Taiwanese Journal of Mathematics

Power-free Values of Strongly $Q$-additive Functions

Karam Aloui, Mohamed Mkaouar, and Walid Wannes

Full-text: Open access


Let $f$ be a strongly $q$-additive function with integer values. Given an integer $k \geq 2$, we try to estimate the number of positive integers $n \leq N$ (resp. primes $p \leq N$) for which $f(n)$ is $k$-free (resp. $f(p)$ is $k$-free).

Article information

Taiwanese J. Math., Volume 23, Number 4 (2019), 777-798.

Received: 10 June 2018
Revised: 30 November 2018
Accepted: 16 December 2018
First available in Project Euclid: 18 July 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11A63: Radix representation; digital problems {For metric results, see 11K16} 11L03: Trigonometric and exponential sums, general 11N05: Distribution of primes 11N69: Distribution of integers in special residue classes

$k$-free numbers strongly $q$-additive function exponential sums prime numbers


Aloui, Karam; Mkaouar, Mohamed; Wannes, Walid. Power-free Values of Strongly $Q$-additive Functions. Taiwanese J. Math. 23 (2019), no. 4, 777--798. doi:10.11650/tjm/181208. https://projecteuclid.org/euclid.twjm/1563436868

Export citation


  • R. C. Baker and J. Pintz, The distribution of squarefree numbers, Acta Arith. 46 (1985), no. 1, 73–79.
  • R. C. Baker and K. Powell, The distribution of $k$-free numbers, Acta Math. Hungar. 126 (2010), no. 1-2, 181–197.
  • W. D. Banks, G. Harman and I. E. Shparlinski, Distributional properties of the largest prime factor, Michigan Math. J. 53 (2005), no. 3, 665–681.
  • R. Bellman and H. N. Shapiro, On a problem in additive number theory, Ann. of Math. (2) 49 (1948), 333–340.
  • J. Coquet, Sur les fonctions $Q$-multiplicatives et $Q$-additives, Thèse $3^{\grave{e}me}$ cycle, Orsay, 1975.
  • C. J. de la Vallée Poussin, Recherches analytiques sur la théorie des nombres premiers, Brux. S. sc. 21, 1896.
  • M. Drmota and C. Mauduit, Weyl sums over integers with affine digit restrictions, J. Number Theory 130 (2010), no. 11, 2404–2427.
  • A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265.
  • S. W. Graham, The distribution of squarefree numbers, J. London Math. Soc. (2) 24 (1981), no. 1, 54–64.
  • S. W. Graham and J. Pintz, The distribution of $r$-free numbers, Acta Math. Hungar. 53 (1989), no. 1-2, 213–236.
  • J. Hadamard, Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220.
  • D. R. Heath-Brown, Power-free values of polynomials, Q. J. Math. 64 (2013), no. 1, 177–188.
  • C. H. Jia, The distribution of squarefree numbers, Beijing Daxue Xuebao (1987), no. 3, 21–27.
  • ––––, The distribution of square-free numbers, Sci. China Ser. A 36 (1993), no. 2, 154–169.
  • D.-H. Kim, On the joint distribution of $q$-additive functions in residue classes, J. Number Theory 74 (1999), no. 2, 307–336.
  • B. Martin, C. Mauduit and J. Rivat, Théorème des nombres premiers pour les fonctions digitales, Acta Arith. 165 (2014), no. 1, 11–45.
  • ––––, Fonctions digitales le long des nombres premiers, Acta Arith. 170 (2015), no. 2, 175–197.
  • C. Mauduit, A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), no. 1, 25–38.
  • X. Meng, The distribution of $k$-free numbers and the derivative of the Riemann zeta-function, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 2, 293–317.
  • L. Mirsky, The number of representations of an integer as the sum of a prime and a $k$-free integer, Amer. Math. Monthly 56 (1949), 17–19.
  • M. Mkaouar, N. Ouled Azaiez and J. M. Thuswaldner, Sur les chiffres des nombres premiers translatés, Funct. Approx. Comment. Math. 51 (2014), no. 2, 237–267.
  • H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory, Vol. 1, (Durham, 1979), 247–256, Academic Press, London, 1981.
  • F. Pappalardi, A survey on $k$-freeness, in: Number Theory, 71–88, Ramanujan Math. Soc. Lect. Notes Ser. 1, Ramanujan Math. Soc., Mysore, 2005.
  • T. Reuss, Power-free values of polynomials, Bull. Lond. Math. Soc. 47 (2015), no. 2, 270–284.
  • J. Sándor, D. S. Mitrinović and B. Crstici, Handbook of Number Theory I, Springer, Dordrecht, 2006.
  • G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics 46, Cambridge University Press, Cambridge, 1995.
  • I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Dover Publications, Mineola, NY, 2004.
  • A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.