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1. Preliminaries 

This paper extends some results by Norstad [9] on subharmonic functions in the 
complex plane, cut along a half-ray, to an n-dimensional cone. 

Cartesian coordinates of  a point x of R", n ~3 ,  are denoted (x~, ..., x,). We 
introduce spherical coordinates for x by 

and 
= = 0 ~ - a  i lx[=r,  Xl rcos01, xi rcos ill)=lSnOj for i = 2  . . . . .  n - 1  

x, = r//j"_--~ sin 0j. 

Here O<=O~<-n for i = l , . . . , n - 2  and 0=<0n_a~2n. When integrating, we shall 

also use the parameter ~o, defined by x=rco. Then do~=I/gdO1...dO,_l with 

I/g = _/]]_-~ (sin Oy -j-1. 
Let ~2=g2@0 ) be the cone {x; 0=<01<~0}, where ~0 is given, 0<~k0<~. 

If  v is a function, defined in f2, we shall let v(r, 0) denote the value of  v at the point 
x=(r, 0, ..., 0). Also, if v is independent of 02, ..., 0,_1, we shall write v(r, 01) 
for the value of  v at any point whose first two spherical coordinates are r, 01. 

In spherical coordinates the Laplacian is 

(1.1) 
02 n - 1  0 + 1  

A =-~-~-t r Or -~6, 

where the Beltrami operator 6 is given by 

1 _ . 1 ~ ( ~ o )  
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Here g l = l  and g j = 1 / i - 1  ~(sin0i) 2 for j = 2 , . . . , n - l ,  so g= / / j~=- lg j .  
I f  the function F only depends on 01, 

(1.2) 6F = F" (03 + (n - 2) cot 01F'(01). 

For two C 2 functions u and v we also let 

- - .  1 1 0 u  Ov 
(Vu, v o  = Z j T / g s  ooj ooj" 

Let u be subharmonic in f2. We are going to study the means L,(r), e=> 1, and 
J(r), defined by 

( f lu(ro) ) ]o~ d(.o}l/,, 
L,(r,  u) = ( j  s A (00g (01) 

where S is the part of the unit sphere [co[=l where 0<_-01<~o, and 

u(r~o) 
J(r, u) = SsU p f~(00 " 

Here fx and gz are certain eigenfunctions of the Beltrami operator. Some of their 
properties are listed in the next section. When 1 <c~< co, u is required to be non- 
negative. 

We shall also examine the relation between M(r)=sups  u(ro)), J(r) and 
L(r)=Ll(r ) .  

2. The functions fx and gx 

We first consider the case n_->3. I f k  is a given number, k > 0 ,  we denote by 
Fk=F~(O ) the unique solution of the problem 

(2.1) 6 F + k ( k + n - 2 ) F =  0 for 0 ~_ 0 < ~r, 

Fk(0)=l  and F~(0)=0. It is known that F k depends continuously on k and has a 
first zero O(k) in (0, rr). As a function of k~ (0, r O(k) is strictly decreasing with 
range (0, 70. Let k(O) denote its inverse. Now fix k=k(Oo). Then 

(2.2) v(x) = v(r, 01) = rkFk(O0 

is harmonic in ~ and exhibits the Phragmtn--Lindel6f growth for subharmonic 
functions in f2, vanishing at Of 2. When ~bo=n/2 so that f2 is a half-space, k = l  
for all n. 

With a given 2, 0 < 2 < 1 ,  let f~(O)=Fkx(O)Fkx(l[Io)-l. (Fkz(~k0)>0 since 
~ko=~O(k)<~(k2).) Hence f~(ffo)=l and fa solves 

(2.3) 6F+ k2(kA+ n -  2)F = 0. 
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It follows from the minimum principle thatfz  is strictly decreasing for O~_O<=O(kit). 
Let w(r, 01) =rk~(01).  Then w is harmonic in I2, w(x) = Ix} k~ at ~f2 and on }x} = 1, 

(2.4) 1 ~_ w ( x )  <=A(O) = c ( i t )  -1,  

by which C(it) is defined. 
Since the indicial equation at 0 = 0  of  (2.1) is p ~ + n - 3 ) = 0 ,  (2.3) also has 

solutions ga, unbounded at 0 = 0  and such that (sin 0)"-~ga(0)+0 as 0+0.  We 
may choose ga such that ga(0)~ + o~ when 0-~0 and ga(00)=0. An application 
of Sturm's comparison theorem shows that ga has no zeros in (0, ~0). The minimum 
principle then gives that ga is strictily decreasing for 0=<0g00, so g'~(O)<=O for 
these values of  0. Actually, g[(g'0)#0, since otherwise g, would be identically zero. 
Thus we may prescribe g ] @ o ) = - 1 .  These conditions determine ga uniquely. 

