Abstract
Let $f$ be a strongly $q$-additive function with integer values. Given an integer $k \geq 2$, we try to estimate the number of positive integers $n \leq N$ (resp. primes $p \leq N$) for which $f(n)$ is $k$-free (resp. $f(p)$ is $k$-free).
Citation
Karam Aloui. Mohamed Mkaouar. Walid Wannes. "Power-free Values of Strongly $Q$-additive Functions." Taiwanese J. Math. 23 (4) 777 - 798, August, 2019. https://doi.org/10.11650/tjm/181208
Information