(Ro)R 2 do [, 092 (5, y)cayuiyl, 0o (),

is harmonic in Qg with boundary values u(Rw) at Dy and C(A)u(|y|, 0) at Kz.
Hpy obviously majorizes u. Thus, if ycdQ,

Hy(y) = Cu(lyl, 0) = C(DHR(5l, 0),
so Hy satisfies (3.1) in Q5. Since u=J(r)f,,
(1.2) Hyp(x) = A|x[*£,(6,).
Especially Hg(0)=0. Consequently
(7.3) r~¥L(r, Hy) = R"*L(R, Hy) for r<R.

Now, an application of the maximum principle in Qy shows that Hpg,, (x)=Hz(x)
if R’=R. So, by (7.2) and the Harnack principle, Hy(x) increases to a harmonic
function H(x)=A|x|"*f,(8,) in Q, as R-<o, Taking the limit in (7.1), we want to
show that

(7.4) fs (35\? (x, Ro)u(Rw)R*~'dw -0, when R > and x is fixed.

We have u(x)=AC(A)7'|x[**. If we also knew that, for some B, wu(x)=B x|*
when x is large, (7.4) would follow from (4.1). Otherwise we may argue as follows.
By (4.1) it is enough to prove (7.4) for u,=u+C |x|**£,(6,), where C is chosen so
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that u, is positive somewhere. Then lim,. . r~**M(r, u;,) exists and is finite. If

2 = CO) [, 9% (x, YM* (5, 1) do (),

it follows that »(x)=0(|x|**) when x tends to oo, so it suffices to show (7.4) for
p=v—u;. The function p is superharmonic and non-negative in Q. Following [6,
pp. 120—121] we note that for » large there exists x,, with |x,|=r,

F*p(x,) >0 as r o
and

(1.5 8, (x,) = constant < V.

From the maximum principle and (4.1) we deduce

|

| R0 f, @) R0,

Denote the latter integral by /(R). Taking r=R/2, we obtain from (7.5)
R™I(R) = Cyor~p(x,),

which tends to 0 as R—os. Thus, by (4.1),

p(x) = fs ax s ROP(ROR 1 do> = cl(

0= [, (‘)N —X (x, Rw) p(Ro)R"~1dw = Cyx*(I(R)R-*)R-¥1-H . 0,
when R-—oo, s0 (7.4) is verified.
) IGg 4 0G
Since -b—‘ N as R-o, we note, with u*=max (i, 0), that

Se 278, NC@H51, 0 do () | [, 5 (5 CDH U, 0 do (),

which is finite, due to (4.2) (and (4.3)). Since H(x) is finite, also
. oG oG
i [ S5 6 NC@ (3 0doe() = [, 5500 NCDU (3, 0 do ()

is finite. Here u=u*—u—. Thus

W = [, 2 123N G 6 NCDu(, 0) da(y).

It is easily seen that H satisfies (3.1) and H(0)=0, so r~**L(r, H) and r*7(r, H)
have finite limits as r tends to . Since u(x)=H(x)=A|x|**£,(0), r—"*“J(r, w)=
r~*J(r,H)=A. Hence lim,. .r*J(r, H)=A. By (7.3) we get

r~¥L(r, Hp) = R-¥L(R, Hy) = R-*L(R, H).
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From the definition of Hy it is seen that L(R, u)=L(R, Hg). Hence, letting R oo,

rML(r, H) = lim R™L(R, u) = lim R-L(R, H).
Thus
lim r=*L(r, H) = Jim, r~"IL(R,u)=a

(So it suffices to prove the theorem for H.)
Now repeat the procedure with H® =H instead of u, etc. We get an increasing
sequence of harmonic functions H®(x) in Q with

H®(x) = j' G

sazy & NCAHT(yl, 0)da(y)

and H™(x)=A4]x**f,(6,). Hence H™ has a finite harmonic limit

(.6 h0D = [y o (5, HCWA(Y], 0 do (),

when n—e, We also observe that k satisfies (3.1) with equality.
Below we shall prove

1.7 h(x) = Alx[**£,(0,).

Supposing this done, we have d(1)~r~*L(r, h)=A. If ¢ is given >0 and r, fixed,
d(A) g L(ry, H™) > A—¢ for some n = n(g, ry).

Since r—* L(r, H™) increases to a when r- o, we obtain ad(1) >4 —e¢, and so

we are through.

8. Proof of (7.7)

To prove that h is a multiple of 7*£,(8,), it is by (7.6) enough to show
that h(r, 0)=Cr**. With B as in Section 4 we have

h(r,0) = fom CA)h(t, 0)B(t/r, 0)t"~2r1-" dt.

