Taiwanese Journal of Mathematics

Gap Theorems on Critical Point Equation of the Total Scalar Curvature with Divergence-free Bach Tensor

Gabjin Yun and Seungsu Hwang

Full-text: Open access

Abstract

On a compact $n$-dimensional manifold, it is well known that a critical metric of the total scalar curvature, restricted to the space of metrics with unit volume is Einstein. It has been conjectured that a critical metric of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, will be Einstein. This conjecture, proposed in 1987 by Besse, has not been resolved except when $M$ has harmonic curvature or the metric is Bach flat. In this paper, we prove some gap properties under divergence-free Bach tensor condition for $n \geq 5$, and a similar condition for $n = 4$.

Article information

Source
Taiwanese J. Math., Volume 23, Number 4 (2019), 841-855.

Dates
Received: 13 September 2018
Revised: 5 November 2018
Accepted: 6 November 2018
First available in Project Euclid: 18 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1563436871

Digital Object Identifier
doi:10.11650/tjm/181102

Mathematical Reviews number (MathSciNet)
MR3982064

Zentralblatt MATH identifier
07088950

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.) 58E11: Critical metrics

Keywords
critical point equation total scalar curvature Besse conjecture Bach tensor Einstein metric

Citation

Yun, Gabjin; Hwang, Seungsu. Gap Theorems on Critical Point Equation of the Total Scalar Curvature with Divergence-free Bach Tensor. Taiwanese J. Math. 23 (2019), no. 4, 841--855. doi:10.11650/tjm/181102. https://projecteuclid.org/euclid.twjm/1563436871


Export citation

References

  • H. Baltazar, On critical point equation of compact manifolds with zero radial Weyl curvature, arXiv:1709.09681.
  • A. L. Besse, Einstein Manifolds, Results in Mathematics and Related Areas (3) 10, Springer-Verlag, New York, 1987.
  • H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149–1169.
  • G. Catino, P. Mastrolia and D. D. Monticelli, Gradient Ricci solitons with vanishing conditions on Weyl, J. Math. Pures Appl. (9) 108 (2017), no. 1, 1–13.
  • G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47–62.
  • N. Koiso, A decomposition of the space $\mathcal{M}$ of Riemannian metrics on a manifold, Osaka J. Math. 16 (1979), no. 2, 423–429.
  • M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), no. 3, 333–340.
  • M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), no. 1, 207–213.
  • J. Qing and W. Yuan, A note on static spaces and related problems, J. Geom. Phys. 74 (2013), 18–27.
  • G. Yun, J. Chang and S. Hwang, Total scalar curvature and harmonic curvature, Taiwanese J. Math. 18 (2014), no. 5, 1439–1458.
  • ––––, On the structure of linearization of the scalar curvature, Tohoku Math. J. (2) 67 (2015), no. 2, 281–295.
  • ––––, Erratum to: Total scalar curvature and harmonic curvature, Taiwanese J. Math. 20 (2016), no. 3, 699–703.