We shall also need 

(2.5)  fi(O)g~ (O)--fa (O)g i (0) = (sin 0) 2-" (sin ~ko)"- 2. 

To see this, let h be the left member of (2.5). Then, by (1.2), h'=J~'g~-fag's 
- ( n - 2 ) c o t 0  h, which gives h(O)=C(sin 0) 2-". Since h(O0)=l,  we get (2.5). 

Above we assumed n~3 .  When n = 2  and k = l ,  cosit0 and s in2(rc/2-0)  
are two linearly independent solutions of (2.3). 

When n is even, it is possible to obtain explicit expressions for fa- For example, 
for n=4 ,  we have ~0=rc/(k+l) ,  

sin - -  
k +  1 sin (k2+ 1)0 

(0) - kit + 1 sin 0 
sin ~: 

k + l  
Also, 

Especially 

g~(o) = - -  

7~ 
sin 

k +  1 sin (kit+ 1)(~o-0)  
kit + 1 sin 0 

c ( i t )  = 

kit+ 1 
sin 

k + l  
7~ 

(kit + 1) sin k + 1 

A recurrence formula, from which fa can be evaluated by means of  residues, is 
given in Hayman [7, p. 160]. 
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3. Statement of results 

Let u be subharmonic in ~2 and 2 a given number, 0 < 2 <  1. Throughout the 
paper we assume that u satisfies the boundary condition 

(3.1) u(y) <= C(2)u(]y I, 0) when y~0f2\{0}. 

Here u(y)is  defined when yE0f2 as lim u(x) when x-~y, xCf2. C(2)is given by 
(2.4). We shall prove 

Theorem 1. Let u p - - ~  be subharmonic in f2 and satisfy (3.1). Then the mean 
L~(r), ~>-1, is a convex function with respect to the family Ark~+Br -k~+2-n, r>0 .  
I f  c~>1, u is supposed to be non-negative. 

Theorem 2. I f  u is subharmonic in f2 and satisfies (3.1) then J(r) is convex with 
respect to the family Ark~+Br -k~+2-n, r>0 .  

Theorem 1 corresponds to theorems I and IV of Norstad [9] and Theorem 2 is a 
generalization of Theorem III of [9]. Transferred to the right half-plane the two-dimen- 
sional results are that 

a-~12 I , ~ )  cos 20 sin 2 

and 
u(rd ~ 

sup 
10l<~/m cos 20 

2n 
are convex with respect to ArZ+Br -~. Here C ( 2 ) = c o s - - .  Continuity on the axis 

2 
of symmetry and on the boundary is implicit in [9]. 

The limiting case 2 =  1, which corresponds to boundary values u(y)<-O, was 
treated, for a half-space of R", by Dinghas [4]. His result is that 

r . - l  f l" (u(rog)l'cos2Odoo) 
I,J t cos 0)  

is a convex function of r", which is the conclusion of Theorem 1 in case k = 2 = l .  
When ~=  1 and u= log  + If(z)[ withfanaly t ic  in the right half-plane and such 

that If(z)l--< 1 on the imaginary axis, the result is a classical theorem by Ahlfors [1]. 
From the convexity we get 

Corollary. Under the assumptions of  Theorem 1 and 2 and i f  u(O)< ~, r-kaLe(r) 
and r-k~J(r) are non-decreasing, so the limits 

lijr2r-kaL,(r ) and limr-k~J(r) 

exist, possibly = co. 
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Let w(r, 01)=rk~fz(01) and put L(1, w)=d(2), that is 

d (,~) = 2~ f~o~ (0)g~ (0) (sin 0) n-3 dO 1I;~7~ fo (sin 0)"- j-1 dO 

with obvious interpretation if n=3 .  We then clearly have 

(3.2) L(r) <= d(2)J(r). 