From the construction of £ we know h(r, 0)=Ar**. Using part of the proof of the
generalized Ahlfors—Heins theorem in R" ([6, pp. 119—123]), we see that
u(r, 0)=Cr* when x is large. Here (4.2) — (4.4) are needed. Since we have assumed
that «(r, 0)=C’+** when r is near 0, we have |h(r, 0)]=C”#* for all r>0. Let
f(t)=h(t,0)¢t~*. Then fis C*= and bounded on R* and

f@ = [T COfW) @y =2 ~"B(r, 0) dr.
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Put r=e™ t=e~° and fle *)=¢(x). Hence
@®.1) 9() = [~ p(IC)ex=90=1+0B(ex=1, 0) ds.

d"R
With K(5)=C(A)e*® """ B(¢*, 0) we then have @p=¢*K. Here ©

exists

for every m, since f 15" K(s)ds is finite, which is readily checked. Thus
(1—R)$=0. Since ¢ #1 solves (8.1), K(0)=1. Further we observe that K(£)z1
if £#0, so ¢ has its support at the origin. Now

K0 = fio (—is)K(s)ds = —iC(A) fic seS=1+k) B (5, 0) ds,
which, by a change of variables and (4.5), equals
—iC @) [T (442~ =" B(¢, 0) In tdr.

This is obviously =0, so we conclude that ¢(£)=C5(£). Hence ¢ is constant,
which means that A(r, 6;)=Cr** f,(6,). From the construction of & we have C=A4.
But u=h so J(r,u)=Cr**, Thus C=A and the proof is finished.

9. Proof of (b) and (c) of Theorem 3

To prove (b) we first observe that u(x)=min (M (r),J(r)f:(6,)), so
L(r,u) = L(r, min (M (1), J(r) f(6,))).
Let m@r)=r**M(@), jr)=r—"J(@) and e@)=j)dA)~r**L(r) so that
e(r)—~0 as r—c. We have 0=j(r)=m@)=C(1)7Y(r). Thus thereis a Y,=y,(),
0=y =v,, such that m{r)=j{)f,(}1). Hence ,
JrYdR)—e

= jOa ([ fi)ea0) (sin 0,720, + [7° £,(0,)g,(0y) (sin 0,2 d0,)
where
(2m)n-1r2
(n=3)1
2(2m)-2/2
(n—3)!!

if n is odd

a =
if n is even.

1t follows that
e(a = j @) [ (/0D —f,WD)ex (0 (sin 6, d;.

The assertion of the theorem is that Y, (r)-~0 as #—<. If not so, there would exist
an >0 and a sequence r;—~cc as [—co, such that ¥, (r;)=#. It would follow that

e(rda= = j(r) [1(£,(0)~£,(m)g;(6,) (sin 0,2 db;



Means and growth of subharmonic functions 43

Hence lim,. . j(r)=A=0, which is a contradiction unless 4=0 in which case
there is nothing to prove.

In case u=0, we have 0= —j(r)=—m(r)=—-C)~Y(r). With y,; as above,
the aim is to show that ¥, —+y, as r—<o. Proceeding by contradiction as before, we
get

—e() = ja 30 (f,(he—1)—£,(00)g:(61) (sin 6,2 do,

Vo1
on some sequence r=r;, where r;—~c as i—o, and some #=0. This gives
A=0 and the proof is finished.

References

1. AHLFORS, L., On Phragmén—Lindelof’s principle, Trans. Amer. Math. Soc. 41 (1937), 1—S8.

2. Azarin, V. S., Generalization of a theorem of Hayman on subharmonic functions in an
m-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119—138. Mat. Sb.
66 (108), (1965), 248—264.

3. DAHLBERG, B., Growth properties of subharmonic functions, thesis, University of Goteborg,
1971.

4. DINGHAS, A., Uber das Anwachsen einiger Klassen von subharmonischen und verwandten
Funktionen, Ann. Acad. Sci. Fennicae Ser A. I. 336/1 (1963), 3—27.

5. DrasiN, D. and SHEA, D. F., Convolution inequalities, regular variation and exceptional
sets, J. d’Analyse Math. 23 (1976), 232-—293.

6. EssEN, M. and Lewis, J. L., The generalized Alhfors—Heins theorem in certain d-dimensional
cones, Math. Scand. 33 (1973), 113—129.

7. HayMaN, W. K. and KENNEDY, P. B., Subharmonic functions vol. 1, Academic Press, New
York, 1976.

8. HeLLsTEN, U., KJELLBERG, B. and Norstap, F., Subharmonic functions in a circle, Ark.
Mar. 8 (1970), 185—193.

9. NorsTAD, F., Convexity of means and growth of certain subharmonic functions, Ark. Mat.
16 (1978) 141—152.

10. WANBY, G., A generalization of the Phragmén—Lindel6f principle for elliptic differential
equations, Math Scand. 43 (1978), 259—274.

Received May 27, 1981 University of Lund
Department of Mathematics
Box 725
S$—220 07 LUND
Sweden



