Taiwanese Journal of Mathematics

Topological Sensitivity Analysis and Kohn-Vogelius Formulation for Detecting a Rigid Inclusion in an Elastic Body

Mourad Hrizi

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

Our main interest in this work is to detect a rigid inclusion immersed in an isotropic elastic body $\Omega$ from a single pair of Cauchy data on $\partial \Omega$ in two dimensions. We want to completely characterize the unknown rigid inclusion, namely, the shape and the location of inclusion. The idea is to rewrite the inverse problem as an optimization problem, where an energy like functional is minimized with respect to the presence of a small inclusion. A topological sensitivity analysis is derived for an energy like functional. We proposed a non-iterative reconstruction algorithm based on the topological gradient concept. The unknown rigid inclusion is defined by a level curve of a scalar function. The proposed numerical approach is very robust with respect to noisy data. Finally, in order to show the efficiency and accuracy of the proposed algorithm, we present some numerical results.

Article information

Source
Taiwanese J. Math., Advance publication (2019), 44 pages.

Dates
First available in Project Euclid: 9 August 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1565337621

Digital Object Identifier
doi:10.11650/tjm/190705

Subjects
Primary: 49Q10: Optimization of shapes other than minimal surfaces [See also 90C90] 35R30: Inverse problems 49Q12: Sensitivity analysis 74P15: Topological methods

Keywords
shape optimization topological optimization topological sensitivity analysis linear elasticity Kohn-Vogelius functional

Citation

Hrizi, Mourad. Topological Sensitivity Analysis and Kohn-Vogelius Formulation for Detecting a Rigid Inclusion in an Elastic Body. Taiwanese J. Math., advance publication, 9 August 2019. doi:10.11650/tjm/190705. https://projecteuclid.org/euclid.twjm/1565337621