From our assumptions it follows that r-kZM(r) has a positive limit as r - ~  if u 
is non-negative somewhere. A proof is given in Dahlberg [3] or Ess6n--Lewis [6]. 
If  u(xo)>=O, we conclude from the Corollary that u is non-negative at some point 
at ]xl=r for all r =  >[x0I. We then have 

(3.3) J(r) <= M(r) ~ C(2)-IJ(r). 

From (3.2) and (3.3) we get some trivial relations between the three limits. A precise 
result is 

Theorem 3. l f  u satisfies the conditions of  Theorem 1, i f  u(0)< co and i f  u(r, O) = 
O(r kz) when r+O, then limr+=r-kaJ(r)=~ or 

(a) }ira r-k L(r) = }ira r-k J(r). 

I f  .further u is non-negative somewhere, then 

(b) lijn r-k~M(r) = C(2)-1 lira r-kZJ(r), 

while, i f  u<=O throughout 0, 

(c) lim r-k~M(r) = lim r-kZJ(r). 

Our boundary condition (3.1) implies 

(3.4) u(y) ~= C(2)M + (lYl), 

where M + ( r )=max  (M(r), 0). Among the consequences of (3.4) is the generalized 
Ahlfors--Heins theorem in R ", proved by Ess6n--Lewis [6]. Related problems are 
studied in Dahlberg [3] and Wanby [10]. We also refer to Hellsten, Kjellberg and 
Norstad [8] and Drasin and Shea [5]. 

4. Some results on the Green's function 

Let 0 R = On {Ix[ < R} and denote by G (x, y) and G R (x, y) the Green's functions 
O 

for 0 and 0 R respectively. Also let - ~  denote the inner normal derivative with 

respect to yEO0 or OO R. In the following we will need some estimates by Azarin 
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of OGR OG 
[2] ON and - ~ - .  With F k and v as in (2.2) we have 

k 
(4.1) OGR ( x , R ~ ) ~ -  { ~ )  Rl-nFk(Ol(x))Fk(01(co)) 

ON 
k 

fiN ( I x l "~ , ,1- . 4 (4.2) ~OG (x,y) .~ F~(Ol(x)) (Y/ lYl)I ,~J  iYl , i f  0 < lxl <-3-1y l ,  

k 
0G ~ ([Y[) 3 - - . - - 1  4 (4.3) - ~ ( x , y )  ~ Fk(Ol(X)) (Y/lYl) ~ Ix! lYl , if 0 < lY[ <-~lx[,  

(4.4) 0G 0v , 5-4 ly~lXl ~-'5 -g--N(X, y) ~ Fk(Ol(x))-g-~(y/ly[)lx-yl- , if ~ ~_ 

Here f ~  g means that there are positive constants C1 and C2, only depending on f2, 
such that Cl<=f/g<=C2. 

Let da(y) denote Lebesgue measure on 0f2. Following [6, pp. 117--118] we let 
# be the measure on 0f2, defined by 

t"-2dtd#(y) = dtr(y), lyl = t, 
and 

OG ( x y] 
B(t, 01) -- f ~ l , E = 0  d#(y). 

We then get, with Ix[=r, 

f o~N{lrl=t) OG -g-~(x, y) d#(y) = rl-nB(t/r, 01). 

We also note that 

(4.5) t"B(t, 01) = B(1/t, 01). 

In the following we shall also use the following notation: 

DR=f2C~{IxI=R}, K R = OOn{lx I < R}  
and 

5. Proof of  Theorem 1 

We shall first prove 

Lemma. Let u be a subharmonic C 2 function in ~ and suppose that u satisfies 
(3.1). Then 

f fu(r(D) )~t--x 
(5.1) d s I , - - ~ )  (6u(rco)+k2(k),+n-2)u(roO)gx(01) do~ <- O. 
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Here S denotes the part of the unit sphere IcoI=l, where 0-<_01<~0 . When a >  1, 
u is supposed to be positive. 

Proof. We first assume c~>l. Denote the integrand of (5.1) by D~ and put 
u(x)=q(x)f~(01). We get 

D~ = q~-l(f~Sq+q~f~+2(Vq, Vf~)+k2(k2+n-2)qf~)ga. 

