Taiwanese Journal of Mathematics

A Note on Number Knots and the Splitting of the Hilbert Class Field

Yih-Jeng Yu

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

Several number knots are defined including the five knots introduced by W. Jehne. The question of the splitting of the group extension of the Hilbert class field can be read off in terms of the triviality of these knots.

Article information

Source
Taiwanese J. Math., Advance publication (2019), 18 pages.

Dates
First available in Project Euclid: 11 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1562832028

Digital Object Identifier
doi:10.11650/tjm/190703

Subjects
Primary: 12F10: Separable extensions, Galois theory
Secondary: 11R32: Galois theory 11R34: Galois cohomology [See also 12Gxx, 19A31]

Keywords
number knots Hilbert class field abelian genus central genus

Citation

Yu, Yih-Jeng. A Note on Number Knots and the Splitting of the Hilbert Class Field. Taiwanese J. Math., advance publication, 11 July 2019. doi:10.11650/tjm/190703. https://projecteuclid.org/euclid.twjm/1562832028


Export citation

References

  • R. J. Bond, Some results on the capitulation problem, J. Number Theory 13 (1981), no. 2, 246–254.
  • ––––, On the splitting of the Hilbert class field, J. Number Theory 42 (1992), no. 3, 349–360.
  • ––––, Capitulation in abelian extensions of number fields, Acta Arith. 179 (2017), no. 3, 201–232.
  • J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London New York, 1967.
  • G. Cornell and M. Rosen, A note on the splitting of the Hilbert class field, J. Number Theory 28 (1988), no. 2, 152–158.
  • R. Gold, Hilbert class fields and split extensions, Illinois J. Math. 21 (1977), no. 1, 66–69.
  • H. Hasse, Die Normenresttheorie relativ-Abelscher Zahlkörper als Klassenkörpertheorie im Kleinen, J. Reine Angew. Math. 162 (1930), 145–154.
  • F.-P. Heider, Zur Theorie der zahlentheoretischen Knoten, Dissertation, Köln, 1978.
  • ––––, Zahlentheoretische Knoten unendlicher Erweiterungen, Arch. Math. (Basel) 37 (1981), no. 4, 341–352.
  • C. S. Herz, Construction of class fields, in: Seminar on Complex Multiplication, 71–91, Lecture Notes in Mathematics 21, Springer-Verlag, New York, 1966.
  • K. Hoechsmann, P. Roquette and H. Zassenhaus, A cohomological characterization of finite nilpotent groups, Arch. Math. (Basel) 19 (1968), 225–244.
  • W. Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311/312 (1979), 215–254.
  • J. Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften 322, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder, Springer-Verlag, Berlin, 1999.
  • A. Scholz, Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen II, J. Reine Angew. Math. 182 (1940), 217–234.
  • J.-P. Serre, Local class field theory, in: Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), 128–161, Thompson, Washington, D.C., 1967.
  • ––––, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, New York, 1979.
  • H. Suzuki, A generalization of Hilbert's theorem 94, Nagoya Math. J. 121 (1991), 161–169.
  • J. T. Tate, Global class field theory, in: Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), 162–203, Thompson, Washington, D.C., 1967.
  • W. J. Wong, A cohomological characterization of finite nilpotent groups, Proc. Amer. Math. Soc. 19 (1968), 689–691.
  • B. F. Wyman, Hilbert class fields and group extensions, Scripta Math. 29 (1973), 141–149.