Taiwanese Journal of Mathematics

Unified Approach to Spectral Properties of Multipliers

Mikael Lindström, Santeri Miihkinen, and David Norrbo

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

Let $\mathbb{B}_n$ be the open unit ball in $\mathbb{C}^n$. We characterize the spectra of pointwise multipliers $M_u$ acting on Banach spaces of analytic functions on $\mathbb{B}_n$ satisfying some general conditions. These spaces include Bergman-Sobolev spaces $A^p_{\alpha,\beta}$, Bloch-type spaces $\mathcal{B}_{\alpha}$, weighted Hardy spaces $H^p_w$ with Muckenhoupt weights and Hardy-Sobolev Hilbert spaces $H^2_{\beta}$. Moreover, we describe the essential spectra of multipliers in most of the aforementioned spaces, in particular, in those spaces for which the set of multipliers is a subset of the ball algebra.

Article information

Source
Taiwanese J. Math., Advance publication (2020), 25 pages.

Dates
First available in Project Euclid: 24 February 2020

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1582513213

Digital Object Identifier
doi:10.11650/tjm/200205

Subjects
Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15] 47B38: Operators on function spaces (general)

Keywords
spectrum essential spectrum Hardy-Sobolev spaces Bergman-Sobolev spaces multiplication operator

Citation

Lindström, Mikael; Miihkinen, Santeri; Norrbo, David. Unified Approach to Spectral Properties of Multipliers. Taiwanese J. Math., advance publication, 24 February 2020. doi:10.11650/tjm/200205. https://projecteuclid.org/euclid.twjm/1582513213


Export citation

References

  • Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, American Mathematical Society, Providence, RI, 2002.
  • M. Andersson, Topics in Complex Analysis, Universitext, Springer-Verlag, New York, 1997.
  • S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26–44.
  • F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. (Rozprawy Mat.) 276 (1989), 60 pp.
  • ––––, On multipliers for Hardy-Sobolev spaces, Proc. Amer. Math. Soc. 136 (2008), no. 6, 2125–2133.
  • K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70–79.
  • A. Boivin, P. M. Gauthier and C. Zhu, Weighted Hardy spaces for the unit disc: approximation properties, in: Complex and Harmonic Analysis, 129–155, DEStech Publ., Lancaster, PA, 2007.
  • J. Bonet, P. Domański and M. Lindström, Pointwise multiplication operators on weighted Banach spaces of analytic functions, Studia Math. 137 (1999), no. 2, 176–194.
  • G. Cao and L. He, Fredholmness of multipliers on Hardy-Sobolev spaces, J. Math. Anal. Appl. 418 (2014), no. 1, 1–10.
  • G. Cao, L. He and K. Zhu, Spectral theory of multiplication operators on Hardy-Sobolev spaces, J. Funct. Anal. 275 (2018), no. 5, 1259–1279.
  • B. R. Choe, H. Koo and W. Smith, Composition operators acting on holomorphic Sobolev spaces, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2829–2855.
  • M. D. Contreras, J. A. Peláez, C. Pommerenke and J. Rättyä, Integral operators mapping into the space of bounded analytic functions, J. Funct. Anal. 271 (2016), no. 10, 2899–2943.
  • E. B. Davies, Linear Operators and Their Spectra, Cambridge Studies in Advanced Mathematics 106, Cambridge University Press, Cambridge, 2007.
  • Q. Fang and J. Xia, Multipliers and essential norm on the Drury-Arveson space, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2497–2504.
  • W. Koepf, Hypergeometric Summation: An algorithmic approach to summation and special function identities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1998.
  • V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications 139, Birkhäuser Verlag, Basel, 2003.
  • S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191–215.
  • J. Ortega and J. Fàbrega, Multipliers in Hardy-Sobolev spaces, Integral Equations Operator Theory 55 (2006), no. 4, 535–560.
  • D. Vukotić, Pointwise multiplication operators between Bergman spaces on simply connected domains, Indiana Univ. Math. J. 48 (1999), no. 3, 793–803.
  • R. Zhao and K. Zhu, Theory of Bergman spaces in the unit ball of $\mathbb{C}^n$, Mém. Soc. Math. Fr. (N.S.) (2008), no. 115, 103 pp.
  • K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226, Springer-Verlag, New York, 2005.