Since f~ satisfies (2.3), we have 

f ~ D~ do~ = f ~ r ,~q + 2(Vq, Vf, O)ga do) 

( ~ . - 1 0  (l/g Oq)+2x,._l 1 0 q  Of~] ~/--~dOi.. don_ 1 

r -~ . -1  fl/g Oq ,-1,~ ] ~ 

- f ZT-~ ~ ~q ~ ~ 1- - 2 l ~f~ ~ dO gj OOj ( ~  (q~- ~Ja ga)-- q~- ~ gx) 1.." dO,_1. 

Here a1=~o, aj=u when 2<-j<=n-2 and a,_x=2n.  In the first sum all terms 
are zero. For j = l  we use that ga(r  and that ga(01) (sin 00"-z-~0 as 01-+0. 

When 2<=j<-_n--2 we note that -'-V--~g = 0  for 0 j = 0  or ~r. Finally ~ is indepen- 
gj g.-I 

Og q,-1 
dent of  0,_1 a n d ~  has the same values for 0 ,_1=0  and 2n for fixed 

01, ..., 0,_2 with 0 < 0 1 < ~ o ,  0<0~<zc when 2~j<-n-2. Thus we get 

f sn, do~ = (1-a) f sq~-~Agz(Vq, Vq)do9 

t/ff q'-l ff~ff~ ( f ; (O1)gz (O1)-- fz ( O1) gi (Ox)) dOx ... dO,_1 + f  

( s in  r f q ~-~ O q  . - 1  . = ~ / / j = 2  (sin Oy-l-Jd01... dO,-1 

~-a (sin O o ) " - ~ f [ q ~ ( r ,  01 . . . .  , o ,=oo , , -~ �9 , - l _ j  = 0 , - 0 ] o ~ = 0  //j__~ ( s in  0j)  dO~.., dO,_1. 

Here we used (2.5). 
Now, if y is the point with polar coordinates (r, r 02, ..., 0,_1), 

[q'(r, 01, ..., -n-uo,=on ~0,=r = (u(y))'--(u(ly[, 0)C(2))', 

which is non-positive because of  (3.1). Thus the lemma is proved if cr Small 
changes are needed in case a =  1. We omit the details. 
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Remark. It  is clear from the proof  that the lemma is true under the somewhat 
weaker boundary condition 

( a-1 fu ' (r ,  ~'o, 0~, ..., On_l) I I ;21  (sin Oj)'-l-Jd02 ... dOn_l) 1l~ ~ C(2)z l ( r ,  0). 

Here the domain of  integration is given by 0<0j<~z for 2<=./~=n-2 and 
0 <  0,_1<2zc and 

[ 
/ / j = 2 J t  ) ~ " - t r ' s i n 0 j ' " - ~ - J d 0 i  = / (n--3)![ if n is odd a 

] 2 (2z0("-2)/z 
( ~ i  if n is even. 

This corresponds to Norstad's boundary condition 

u ' ( i r ) + u ' ( - i r )  ~= cos-~-- u(r). 

Now suppose e > l  and L~(r ,u)=Ark~+Br -ka+z-" for r=ra and r2, r~<r2. 
A and B are constants. The assertion of Theorem 1 is that L,(r, u)<= Arka+Br -ka+ ~-" 
for r~<r<r2 .  We shall first approximate u by C 2 subharmonic functions um which 
also satisfy the boundary condition (3.1). If  the restriction of u to the positive xl-  
axis is not  continuous, we first replace u by its least harmonic majorant in a small 

_ _  ~ : ~  ~ ~ - m  2 . ~  2 cylinder around the xl-axis: ra t]=xl=r2-t-r], 2 ~ x j = t l .  The new function is 
then subharmonic in ~2, satisfies (3.1) and is continuous on the x~-axis for 
r~<=xl~=r2. Now, if e > 0  is given, there are points x (1), ..., x (m on t)f2 and a 
5 > 0  such that each point in the set K,,,r, belongs to some ball IX--x(k)I<5 and 
such that 

(5.2) u(x) < U(x(k))+~ if  IX--X (k)] < 25. 