Export citation

References

  • A. B. Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control Optim. 48 (2010), no. 5, 2871–2900.
  • M. Abdelwahed and M. Hassine, Topological optimization method for a geometric control problem in Stokes flow, Appl. Numer. Math. 59 (2009), no. 8, 1823–1838.
  • G. Alessandrini, A. Bilotta, G. Formica, A. Morassi, E. Rosset and E. Turco, Numerical size estimates of inclusions in elastic bodies, Inverse Problems 21 (2005), no. 1, 133–151.
  • G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements, SIAM Rev. 46 (2004), no. 3, 477–498.
  • G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences 146, Springer-Verlag, New York, 2002.
  • G. Allaire, F. Jouve and N. Van Goethem, Damage and fracture evolution in brittle materials by shape optimization methods, J. Comput. Phys. 230 (2011), no. 12, 5010–5044.
  • F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Methods Appl. Sci. 23 (2000), no. 6, 575–600.
  • C. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium, SIAM J. Appl. Math. 62 (2001), no. 1, 94–106.
  • C. J. S. Alves and N. F. M. Martins, The direct method of fundamental solutions and the inverse Kirsch-Kress method for the reconstruction of elastic inclusions or cavities, J. Integral Equations Appl. 21 (2009), no. 2, 153–178.
  • H. Ammari, H. Kang, G. Nakamura and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity 67 (2002), no. 2, 97–129.
  • S. Amstutz, The topological asymptotic for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 11 (2005), no. 3, 401–425.
  • S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method, J. Comput. Phys. 216 (2006), no. 2, 573–588.
  • S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method, Control Cybernet. 34 (2005), no. 1, 81–101.
  • S. Amstutz and A. A. Novotny, Topological optimization of structures subject to Von Mises stress constraints, Struct. Multidiscip. Optim. 41 (2010), no. 3, 407–420.
  • D. D. Ang, D. D. Trong and M. Yamamoto, Identification of cavities inside two-dimensional heterogeneous isotropic elastic bodies, J. Elasticity 56 (1999), no. 3, 199–212.
  • K. Atkinson and W. Han, Theoretical Numerical Analysis: A functional analysis framework, Third edition, Texts in Applied Mathematics 39, Springer, Dordrecht, 2009.
  • D. Auroux, M. Masmoudi and L. Belaid, Image restoration and classification by topological asymptotic expansion, in: Variational Formulations in Mechanics: Theory and Applications, 23–42, 2006.
  • J. B. Bacani and G. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal. 2013 (2013), Art. ID. 384320, 19 pp.
  • L. J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Application of the topological gradient to image restoration and edge detection, Eng. Anal. Bound. Elem. 32 (2008), no. 11, 891–899.
  • L. M. Bezerra and S. Saigal, A boundary element formulation for the inverse elastostatics problem (IESP) of flaw detection, Internat. J. Numer. Methods Engrg. 36 (1993), no. 13, 2189–2202.
  • M. Bonnet and A. Constantinescu, Inverse problems in elasticity, Inverse Problems 21 (2005), no. 2, R1–R50.
  • A. Canelas, A. Laurain and A. A. Novotny, A new reconstruction method for the inverse source problem from partial boundary measurements, Inverse Problems 31 (2015), no. 7, 075009, 24 pp.
  • A. Canelas, A. A. Novotny and J. R. Roche, A new method for inverse electromagnetic casting problems based on the topological derivative, J. Comput. Phys. 230 (2011), no. 9, 3570–3588.
  • F. Caubet, C. Conca and M. Godoy, On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives, Inverse Probl. Imaging 10 (2016), no. 2, 327–367.
  • F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow, Inverse Problems 28 (2012), no. 10, 105007, 31 pp.
  • R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1: Physical origins and classical methods, Springer-Verlag, Berlin, 1990.
  • N. Dominguez, V. Gibiat and Y. Esquerre, Time domain topological gradient and time reversal analogy: An inverse method for ultrasonic target detection, Wave Motion 42 (2005), no. 1, 31–52.
  • K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. Appl. 52 (2012), no. 1, 69–85.
  • S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim. 39 (2001), no. 6, 1756–1778.
  • S. M. Giusti, A. A. Novotny and C. Padra, Topological sensitivity analysis of inclusion in two-dimensional linear elasticity, Eng. Anal. Bound. Elem. 32 (2008), no. 11, 926–935.
  • Ph. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem, SIAM J. Control Optim. 41 (2002), no. 4, 1042–1072.
  • ––––, Topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim. 43 (2004), no. 1, 1–31.
  • M. Hassine and M. Masmoudi, The topological asymptotic expansion for the quasi-Stokes problem, ESAIM Control Optim. Calc. Var. 10 (2004), no. 4, 478–504.
  • M. Hintermüller, Fast level set based algorithms using shape and topological sensitivity information, Control Cybernet. 34 (2005), no. 1, 305–324.
  • M. Hrizi, M. Hassine and R. Malek, A new reconstruction method for a parabolic inverse source problem, Accepted in Appl. Anal., (2018), 13 pp.
  • G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Applied Mathematical Sciences 164, Springer-Verlag, Berlin, 2008.
  • S.-C. Hsieh and T. Mura, Nondestructive cavity identification in structures, Internat. J. Solids Structures 30 (1993), no. 12, 1579–1587.
  • K. L. Johnson, The correlation of indentation experiments, J. Mech. Phys. Solids 18 (1970), no. 2, 115–126.
  • A. Karageorghis, D. Lesnic and L. Marin, The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies, Computers & Structures 106-107 (2012), 176–188.
  • ––––, The method of fundamental solutions for three-dimensional inverse geometric elasticity problems, Computers & Structures 166 (2016), 51–59.
  • A. J. Kassab, F. A. Moslehy and A. B. Daryapurkar, Nondestructive detection of cavities by an inverse elastostatics boundary element method, Eng. Anal. Bound. Elem. 13 (1994), no. 1, 45–55.
  • R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math. 40 (1987), no. 6, 745–777.
  • H. S. Lee, Y. H. Kim, C. J. Park and H. W. Park, A new spatial regularization scheme for the identification of the geometric shape of an inclusion in a finite body, Internat. J. Numer. Methods Engrg. 46 (1999), no. 7, 973–992.
  • L. Marin, L. Elliott, D. B. Ingham and D. Lesnic, Identification of material properties and cavities in two-dimensional linear elasticity, Comput. Mech. 31 (2003), no. 3-4, 293–300.
  • M. Masmoudi, The topological asymptotic, computational methods for control applications, International Series, Gakuto, 2002.
  • M. Masmoudi, J. Pommier and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications, Inverse Problems 21 (2005), no. 2, 547–564.
  • V. G. Maz'ya and S. V. Poborchi, Differentiable Functions on Bad Domains, World Scientific, 1997.
  • A. Morassi and E. Rosset, Detecting rigid inclusions, or cavities, in an elastic body, J. Elasticity 73 (2003), no. 1-3, 101–126.
  • ––––, Uniqueness and stability in determining a rigid inclusion in an elastic body, Mem. Amer. Math. Soc. 200 (2009), no. 938, 58 pp.
  • G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, Amer. J. Math. 115 (1993), no. 5, 1161–1187.
  • A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization, Interaction of Mechanics and Mathematics, Springer, Heidelberg, 2013.
  • G. Rus and R. Gallego, Optimization algorithms for identification inverse problems with the boundary element method, Eng. Anal. Bound. Elem. 26 (2002), no. 4, 315–327.
  • B. Samet, S. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim. 42 (2003), no. 5, 1523–1544.
  • A. Schumacher, Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien, PhD Thesis University of Siegen, 1996.
  • E. I. Shifrin and P. S. Shushpannikov, Identification of a spheroidal defect in an elastic solid using a reciprocity gap functional, Inverse Problems 26 (2010), no. 5, 055001, 17 pp.
  • J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim. 37 (1999), no. 4, 1251–1272.
  • A. Wexler, B. Fry and M. R. Neuman, Impedance-computed tomography algorithm and system, Appl. Opt. 24 (1985), no. 23, 3985–3992.