Taiwanese Journal of Mathematics

Cofiniteness with Respect to the Class of Modules in Dimension less than a Fixed Integer

Alireza Vahidi and Saeid Morsali

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

Let $R$ be a commutative Noetherian ring with non-zero identity, $n$ a non-negative integer, $\mathfrak{a}$ an ideal of $R$ with $\dim(R/\mathfrak{a}) \leq n+1$, and $X$ an arbitrary $R$-module. In this paper, we prove the following results:

(i) If $X$ is an $\mathfrak{a}$-torsion $R$-module such that $\operatorname{Hom}_{R}(R/\mathfrak{a},X)$ and $\operatorname{Ext}_{R}^{1}(R/\mathfrak{a},X)$ are $\operatorname{FD}_{\lt n}$ $R$-modules, then $X$ is an $(\operatorname{FD}_{\lt n},\mathfrak{a})$-cofinite $R$-module;

(ii) The category of $(\operatorname{FD}_{\lt n},\mathfrak{a})$-cofinite $R$-modules is an Abelian category;

(iii) $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is an $(\operatorname{FD}_{\lt n},\mathfrak{a})$-cofinite $R$-module and $\{ \mathfrak{p} \in \operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(X)) : \dim(R/\mathfrak{p}) \geq n \}$ is a finite set for all $i$ when $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{\lt n}$ $R$-module for all $i$.

We observe that, among other things, $\operatorname{Ass}_R(\operatorname{H}^{i}_{\mathfrak{a}}(X))$ is a finite set for all $i$ whenever $R$ is a semi-local ring with $\dim(R/\mathfrak{a}) \leq 2$ and $\operatorname{Ext}^{i}_{R}(R/\mathfrak{a},X)$ is an $\operatorname{FD}_{\lt 1}$ $R$-module for all $i$.

Article information

Source
Taiwanese J. Math., Advance publication (2019), 16 pages.

Dates
First available in Project Euclid: 9 September 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1568016021

Digital Object Identifier
doi:10.11650/tjm/190902

Subjects
Primary: 13D07: Homological functors on modules (Tor, Ext, etc.) 13D45: Local cohomology [See also 14B15]

Keywords
Abelian categories cofinite modules local cohomology modules

Citation

Vahidi, Alireza; Morsali, Saeid. Cofiniteness with Respect to the Class of Modules in Dimension less than a Fixed Integer. Taiwanese J. Math., advance publication, 9 September 2019. doi:10.11650/tjm/190902. https://projecteuclid.org/euclid.twjm/1568016021


Export citation

References

  • N. Abazari and K. Bahmanpour, Extension functors of local cohomology modules and Serre categories of modules, Taiwanese J. Math. 19 (2015), no. 1, 211–220.
  • M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) (2014), no. 4, 347–356.
  • M. Aghapournahr, A. J. Taherizadeh and A. Vahidi, Extension functors of local cohomology modules, Bull. Iranian Math. Soc. 37 (2011), no. 3, 117–134.
  • D. Asadollahi and R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 (2015), no. 3, 953–958.
  • K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 (2014), no. 1, 62–68.
  • K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2359–2363.
  • ––––, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (2009), no. 7, 1997–2011.
  • K. Bahmanpour, R. Naghipour and M. Sedghi, Minimaxness and cofiniteness properties of local cohomology modules, Comm. Algebra 41 (2013), no. 8, 2799–2814.
  • ––––, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1101–1107.
  • K. Bahmanpour and P. H. Quy, Localization at countably infinitely many prime ideals and applications, J. Algebra Appl. 15 (2016), no. 3, 1650045, 6 pp.
  • M. P. Brodmann and A. L. Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2851–2853.
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993.
  • G. Chiriacescu, Cofiniteness of local cohomology modules over regular local rings, Bull. London Math. Soc. 32 (2000), no. 1, 1–7.
  • D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79–84.
  • D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45–52.
  • K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), no. 3, 655–660.
  • ––––, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 (2006), no. 2, 681–690.
  • A. Grothendieck, Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux $(SGA 2)$, Advanced Studies in Pure Mathematics 2, North-Holland, Amsterdam, 1968.
  • R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), no. 2, 145–164.
  • S. H. Hassanzadeh and A. Vahidi, On vanishing and cofiniteness of generalized local cohomology modules, Comm. Algebra 37 (2009), no. 7, 2290–2299.
  • C. Huneke, Problems on local cohomology, in: Free Resolutions in Commutative Algebra and Algebraic Geometry, (Sundance, UT, 1990), 93–108, Res. Notes Math. 2, Jones and Bartlett, Boston, MA, 1992.
  • C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421–429.
  • K.-i. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 (2011), no. 1-2, 587–608.
  • K. Khashyarmanesh and Sh. Salarian, On the associated primes of local cohomology modules, Comm. Algebra 27 (1999), no. 12, 6191–6198.
  • I. G. Macdonald, Secondary representation of modules over a commutative ring, Symp. Math. 11 (1973), 23–43.
  • T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (2002), no. 1, 180–193.
  • A. A. Mehrvarz, R. Naghipour and M. Sedghi, Faltings' local-global principle for the finiteness of local cohomology modules over Noetherian rings, Comm. Algebra 43 (2015), no. 11, 4860–4872.
  • L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649–668.
  • ––––, Cofiniteness with respect to ideals of dimension one, J. Algebra 372 (2012), 459–462.
  • M. Nazari and R. Sazeedeh, Cofiniteness with respect to two ideals and local cohomology, Algebr. Represent. Theory 22 (2019), no. 2, 375–385.
  • L. T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra 33 (2005), no. 3, 793–806.
  • P. H. Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc. 138 (2010), no. 6, 1965–1968.
  • J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics 85, Academic Press, San Diego, 1979.
  • A. Vahidi, M. Aghapournahr and E. Mahmoudi Renani, Finiteness dimensions and cofiniteness of local cohomology modules, Submitted (2019).
  • K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191.
  • T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 (2012), no. 7, 2293–2305.