This follows from the semicontinuity at the boundary and a compactness argument. 
Since u is continuous on the positive x~-axis for r~_x~=r2, we may take 5 so small 
that 

(5.3) ]u(t, O) -u (s ,  O)] < ~ if Jt-s] < 25, rl <= t <= s <= r2. 

2~ 
Let u , ( x ) = u ( x l + 5 ,  xz . . . .  , x,) 1 -  C(2)" Then u. is subharmonic in an open 

domain D which contains f2q,~ . I f  xEK,~,~, we get according to (5.2), (3.1) and 
(5.3), 

uXx) <- c( )uXlx[, 

Let v,(x)=u,(x)-~ 1 - C ( 2 ) ~ , r l J  f~(O~) to make v~>0. Note that r~af~(O 0 

satisfies (3.1) with equality. Now choose a sequence u~ of  subharmonic functions 
which decrease to v, in D. 
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We have to show that the functions u m satisfy (3.1). For  x in K,I,, 2 we first ob- 

serve that urn(x)<v,(x)+e(1-C(2))<C(2)v,(Ixl, 0), if  m=~some ml=ml(e,x). 
Since u,, and v, are continuous on the positive xl-axis for rl<=Xl<=r~, we get 

urnl(x+y) < C(2)vjlx+y[, 0) if  [Yl < some ~/(e, x). 

Now, by another compactness argument, we see that there are finitely many x(k)~oq~ 
such that each xEK, l,q may be written as x=x(k)+y and such that  

Urn~(x(k)+y) < C(,~)v~([X(k)+y[, O) for some k. 

With M = m a x  ink, by using that  the sequence urn decreases, we obtain 

Urn(X ) < C(,~,)pe(Ixl, O) ~ C(~)btrn(Ixl, O) 

for all x~K,,,, 2, if  rn~_M. 
I t  is easy to see that, for r=rl or r2, L,(r, Um)<=L,(r, u)+O(e), so L~(r, u,,)~_ 

<=A,rkX+B,r-k~+~-", where A, o A  and B ~ B  as e~0 .  I f  the theorem is proved 
for the C ~ function urn, the rest is standard, letting in order m-~oo, e ~ 0  and q ~ 0 .  

I f  e =  1, to make u finite, we start by replacing u by max (u, - N ) ,  which tends 
to u when N ~  oo. This does not  affect the boundary condition. 

When u is C 2 we have 

(5.4) Au--- " n - 1  , 1 u,,+ u , +  6 u > 0 .  
r ~ = 

Let aft) = Ll(r)  = fsq~xgxdo~. Then 

(5.5) G" (1") = f s eq~-lu" gz doJ 
and, if  c~> 1, 

G" (r) = f s  e(c~- 1) q~-2(Ur)2~ dco + L eq~-lu; 'ga do). 

F rom (5.5) it follows by use of  the Cauchy--Schwartz  inequality that  

g~ do.). ( G'(r))2 <= c~2G(r) fs q~-~(u;)2 -~x 

Hence, by (5.4) 

c~--1 (G'(r))' n--1 G ' ( r ) - ~  l" G ' ( r )  => 
G(r) r 

so f rom the lemma we get 

G"(r) ~ -  I (G'(O)' +.,n- i 
G(r) r 

G" (r) - ~ k2 (kX + n -  2) a (r) => 0 
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o r  

k2 (k2 + n -  2) L~(r) :> O. (5.6) L'-'(r)+ n--r 1 L~,(r) r2 = 

If  c~=l, we have G'(r)=fs u;gxdm so we arrive at (5.6) by another differentiation 
and the lemma. 

Equality in (5.6) occurs if and only if L~(r)=ClrkX+C~r -kx+2-". The result 
therefore follows from the (one-dimensional) maximum principle. 

Remark 1. An equivalent formulation of the conclusion is that r"-Z+kZL~(r) 
is a convex function of r "-2+2k~. 

Remark 2. The above mentioned theorem by Dinghas follows from ours by 
letting 2-~1. In fact, first replacef~ by C(2) f  z so that fx (0 )= l  and fz(n/2)=C(2). 
As 2~1 ,  fz(0)--cos 0 and also gz(0)~Cos 0 in C 1 on compact parts of (0, n). 
Further fo~_o,~_, gzdco~O when q-*0. This is seen by observing that ga(O) is a 
decreasing function of 2. 

