Taiwanese Journal of Mathematics

Singular Limit Solutions for a 4-dimensional Semilinear Elliptic System of Liouville Type

Sami Baraket, Imen Bazarbacha, Rima Chetouane, and Abdellatif Messaoudi

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

We consider the existence of singular limit solutions for a nonlinear elliptic system of Liouville type with Navier boundary conditions. We use the nonlinear domain decomposition method and a Pohozaev type identity.

Article information

Source
Taiwanese J. Math., Advance publication (2020), 55 pages.

Dates
First available in Project Euclid: 19 December 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1576724419

Digital Object Identifier
doi:10.11650/tjm/191201

Subjects
Primary: 35J60: Nonlinear elliptic equations 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60] 58J05: Elliptic equations on manifolds, general theory [See also 35-XX]

Keywords
Liouville type system singular limit solution nonlinear domain decomposition method Green's function Pohozaev identity

Citation

Baraket, Sami; Bazarbacha, Imen; Chetouane, Rima; Messaoudi, Abdellatif. Singular Limit Solutions for a 4-dimensional Semilinear Elliptic System of Liouville Type. Taiwanese J. Math., advance publication, 19 December 2019. doi:10.11650/tjm/191201. https://projecteuclid.org/euclid.twjm/1576724419


Export citation

References

  • G. Arioli, F. Gazzola, H.-C. Grunau and E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity, SIAM J. Math. Anal. 36 (2005), no. 4, 1226–1258.
  • S. Baraket, I. Bazarbacha and N. Trabelsi, Construction of singular limits for four-dimensional elliptic problems with exponentially dominated nonlinearity, Bull. Sci. Math. 131 (2007), no. 7, 670–685.
  • S. Baraket, I. Ben Omrane, T. Ouni and N. Trabelsi, Singular limits for $2$-dimensional elliptic problem with exponentially dominated nonlinearity and singular data, Commun. Contemp. Math. 13 (2011), no. 4, 697–725.
  • S. Baraket, M. Dammak, T. Ouni and F. Pacard, Singular limits for a $4$-dimensional semilinear elliptic problem with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 6, 875–895.
  • S. Baraket, A. Messaoudi, S. Saanouni and N. Trabelsi, Blow-up in coupled solutions for a $4$-dimensional semilinear elliptic system of Liouville type, to appear in Adv. Pure Appl. Math.
  • S. Baraket and F. Pacard, Construction of singular limits for a semilinear elliptic equation in dimension $2$, Calc. Var. Partial Differential Equations 6 (1998), no. 1, 1–38.
  • S. Baraket, S. Sâanouni and N. Trabelsi, Singular limit solutions for a $2$-dimensional semilinear elliptic system of Liouville type in some general case, Discrete Contin. Dyn. Syst. 40 (2020), no. 2, 1013–1063.
  • S. Baraket and D. Ye, Singular limit solutions for two-dimentional elliptic problems with exponentially dominated nonlinearity, Chin. Ann. Math. Ser. B 22 (2001), no. 3, 287–296.
  • S.-Y. A. Chang, On a fourth-order partial differential equation in conformal geometry, in: Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), 127–150, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999.
  • S. Chanillo and M. K.-H. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Anal. 5 (1995), no. 6, 924–947.
  • M. Clapp, C. Muñoz and M. Musso, Singular limits for the bi-Laplacian operator with exponential nonlinearity in $\mathbb{R}^4$, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 5, 1015–1041.
  • M. Dammak and T. Ouni, Singular limits for $4$-dimensional semilinear elliptic problems with exponential nonlinearity adding a singular source term given by Dirac masses, Differential Integral Equations 21 (2008), no. 11-12, 1019–1036.
  • Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant $Q$-curvature, Ann. of Math. (2) 168 (2008), no. 3, 813–858.
  • P. Esposito, Blow up solutions for a Liouville equation with singular data, in: Recent Advances in Elliptic and Parabolic Problems, 61–79, World Sci. Publ., Hackensack, NJ, 2005.
  • C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv. 73 (1998), no. 2, 206–231.
  • C.-S. Lin, J. Wei and D. Ye, Classification and nondegeneracy of $SU(n+1)$ Toda system with singular sources, Invent. Math. 190 (2012), no. 1, 169–207.
  • C.-S. Lin, J.-c. Wei and L. Zhang, Classification of blowup limits for $\operatorname{SU}(3)$ singular Toda systems, Anal. PDE 8 (2015), no. 4, 807–837.
  • J. Liouville, Sur l'équation aux différences partielles $\partial^{2} \log \frac{\lambda}{\partial u \partial v} \pm \frac{\lambda}{2a^{2}} = 0$, J. Math. 18 (1853), 17–72.
  • M. Musso, A. Pistoia and J. Wei, New blow-up phenomena for $SU(n+1)$ Toda system, J. Differential Equations 260 (2016), no. 7, 6232–6266.
  • J. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Differential Equations 21 (1996), no. 9-10, 1451–1467.
  • J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbb{R}^4$, Calc. Var. Partial Differential Equations 32 (2008), no. 3, 373–386.