Taiwanese Journal of Mathematics

Inverse Anti-$k$-centrum Problem on Networks with Variable Edge Lengths

Van Huy Pham and Kien Trung Nguyen

Advance publication

This article is in its final form and can be cited using the date of online publication and the DOI.

Full-text: Open access

Abstract

This paper concerns the problem of modifying edge lengths of a network at minimum total costs so as to make a prespecified vertex become an optimal location in the modified environment. Here, we focus on the ordered median objective function with respect to the vector of multipliers $\lambda = (1,\ldots,1,0,\ldots,0)$ with $k$ 1's. This problem is called the inverse anti-$k$-centrum problem. We first show that the inverse anti-$k$-centrum problem is NP-hard even on tree networks. However, for the inverse anti-$k$-centrum problem on cycles, we formulate it as one or two linear programs, depending on odd or even integer $k$. Concerning the special cases with $k = 2,3,M$, we develop combinatorial algorithms that efficiently solve the problem, where $M$ is the number of vertices of the cycle.

Article information

Source
Taiwanese J. Math., Advance publication (2019), 22 pages.

Dates
First available in Project Euclid: 21 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1561082413

Digital Object Identifier
doi:10.11650/tjm/190602

Subjects
Primary: 90B10: Network models, deterministic 90B80: Discrete location and assignment [See also 90C10] 90C27: Combinatorial optimization

Keywords
location problems inverse optimization problems ordered median function anti-$k$-centrum tree cycle

Citation

Pham, Van Huy; Nguyen, Kien Trung. Inverse Anti-$k$-centrum Problem on Networks with Variable Edge Lengths. Taiwanese J. Math., advance publication, 21 June 2019. doi:10.11650/tjm/190602. https://projecteuclid.org/euclid.twjm/1561082413


Export citation

References

  • R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, algorithms, and applications, Prentice Hall, Englewood Cliffs, NJ, 1993.
  • B. Alizadeh and R. E. Burkard, Combinatorial algorithms for inverse absolute and vertex $1$-center location problems on trees, Networks 58 (2011), no. 3, 190–200.
  • ––––, Uniform-cost inverse absolute and vertex center location problems with edge length variations on trees, Discrete Appl. Math. 159 (2011), no. 8, 706–716.
  • ––––, A linear time algorithm for inverse obnoxious center location problems on networks, CEJOR Cent. Eur. J. Oper. Res. 21 (2013), no. 3, 585–594.
  • B. Alizadeh, R. E. Burkard and U. Pferschy, Inverse $1$-center location problems with edge length augmentation on trees, Computing 86 (2009), no. 4, 331–343.
  • F. B. Bonab, R. E. Burkard and B. Alizadeh, Inverse median location problems with variable coordinates, CEJOR Cent. Eur. J. Oper. Res. 18 (2010), no. 3, 365–381.
  • F. B. Bonab, R. E. Burkard and E. Gassner, Inverse $p$-median problems with variable edge lengths, Math. Methods Oper. Res. 73 (2011), no. 2, 263–280.
  • R. E. Burkard, M. Galavii and E. Gassner, The inverse Fermat-Weber problem, European J. Oper. Res. 206 (2010), no. 1, 11–17.
  • R. E. Burkard, C. Pleschiutschnig and J. Zhang, Inverse median problems, Discrete Optim. 1 (2004), no. 1, 23–39.
  • ––––, The inverse $1$-median problem on a cycle, Discrete Optim. 5 (2008), no. 2, 242–253.
  • M. C. Cai, X. G. Yang and J. Z. Zhang, The complexity analysis of the inverse center location problem, J. Global Optim. 15 (1999), no. 2, 213–218.
  • Z. Drezner and H. W. Hamacher, Facility Location: Applications and theory, Springer-Verlag, Berlin, 2002.
  • H. A. Eiselt and V. Marianov, Foundations of location analysis, International Series in Operations Research and Management Science, Springer, 2011.
  • M. Galavii, The inverse $1$-median problem on a tree and on a path, Electronic Notes in Disrete Mathematics 36 (2010), 1241–1248.
  • M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of $NP$-completeness, Series of Books in the Mathematical Sciences, W. H. Freeman, San Francisco, CA, 1979.
  • E. Gassner, An inverse approach to convex ordered median problems in trees, J. Comb. Optim. 23 (2012), no. 2, 261–273.
  • A. J. Goldman, Optimal center location in simple networks, Transportation Sci. 5 (1971), 212–221.
  • H. W. Hamacher, Mathematische Lösungsverfahren für planare Standortprobleme, Vieweg and Teubner Verlag, Wiesbaden, 1995.
  • L. K. Hua, Application off mathematical models to wheat harvesting, Chinese Mathematics (1962), no. 2, 539–560.
  • K. T. Nguyen, Inverse $1$-median problem on block graphs with variable vertex weights, J. Optim. Theory Appl. 168 (2016), no. 3, 944–957.
  • ––––, Some polynomially solvable cases of the inverse ordered $1$-median problem on trees, Filomat 31 (2017), no. 12, 3651–3664.
  • K. T. Nguyen and L. Q. Anh, Inverse $k$-centrum problem on trees with variable vertex weights, Math. Methods Oper. Res. 82 (2015), no. 1, 19–30.
  • K. T. Nguyen and A. Chassein, The inverse convex ordered $1$-median problem on trees under Chebyshev norm and Hamming distance, European J. Oper. Res. 247 (2015), no. 3, 774–781.
  • K. T. Nguyen and A. R. Sepasian, The inverse $1$-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance, J. Comb. Optim. 32 (2016), no. 3, 872–884.
  • S. Nickel and J. Puerto, Location Theory: A unified approach, Berlin, Springer, 2005.