6. Proof of Theorem 2 and the Corollary 

Let h(r)=ArkX+Br-kZ+2-" and assume J(r)=h(r)  for r=rl  and r2, 
r1<r2. Solving for A and B we get 

1 k), k A + 2  n k ~ + 2  n k~, k,~+2 n k2 kA k,~,+2 n h(r) = D -  (J(rl)(r r~ - - r -  - r 2 )+ J(r~)(r- - rl - r  r~ - )), 

where 1) - -~k) '~ ' - -k2+2--n  ~kA ~--k,Z+2--n 
J J - - ~ l  ~2 - - ~ 2  ~1 �9 

Let H(x) =H(r ,  01) =h(r)fx(01). Since rkafx and r-ka+2-nf~ are harmonic in f2, H 
is. We shall see that H majorizes u in f2rl,, ,. In order to apply the maximum princi- 
ple, we note that v = u - H < - O  when [xl=r 1 or r2. Then either v<_-0 throughout 
O,,,,~ or v has a positive maximum at x0E~gg2. But since H satisfies (3.1) with equa- 

u(x) 
lity, V(Xo)<=C(2)v([xo], 0), so the maximum cannot be positive~ Thus <_- 

A(OO 
h(r) when ]x]=r, ra=r_r  ~ . <  <- Consequently J(r)<=h(r) for these values of r, and 
we are through. 

Proof o f  the Corollary 

Since I]mx~oU(X)=u(O)< ~o, J(r) is bounded above when r is small. Also, h(r) 
is a positive linear combination of J ( r0  and J(r2) for rl<r<r2.  Thus we may let 
rl-*0 in the inequality J(r)<=h(r). We obtain J(r)<=rk~J(rz)r -ka which is the asser- 
tion. The proof for L,  is the same. 
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Remark. Theorem 2 is actually true with (3.1) replaced by u(y)<oo and 

(6.1) u(y) <= C(2)M+(ly], u) when yEO 

provided that u(x)>-O somewhere on/9 ,  for r>=r~, so that J(r)~_O. To see this, 
we note that M + (H, r)=H(r, 0) so v satisfies (6.1), and the conclusion is reached as 
above. 

In general, (6.1) is not sufficient for Theorem 2 to be valid. Let 2'E(2, 1). A tri- 
vial example is then u =  -rk~f~,, (01), which is harmonic in O, satisfies (6.1) and has 
r-~XJ(r)=Cr k(x'-a) where C is a negative constant. (Actually C = - 1 . )  

7. Proof of (a) of Theorem 3 

Assume that A :  limr_~ r-k~J(r)< co. We use the notation of Section 4. The 
function 

(7.1) 

f 3GR dco- r OGR HR(X) = J s - - ~  (X, Rco)u(RoOR n-1 -rJ K R ~ (x, y)C(2)u([y[, 0)dtr(y), 

is harmonic in OR with boundary values u(Rco) at D R and C(2)u([y[, 0) at Kg. 
HR obviously majorizes u. Thus, if yE00,  

HR(y ) -= C(2)u([y[, O) <-- C(2)HR(lyI, O), 

SO Hg satisfies (3.1) in O R. Since u<=J(r)fa, 

(7.2) HR(x) <-- Alxl~Xfx(01). 

Especially HR(0)--<--0. Consequently 

(7.3) r-k~L(r, HR) <= R-k~L(R, HR) for r < R. 

Now, an application of the maximum principle in O R shows that HR,, (x)>--HR(x) 
if R'>R.  So, by (7.2) and the Harnack principle, Hn(x ) increases to a harmonic 
function H(x)<=A [x]kXf~(01) in O, as R~oo. Taking the limit in (7.1), we want to 
show that 

( OGR 
(7.4) as--~--~-(x, Rw)u(Rw)R"-ldco 4 0 ,  when R - ~  and x is fixed. 

We have u(x)<=AC(2)-l]x[kX. If  we also knew that, for some B, u(x)>-BIx] kz 
when x is large, (7A) would follow from (4.1). Otherwise we may argue as follows. 
By (4.1) it is enough to prove (7.4) for Ul=U+C [x[kZfx(01), where C is chosen so 
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that ul is positive somewhere. Then l i m , ~  r-kZM(r, ul) exists and is finite. If  

CC2) f 9G v (x) -= " " J oo ~ (x, y)M+(lyl, ul) da (y), 

it follows that v(x)=O([x[ ~) when x tends to ~,  so it suffices to show (7.4) for 
p=v--ul. The function p is superharmonic and non-negative in ~2. Following [6, 
pp. 120---121] we note that for r large there exists x,, with Ix,[ =r ,  

r-k~p(X,)~O as r ~ ,  
and 

(7.5) 01 (xr) ~ constant < ~O0. 

From the maximum principle and (4.1) we deduce 

p(x,) = j s-g-~(x,, Ro~)p(R~)e"-leo~ ~ q F~(Ol(x,)) f~ F~(O~(o~))p(Rco)d,~. 

Denote the latter integral by I(R). Taking r=R/2, we obtain from (7.5) 

R-~I(R) ~_ C~r-~p(~,), 

which tends to 0 as R ~ , .  Thus, by (4.1), 

.< f OGn 0 = .i s - - ~  (x, RoJ)p(R~o)R"-tdco ~= C3Ix]k(I(R)R-k~)R -k(1-~) ~ O, 

when R ~  ~, so (7.4) is verified. 

OGa I OG Since - - ~  ~ as R - ~ ,  we note, with u + = m a x ( u ,  0), that 

OGR x + OG f ,~.-V;-( , y)c(~)u (Iy[, O)da(y) [ f ~ -~(x, y)C(2)u+(ly[, O) do'(y), 

which is finite, due to (4.2) (and (4.3)). Since H(x) is finite, also 

f OGR ,- OG C ~, linL ~ ~ (x, y)CO)u-(ly[, O) da(y) = j o -j--N(X, y) ( )u-(]y], o)da(y)  

is finite. Here u=u+-u  -. Thus 

H(x) = f a~---~ (x, y)C(2)u(lyt, O) da(y). 

It is easily seen that H satisfies (3.1) and H(0)~0,  so r-k~L(r, H) and r-kaJ(r, H) 
have finite limits as r tends to co. Since u(x)<-_n(x)<=AIx[k~A(O0, r-~XJ(r, u)~- 
r-kXj(r,H)<=A. Hence lim,~=r-k~j(r,H)=A. By (7.3) we get 

r-k~L(r, Hn) ~ R-k~L(R, HR) <= R-~L(R,  H). 
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From the definition of HR it is seen that L(R, u)=L(R, Hn). Hence, letting R-* oo, 

Thus 

r-kXL(r, H) <= lim R-kXL(R, u) <= lim R-k~L(R, H). 
R ~  R ~  

lim r-kZL(r, H) -~ lim r-k~L(R, u) = a 

(So it suffices to prove the theorem for H.) 
Now repeat the procedure with H (~) = H  instead of  u, etc. We get an increasing 

sequence of  harmonic functions H(")(x) in f2 with 

l" 6 ] G  n l O(")(x) = J aa ~ (x, y)C(2)O( - )(lyl, 0) d~(y) 

and H(n)(x)<=A]xlk~'f~.(O1). Hence H ~") has a finite harmonic limit 

(7.6) h (x) = f a~ ~ (x, y)C(2)h (lYI' O) da (y), 

when n ~ .  We also observe that h satisfies (3.1) with equality. 
Below we shall prove 

(7.7) h (x) = A Ixlkafx(O0. 

Supposing this done, we have d(2)-lr-k~L(r, h)=A. I f  ~ is given > 0  and r0 fixed, 

d(2)-lrok~L(ro, H("~) > A - ~  for some n = n(~, to). 

Since r-kaL(r, H (")) increases to a when r ~  ~ ,  we obtain ad(2)- l>A-~,  and so 
we are through. 

8. Proof of (7.7) 

To prove that h is a multiple of  rkaf~(Oa), it is by (7.6) enough to show 
that h(r, 0 ) = C r  kz. With B as in Section 4 we have 

h(r, O) = f o  C(2)h(t, O)B(t/r, O)tn-2rl-ndt. 

From the construction of  h we know h(r, O)~Ar kz. Using par t  of  the proof  of  the 
generalized Ahlfors- -Heins  theorem in R" ([6, pp. 119--123]), we see that 
u(r, O)>=Cr kz when x is large. Here (4.2) - - (4 .4 )  are needed. Since we have assumed 
that u(r, O)>=C'r kz when r is near 0, we have Ih(r, O)I<=C'r ka for all r > 0 .  Let  
f( t)=h(t ,  O)t -ka. Then f is C ~ and bounded on R + and 

f(r) = f o  C(2)f(t) (t/r) k~t"-2rl-"B(t/r, O) dt. 
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Put r=e -~, t=e -~ and f(e-~)=q~(x). Hence 

(8.1)  ~ (x)  = f y~ ~o (s~ c (2) e~- ~'~"- 1 +,~)~ (e~- ~, O) as. 

With K(s)=C(2)e'("-l+kX)B(e~,O) we then have cp--q~.K. Here ~dmg(~)exists 

for every m, since f~= ]s['K(s)ds is finite, which is readily checked. Thus 
(1 --/~)$--0. Since q~ # 1 solves (8.1), /~(0) = 1. Further we observe that R(~) ~ 1 
if ~ #0 ,  so $ has its support at the origin. Now 

g'(o) = f== ( -  ~,)x(,) a, = - ~c(2) f 7 =  seS("- ~+~a)B( e', O) ds, 

which, by a change of  variables and (4.5), equals 

-iC(2) f ~  (?~+"-2-t-~a)B(t, 0) ln tdt. 

This is obviously ~0,  so we conclude that ~(r  Hence ~o is constant, 
which means that h(r, O0=Crtaf,(O O. From the construction of h we have C~A. 
But ugh so J(r, u)~-Cr ~. Thus C=A and the proof  is finished. 

9. Proof of (b) and (c) of Theorem 3 

To prove (b) we first observe that u (x )~min  (M(r),J(r)f~.(01)), so 

L(r,u) g L(r, rain (M(r), J(r)fx(O0)). 

Let m(r)=r-kXm(r),j(r)=r-kXj(r) and e(r)=j(r)d(2)-r-kXL(r) so that 
e(r)~O as r-*oo. We have O~=j(r)~_m(r)~C(2)-lj(r). Thus there is a ~1=~1(r) ,  
0 ~ 0 1 ~ r  such that m(r)=j(r)fx(~l). Hence 

j (r) d ( 2 ) -  e (r) 

<= j (r)a {f~olfx (~k~)gx (00 (sin 01) "-2 dO1 + f ~ f x  (01)gx (0a) (sin 02) "-2 dOa) 
where 

{ (2~)("-a)/2 
( n -3 ) ! !  " if n is odd 

a = 2(2~)(,_2)/2 if n is even. 
(n--3)!! 

It follows that 

e (r)a -1 ~ j (r) f0  ~1 (f~ (00 --f2 (~a))g~ (02) (sin 0a)"-2 doz. 

The assertion of the theorem is that ~ ( r ) - * 0  as r-* ~.  If  not so, there would exist 
an q > 0  and a sequence r,-~o~ as i ~ ,  such that ~x(rf)=>~/. It would follow that 

e (ri)a-X ~= j (r,) f~ (f~ (01)-f~ (t/))gz (01) (sin 01) "-2 doz. 
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Hence  l im,~,oj (r)=A<=O, which is a con t rad ic t ion  unless A = 0  in which case 

there  is no th ing  to prove.  

In  case u ~ 0 ,  we have  0 ~  - j(r)<= - r e ( r )  <- - C ( 2 ) - ~ / ( r ) .  W i t h  ~1 as above,  

the a im is to show tha t  ~1 ~g '0  as r ~  co. P roceed ing  by  con t rad ic t ion  as before ,  we 

get  

- e ( r )  < j ( r ) a  f ~  ~ ( f z ( ~ o - t l ) - f z ( O  ))g ( 0 ) ( s i n  0 )"-2dO = _ r l  1 ,~, 1 1 1 

on some sequence r=r~, where  r , - ~  as i - ~ o ,  and  some 7/>0. This  gives 

A ~ 0  a n d  the p r o o f  is finished. 
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